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Abstract—Accurate recognition of cocktail party speech con-
taining overlapping speakers, noise and reverberation remains
a highly challenging task to date. Motivated by the invariance
of visual modality to acoustic signal corruption, an audio-visual
multi-channel speech separation, dereverberation and recognition
approach featuring a full incorporation of visual information
into all system components is proposed in this paper. The
efficacy of the video input is consistently demonstrated in mask-
based MVDR speech separation, DNN-WPE or spectral mapping
(SpecM) based speech dereverberation front-end and Conformer
ASR back-end. Audio-visual integrated front-end architectures
performing speech separation and dereverberation in a pipelined
or joint fashion via mask-based WPD are investigated. The error
cost mismatch between the speech enhancement front-end and
ASR back-end components is minimized by end-to-end jointly
fine-tuning using either the ASR cost function alone, or its
interpolation with the speech enhancement loss. Experiments
were conducted on the mixture overlapped and reverberant
speech data constructed using simulation or replay of the Oxford
LRS2 dataset. The proposed audio-visual multi-channel speech
separation, dereverberation and recognition systems consistently
outperformed the comparable audio-only baseline by 9.1% and
6.2% absolute (41.7% and 36.0% relative) word error rate
(WER) reductions. Consistent speech enhancement improve-
ments were also obtained on PESQ, STOI and SRMR scores1.

Index Terms—Audio-visual, Speech separation, Speech dere-
verberation, Speech recognition, End-to-end, Conformer

I. INTRODUCTION

DESPITE the rapid progress of automatic speech recogni-
tion (ASR) in the past few decades, accurate recognition

of cocktail party speech [1], [2] remains a highly challenging
task to date. Its difficulty can be attributed to multiple sources
of interference including overlapping speakers, background
noise and room reverberation. These lead to a large mismatch
between the resulting mixture speech and clean signals.

To this end, microphone arrays play a key role in state-of-
the-art speech enhancement and recognition systems designed
for cocktail party overlapped speech and far-field scenarios
[3]–[5]. The required array beamforming techniques used to
perform multi-channel signal integration are normally imple-
mented as either time or frequency domain filters. These are
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represented by time domain delay and sum [6], frequency
domain minimum variance distortionless response (MVDR)
[7], [8] and generalized eigenvalue (GEV) [9] based multi-
channel integration approaches. Earlier generations of mixed
speech separation and recognition systems featuring conven-
tional multi-channel array beamforming techniques typically
used a pipelined system architecture. It contains separately
constructed speech enhancement front-end modules designed
to perform speech separation, dereverberation as well as de-
noising tasks, and speech recognition back-end components.

With the wider application of deep neural networks (DNNs)
based speech technologies, microphone array beamforming
techniques have also evolved into a rich variety of neural
network based designs in recent few years. These include:
a) neural time-frequency (TF) masking approaches [10]–[12]
used to predict spectral mask labels for a reference channel
that specify whether a particular TF spectrum point is domi-
nated by the target speaker or interfering sources to facilitate
speech separation; b) neural Filter and Sum approaches di-
rectly estimating the beamforming filter parameters in either
time domain [13] or frequency domain [14] to produce the
separated outputs; and c) mask-based MVDR [4], [15]–[19],
and mask-based GEV [20], [21] approaches utilizing DNN
estimated TF masks to compute target speaker and noise
specific speech power spectral density (PSD) matrices and to
obtain the beamforming filter parameters, while alleviating the
need of explicit direction of arrival (DOA) estimation.

In many practical applications, reverberation presents a
further challenge which can lead to severe speech recogni-
tion performance degradation [22], [23] when such systems
are trained on anechoic and non-reverberant data. Classical
solutions to the resulting dereverberation problem represented
by, for example, weighted prediction error (WPE) [24], require
the estimation of a time delayed linear filter. In recent years,
there has been a similar trend of conventional speech derever-
beration approaches [24]–[27] such as WPE evolving into their
current DNN based variants. These include: a) the DNN-WPE
[22], [23] method, which uses neural network estimated target
signal PSD matrices in place of those traditionally obtained
using maximum likelihood estimation trained complex value
Gaussian Mixture Models [24] in the dereverberation filter
estimation; and b) complex spectral masking [28], [29] and
spectral mapping [30], [31] learning a transformation between
reverberant and anechoic data.

End-to-end all neural microphone array based speech en-
hancement and recognition systems present a comprehensive
and overarching solution to the cocktail party speech problem
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by simultaneously performing speech separation, denoising
and dereverberation. However, efforts on developing such sys-
tems are confronted by a number of key research challenges.

1) Full incorporation of video modality: Motivated by the
bimodal nature of human speech perception and the invariance
of visual information to extrinsic acoustic corruption, there
has been a long history of developing audio-visual speech
enhancement [32]–[49] and recognition [50]–[66] techniques.
When processing the cocktail mixed speech, a holistic, con-
sistent incorporation of visual information in all components
of the entire system (speech separation, dereverberation and
recognition) is preferred. In contrast, among existing re-
searches, video information has mainly been partially incor-
porated into: a) the speech enhancement (separation and/or
dereverberation) front-end [33]–[49] alone; or b) the speech
recognition back-end [50]–[66] only. More recent works used
video information in both the multi-channel speech separation
and ASR [67], but not in speech dereverberation.

2) Integration between speech separation and dere-
verberation modules: Surface reflection of speech signals
in reverberant environments distorts the DOA or TF-mask
estimation for the target speaker. At the same time, inter-
fering sound sources also impact the dereverberation filter
estimation. Hence, a suitable form of integration between the
speech separation and dereverberation techniques is required
within the speech enhancement front-end sub-system. Possible
integration solutions include: a) a pipelined architecture within
which the speech separation and dereverberation components
are sequentially connected in any order such as the previous
researches in [21], [48], [68]; or b) a single architecture where
both these two enhancement functions are implemented, for
example, using weighted power minimization distortionless
response (WPD) [69]–[71] and the related DNN TF-mask
based WPD [72], [73] approaches. To date, such integration
problem has only been investigated for audio-only speech
enhancement [21], [69]–[77], but has not been studied for
audio-visual speech separation and dereverberation.

3) Joint optimization of audio-visual speech enhance-
ment front-end and recognition back-end: Conventional
non-DNN based speech enhancement front-end models are of-
ten separately constructed and cannot be easily integrated with
the ASR back-end. The wide application of deep learning ap-
proaches for speech enhancement and recognition components
allows them to be more tightly integrated and consistently
optimized in an end-to-end manner. An improved trade-off
between the speech enhancement front-end loss function and
ASR accuracy can then be obtained, for example, using multi-
task learning [67], [78], [79]. To date, such joint speech en-
hancement front-end and ASR back-end optimization has been
only conducted among: a) audio-only speech enhancement and
recognition systems using no video input [19], [23], [72], [78],
[80]–[82]; or b) audio-visual speech separation and recognition
tasks only while not considering speech dereverberation [67],
[79]. Hence, there is a pressing need to derive suitable joint op-
timization methods for a complete audio-visual multi-channel
speech separation, dereverberation and recognition system.

In order to address the above issues, an audio-visual multi-
channel speech separation, dereverberation and recognition

approach featuring a full incorporation of visual information
into all three components of the entire system is proposed
in this paper. The efficacy of the video input is consis-
tently demonstrated when being used in the mask-based
MVDR speech separation, DNN-WPE or spectral mapping
(SpecM) based speech dereverberation front-end and Con-
former encoder-decoder based ASR back-end components.
Both the pipelined integration methods using either a) a serial
connection of the audio-visual speech separation component
with the following dereverberation module; or b) audio-visual
speech dereverberation followed by separation; and c) joint
speech separation and dereverberation via audio-visual mask-
based WPD are investigated. In order to reduce the error cost
mismatch between the speech enhancement front-end and ASR
back-end components, they are jointly fine-tuned using either
only the Conformer ASR cost function (CTC plus Attention)
[83], or the ASR cost function interpolated with the speech
enhancement loss based on mean square error (MSE) and
scale-invariant signal to noise ratio (SISNR).

Experiments conducted on the mixture overlapped and
reverberant speech data constructed using either simulation or
replay of the benchmark Oxford LRS2 dataset [84] suggest:

1) The proposed audio-visual multi-channel speech sepa-
ration, dereverberation and recognition systems consistently
outperformed the comparable audio-only baseline systems by
9.1% and 6.2% absolute (41.7% and 36.0% relative)
word error rate (WER) reductions on the LRS2 simulated
and replayed evaluation datasets, respectively. Consistent im-
provements of perceptual evaluation of speech quality (PESQ)
[85], short-time objective intelligibility (STOI) [86] and speech
to reverberation modulation energy ratio (SRMR) [87] scores
were also obtained.

2) In particular, when compared with audio-only derever-
beration, incorporating visual information into the DNN-WPE
or SpecM based dereverberation module produced consistent
improvements of PESQ, STOI and SRMR scores and a sta-
tistically significant2 WER reduction by up to 1.9% absolute
(5.9% relative), irrespective of the form of integration be-
tween speech separation and dereverberation components.

3) Among different architectures to integrate the speech
separation and dereverberation components within the front-
end, a pipelined, full audio-visual configuration performing
DNN-WPE based speech dereverberation followed by mask-
based MVDR speech separation using video input in both
stages produced the best overall speech enhancement and
recognition performance.

4) Consistent WER reductions and improvements on speech
enhancement metric scores were also obtained after joint fine-
tuning the entire audio-visual speech separation, dereverbera-
tion and recognition system in a fully end-to-end manner.

The main contributions of this paper are summarized below:
1) To the best of our knowledge, this paper presents the

first use of a complete audio-visual multi-channel speech sep-
aration, dereverberation and recognition system architecture
featuring a full incorporation of visual information into all

2Matched pairs sentence-segment word error (MAPSSWE) based statistical
significance test [88] was performed at a significance level α=0.05.
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Fig. 1. Audio-visual multi-channel speech separation using mask-based MVDR approach (a), and joint speech separation & dereverberation module
using mask-based WPD in (b). Both use the same audio-visual embeddings (left part of the figure) for their complex masks estimation. Yr(t, f) ∈ C is
the r-th channel’s complex spectrum of mixture speech among R microphone channels. V(t) and A(t) denote the audio and visual embeddings at frame
index t, respectively. The internal structural details of the TCN block and Visual Conv1DBlock are shown in Fig. 2. The MVDR filter wMVDR(f) ∈ CR is
estimated using the target speech and noise PSD matrices Φx(f) ∈ CR×R and Φn(f) ∈ CR×R with their respective complex TF masks Mx

MVDR(t, f) ∈ C
and Mn

MVDR(t, f) ∈ C. The WPD filter w̃WPD(f) ∈ C(L+1)R is estimated using the target speaker and power normalized spatial-temporal PSD matrices
Φx̃(f) ∈ C(L+1)R×(L+1)R and Φỹ(f) ∈ C(L+1)R×(L+1)R with their respective complex TF masks M x̃

WPD(t, f) ∈ C and Mλ
WPD(t, f) ∈ C. Re(·) and

Im(·) denote the real and imaginary parts operators. D is the prediction delay parameter and L is the number of filter taps.

three stages. In contrast, prior researches incorporate visual
modality in either only the speech enhancement front-end
[33]–[49], ASR back-end [50]–[66], or both the multi-channel
speech separation and recognition stages [67] but excluding
the dereverberation component.

2) This paper presents a more complete investigation of the
advantages of audio-visual dereverberation approaches versus
audio-only dereverberation methods based on DNN-WPE and
SpecM. In contrast, similar prior studies [48] were conducted
only in the context of SpecM based dereverberation.

3) To the best of our knowledge, this is the first work
that systematically investigates the suitable form of integration
between the full audio-visual speech separation and derever-
beration modules within the speech enhancement front-end.
In contrast, similar studies in previous researches were only
conducted for audio-only speech enhancement [72].

4) This paper presents the first research to demonstrate that
performing an end-to-end joint optimization is useful for train-
ing a complete audio-visual multi-channel speech separation,
dereverberation and recognition system. In contrast, related
prior studies were conducted only in the context of audio-only
speech enhancement and recognition [72].

We hope these findings above will provide valuable insights
for the practical development of state-of-the-art audio-visual
speech separation, dereverberation and recognition systems for
cocktail party and far-field scenarios.

The rest of the paper is organized as follows. Audio-
visual multi-channel speech separation is reviewed in Section
II. Section III presents audio-visual multi-channel speech
dereverberation. Integrated audio-visual speech separation and
dereverberation approaches are proposed in Section IV. Section
V presents the audio-visual Conformer ASR back-end com-
ponent and its joint fine-tuning with the speech enhancement
front-end. Experimental data setup and results are presented
in Section VI and VII, respectively. Section VIII draws the
conclusion and discusses future research directions.

II. AUDIO-VISUAL MULTI-CHANNEL SPEECH
SEPARATION

In this section, the multi-channel far-field speech signal
model is reviewed first, before the introduction of the audio-
visual multi-channel mask-based MVDR approach for speech
separation is presented.

A. Multi-channel Far-field Signal Model

In the far-field scenarios, the short-time Fourier transform
(STFT) spectrum of the received multi-channel speech signal
y(t, f) ∈ CR recorded by a microphone array consisting of
R channels can be modeled as:

y(t, f) = x(t, f) + n(t, f) = g(f)S(t, f) + n(t, f), (1)

where t and f denote the indices of time and frequency bins,
respectively. x(t, f) ∈ CR is a complex vector containing
the clean speech signals received by the array channels.
n(t, f) ∈ CR represents either the interfering speaker’s speech
or additive background noise alone, or a combination of both.
g(f) ∈ CR denotes the array steering vector and S(t, f) is
the STFT spectrum of the target speaker’s clean speech.

B. Mask-based MVDR

Classic acoustic beamforming approaches [7]–[9] are de-
signed to capture the speech from the target speaker’s di-
rection while attenuating the interfering sounds coming from
other locations. This is realized by setting, or “steering”,
the beamforming filter parameters to the target direction.
Taking the MVDR beamformer as an example, a linear filter
wMVDR(f) ∈ CR is applied to the multi-channel mixture speech
spectrum y(t, f) to produce the filtered output ŜMVDR(t, f) as:

ŜMVDR(t, f) = wMVDR(f)
Hy(t, f), (2)

= wMVDR(f)
Hx(t, f)︸ ︷︷ ︸

target speech component

+wMVDR(f)
Hn(t, f)︸ ︷︷ ︸

residual noise

, (3)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

where (·)H denotes the conjugate transpose operator.
The MVDR beamformer is designed to minimize the resid-

ual noise output while imposing a distortionless constraint on
the target speech [7], which can be formulated as

min
wMVDR(f)

∑
t

∣∣wMVDR(f)
Hn(t, f)

∣∣2 , (4)

subject to :
∑
t

∣∣∣(ur −wMVDR(f))
H
x(t, f)

∣∣∣2 = 0, (5)

where ur = [0, 0, . . . , 1, . . . , 0]T ∈ RR is a one-hot reference
vector where its r-th component equals to one. (·)T denotes
the transpose operator. Without loss of generality, we select
the first channel, i.e., r = 1 as the reference channel among
the R channels throughout this paper.

The distortionless constraint in the above optimization
problem is equivalent to wMVDR(f)

Hg(f) = 1, which can
be interpreted as maintaining the energy along the target
direction. The MVDR beamforming filter is estimated as

wMVDR(f)=
Φn(f)

−1g(f)

g(f)HΦn(f)−1g(f)
=

Φn(f)
−1Φx(f)

tr (Φn(f)−1Φx(f))
ur, (6)

where the target speaker and noise specific power spectral
density (PSD) matrices

Φx(f)=

∑
t (M

x
MVDR(t, f)y(t, f)) (M

x
MVDR(t, f)y(t, f))

H∑
t M

x
MVDR(t, f) (M

x
MVDR(t, f))

∗ , (7)

Φn(f)=

∑
t (M

n
MVDR(t, f)y(t, f)) (M

n
MVDR(t, f)y(t, f))

H∑
t M

n
MVDR(t, f) (M

n
MVDR(t, f))

∗ , (8)

are computed using DNN predicted complex TF masks
Mx

MVDR(t, f) ∈ C and Mn
MVDR(t, f) ∈ C [19], [67]. tr(·) denotes

the trace operator. (·)∗ is complex conjugate operator.

C. Audio Modality

As is illustrated in the top left corner of Fig. 1, three types
of audio features including the complex STFT spectrum of
all the microphone array channels, the inter-microphone phase
differences (IPDs) [15] and location-guided angle feature (AF)
[89] are adopted as the audio inputs. IPDs features are used to
capture the relative phase difference between different micro-
phone channels and provide additional spatial cues for mask-
based multi-channel speech separation. Angle features that are
based on the approximated DOA of the target speaker3 are
also incorporated to provide further spatial filtering constraints.
In this work, the approximated DOA of the target speaker is
obtained by tracking the speaker’s face from a 180◦ wide-angle
camera (Fig. 1, bottom left corner).

Following prior researches on audio-visual multi-channel
speech separation [67], [68], the temporal convolutional net-
work architecture (TCN) [90], which uses a long reception
field to capture more sufficient contextual information, is used
in our separation system. As shown in the left of Fig. 2,
each TCN block is stacked by 8 Dilated 1-D ConvBlock
with exponentially increased dilation factors 20, 21, . . . ., 27.
As shown in the top left corner of Fig. 1, the log-power spec-
trum (LPS) features of the reference microphone channel are

3The target speaker is located using a 180-degree wide-angle camera to
track the speaker’s face. The camera approximated DOA of target speaker is
only used in AF features.

concatenated with the IPDs and AF features before being fed
into a single TCN module based Audio Block to compute the
audio embeddings A ∈ RFa×Ta , where Fa is the dimension
of audio embeddings and Ta is the number of audio frames.

Dilated 1D Conv Block

Dilated 1D Conv Block

Dilated 1D Conv Block

…

dilation=27

dilation=21

dilation=20

1 x 1-Conv

PReLU

Batch Normalization

D-Conv

Input

PReLU

Batch Normalization

1 x 1-Conv

+

Skip connection

Output

PReLU

Batch Normalization

D-Conv

Input

1 x 1-Conv

+

Skip connection

(a) TCN (b) Visual Conv1DBlock
Input

OutputOutput

Fig. 2. Illustration of the architectures of: (a) the temporal convolutional
network (TCN) Block. Each dilated 1-D ConvBlock consists of a 1 × 1
convolutional layer, a depth-wise separable convolution layer (D-Conv) [91],
with PReLU [92] activation function and batch normalization added between
each two convolution layers. Skip connections are added in each dilated 1-D
ConvBlock; and (b) Visual Conv1DBlock which consists of a PReLU [92]
activation function, batch normalization, a depth-wise separable convolution
layer (D-Conv) [91] and a 1× 1 convolutional layer with skip connection.

D. Visual Modality

The lip region of a target speaker obtained via face tracking
is fed into a LipNet [93] which consists of a 3D convolutional
layer (Fig. 1, bottom left, in pink) and an 18-layer ResNet [94]
(Fig. 1, bottom left, in light turquoise), to extract the visual
features from the target speaker’s lip movements. Before fus-
ing the visual features with the audio embeddings to improve
the TF masks estimation, the visual features are firstly fed
into the linear layer followed by the Visual Block containing
five Visual Conv1DBlocks (Fig. 1, bottom, in light brown,
the detailed network architecture is illustrated in the right of
Fig. 2), and then the output of Visual Block is up-sampled
to be time synchronised with the audio frames via linear
interpolation to compute the visual embeddings V ∈ RFv×Ta ,
where Fv is the dimension of visual embeddings. In this
work, the LipNet model is pretrained on the lipreading task
as described in [93].
E. Modality Fusion

In order to effectively integrate the audio and visual em-
beddings, a factorized attention-based modality fusion method
[67], [68] is utilized in the audio-visual speech separation
module. As shown in Fig. 1 (middle up), the acoustic embed-
dings at frame index t denoted by A(t) are first factorized into
K acoustic subspace vectors [ea1(t), e

a
2(t), . . . , e

a
K(t)] by a se-

ries of parallel linear transformation Pa
k ∈ RFa×Fa . The visual

embeddings at frame index t named by V(t) is mapped into
a K dimensional vector ev(t) = [ev1(t), e

v
2(t), . . . , e

v
K(t)]

T by
projection matrix Pv ∈ RK×Fv as

[ea1(t), e
a
2(t), . . . , e

a
K(t)] = [Pa

1 ,P
a
2 , . . . ,P

a
K ]A(t), (9)

ev(t) = Softmax (PvV(t)) , (10)

Then the fused audio-visual embeddings AV(t) ∈ RFa are

AV(t) = σ

(
K∑

k=1

evk(t)e
a
k(t)

)
, (11)

where σ(·) is the sigmoid function.
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Fig. 3. Illustration of audio-visual multi-channel speech dereverberation networks based on the (a) DNN-WPE or (b) SpecM approaches of Sections III-B
and III-C respectively. Xr(t, f) ∈ C is the r-th channel’s complex spectrum of reverberant speech among R microphone channels. V(t) and A(t) denote
the audio and visual embeddings at frame index t, in common with Fig.1. During WPE filter estimation, the signal variance λ(t, f) is obtained using DNN
predicted TF complex mask MWPE(t, f) ∈ C. x(t, f) ∈ CR is the input multi-channel reverberant speech signal. D denotes the prediction delay parameter
and L is the number of filter taps. MSpecM(t, f) ∈ C denotes the complex TF mask for SpecM based dereverberation.

The above audio-visual embeddings are fed into both the
Target Speech Block and Noise Block (Fig. 1, center), before
their respective outputs being further fed into the correspond-
ing linear layers (Fig. 1, top right, yellow blocks) to estimate
the complex TF masks Mx

MVDR(t, f) ∈ C and Mn
MVDR(t, f) ∈ C

required by the target speech and noise PSD matrices in Eqns.
(7) and (8) for MVDR filter estimation. After MVDR filtering,
the separated target speech spectrum is inverse STFT (iSTFT)
transformed to produce the corresponding waveform.

F. Separation Network Training Cost Function

Following the prior researches [36], [48], [67], [68], the
mask-MVDR based multi-channel speech separation network
is trained to maximize the SISNR metric, unless further joint
fine-tuning with the back-end ASR error loss later presented
in Section V is performed.

III. AUDIO-VISUAL MULTI-CHANNEL SPEECH
DEREVERBERATION

In this section, the multi-channel far-field signal model
is reformulated with additional reverberation. Audio-visual
multi-channel speech dereverberation approaches based on
audio-visual DNN-WPE and SpecM are then proposed. The
incorporation of the video features and its fusion with audio
modality in both methods are also presented.

A. Multi-channel Far-field Signal Model with Reverberation

In reverberant conditions, the target speech signal x(t, f) of
Eqn. (1) is further decomposed into two parts. The first part
consists of the direct signal and early reflections, referred to
as the desired signal d(t, f) ∈ CR, while the other contains
the late reverberation r(t, f) ∈ CR. This is given by

x(t, f)=

D−1∑
τ=0

a(τ, f)S(t−τ, f)︸ ︷︷ ︸
d(t,f)

+

D+L−1∑
τ=D

a(τ, f)S(t−τ, f)︸ ︷︷ ︸
r(t,f)

(12)

where D denotes the prediction delay parameter and L is the
number of filter taps. a(τ, f) ∈ CR is the room reverberant
transfer function from a given speaker to all microphones
for τ ∈ {0, 1, . . . , D + L− 1}. The dereverberation process
requires the desired signal d(t, f) to be preserved to enhance
speech intelligibility and improve ASR performance, while the
late reverberation r(t, f) to be eliminated [24].

B. DNN-WPE Based Dereverberation

In conventional WPE [24], the dereverberated signal d̂(t, f)
can be obtained by applying the WPE filter WWPE(f) ∈
CLR×R to the reverberant multi-channel signal as follows:

d̂(t, f) = x(t, f)−WWPE(f)
H x̃(t−D, f), (13)

where x̃(t−D, f)=
[
x(t−D, f)T , . . . ,x(t−D−L+1, f)T

]T ∈
CLR is the time-delayed reverberant speech spectrum vector.

The required WPE filter coefficients are traditionally es-
timated using maximum likelihood estimation [24]. It is as-
sumed that the desired signal at each microphone follows a
time-varying complex Gaussian distribution with a mean of
zero and a time-varying variance λ(t, f), which corresponds
to the power of the desired signal. Minimizing the average
power of the frame prediction errors weighted by λ−1(t, f),

min
{WWPE(f),λ(t,f)}

∑
t

∥∥x(t, f)−WWPE(f)
H x̃(t−D, f)

∥∥2
2

λ(t, f)
. (14)

leads to alternating updates between the WPE filter parameters,

WWPE(f) =

(∑
t

x̃(t−D, f)x̃(t−D, f)H

λ(t, f)

)−1

(∑
t

x̃(t−D, f)x(t, f)H

λ(t, f)

)
(15)

and the residual signal power given the current WPE filter

λ(t, f) =
1

R

∥∥∥d̂(t, f)∥∥∥2
2
, (16)

where ∥·∥2 denotes the Euclidean norm. The above alternating
estimation procedure iterates until convergence.

Recent deep neural network extension to WPE led to the
DNN-WPE approach [22], where the filtered signal power
λ(t, f) is estimated using DNN (e.g. LSTM [22]) predicted
TF complex mask4 MWPE(t, f) ∈ C. This is given by

λ(t, f) =
1

R
∥MWPE(t, f)x(t, f)∥22 , (17)

An example of DNN-WPE based dereverberation is shown in
Fig. 3 (top right, in light blue).

4Alternatively using channel dependent predicted mask Mr
WPE(t, f) pro-

duced comparable performance in practice while increasing the system
training time approximately by a factor of 5, and therefore not considered.
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C. SpecM Based Dereverberation
In addition to DNN-WPE based dereverberation, SpecM

based dereverberation is also leveraged in this work. A neural
network based TF spectral transformation between the input
reverberant and desired anechoic speech spectrum is learned
as follows:

d̂(t, f) = WSpecM(t, f)x(t, f) = MSpecM(t, f)x(t, f), (18)

where WSpecM(t, f) ∈ C denotes the SpecM filter and
MSpecM(t, f) ∈ C is the estimated complex TF-mask for SpecM
based dereverberation.

An example of SpecM based speech dereverberation is
shown in Fig. 3 (bottom right, in light yellow). Compared
with DNN-WPE, although the SpecM based dereverberation
approach can provide perceptually enhanced sounds, it has
been reported that the artifacts resulting from deterministic
spectral masking introduced a negative impact on downstream
speech recognition system performance [3], [15], [16].

D. Audio-visual Speech Dereverberation
The audio and video embeddings previously used in the

mask-based MVDR speech separation network of Section II
and Fig. 1 are concatenated5 before being fed into an AV
Fusion Block consisting of three TCN modules to produce
the integrated audio-visual embeddings (Fig. 3, left).

These audio-visual embeddings are then forwarded into
linear layers (Fig. 3, right, yellow blocks) to estimate the
complex TF masks of the desired speech for either DNN-
WPE (Fig. 3, top right, light blue) or SpecM (Fig. 3, bottom
right, light yellow) based dereverberation filter estimation. In
this work, the dereverberation network is trained in both cases
using the MSE loss computed between the filtered and ground-
truth anechoic speech spectrum [22], [48], [68].

IV. AUDIO-VISUAL SEPARATION AND DEREVERBERATION

In this section, three integrated audio-visual speech sepa-
ration and dereverberation architectures are proposed. These
include: a) a serial pipelined connection of the audio-visual
speech separation component with the following dereverbera-
tion module; or b) conversely audio-visual speech dereverber-
ation followed by separation; and c) joint speech separation &
dereverberation using audio-visual mask-based WPD.

A. Audio-visual Speech Separation-Dereverberation

In the audio-visual speech separation-dereverberation archi-
tecture, the multi-channel mixture speech spectra y(t, f) ∈ CR

as well as the extracted visual features and the camera captured
target speaker’s DOA from the Visual Front-end module (e.g.
Fig. 1, bottom left corner, in light green) are first fed into the
MVDR separation module as shown in Fig. 1(a) to produce
single-channel outputs, ŜMVDR(t, f), before being connected to
the dereverberation module based on DNN-WPE or SpecM
as shown in Fig. 3 to obtain the final enhanced speech
d̂MVDR-WPE(t, f) ∈ C or d̂MVDR-SpecM(t, f) ∈ C, respectively.

5Alternative audio-visual modality fusion methods, e.g. using the factorized
attention based fusion mechanism of Section II-E for speech separation, led
to performance degradation in practice and therefore not considered.

When DNN-WPE based dereverberation is used, this is
computed in a two stage, pipelined manner as

ŜMVDR(t, f) = wMVDR(f)
Hy(t, f), (19)

d̂MVDR-WPE(t, f)= ŜMVDR(t, f)−WWPE(f)
H ŝMVDR(t−D, f), (20)

where
ŝMVDR(t−D, f)=

[
ŜMVDR(t−D, f), . . . , ŜMVDR(t−D−L+1, f)

]T
denotes the enhanced single-channel output of the MVDR
beamformer from the past L frames and ŝMVDR(t−D, f) ∈ CL.
Here, WWPE(f) ∈ CL represents the single-channel WPE filter.
L is the number of filter taps and D denotes the prediction
delay parameter in WPE.

When SpecM based dereverberation is used, the final en-
hanced single-channel speech spectrum is computed as

ŜMVDR(t, f) = wMVDR(f)
Hy(t, f), (21)

d̂MVDR-SpecM(t, f) = WSpecM(t, f)ŜMVDR(t, f). (22)

B. Audio-visual Speech Dereverberation-Separation

In contrast to the above, connecting the speech dereverber-
ation and separation modules in a reverse order leads to the
audio-visual speech dereverberation-separation architecture.
The sequence of filtering operations of this architecture is
performed as follows:

When using DNN-WPE based dereverberation, the dere-
verberated multi-channel output d̂WPE(t, f) is first produced,
before being fed into the MVDR separation filter to produce
the final single-channel speech spectrum ŜWPE-MVDR(t, f) as

d̂WPE(t, f) = y(t, f)−WWPE(f)
H ỹ(t−D, f), (23)

ŜWPE-MVDR(t, f) = wMVDR(f)
H d̂WPE(t, f), (24)

where ỹ(t−D, f)=
[
y(t−D, f)T , . . . ,y(t−D−L+1, f)T

]T ∈
CLR denotes the stacked vector representation of the input
multi-channel mixture speech signal.

When using SpecM based dereverberation, the above can
be expressed as

d̂SpecM(t, f) = WSpecM(t, f)y(t, f), (25)

ŜSpecM-MVDR(t, f) = wMVDR(f)
H d̂SpecM(t, f). (26)

C. Audio-visual Joint Speech Separation & Dereverberation

Combining the multi-channel speech separation and dere-
verberation functions into a single convolutional filter leads to
a joint speech separation and dereverberation architecture, for
example, based on WPD [69]–[71] and their DNN predicted
mask-based variants [72].

When producing the final enhanced speech spectrum, a
single WPD filter w̃WPD(f) ∈ C(L+1)R is applied to the
time-delayed multi-channel mixed speech vector stacked by
y(t, f) ∈ CR and ỹ(t−D, f)T ∈ CLR as follows:

d̂(t, f) = w̃WPD(f)
H
[
y(t, f)T , ỹ(t−D, f)T

]T
, (27)

The WPD beamformer is trained to minimize the aver-
age weighted power of the filtered signal while satisfying
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Fig. 4. Illustration of an end-to-end audio-visual multi-channel speech separation, dereverberation and recognition system, which integrates the Speech
Enhancement Front-end, Visual Front-end, Feature Extraction and Conformer ASR Back-end components.

an orthogonal constraint for channel synchronization without
distorting the target speech. This is given by

min
w̃WPD(f)

∑
t

∣∣∣w̃WPD(f)
H
[
y(t, f)T , ỹ(t−D, f)T

]T ∣∣∣2
λ(t, f)

, (28)

subject to : w̃WPD(f)
H g̃(f) = 1. (29)

where the signal variance is averaged across R channels as

λ(t, f) =
1

R

R∑
r=1

∣∣Mλ
WPD(t, f)Yr(t, f)

∣∣2 ,
is estimated using DNN predicted TF complex mask of the
desired signal Mλ

WPD(t, f) ∈ C. Yr(t, f) represents the r-th
component of the multi-channel mixture speech signal y(t, f).
g̃(f) =

[
g(f)T ,0, . . . ,0

]T ∈ C(L+1)R is the padded steering
vector which is composed of a steering vector g(f) ∈ CR and
the others 0 ∈ CR vectors. It can be shown that the solution
of the above WPD convolutional beamformer is:

w̃WPD(f)=
Φỹ(f)

−1g̃(f)

g̃(f)HΦỹ(f)−1g̃(f)
=

Φỹ(f)
−1Φx̃(f)

tr (Φỹ(f)−1Φx̃(f))
ũr, (30)

where the target speaker and power normalized spatial-
temporal PSD matrices are

Φx̃(f)=

∑
t

(
M x̃

WPD(t, f)ỹ(t, f)
) (

M x̃
WPD(t, f)ỹ(t, f)

)H∑
t M

x̃
WPD(t, f) (M

x̃
WPD(t, f))

∗ , (31)

Φỹ(f) =
∑
t

ỹ(t, f)ỹ(t, f)H

λ(t, f)
, (32)

and ỹ(t, f) =
[
y(t, f)T , ỹ(t−D, f)T

]T ∈ C(L+1)R. ũr =

[ur,0, . . . ,0]
T is the padded reference vector. M x̃

WPD(t, f) ∈ C
denotes the complex TF mask of target speech.

An example of mask-based WPD is illustrated in Fig.
1(b) (bottom right, in light blue). The same audio-visual
embeddings that are used in mask-based MVDR separation
module (Fig. 1, top right, light yellow) are now fed into three
TCN based Target Speech Block and Time-varying Power
Block for WPD filtering. Their respective outputs are then
fed into the separate linear layers to estimate the complex
TF masks M x̃

WPD(t, f) ∈ C and Mλ
WPD(t, f) ∈ C required for

the computation of the two spatial-temporal PSD matrices and
finally the WPD filter parameters. The entire mask-based WPD
network is trained using an equally weighted interpolation
between the SISNR and MSE losses to perform joint speech
separation & dereverberation.

V. AUDIO-VISUAL MULTI-CHANNEL SPEECH
RECOGNITION

In this section, the Conformer-based audio-visual speech
recognition back-end and its further integration with the
speech enhancement front-end are introduced.
A. Audio-visual Conformer Speech Recognition Back-end

As shown in Fig. 4 (bottom left), the enhanced speech wave-
form produced by the speech separation and dereverberation
front-ends of Sections II, III and IV is fed through a STFT
transform before log Mel-filterbank (Mel-FBK) audio features
are calculated. As is also shown in Fig. 4 (top left), the visual
features extracted from the Visual Front-end are forwarded into
a linear layer before being up-sampled to be time synchronised
with the Mel-FBK audio frames. Finally, the audio and visual
features are concatenated and fed into the ASR back-end.

The Conformer ASR back-end [95], [96] comprises a Con-
former encoder and a Transformer decoder. The Conformer
encoder has one convolutional subsampling module, and a lin-
ear layer with dropout operation followed by stacked encoder
blocks. The internal components of each Conformer encoder
block include: a position-wise feed-forward network module,
a multi-head self-attention module, a convolution module,
and a final position-wise feed-forward network module at
the end. All the encoder blocks additionally undergo layer
normalization and residual connections. Fig. 4 (right) shows
an example of a Conformer ASR system, where the backbone
model architecture is in the grey colored part (Fig. 4, bottom
right). The detailed encoder block compositions are in the
blue colored part (Fig. 4, top right). The following multi-task
criterion interpolation between the CTC and attention error
costs [83] is utilized in Conformer model training,

LASR = (1− β)Latt + βLctc, (33)

where β ∈ [0, 1] is a tunable hyper-parameter and empirically
set as 0.3 for training and 0.4 for recognition in this paper.
B. Integration of Speech Enhancement and Recognition

Traditionally, the speech enhancement front-end and recog-
nition back-end components are optimized separately and used
in a pipelined manner [15], [16], [21], [97], [98]. However,
two issues arise with this pipelined approach: 1) the learning
cost function mismatch between speech enhancement front-
end and recognition back-end components is not addressed; 2)
the artifacts brought by the speech enhancement front-end can
lead to ASR performance degradation. To this end, a tight inte-
gration of the audio-visual speech separation, dereverberation
and recognition components via joint fine-tuning [19], [23],
[67], [72], [78]–[82] is considered in this paper. Three fine-
tuning methods are investigated: a) only fine-tuning the back-
end ASR component using the enhanced speech outputs while
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the front-end remains unchanged; b) end-to-end jointly fine-
tuning the entire system including the speech enhancement
front-end and the recognition back-end components using the
ASR cost function; c) end-to-end jointly fine-tuning the entire
system using a multi-task criterion interpolation between the
speech enhancement and recognition cost functions as follows:

L = (1− γ)LASR + γLSE, (34)

where γ is empirically set as 0.5 in the experiments unless
otherwise stated. The precise form of the speech enhancement
loss function, LSE, is determined by the underlying integrated
front-end architectures being used, as described in Section
IV. This is expressed as follows: a) LSE = LSISNR for
audio-visual speech separation followed by dereverberation,
as in Section IV-A; b) LSE = LMSE for audio-visual speech
dereverberation followed by separation, as in Section IV-B;
and c) LSE = LSISNR + LMSE for joint speech separation &
dereverberation in Section IV-C.

VI. EXPERIMENTAL SETUP

This section is organized as follows. Section VI-A gives
the details of the LRS2 corpus. The simulated and replayed
multi-channel mixture speech datasets are described in Section
Section VI-B and VI-C, respectively. Section VI-D presents
the performance of the baseline single-channel ASR and AVSR
systems on mixture speech. Finally, two important implemen-
tation issues that affect the performance of the proposed audio-
visual multi-channel speech separation, dereverberation and
recognition systems are discussed in Section VI-E.

A. LRS2 Corpus
The Oxford LRS2 corpus [84] is one of the largest publicly

available corpora for audio-visual speech recognition. This
corpus consists of news and talk shows from BBC programs.
This is a challenging AVSR task since it contains thousands of
speakers with large variations in head pose. The LRS2 corpus
is divided into four subsets, i.e. Pre-train, Train, Validation and
Test sets. In our experiments, the official Pre-train and Train
data sets are combined for model training.

B. Simulated Overlapped and Reverberant Speech

Since there is no publicly available audio-visual multi-
channel mixture speech corpus, we simulated the multi-
channel mixture speech with overlapping and reverberation
based on the LRS2 corpus in the experiments. Details of the
simulation process are described in Algorithm 1. A 15-channel
symmetric linear array with non-even inter-channel spacing
[7,6,5,4,3,2,1,1,2,3,4,5,6,7]cm is used in the simulation pro-
cess. 843 point-source noises [99] and 20000 room impulse
responses (RIRs) generated by the image method [100] in
400 different simulated rooms are used in our experiment.
The distance between a sound source and the microphone
array center is uniformly sampled from a range of 1m to 5m
and the room size ranges from 4m×4m×3m to 10m×10m
×6m (length×width×height). The reverberation time T60 is
uniformly sampled from a range of 0.14s to 0.92s. The average
overlapping ratio is around 80%. The signal-to-noise ratio
(SNR) is uniformly sampled from {0, 5, 10, 15, 20}dB, and
the signal-to-interference ratio (SIR) is uniformly sampled

Algorithm 1: Multi-channel mixture speech simulation
Input: single-channel anechoic LRS2 corpus
Output: multi-channel mixture speech
foreach utterance in LRS2 do

1) Uniformly sample an interfering utterance from
another speaker in the LRS2 corpus;

2) Uniformly sample a room size from
4m×4m×3m to 10m×10m×6m;

3) Uniformly sample a T60 from 0.14s to 0.92s;
4) Uniformly sample a microphone array position
in the room;

5) Uniformly sample two speakers’ positions while
the distance between each speaker and the array
is within the range of 1m to 5m;

6) Uniformly sample an angle difference from
{[0◦, 15◦), [15◦, 45◦), [45◦, 90◦), [90◦, 180◦) };

while the angle difference of the target and
interfering speakers relative to the microphone
array not in the selected range do

7) Re-sample the interfering speaker’s position;
8) Generate two multi-channel RIRs for the target
and interfering speakers using the above settings
and applying the image method [100];

9) Convolve each single-channel anechoic speech
of current utterance with the corresponding
multi-channel RIRs to simulate room
reverberation;

10) Uniformly sample a SIR from {-6, 0, 6} dB;
11) Scale the target and interfering sources with
the sampled SIR;

12) Uniformly sample a noise from a total of 843
point-source noise types [99];

13) Add two scaled speaker speech signals along
with the selected noise under {0, 5, 10, 15, 20}dB
SNR to obtain the final multi-channel mixture
(overlapped, noisy and reverberant) speech.

from {-6, 0, 6}dB. In addition, the angle difference relative
to the microphone array between the target and interfering
speakers is uniformly sampled from four ranges of the angle
difference {[0◦, 15◦), [15◦, 45◦), [45◦, 90◦), [90◦, 180◦)}. The
final simulated multi-channel datasets contain three subsets
with 96997, 4272 and 4972 utterances respectively for training
(91.37 hours), validation (2.59 hours) and test (2.32 hours).

C. Replayed Mixture Speech
To further evaluate the performance of the proposed ap-

proach in a more realistic application environment, a replayed
test set [67] with 1200 utterances (0.5 hours) of LRS2 Test set
recorded in a 10m×5m×3m meeting room is also used in our
experiments. Two loudspeakers are used to replay different
utterances simultaneously to produce mixture speech. The
geometric specification of the microphone array used during
recording is the same as that used in the simulation. The target
and interfering speakers are located at the following direc-
tions relative to the microphone array, i.e. {15◦/30◦, 45◦/30◦,
75◦/30◦, 105◦/30◦, 30◦/60◦, 90◦/60◦, 120◦/60◦, 150◦/60◦},
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TABLE I
PERFORMANCE OF SINGLE-CHANNEL ASR AND AVSR SYSTEMS
(WITHOUT SPEECH ENHANCEMENT FRONT-END) TRAINED AND

EVALUATED ON ANECHOIC, REVERBERANT-ONLY AND MIXTURE SPEECH.
”SIMU” AND ”REPLAY” DENOTE THE SIMULATED AND REPLAYED

EVALUATION DATASETS OF SECTION VI-B AND SECTION VI-C.

Sys. Data +Visual
Features

WER(%)
Simu Replay

1 Anechoic ✗ 8.8 -2 ✓ 7.3

3 Reverberant-only ✗ 13.8 -4 ✓ 10.5

5 Mixture of raw channel 1 ✗ 57.5 58.6
6 ✓ 25.2 22.6

where the distance between the loudspeakers and microphones
ranges from 1m to 1.5m. In the replayed data, the target
speaker’s DOA is captured by a 180◦ camera [67]. The average
overlapping ratio of the replayed mixture speech is around
80% and SIR is around 1.5dB.
D. Baseline System Description

1) Speech Enhancement Front-end: The 257-dimensional
complex spectrum of each channel is extracted using a 512-
point STFT with a 32ms square-root Hanning window and
16ms frame rate (e.g. Fig. 1, top left corner). The AF and
IPD features are computed using 9 microphone pairs {1/15,
2/14, 3/13, 1/7, 12/4, 11/5, 12/8, 7/10, 8/9} to sample different
spacing between microphones following [67]. For each Dilated
1D Conv Block in a TCN module (Fig. 2, left), the number
of channels in the 1×1 Conv layer is set to 256. The kernel
size of the D-Conv layer is set to 3, with 512 channels. The
output dimension of the linear layer is set to 257.

2) Visual Front-end: The original 160×160 dimensional
video frames in the LRS2 datasets are centrally cropped by a
112×112 dimensional window and then up-sampled to be time
synchronised with the audio frames via linear interpolation.
The Visual Front-end (e.g. Fig. 1, bottom left corner, in light
green) uses the same hyper-parameter settings as described
in [93]. In addition, the number of the acoustic subspaces K
is set to 10 with Pa

k ∈ R256×256 and Pv ∈ R10×256 in the
factorized attention layer [36].

3) Recognition Back-end: The 80-dimensional log Mel-
FBK features extracted using a 25ms window and 10ms frame
rate serve as the inputs to the recognition back-end. The base-
line Conformer models consist of 12 encoder and 6 decoder
blocks following the ESPnet recipe6. Each encoder or decoder
block is configured with 4-head attention of 256 dimensions
and 2048 feed-forward hidden units. The convolutional sub-
sampling module includes two 2D convolutional layers with
a stride of 2, each followed by a ReLU activation. 500 byte-
pair-encoding (BPE) tokens are used as decoder outputs. All
models are trained using NVIDIA A40 GPU cards7.

4) Performance of Speech Recognition without Speech
Enhancement Front-end: Table I presents the WER results
of the single-channel input based Conformer ASR and AVSR

6github.com/espnet/espnet/blob/master/egs/lrs2/asr1/run.sh
7The jointly fine-tuned speech enhancement front-end and recognition back-

end systems in Table V are trained using one thread on a single Nvidia A40
GPU with a batch size of 24 and the GPU memory usage vary from 32G to
43G maximum.

TABLE II
PERFORMANCE OF THREE INTEGRATED SPEECH ENHANCEMENT

FRONT-END ARCHITECTURES WITH DIFFERENT NUMBERS OF FILTER TAPS
(L) ON SIMULATED MIXTURE SPEECH FOR SINGLE-CHANNEL DNN-WPE,
MULTI-CHANNEL DNN-WPE AND MASK-BASED WPD MODULES USED IN

AUDIO-ONLY SPEECH ENHANCEMENT FRONT-ENDS.

Sys. Filter taps
(L)

PESQ(↑) / STOI(↑) / SRMR(↑)
Sep. → Dervb.

(Single-channel DNN-WPE)
Dervb. → Sep.

(Multi-channel DNN-WPE)
Joint Sep. & Dervb.

(Mask-based WPD)

1 1 2.21/72.07/5.32 2.44/79.63/6.31 2.42/76.63/6.64
2 2 2.22/72.42/5.29 2.46/79.75/6.44 2.40/76.64/6.83
3 3 2.23/72.69/5.32 2.45/79.66/6.50 2.40/76.51/6.97
4 4 2.23/72.86/5.35 2.45/79.53/6.57 2.36/76.10/7.04
5 5 2.24/72.98/5.39 2.44/79.32/6.60 2.34/75.78/7.08
6 7 2.24/73.20/5.45 2.41/78.47/6.72 2.30/75.05/7.11
7 9 2.24/73.35/5.51 2.38/77.87/6.70 2.27/74.48/7.16
8 12 2.25/73.53/5.58 2.34/76.73/6.80 2.20/73.28/7.12
9 15 2.25/73.65/5.64 2.28/75.20/6.83 2.12/71.74/6.90

10 18 2.25/73.73/5.70 2.24/74.18/6.90 2.06/70.39/6.66
11 21 2.25/73.71/5.75 2.18/72.67/6.84 1.98/68.90/6.48
12 24 2.25/73.71/5.79 2.11/71.09/6.90 1.87/66.20/6.02
13 27 2.25/73.70/5.82 2.02/68.96/6.72 1.81/64.60/5.83

systems (without using a microphone array and any speech
enhancement front-end) on the anechoic, reverberant-only and
mixture speech. It can be observed that using visual infor-
mation can consistently improve the recognition performance
over the audio-only ASR systems by up to 1.5% absolute
(17.0% relative) WER reduction on the anechoic speech (sys.
2 vs. sys. 1) and 3.3% absolute (23.9% relative) WER
reduction on the reverberant-only speech (sys. 4 vs. sys. 3).
In particular, the AVSR system significantly outperforms the
audio-only ASR system (sys. 6 vs. sys. 5) by up to 32.3% and
36.0% absolute (56.2% and 61.4% relative) WER reductions
on the simulated and replayed mixture speech respectively.
E. Implementation Details

1) Number of Filter Taps: The number of filter taps
L used in WPE and WPD approaches has a huge impact
on the quality of the enhanced speech and the downstream
recognition performance. A set of ablation studies on the
settings of filter taps L are conducted for each of the three
integrated speech separation and dereverberation front-end
architectures of Section IV (i.e. “Sep. → Dervb”, “Dervb. →
Sep.” and “Joint Sep. & Dervb.” denote the speech separation
followed by dereverberation, speech dereverberation followed
by separation and joint speech separation & dereverberation,
respectively.) These are shown in Table II for audio-only
speech enhancement. Considering the speech enhancement
performance in terms of PESQ, STOI and SRMR scores, the
number of filter taps for single-channel DNN-WPE, multi-
channel DNN-WPE and mask-based WPD are respectively
chosen and fixed as 18 (sys. 10), 2 (sys. 2) and 1 (sys. 1) in
the following experiments. In addition, the prediction delay D
is empirically set to 2 for DNN-WPE and mask-based WPD.

2) Matrix Inversion: The inversion of the PSD matrices for
MVDR and WPD (Eqn. (6) and Eqn. (30)) and the temporal
correlation matrix for WPE (Eqn. (15)) are prone to numerical
issues when they are ill-conditioned or singular. To this end,
the diagonal variance flooring approach [72] is utilized in this
work. A complex PSD or correlation matrix Φ is floored as
Φ′ = Φ+ ε tr(Φ)I before inversion, where a flooring scaling
term ε needs to be set, and I is the identity matrix. In addition,
a more stable complex matrix inversion algorithm [101] is
adopted in this paper. A set of ablation studies on the setting
of the flooring scaling ε is shown in Table III for audio-
only speech enhancement front-end systems with different
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TABLE III
PERFORMANCE OF SPEECH ENHANCEMENT FRONT-ENDS WITH DIFFERENT

DIAGONAL VARIANCE FLOORING (ε) ON SIMULATED MIXTURE SPEECH
FOR MASK-BASED MVDR, SINGLE-CHANNEL DNN-WPE,

MULTI-CHANNEL DNN-WPE AND MASK-BASED WPD USED IN
AUDIO-ONLY SPEECH ENHANCEMENT FRONT-ENDS.

Sys.
Variance
flooring

(ε)

PESQ(↑) / STOI(↑) / SRMR(↑)
Sep.

(Mask-based
MVDR)

Sep. → Dervb.
(Single-channel

DNN-WPE)

Dervb. → Sep.
(Multi-channel

DNN-WPE)

Joint Sep. & Dervb.
(Mask-based WPD)

1 10−1 1.89/63.41/4.36 2.21/71.98/5.67 2.36/77.68/6.01 2.11/67.85/5.47
2 10−3 2.08/68.50/4.77 2.24/73.39/5.88 2.44/79.37/6.24 2.36/75.38/6.45
3 10−4 2.17/70.39/5.34 2.25/73.64/5.80 2.43/79.25/6.18 2.42/76.63/6.64
4 10−5 2.21/71.30/5.45 2.25/73.73/5.70 2.45/79.68/6.40 1.96/61.45/6.29
5 10−6 2.19/71.24/5.46 2.25/73.74/5.65 2.46/79.75/6.44 1.55/45.13/4.84
6 10−7 2.16/70.92/5.39 2.25/73.75/5.64 2.44/79.62/6.56 1.63/48.27/4.74
7 10−9 1.99/67.02/5.23 2.25/73.74/5.64 2.25/73.67/5.95 1.51/43.99/4.27

separation only or integrated (separation and dereverberation)
architectures. Based on the PESQ, STOI and SRMR scores,
10−5 (sys. 4), 10−5 (sys. 4), 10−6 (sys. 5) and 10−4 (sys. 3)
are selected as the optimal values of the diagonal variance
flooring scaling ε for mask-based MVDR, single-channel
DNN-WPE, multi-channel DNN-WPE and mask-based WPD
respectively in the following experiments.

VII. EXPERIMENTAL RESULTS

In this section, the performance of three integrated audio-
visual multi-channel speech separation, dereverberation and
recognition architectures of Section IV are evaluated on the
LRS2 simulated and replayed mixture speech datasets. Section
VII-A analyses the performance improvements by incorporat-
ing visual features into different speech enhancement front-end
components as well as the recognition back-end. After end-
to-end joint fine-tuning, the performance of tightly integrated
audio-visual speech separation, dereverberation and recogni-
tion systems are presented in Section VII-B.

A. Performance of Audio-visual Multi-channel Speech En-
hancement and Recognition Systems

In this part, we systematically investigate the performance
improvements attributed to the visual modality in the proposed
integrated speech enhancement architectures of Section IV on
the LRS2 simulated multi-channel mixture dataset with four
angle difference ranges [0◦, 15◦), [15◦, 45◦), [45◦, 90◦) and
[90◦, 180◦). The mask-based MVDR approach is used in the
separation module, and the dereverberation module leverages
either DNN-WPE or SpecM based dereverberation methods.
The mask-based WPD is used for joint speech separation &
dereverberation. The multi-channel audio (including AF and
IPD) features and visual modality features and their fusion
mechanism presented in Sections II-C, II-D, II-E and III-D
for speech separation and dereverberation are used. The visual
features are also incorporated into the Conformer speech
recognition back-end, as described in Section V. The speech
recognition systems in Table IV are obtained by fine-tuning
the baseline single-channel Conformer ASR (Table I, sys. 1)
or AVSR (Table I, sys. 2) systems using the enhanced outputs
of the corresponding speech enhancement front-ends.

From Table IV, several trends can be observed:
1) The proposed audio-visual multi-channel speech sep-

aration, dereverberation and recognition systems (sys.
11,18,25,32,36) consistently outperformed the corresponding
audio-only baseline systems (sys. 5,12,19,26,33) on the LRS2

simulated test set. Consistent performance improvements in
PESQ, STOI and SRMR scores were also obtained. For
example, a statistically significant WER reduction of 12.4%
absolute (45.1% relative) was obtained by the full audio-
visual system (sys. 25) over the corresponding audio-only
baseline (sys. 19) using a pipelined front-end architecture
whereby speech dereverberation was followed by separation.
A general trend can also be found that the performance
gap between systems with full incorporation of video modal-
ity (sys. 11,18,25,32,36) and those using audio-only (sys.
5,12,19,26,33) was much larger when examining the per-
formance on the more challenging subsets, e.g. when inter-
speaker angle difference fell in the smallest range of [0◦, 15◦).

2) When compared with audio-only dereverberation, in-
corporating visual information into the corresponding DNN-
WPE (sys. 6,8,10,20,22,24 vs. sys. 5,7,9,19,21,23) or
SpecM based dereverberation (sys. 13,15,17,27,29,31 vs. sys.
12,14,16,26,28,30) module produced consistent improvements
in terms of PESQ, STOI and SRMR scores, irrespective of the
underlying form of integration between speech separation and
dereverberation components. A statistically significant WER
reduction by up to 1.9% absolute (sys. 13 vs. sys. 12, 5.9%
relative) was also obtained.

3) Among the proposed architectures to integrate speech
separation and dereverberation components within the speech
enhancement front-end, a pipelined, full audio-visual config-
uration performing DNN-WPE based speech dereverberation
followed by mask-based MVDR speech separation using vi-
sual input in both enhancement and recognition stages (sys.
25 vs. sys. 11,18,32,36) produced the lowest overall WERs.

4) The integrated audio-visual speech separation, dere-
verberation and recognition systems (sys. 11,18,25,32,36)
consistently outperformed the corresponding separation-only
AVSR systems (sys. 4) in terms of PESQ, STOI and SRMR
scores. However, with regard to recognition performance, the
SpecM based AVSR systems (sys. 18,32) and the mask-
WPD based AVSR system (sys. 36) did not outperform the
baseline system (sys. 4). The potential causes were: a) For
systems using SpecM based dereverberation (sys. 18,32),
although perceptually enhanced speech quality was obtained
when compared to the corresponding baseline systems (sys. 4),
the spectral artifacts caused by SpecM introduced a negative
impact on downstream speech recognition performance; and
b) For mask-based WPD systems, the number of filter taps
and microphone channels together produced spatial-temporal
PSD matrices in Eqns. (31)-(32) larger than, for example,
those in Eqns. (7)-(8) for MVDR speech separation only, and
thus increased difficulty in their inversion. This was further
suggested by the larger variance flooring scaling ε=10−4 in
mask-based WPD than all the other systems shown in the
ablation studies of Table III. This issue can offset the benefit
of joint speech separation & dereverberation from WPD.

5) Finally, incorporating both the video modality and AF
spatial features into the front-ends (e.g. sys. 3,10,17,24,31,35)
consistently outperformed the comparable systems using either
only AF features (sys. 1,5,12,19,26,33), or video features alone
(sys. 2,8,15,22,29,34).
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TABLE IV
PERFORMANCE OF INTEGRATED ARCHITECTURES FOR AUDIO-VISUAL MULTI-CHANNEL SPEECH SEPARATION (“SEP.”), DEREVERBERATION (“DERVB.”)

AND RECOGNITION (“RECG.”) ON THE LRS2 SIMULATED MULTI-CHANNEL MIXTURE DATASET. “ARCH.”, “AF”, “SPECM”, “CONF.” AND “AVG.”
DENOTE THE ARCHITECTURE, ANGLE FEATURE, SPECTRAL MAPPING, CONFORMER AND AVERAGE, RESPECTIVELY. [a◦ , b◦) DENOTES THE RANGE OF

INTER-SPEAKER ANGLE DIFFERENCE BETWEEN THE TARGET AND INTERFERING SPEAKERS RELATIVE TO THE MICROPHONE ARRAY. “∗” AND “†”
REPRESENT A STATISTICALLY SIGNIFICANT WER DIFFERENCE OVER THE CORRESPONDING AUDIO-ONLY BASELINE SYSTEMS (SYS. 5,12,19,26,33) AND

AUDIO-ONLY DEREVERBERATION BASELINE SYSTEMS (SYS. (5,7,9),(12,14,16),(19,21,23),(26,28,30)), RESPECTIVELY.

Arch. Sys. +AF
+Visual Features PESQ(↑) / STOI(↑) / SRMR(↑) / WER(↓)

Sep. Dervb. Recg.
[0◦, 15◦) [15◦, 45◦) [45◦, 90◦) [90◦, 180◦) Avg.

(MVDR) (DNN-WPE) (SpecM) (Conf.)

Mixture of raw channel 1 ✗ 1.54/53.98/3.58/57.9 1.53/53.48/3.57/57.4 1.53/53.58/3.58/57.8 1.54/54.08/3.60/57.0 1.54/53.78/3.58/57.5
✓ 1.54/53.98/3.58/25.9 1.53/53.48/3.57/24.7 1.53/53.58/3.58/25.6 1.54/54.08/3.60/24.5 1.54/53.78/3.58/25.2

Sep.
(MVDR only)

1 ✓ ✗ - ✗ 1.87/62.07/5.03/51.4 2.23/71.90/5.50/29.3 2.35/74.95/5.58/22.8 2.39/76.28/5.67/21.6 2.21/71.30/5.45/31.3
2 ✗ ✓ - ✗ 2.20/71.35/5.34/28.6 2.29/73.39/5.52/24.9 2.33/74.41/5.52/23.9 2.35/75.19/5.60/22.4 2.29/73.59/5.50/25.0
3 ✓ ✓ - ✗ 2.15/70.30/5.32/33.1 2.30/73.95/5.63/23.0 2.38/75.71/5.65/21.4 2.42/76.96/5.74/19.7 2.31/74.23/5.59/24.3
4 ✓ ✓ - ✓ 2.15/70.30/5.32/21.7 2.30/73.95/5.63/15.9 2.38/75.71/5.65/14.7 2.42/76.96/5.74/13.2 2.31/74.23/5.59/16.4

Sep. → Dervb.
(MVDR → DNN-WPE)

5 ✓ ✗ ✗ ✗ 1.91/64.21/5.23/50.1 2.26/74.36/5.74/27.9 2.39/77.51/5.86/21.6 2.44/78.82/5.99/20.5 2.25/73.73/5.70/30.0
6 ✓ ✗ ✓ ✗ 1.91/64.51/5.22/49.6 2.26/74.56/5.76/27.4 2.39/77.69/5.87/21.1 2.44/78.96/6.01/20.3 2.25/73.93/5.71/29.6†

7 ✗ ✓ ✗ ✗ 2.24/73.72/5.57/28.5 2.33/75.84/5.79/25.2 2.37/76.95/5.80/22.9 2.40/77.65/5.94/22.2 2.34/76.04/5.78/24.7
8 ✗ ✓ ✓ ✗ 2.24/73.81/5.60/28.2 2.33/75.90/5.80/24.5 2.38/77.03/5.82/23.2 2.40/77.74/5.95/22.3 2.34/76.12/5.79/24.5
9 ✓ ✓ ✗ ✗ 2.18/72.69/5.54/31.9 2.35/76.53/5.92/23.1 2.43/78.43/5.94/20.2 2.47/79.63/6.09/18.9 2.36/76.82/5.87/23.5
10 ✓ ✓ ✓ ✗ 2.18/72.79/5.55/31.7 2.35/76.62/5.92/22.7 2.42/78.50/5.95/20.0 2.47/79.67/6.09/18.2 2.36/76.90/5.88/23.2†

11 ✓ ✓ ✓ ✓ 2.18/72.79/5.55/21.1 2.35/76.62/5.92/15.2 2.42/78.50/5.95/14.1 2.47/79.67/6.09/13.5 2.36/76.90/5.88/16.0∗

Sep. → Dervb.
(MVDR → SpecM)

12 ✓ ✗ ✗ ✗ 1.95/66.13/7.00/52.7 2.37/77.53/7.44/30.7 2.51/80.81/7.50/23.6 2.57/81.91/7.54/22.5 2.35/76.60/7.37/32.4
13 ✓ ✗ ✓ ✗ 1.98/67.73/7.16/50.6 2.41/78.67/7.66/28.3 2.55/81.81/7.71/22.8 2.60/82.77/7.73/20.4 2.39/77.75/7.56/30.5†

14 ✗ ✓ ✗ ✗ 2.37/78.10/7.50/31.6 2.47/80.10/7.65/27.3 2.52/81.12/7.63/24.9 2.54/81.60/7.66/24.1 2.48/80.23/7.61/27.0
15 ✗ ✓ ✓ ✗ 2.38/78.36/7.62/29.9 2.48/80.28/7.71/25.3 2.53/81.25/7.71/23.8 2.55/81.69/7.73/22.7 2.49/80.39/7.69/25.4†

16 ✓ ✓ ✗ ✗ 2.31/76.74/7.43/35.0 2.50/80.72/7.72/25.8 2.60/82.61/7.68/22.3 2.64/83.55/7.73/20.9 2.51/80.91/7.64/26.0
17 ✓ ✓ ✓ ✗ 2.31/76.98/7.58/33.5 2.51/80.86/7.84/23.8 2.59/82.71/7.80/21.7 2.64/83.55/7.85/19.2 2.51/81.03/7.77/24.5†

18 ✓ ✓ ✓ ✓ 2.31/76.98/7.58/22.0 2.51/80.86/7.84/16.8 2.59/82.71/7.80/14.5 2.64/83.55/7.85/14.4 2.51/81.03/7.77/16.9∗

Dervb. → Sep.
(DNN-WPE → MVDR)

19 ✓ ✗ ✗ ✗ 2.04/69.13/5.86/47.2 2.48/80.58/6.46/24.6 2.63/84.17/6.68/19.2 2.68/85.11/6.75/19.2 2.46/79.75/6.44/27.5
20 ✓ ✗ ✓ ✗ 2.03/69.57/5.85/46.7 2.46/80.46/6.39/24.6 2.62/83.93/6.66/19.2 2.67/85.14/6.78/19.1 2.45/79.78/6.42/27.4
21 ✗ ✓ ✗ ✗ 2.39/78.99/6.26/27.4 2.53/81.61/6.61/22.0 2.60/83.23/6.69/20.4 2.60/83.15/6.71/20.9 2.53/81.75/6.57/22.7
22 ✗ ✓ ✓ ✗ 2.41/79.37/6.33/25.8 2.54/81.90/6.64/21.4 2.61/83.33/6.67/19.6 2.61/83.40/6.74/20.4 2.54/82.00/6.59/21.8†

23 ✓ ✓ ✗ ✗ 2.34/77.63/6.19/30.3 2.57/82.62/6.65/20.2 2.68/84.89/6.81/17.9 2.71/85.64/6.89/17.1 2.57/82.69/6.64/21.4
24 ✓ ✓ ✓ ✗ 2.33/77.39/6.20/30.7 2.55/82.40/6.63/20.3 2.66/84.93/6.74/17.7 2.70/85.71/6.85/17.2 2.56/82.61/6.61/21.4
25 ✓ ✓ ✓ ✓ 2.33/77.39/6.20/20.8 2.55/82.40/6.63/15.1 2.66/84.93/6.74/12.4 2.70/85.71/6.85/12.3 2.56/82.61/6.61/15.1∗

Dervb. → Sep.
(SpecM → MVDR)

26 ✓ ✗ ✗ ✗ 1.82/63.34/5.96/57.0 2.22/73.58/6.44/32.8 2.43/78.33/6.83/25.6 2.49/79.63/6.94/24.2 2.24/73.72/6.54/34.9
27 ✓ ✗ ✓ ✗ 1.82/62.99/5.82/57.7 2.24/74.06/6.43/31.9 2.43/78.55/6.82/24.8 2.49/79.73/6.96/23.8 2.24/73.83/6.51/34.6
28 ✗ ✓ ✗ ✗ 2.17/72.66/6.39/38.8 2.33/76.11/6.73/29.3 2.45/78.55/6.89/24.9 2.45/78.51/6.92/26.4 2.35/76.46/6.73/29.8
29 ✗ ✓ ✓ ✗ 2.16/72.82/6.44/36.0 2.31/75.88/6.72/29.3 2.43/78.39/6.90/25.1 2.41/78.16/6.90/25.1 2.33/76.31/6.74/28.9†

30 ✓ ✓ ✗ ✗ 2.12/71.49/6.28/39.7 2.35/76.58/6.74/27.1 2.49/79.62/6.94/22.4 2.53/80.73/7.03/22.8 2.37/77.11/6.75/28.0
31 ✓ ✓ ✓ ✗ 2.11/71.59/6.35/38.2 2.34/76.65/6.71/27.6 2.47/79.54/6.92/22.4 2.52/80.61/7.04/21.1 2.36/77.10/6.76/27.3†

32 ✓ ✓ ✓ ✓ 2.11/71.59/6.35/24.9 2.34/76.65/6.71/16.9 2.47/79.54/6.92/15.3 2.52/80.61/7.04/14.8 2.36/77.10/6.76/18.0∗

Joint Sep. & Dervb.
(WPD)

33 ✓ ✗ ✗ 1.99/65.92/6.06/55.0 2.41/76.81/6.60/30.1 2.60/81.09/6.83/22.6 2.67/82.69/7.07/21.8 2.42/76.63/6.64/32.4
34 ✗ ✓ ✗ 2.29/74.79/6.44/34.3 2.46/78.21/6.78/25.5 2.57/80.26/6.91/22.9 2.57/80.48/7.01/22.9 2.47/78.44/6.78/26.4
35 ✓ ✓ ✗ 2.26/73.78/6.36/37.7 2.50/79.11/6.75/25.1 2.64/82.25/6.95/20.7 2.70/83.43/7.13/20.1 2.53/79.64/6.80/25.9
36 ✓ ✓ ✓ 2.26/73.78/6.36/24.6 2.50/79.11/6.75/16.3 2.64/82.25/6.95/13.7 2.70/83.43/7.13/13.6 2.53/79.64/6.80/17.0∗

B. Performance of End-to-end Joint Fine-tuning of Speech
Enhancement Front-end and Recognition Back-end

The most representative subset of audio-visual and audio-
only multi-channel systems in Table IV are then end-to-end
joint fine-tuning using either the ASR cost function alone,
or a multi-task criterion interpolation between the speech
enhancement and recognition cost as described in Section V-B.
Their performance in terms of WER and front-end metrics
(PESQ, STOI and SRMR) are evaluated on both the LSR2
simulated (“Simu”) and replayed (“Replay”) test sets and
shown in Table V (original system numbering in Table IV
carried over). Several main trends can be observed:

1) After end-to-end joint fine-tuning, consistent performance
improvements in WER were obtained over all systems without
doing so (sys. marked with “-” in Col. 3, Table V), irrespective
of the joint fine-tuning criterion based on ASR loss alone (sys.
marked with “(a)”), or its interpolation with enhancement loss
(sys. marked with “(b)”). In particular, statistically significant
overall (“O.V.”) WER reductions of 3.3% and 1.6% absolute
(14.6% and 11.9% relative) were obtained using the joint
fine-tuned ASR (sys. 19(a) vs. sys. 19) and AVSR (sys. 25(b)
vs. sys. 25) systems across both test sets. Consistent perfor-
mance improvements in speech enhancement front-end metrics

scores were also obtained. Fig. 5 shows a set of example
spectra of (a) Overlapped-reverberant-noisy speech, (b) Target
clean speech, (c) Pipelined audio-only speech enhancement
output (Table IV, sys. 19), (d) Pipelined audio-visual speech
enhancement output (Table IV, sys. 25), (e) Jointly fine-tuned
audio-only speech enhancement output (Table V, sys. 19(b)),
and (f) Jointly fine-tuned audio-visual speech enhancement
output (Table V, sys. 25(b)). The spectrum portions circled
using blue dotted lines in (a) represent the interfering speaker’s
speech, background noise and reverberation, which have been
largely removed in (f).

2) The best overall performance was produced by the
end-to-end joint fine-tuned audio-visual system with DNN-
WPE based dereverberation followed by mask-based MVDR
(sys.25(b)). Using this system statistically significant WER
reductions of up to 9.1% and 6.2% absolute (41.7% and
36.0% relative) were obtained on the LRS2 simulated and
replayed test sets over the audio-only baseline (19(b)). In
addition, all the jointly fine-tuned audio-visual speech sepa-
ration, dereverberation and recognition systems consistently
outperformed the comparable baseline separation-only AVSR
systems (e.g. sys. 11(b),18(b),25(b),32(b),36(b) vs. sys. 4(b)),
with a statistically significant WER reduction up to 1.9%
absolute (13.8% relative) (sys. 25(b) vs. sys. 4(b)).
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TABLE V
PERFORMANCE OF AUDIO-VISUAL AND AUDIO-ONLY MULTI-CHANNEL SPEECH RECOGNITION SYSTEMS AFTER END-TO-END JOINT FINE-TUNING USING
ASR COST LASR ALONE (MARKED WITH “(a)”), OR ITS INTERPOLATED WITH ENHANCEMENT LOSS LASR + LSE (MARKED WITH “(b)”), ON THE LRS2
SIMULATED (“SIMU”) AND REPLAYED (“REPLAY”) TEST SETS. THE ORIGINAL SYSTEM NUMBERING FROM TABLE IV IS USED. “AVG.” IS IN SHORT FOR

“AVERAGE” AND “O.V.” FOR “OVERALL” RESULTS ON BOTH SIMULATED AND REPLAYED TEST DATA. “†”, “∗” AND “‡” DENOTE A STATISTICALLY
SIGNIFICANT WER DIFFERENCE OVER THE SYSTEMS WITHOUT JOINT FINE-TUNING (MARKED WITH “-”), THE CORRESPONDING AUDIO-ONLY BASELINE

SYSTEMS (SYS. 5(b), 12(b), 19(b), 26(b), 33(b)) AND SEPARATION-ONLY AVSR BASELINE SYSTEM (SYS. 4(b)), RESPECTIVELY.

Arch. Sys. Jointly Fine-tuning
Criterion

PESQ(↑) / STOI(↑) / SRMR(↑) WER(↓)
Avg. [0◦, 15◦) [15◦, 45◦) [45◦, 90◦) [90◦, 180◦) Avg.

Simu Replay Simu Replay Simu Replay Simu Replay Simu Simu Replay O.V.

Sep.
(MVDR only)

1 - 2.21/71.30/5.45 2.32/77.77/4.31 51.4 30.6 29.3 23.6 22.8 18.5 21.6 31.3 23.4 27.4
1(a) LASR 2.46/77.72/6.27 2.55/81.90/5.35 41.5 33.0 21.1 20.7 17.0 18.2 16.2 24.0 22.8 23.4
1(b) LASR + LSE 2.32/74.75/5.77 2.40/80.11/4.61 42.2 28.7 22.8 20.1 18.2 17.8 17.9 25.3 21.4 23.4

4 - 2.31/74.23/5.59 2.37/79.18/4.42 21.7 15.9 15.9 12.8 14.7 13.6 13.2 16.4 13.9 15.2
4(a) LASR 2.53/79.68/6.39 2.58/83.47/5.51 17.0 15.5 13.2 11.8 11.7 11.0 11.4 13.3 12.4 12.9
4(b) LASR + LSE 2.38/76.36/5.77 2.42/80.81/4.60 18.5 15.8 14.4 12.4 12.6 12.1 12.2 14.4 13.1 13.8

Sep. → Dervb.
(MVDR → DNN-WPE)

5 - 2.25/73.73/5.70 2.41/80.19/4.86 50.1 27.5 27.9 22.3 21.6 16.4 20.5 30.0 21.4 25.7
5(a) LASR 2.46/78.62/6.46 2.58/82.96/5.80 39.9 27.4 20.4 18.9 16.2 17.7 15.8 23.1† 20.6 21.9†

5(b) LASR + LSE 2.45/78.27/6.42 2.56/82.39/5.72 40.7 31.8 20.8 20.1 16.4 17.8 16.0 23.5† 22.1 22.8†

11 - 2.36/76.90/5.88 2.46/81.71/5.04 21.1 15.7 15.2 12.5 14.1 12.1 13.5 16.0 13.2 14.6
11(a) LASR 2.58/81.26/6.69 2.67/84.82/6.14 16.7 12.9 12.8 12.2 11.7 10.8 11.0 13.0† 11.9† 12.5†

11(b) LASR + LSE 2.55/80.69/6.66 2.66/84.77/6.15 17.2 12.0 13.2 11.6 11.8 10.3 11.2 13.3†∗‡ 11.2†∗‡ 12.3†∗‡

Sep. → Dervb.
(MVDR → SpecM)

12 - 2.35/76.60/7.37 2.48/80.75/6.62 52.7 31.2 30.7 25.3 23.6 19.6 22.5 32.4 24.6 28.5
12(a) LASR 2.52/79.84/7.23 2.61/83.59/6.59 38.3 30.4 20.6 19.8 16.3 16.4 15.9 22.8† 21.2† 22.0†

12(b) LASR + LSE 2.49/79.16/6.61 2.56/82.99/5.91 39.4 30.3 20.9 19.4 16.2 17.1 16.2 23.2† 21.2† 22.2†

18 - 2.51/81.03/7.77 2.58/82.99/7.29 22.0 17.2 16.8 13.4 14.5 13.1 14.4 16.9 14.2 15.6
18(a) LASR 2.60/81.64/7.41 2.68/85.22/6.77 16.7 13.8 13.0 12.2 11.6 10.8 11.0 13.1† 12.1† 12.6†

18(b) LASR + LSE 2.55/80.65/6.70 2.60/84.43/6.05 16.7 13.4 13.0 12.3 11.9 10.6 10.9 13.1†∗‡ 11.9†∗‡ 12.5†∗‡

Dervb. → Sep.
(DNN-WPE → MVDR)

19 - 2.46/79.75/6.44 2.67/84.68/6.32 47.2 25.4 24.6 15.6 19.2 13.2 19.2 27.5 17.1 22.6
19(a) LASR 2.61/81.91/6.86 2.70/85.21/6.28 37.8 22.2 18.8 17.2 14.9 13.1 15.0 21.6† 16.9 19.3†

19(b) LASR + LSE 2.61/82.12/6.82 2.69/85.22/6.28 37.6 25.3 19.0 15.5 15.6 13.5 15.0 21.8† 17.2 19.5†

25 - 2.56/82.61/6.61 2.72/85.85/6.49 20.8 15.0 15.1 10.9 12.4 10.7 12.3 15.1 11.8 13.5
25(a) LASR 2.71/84.33/7.04 2.75/86.42/6.48 16.0 14.4 12.5 10.6 10.7 10.1 11.2 12.6† 11.4 12.0†

25(b) LASR + LSE 2.68/84.75/6.80 2.75/86.82/6.50 16.2 13.3 12.7 10.6 11.0 9.9 10.8 12.7†∗‡ 11.0∗‡ 11.9†∗‡

Dervb. → Sep.
(SpecM → MVDR)

26 - 2.24/73.72/6.54 2.51/80.67/6.32 57.0 30.4 32.8 20.4 25.6 14.9 24.2 34.9 20.8 27.9
26(a) LASR 2.52/79.11/6.46 2.62/82.60/5.67 41.4 32.9 22.3 19.0 16.9 16.9 15.6 24.1† 21.7 22.9†

26(b) LASR + LSE 2.53/79.57/6.50 2.65/83.12/5.91 42.5 29.8 21.7 19.9 16.7 16.5 16.1 24.3† 21.1 22.7†

32 - 2.36/77.10/6.76 2.57/82.20/6.60 24.9 15.5 16.9 13.2 15.3 11.2 14.8 18.0 13.0 15.5
32(a) LASR 2.65/82.02/6.76 2.68/84.55/5.87 16.7 14.4 12.7 11.8 11.1 10.7 10.6 12.8† 12.1† 12.5†

32(b) LASR + LSE 2.66/82.94/6.63 2.71/85.34/5.98 16.8 13.4 12.4 11.5 11.0 11.4 10.3 12.6†∗‡ 11.9†∗‡ 12.3†∗‡

Joint Sep. & Dervb.
(WPD)

33 - 2.42/76.63/6.64 2.62/83.25/6.12 55.0 28.8 30.1 17.4 22.6 15.0 21.8 32.4 19.4 25.9
33(a) LASR 2.52/78.55/6.97 2.63/82.88/6.18 43.6 34.1 23.3 14.9 17.4 17.9 17.0 25.3† 20.8 23.1†

33(b) LASR + LSE 2.53/78.76/6.95 2.64/83.23/6.17 44.7 32.5 23.3 15.0 18.1 17.2 17.0 25.7† 20.2 23.0†

36 - 2.53/79.64/6.80 2.67/84.45/6.29 24.6 15.8 16.3 12.1 13.7 11.3 13.6 17.0 12.7 14.9
36(a) LASR 2.61/80.93/7.16 2.69/84.81/6.39 19.0 12.7 13.8 11.0 11.4 10.2 11.3 13.9† 11.1† 12.5†

36(b) LASR + LSE 2.60/81.27/6.95 2.70/85.15/6.34 19.4 13.7 13.9 10.5 11.9 10.7 11.5 14.2†∗ 11.4†∗‡ 12.8†∗‡

(a) Overlapped-reverberant-noisy speech (b) Target clean speech

(c) Pipelined audio-only speech
enhancement output (Table IV, sys. 19)

(f) Jointly fine-tuned audio-visual speech
enhancement output (Table V, sys. 25(b))

(d) Pipelined audio-visual speech
enhancement output (Table IV, sys. 25)

(e) Jointly fine-tuned audio-only speech
enhancement output (Table V, sys. 19(b))

Fig. 5. Example spectra of (a) Overlapped-reverberant-noisy speech, (b)
Target clean speech, (c) Pipelined audio-only speech enhancement output
(Table IV, sys. 19), (d) Pipelined audio-visual speech enhancement output
(Table IV, sys. 25), (e) Jointly fine-tuned audio-only speech enhancement
output (Table V, sys. 19(b)), and (f) Jointly fine-tuned audio-visual speech
enhancement output (Table V, sys. 25(b)). The spectrum portions circled using
blue dotted lines in (a) represent the interfering speaker’s speech, background
noise and reverberation, which have been largely removed in (f).

3) End-to-end joint fine-tuning of the speech enhancement
front-end and recognition back-end is effective in mitigating
the impact from spectral artifacts produced in SpecM based
dereverberation [82] (e.g. sys. 12(b),18(b),26(b),32(b)). This
leads to their smaller performance gap against systems us-
ing DNN-WPE dereverberation (sys. 5(b),11(b),19(b),25(b)),
when compared the gap before joint fine-tuning.

4) A further ablation study is conducted on the setting of
the speech enhancement cost weight γ in Eqn. (34) using three
end-to-end joint fine-tuned multi-channel speech enhancement
and recognition systems: sys. 1(b), 4(b) and 25(b) of Table V.
Their WER performance with respect to γ on the LRS2 sim-
ulated (“Simu”) and replayed (“Replay”) test sets are shown
in Table VI. These results suggest that the performance of the
audio-visual multi-channel speech separation, dereverberation
and recognition system (sys. 25(b)) is largely insensitive to
the setting of γ ∈ [0, 0.75] during end-to-end joint fine-tuning
using interpolated speech enhancement and ASR error costs.

TABLE VI
WER(%) PERFORMANCE OF END-TO-END JOINT FINE-TUNED

MULTI-CHANNEL SPEECH ENHANCEMENT AND RECOGNITION SYSTEMS
1(b), 4(b) AND 25(b) OF TABLE V WITH RESPECT TO THE SPEECH

ENHANCEMENT COST WEIGHT γ IN EQN. (34) ON THE LRS2 SIMULATED
(“SIMU”) AND REPLAYED (“REPLAY”) TEST SETS.

Sys.
γ 0 0.25 0.5 0.75 1

Simu Replay Simu Replay Simu Replay Simu Replay Simu Replay

1(b) 24.0 22.8 24.7 22.4 25.3 21.4 27.2 22.7 31.3 23.4
4(b) 13.3 12.4 14.0 12.6 14.4 13.1 14.6 13.2 16.4 13.9
25(b) 12.6 11.4 12.7 11.3 12.7 11.0 12.7 10.4 15.1 11.8

5) The performance of the most important systems shown in
Table IV (sys. 1,4,5,11,12,18,19,25,26,32,33,36) and Table V
(sys. 1(b),4(b),5(b),11(b),12(b),18(b),19(b),25(b),26(b),32(b),
33(b),36(b)) are further evaluated on the LRS3 [102] test
set after applying the same multi-channel mixture speech
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TABLE VII
PERFORMANCE OF INTEGRATED ARCHITECTURES FOR AUDIO-VISUAL MULTI-CHANNEL SPEECH SEPARATION (“SEP.”), DEREVERBERATION (“DERVB.”)
AND RECOGNITION (“RECG.”) ON THE LRS3 TEST SET SIMULATED MULTI-CHANNEL MIXTURE SPEECH VIA THE LRS2 DATA TRAINED PIPELINED AND
JOINTLY FINE-TUNED (USING LASR + LSE COST FUNCTION) SYSTEMS IN TABLE IV AND TABLE V, RESPECTIVELY. “ARCH.”, “AF”, “SPECM”, “CONF.”

AND “AVG.” DENOTE THE ARCHITECTURE, ANGLE FEATURE, SPECTRAL MAPPING, CONFORMER AND AVERAGE, RESPECTIVELY. “†”, “∗” AND “‡”
DENOTE A STATISTICALLY SIGNIFICANT WER DIFFERENCE OVER THE “PIPELINED” SYSTEMS, THE CORRESPONDING AUDIO-ONLY BASELINE SYSTEMS

(SYS. 5,12,19,26,33) IN THE “JOINTLY FINE-TUNED” COLUMN AND SEPARATION-ONLY AVSR BASELINE SYSTEM (SYS. 4) IN THE “JOINTLY
FINE-TUNED” COLUMN, RESPECTIVELY.

Arch. Sys. +AF
+Visual Features PESQ(↑) / STOI(↑) / SRMR(↑) / WER(↓)

Sep. Dervb. Recg. Avg.
(MVDR) (DNN-WPE) (SpecM) (Conf.) Pipelined Jointly fine-tuned

Sep.
(MVDR only)

1 ✓ ✗ - ✗ 2.22/72.63/5.76/40.3 2.32/75.77/6.09/34.5
4 ✓ ✓ - ✓ 2.30/75.18/5.89/29.8 2.38/77.57/6.12/26.9

Sep. → Dervb.
(MVDR → DNN-WPE)

5 ✓ ✗ ✗ ✗ 2.25/74.97/6.12/38.6 2.46/79.44/6.95/31.9†

11 ✓ ✓ ✓ ✓ 2.34/77.71/6.28/29.5 2.55/81.64/7.24/25.1†∗‡

Sep. → Dervb.
(MVDR → SpecM)

12 ✓ ✗ ✗ ✗ 2.38/77.88/8.02/41.9 2.50/80.32/7.13/31.7†

18 ✓ ✓ ✓ ✓ 2.51/81.14/8.46/31.1 2.56/81.81/7.17/25.3†∗‡

Dervb. → Sep.
(DNN-WPE → MVDR)

19 ✓ ✗ ✗ ✗ 2.48/81.40/7.25/34.6 2.66/83.88/7.80/28.9†

25 ✓ ✓ ✓ ✓ 2.55/83.22/7.32/27.2 2.69/85.73/7.70/23.9†∗‡

Dervb. → Sep.
(SpecM → MVDR)

26 ✓ ✗ ✗ ✗ 2.28/75.91/7.33/42.4 2.54/81.00/7.14/32.5†

32 ✓ ✓ ✓ ✓ 2.35/77.73/7.37/32.2 2.61/83.16/7.20/25.6†∗‡

Joint Sep. & Dervb.
(WPD)

33 ✓ ✗ ✗ 2.45/78.84/7.27/39.4 2.54/80.46/7.46/34.1†

36 ✓ ✓ ✓ 2.51/80.60/7.31/30.3 2.58/82.19/7.46/26.7†∗

simulation protocol of Algorithm 1. These results are shown
in Table VII. Similar trends of WER reductions and improve-
ments on speech enhancement metric scores, as well as the
same performance ranking among the corresponding systems
previously shown in Table IV and Table V, can also be found
in Table VII.

VIII. CONCLUSION

In this paper, an audio-visual multi-channel speech separa-
tion, dereverberation and recognition approach featuring a full
incorporation of visual information into all system components
is proposed. The advantages of additional visual modality over
using acoustic features only are demonstrated consistently in
mask-based MVDR speech separation, DNN-WPE or spectral
mapping (SpecM) based speech dereverberation front-end and
Conformer based ASR back-end. A set of audio-visual front-
end architectures that integrates the speech separation and
dereverberation modules in a pipelined or joint fashion are also
derived. They are end-to-end jointly fine-tuned to minimize the
error cost mismatch between the speech enhancement front-
end and ASR back-end. Experiments were conducted on the
mixture overlapped and reverberant speech data constructed
using simulation or replay of the benchmark Oxford LRS2
dataset. The proposed audio-visual multi-channel speech sep-
aration, dereverberation and recognition systems consistently
outperformed the comparable audio-only multi-channel base-
line by 9.1% and 6.2% absolute (41.7% and 36.0% relative)
in word error rate (WER) reductions, together with consistent
improvements obtained on PESQ, STOI and SRMR based
speech enhancement metrics. Future research will focus on
improving system generalization to diverse microphone array
geometrics and room acoustics.
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