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Hate Speech Detection via Dual Contrastive
Learning

Junyu Lu, Hongfei Lin, Xiaokun Zhang, Zhaoqing Li, Tongyue Zhang, Linlin Zong, Fenglong Ma, and Bo Xu*

Abstract—The fast spread of hate speech on social media
impacts the Internet environment and our society by increasing
prejudice and hurting people. Detecting hate speech has aroused
broad attention in the field of natural language processing.
Although hate speech detection has been addressed in recent
work, this task still faces two inherent unsolved challenges.
The first challenge lies in the complex semantic information
conveyed in hate speech, particularly the interference of insulting
words in hate speech detection. The second challenge is the
imbalanced distribution of hate speech and non-hate speech,
which may significantly deteriorate the performance of models.
To tackle these challenges, we propose a novel dual contrastive
learning (DCL) framework for hate speech detection. Our frame-
work jointly optimizes the self-supervised and the supervised
contrastive learning loss for capturing span-level information
beyond the token-level emotional semantics used in existing
models, particularly detecting speech containing abusive and
insulting words. Moreover, we integrate the focal loss into the
dual contrastive learning framework to alleviate the problem
of data imbalance. We conduct experiments on two publicly
available English datasets, and experimental results show that
the proposed model outperforms the state-of-the-art models and
precisely detects hate speeches.

Index Terms—Natural language processing, hate speech de-
tection, contrastive learning, emotion analysis, data imbalance.

I. INTRODUCTION

THE widespread use of social media provides people with
a broader space for communication and information ex-

change. People can freely express themselves on social media.
While accelerating the dissemination of public opinions, social
media also leads to the dissemination of undesirable speech,
such as online hate speech. Nockleyby [1] described hate
speech as any kind of communication in speech, writing,
or behavior, that attacks or uses pejorative or discriminatory
language concerning a person or a group based on their
religion, nationality, race, gender, or other identity factors.

The ever-growing increase of online hate speech has become
a pressing issue disturbing not only the groups which are
humiliated and vilified but also the whole society due to
the potential hate crimes [2]. Even at the risk of restricting
the freedom of expression, some social platforms have taken
action against the proliferation of hate speech in ways of
sealing accounts and removing content.

Junyu Lu, Hongfei Lin, Xiaokun Zhang, Zhaoqing Li, Tongyue Zhang,
and Bo Xu are with the school of computer science and technology, Dalian
University of Technology, China. Linlin Zong is with the school of software,
Dalian University of Technology, China. Fenglong Ma is with the college
of information science and technology, Pennsylvania State University, USA.
Corresponding Author: Bo Xu, e-mail: xubo@dlut.edu.cn

The increasing social issue caused by online hate speech has
attracted considerable attention of researchers in the natural
language processing (NLP) field, seeking efficient and appro-
priate solutions to detecting online hate speech [8], [10], [12],
[27], [29]. As early attempts to detect online hate speech, Chen
[3] proposed lexical syntactic features to distinguish whether
a sentence is hate speech. Mehdad [4] detected hate speech
using support vector machines (SVM) with sentiment features
of a text.

The state-of-the-art work has incorporated sentiment infor-
mation for hate speech detection. Zhou et al. [29] proposed
the sentiment knowledge sharing (SKS) model integrated with
an insulting word list and multi-task learning to detect hate
speech. Although achieving promising performance in this
task, the SKS model holds a strong assumption that insulting
and negative emotions can distinguish between hate speech
and non-hate speech. However, this assumption cannot be
always true as both hate and non-hate speeches may contain
large amounts of negative words. Therefore, the SKS model
with an insulting word list of hate speech achieved limited
performance by overly focusing on the token-level emotional
semantics. To further explain this phenomenon, we provide
two example sentences from the SemEval-2019 Task-5 dataset
[23], a publicly available dataset for hate speech detection.

Exp. 1 I can be a bitch and an asshole but I will love you and
care about you more than any other person you have met. (Non-
hate speech)
Exp. 2 Stop w ’we have to worry about the children’ No we do
not-many R >20yrs old Go home and make your country better or
enter ours legally we can’t afford them#NODACA (Hate speech)

It can be observed that although containing two insulting
words, “bitch” and “asshole”, the sentence in Exp. 1 is a
non-hate speech as no attack is launched towards any social
group. In contrast, Exp. 2 is a hate speech without any
obvious abusive emotions, because it involves stereotypes of
immigrant children. These two examples indicate that hate
speech contains more complicated semantics and irregular
expression patterns beyond negative emotions.

To precisely detect hate speech, compared with the lexical
sentiment, the trained models should focus on contextual
semantic information to avoid the misclassification of non-
hate speech containing abusive and insulting words. For a
sentence with abusive or insulting words, the sentence does
not contain hate speech if it is not targeted at certain social
groups. According to the statistics in TABLE I, the speeches
with insulting words account for a considerable proportion
of two widely used hate speech detection datasets, SemEval-
2019 Task-5 and Davidson et al. [24]. However, effectively
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TABLE I
PROPORTION OF SAMPLES CONTAINING INSULTING WORDS ON

SEMEVAL-2019 TASK-5 AND DAVIDSON DATASETS.

The SemEval-2019 Task-5 dataset
Label #Samples Proportion
Hate speech 2812 55.85%
Non-hate speech 2730 39.36%

The Davidson dataset
Label #Samples Proportion
Hate speech 1147 80.21%
Non-hate speech 19756 84.60%

detecting these speeches with insulting words remains an
unsolved problem in hate speech detection.

Moreover, the datasets for hate speech detection mostly
suffer from the problem of data imbalance. The imbalanced
distribution of hate speech and non-hate speech would easily
cause the detection model to pay too much attention to the
class of non-hate speech with more samples, and ignore the
class of hate speech with fewer samples, resulting in an
imbalanced performance on data classification. Most existing
methods are designed to optimize the overall performance,
partly ignoring the data imbalance problem for hate speech
detection.

To solve the above-mentioned problems, we propose a novel
dual contrastive learning (DCL) framework for hate speech
detection, which is tailored for the hate speech detection
task by comprehensively considering the task-specific features,
such as the subjectivity and contextualization of hate speech
[46]. Specifically, our model integrates both self-supervised
and supervised contrastive learning, enriching the semantic
representations of hate speech with context information itself
and supervised signals from labels, effectively mitigating the
misclassification of non-hate speech containing abusive and
insulting words. Furthermore, since self-supervised contrastive
learning has stronger adaptability than supervised contrastive
learning from labels [13], the representations learned from
self-supervised contrastive learning can be considered as prior
knowledge, facilitating the supervised classifications of hate
speech by our DCL model. Therefore, we design the self-
supervised contrastive learning before the supervised con-
trastive learning in DCL. In addition, we introduce the focal
loss, a reshaped cross entropy loss, to alleviate the problem
of data imbalance. The main contributions of this work are
summarized as follows.

• We propose a dual contrastive learning framework for
hate speech detection, particularly addressing the de-
tection of hate speech containing insulting words by
mining context information of data beyond the token-
level emotional semantics.

• We integrate self-supervised and supervised contrastive
learning into the focal loss to tackle the problem of data
imbalance in hate speech detection.

• We examine the effectiveness of our model on two pub-
licly used hate speech detection datasets, and demonstrate
that our model can achieve state-of-the-art performance
compared with the baseline models.

II. RELATED WORK

We discuss two categories of related work: hate speech
detection methods and contrastive learning methods.

A. Hate Speech Detection Methods

Detecting hate speech is a challenging natural language
processing (NLP) task. Early work has used machine learning
methods in automatically detecting hate speech. Davidson
et al. [24] presented a large-scale dataset and used Logistic
Regression [6] and SVM [7] with effective n-gram features for
hate speech detection. These machine learning based methods
can obtain the token-level features but mostly ignore the con-
textual semantic information that is highly needed for precise
detection of hate speech, leading to limited performance.

In recent years, with the development of deep learning
and large-scale pre-training language models, many advanced
models were proposed and achieved outstanding performance
in hate speech detection. Several researchers use word em-
beddings obtained from unsupervised training on a large
number of corpora to detect hate speech. Ding et al. [27]
used the FastText [9] tools to acquire word representations
and presented a stacked Bidirectional Gated Recurrent Units
(BiGRUs). Mou et al. [8] proved the effectiveness of FastText
and BERT [22] for exploiting word-level semantic information
and sub-word knowledge to identify hate speech. [12] pro-
posed a reinforcement learning model HateGAN to address
the problem of imbalance class by data augmentation. [10]
presented a hate speech detection dataset and used GPT-2 [11]
to pre-train the detection model. [29] proposed the sentiment
knowledge sharing (SKS) model combined with a negative
word list and multi-task learning for hate speech detection.
[45] evaluated the effectiveness of model to introduce infusing
knowledge on out-of-distribution data. [47]–[49] facilitated the
detection of implicit hate speech. Previous research shows
that deep learning based models can better obtain contextual
information. In addition, compared with the normative data
in NLI tasks, hate speech crawled from social media is
more nuanced, subjective, and contextual [46], which presents
a huge challenge to natural language understanding. It is
imperative to consider task-specific characteristics, such as the
subjectivity and contextualization of hate speech, in designing
effective detection models. Moreover, previous research has
also demonstrated that the general methods of NLI task
have limited performance in hate speech detection task [43].
Therefore, we propose a dual contrastive learning method for
hate speech detection.

B. Contrastive Learning Methods

Contrastive learning learns representations by contrasting
positive and negative samples [14] and it has been widely
employed in computer vision tasks [35]–[42] for extracting in-
depth supervision signals from the data itself. Nan et al. [15]
introduced a dual contrastive learning approach to better align
text and video. Han et al. [16] proposed a novel method based
on contrastive learning and a dual learning setting (exploiting
two encoders) to infer an efficient mapping between unpaired
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Fig. 1. The overall framework of our model. CLse and CLsu are short for the self-supervised contrastive loss and the supervised contrastive loss, respectively.
FL represents the focal loss. Loss represents the final loss function. The colors of circles denote the labels of sentences, embedded as Emb(xi). Based
on Emb(xi), two augmented samples zj and z+j can be generated using independently sampled dropout masks. Given zj as the reference object, the solid
blue/orange arrows point to the positive samples of zj in CLse/CLsu, while the dashed blue/orange arrows point to the contrastive samples in CLse/CLsu.

data. Li et al. [17] proposed a contrastive learning framework
to learn instance and cluster representations.

Contrastive learning has a wide range of applications in
NLP, seeking for learning high-dimensional latent features of
sentences by reducing reconstruction error. For example, Gao
et al. [18] used standard dropout as noise twice for a sentence
embedding to build contrastive samples and proposed SimCSE
to calculate semantic similarity. [19] and [20] proposed super-
vised contrastive loss combined with cross-entropy to train a
classification model for natural language understanding. [36]
proposed a self-supervised clustering with contrastive learning
for general NLI tasks. This method integrates both instance-
level and cluster-level self-supervised contrastive learning to
obtain pseudo labels, which are further used for representation
learning. However, due to the subjectivity and contextualiza-
tion of hate speech [46], pseudo labels generated by general
self-supervised methods would become unreliable and difficult
to use to determine whether a sentence contains hate speech.
Totally different from [36], we propose a dual contrastive
learning method for the task of hate speech detection. By
considering the task-specific characteristics shown in Section
II.A, our model integrates both self-supervised and supervised
contrastive learning to enrich the semantic representations of
hate speech.

III. METHODOLOGY

In this section, we introduce our model named DCL for hate
speech detection. Our model seeks to learn adversarial samples

using dual contrastive learning mechanisms. We first illustrate
the overall framework of our model and then introduce the
self-supervised contrastive learning and the supervised con-
trastive learning used in our model. Besides, we provide more
implementation details for easily reproducing our model.

A. Overall Framework

Fig. 1 shows the overall framework of our DCL model for
hate speech detection. The input of our framework is a set of
sentences including hate and non-hate speeches. Pre-trained
BERT [22] is employed to represent the sentences, and data
augmentation is performed for two-stage contrastive learning.
The first stage adopts self-supervised contrastive learning to
make our model learn representations that are invariant to
different views of positive pairs of hate speech, which are
generated from the same sample by strong data augmentation,
while maximizing the distance between negative pairs of
non-hate speech. In the second stage, supervised contrastive
learning utilizes the label information to pull clusters of points
belonging to the same class together in embedding space,
while pushing apart clusters of samples from different classes.
Finally, we integrate the dual contrastive learning objectives
into the focal loss for model optimization to alleviate the
problem of data imbalance in hate speech detection.

B. Self-Supervised Contrastive Learning

Considering the complicated expressions and ambiguous
semantics in hate speech expressions, we propose to use
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self-supervised contrastive learning for data augmentation and
deep semantic information mining. By building positive and
negative samples, self-supervised contrastive learning captures
more comprehensive span-level features beyond token-level
semantics for effectively distinguishing different samples. For
hate speech detection, we propose a self-supervised contrastive
learning method for mining potential useful semantic informa-
tion of sentences in the model training process.

Our self-supervised contrastive objective intends to distin-
guish positive samples constructed by data augmentation for
each input sample against a set of negative samples in each
batch of data. Inspired by a simple yet powerful sampling
strategy [18], we predict the input sentences itself with dropout
noises [31] to retain the maximum semantic information of
hate speech. Other sampling strategies can also be integrated
in our framework, which remains as future work.

Specifically, for an input sentence xi, we use standard
dropout as noise twice for each sentence embedding, denoted
as Emb(xi). Based on Emb(xi), two augmented samples
zj and z+j with respect to xi can be generated using inde-
pendently sampled dropout masks placed on fully-connected
layers. (zj , z+j ) is regarded as a pair of positive samples, and
other samples in the same batch are treated as negative ones.
Based on this idea, our self-supervised contrastive learning
loss for hate speech detection can be formulated as follows.

CLse = −
2N∑
j=1

log
esim(zj ,z

+
j )/τse∑2N

k=1 1[j ̸=k] · esim(zj ,zk)/τse
(1)

where N denotes the batch size before data augmentation and
τse is a non-negative temperature hyperparameter. sim(·) is
the similarity scoring function between zj and z+j . In our
implementation, we adopt the cosine similarity to capture the
contextual semantic information by reconstructing the input

samples, namely, sim(zj , z
+
j ) =

zj
T z+

j

∥zj∥∥z+
j ∥

.

C. Supervised Contrastive Loss

Self-supervised contrastive learning augments the training
data by highlighting the Span-level semantics of hate speech
from the data itself. To further incorporate supervised sig-
nals for hate speech detection, we use supervised contrastive
learning on the basis of the augmented data. In other words,
our supervised contrastive learning method integrates label
information into the embedding space of the input sentences.
The learned sentence embedding contrasts a set of posi-
tive samples against a set of negative samples in the same
batch. Compared with self-supervised contrastive learning,
supervised contrastive learning incorporates more supervised
information by considering more positive samples for each
sampling batch. Specifically, for a batch of data with N
samples, supervised contrastive loss can be formulated as
follows:

CLsu =−
N∑
i=1

1

Nyi
− 1

N∑
j=1

1[i ̸=j] · 1[yi=yj ]

· log esim(zi,zj)/τsu∑N
k=1 1[i ̸=k] · esim(zi,zk)/τsu

(2)

where (zi, zj) denotes a pair of positive samples, and (zi, zk)
denotes a pair of randomly selected samples. yi and yj denotes
the label of zi and zj , respectively. Nyi is the number of
samples with the same label as zi. τsu is the non-negative
temperature coefficient of supervised contrastive loss. CLsu

further guides the model with supervised information for
building effective detection models. To jointly combine self-
supervised and supervised information, we use an overall loss
function of contrastive learning as follows:

CL = CLse + CLsu. (3)

D. DCL Integrating Focal Loss
We represent the input sentences using the pre-trained

language model BERT [22]. Any sentence xi is embedded
as representations denoted as Emb(xi) ∈ Rn×demb , where n
is the sequence length of xi, and demb is the dimension of the
embedding. A max-pooling layer is then applied to convert
Emb(xi) into a vector representation zi ∈ R1×demb that is
treated as the sentence embedding of xi. Given zi, we can
predict the target class of xi using the softmax function:

p(c|zi) = softmax(ziW ) (4)

where W ∈ ddim×Nc is a learnable parameter matrix. c is the
target class of xi. Nc is the number of classes. To estimate the
inconsistency between the predicted label and the target label,
we adopt the focal loss [21] that has been confirmed effective
in imbalanced data classification. Since hate speech detection
suffers from the problem of data imbalance, we introduce the
focal loss to reshape the standard cross entropy loss such that
the loss assigned to well-classified samples receives lower
weights. The focal loss for hate speech detection is defined
as:

FL = −
N∑
i=1

αi(1− p̂i)
γ log(p̂i) (5)

where γ is a non-negative tunable focusing parameter to
differentiate between easy and difficult samples. A smaller
value of γ guides the learned model to focus more on the
misclassified samples, and meanwhile reducing the relative
loss for well-classified samples. α ∈ [0, 1] is a weighting factor
to balance the importance of positive and negative samples,
which is defined as:

αi =

{
α if yi = 1

1− α otherwise
(6)

p̂i in Eq. (5) reflects the relationship between the estimated
probability and the target class.

p̂i =

{
pi if yi = 1

1− pi otherwise
(7)

where pi ∈ [0, 1] is the estimated probability for the class
with the label yi = 1 in each sentence embedding zi. During
the training phase, the focal loss and the contrastive learning
loss are jointly optimized. To learn a more robust model, we
introduce a weighting coefficient λ to balance the impact of
these two loss functions. The final loss is defined as:

Loss = FL+ λ · CL, (8)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

where λ ∈ [0, 1] is the weighting coefficient.

IV. EXPERIMENTS

In this section, we evaluate the performance of our model.
We first introduce the two commonly-used datasets, experi-
mental settings, and baselines, and then present the evaluation
results of our model compared with other baseline models.

A. Datasets

We conduct our experiment on two publicly available
datasets, which have been widely used in related research for
comparison of hate speech detection models. The details of
these datasets are introduced as follows:

SemEval-2019 Task-5 (SE) The SE dataset came from the
Task-5 of SemEval-2019 [23]. The subtask A of this evaluation
is hate speech detection. The hate speech of this dataset is
against women and immigrants. The total number of data is
11,971, where 5,035 data are labeled as hate speech, and the
remaining 6,936 data belong to the non-hate class. This dataset
contains three subsets: The training set with 9000 samples, the
validation set with 1000 samples, and the test set with 2971
samples.

Davidson Dataset (DV) The DV dataset was constructed
by Davidson et al. [24]. The data were collected from tweets
that contained hate speech including racist, sexist, homopho-
bic, and offensive expressions in various ways. This dataset
consists of 24,783 tweets, where only 1,430 ones are labeled
as hate, and 23,353 data are non-hate. We can observe that
this dataset is an extremely imbalanced dataset with relatively
very few positive samples of hate speech.

B. Experimental Settings

We use BERT for representing the input sentences, which
is fine-tuned on the downstream detection tasks. The pooling
layer of bert-base-cased is taken as 768-dimensional sentence
embedding. We use the 0.5 dropout rate and the AdamW
optimizer [34] for model training. The learning rate is set to
be 1e-4 and the batch size as 128. We set τse = 0.1 in the
self-supervised contrastive loss, τsu = 0.05 in the supervised
contrastive loss and α = 0.3 and γ = 2 in the focal loss. All
models were trained on NVIDIA GeForce GTX 1080 GPU.

To compare with baseline methods, we use accuracy (Acc)
and F-measure (F1) as evaluation metrics and import the
experimental results of baseline methods from the literature.
Since the SE dataset is from an evaluation task, the reported
experimental results are based on the performance of the
test set of the official evaluation. We select the models and
hyperparameters that perform best on the validation set and
evaluate the performance on the test set. Results are evaluated
based on the officially designated metrics, including accuracy
(Acc) and macro F1. For the DV dataset, we adopt the mean
accuracy and the weighted F1 after five-fold cross-validation,
and save the parameters corresponding to the optimal model,
which follows the settings in previous work [29]. We used
the different F1 score metrics on two datasets following
existing studies, such as the SOTA baseline model SKS [29]

TABLE II
COMPARISON WITH BASELINES ON SE AND DV. THE RESULTS WITH AN

ASTERISK (*) ARE IMPORTED FROM THE LITERATURE.

Dataset SE DV
Metrics Acc. macro-F1 Acc. weighted-F1
SVM* 49.2 45.1 - 87.0
LSTM* 55.0 53.0 94.5 93.7
GRU* 54.0 52.0 94.5 93.9
BiLSTM* 53.5 51.9 94.4 93.7
CNN-GRU* 62.0 61.5 - 94.0
BERT(BCE) 55.8 54.9 94.3 94.2
BERT(FL) 59.8 58.6 94.4 94.4
SKS* 65.9 65.2 95.1 96.3
DCL (R) 65.9 63.1 94.8 94.7
DCL (Ours) 67.8 67.2 95.9 95.6

for fair comparisons. In fact, the macro-F1 metric used for
the SE dataset is a common choice in related tasks, while
the weighted-F1 metric is a tailored version of macro-F1 for
the DV dataset by considering that the DV dataset is very
unbalanced with a ratio of hate to non-hate of about 1:15. If
macro-F1 is used on DV, the performance of hate samples will
dominate the overall performance. Therefore, to make more
reasonable evaluations of different models on DV, weighted
F1 is designed for this dataset, which considers the weights
of hate and non-hate samples.

C. Baseline Methods

We compare our model with the following baselines:
SVM. The SVM-based hate speech detection model was

proposed by Zhang et al. [25] and Mandl et al. [26]. The re-
searchers extracted several statistical features, such as n-gram,
insulting words, and the frequency of particular punctuation
marks for learning SVM classifiers.

LSTM, GRU, Bi-LSTM. These methods were proposed by
Ding et al. [27]. They employed word embedding and learned
sentence representations using LSTM, GRU, and Bi-LSTM to
detect hate speech, respectively.

CNN-GRU. Zhang et al. [25] applied convolution-GRU
based deep neural network with word embedding to extract
potential semantic features in detecting hate speech, which
captures both word sequential and order information in tweets.

BERT. This baseline was proposed by Benballa et al. [28].
The final hidden state of [CLS] of BERT is used as the
sentence embedding in hate speech detection. The classifier
consists of a feed-forward layer and a softmax function. For a
fair comparison, we train the model using cross-entropy loss
and focal loss, respectively.

SKS. It was proposed by Zhou et al. [29]. This approach
detected hate speech based on sentiment knowledge sharing
and achieved state-of-the-art performance on the Davidson
dataset and SemEval-2019 Task-5, which is a strong baseline
for comparison.

D. Results and Discussions

TABLE II shows our evaluation results on the SE and DV
datasets. From TABLE II, we can observe that:
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Fig. 2. F1-Score of hate and non-hate sentences on SE and DV. Blue: BERT
trained with BCE, green: BERT trained with Focal loss, gray: DCL.

(1) Overall, the experimental performance on these two
datasets is largely different. On the DV dataset, the values
of the two used metrics are both above 93%. While on the
SE dataset, the values are less than 70%. This is because
the data distributions of these datasets differ a lot. Namely,
subtle differences in data distributions can significantly affect
the detection performance.

(2) The performance of neural network-based models is
much better than the SVM-based models with manually
crafted features. Compared with LSTM and its variants, hybrid
neural networks, such as CNN-GRU achieved better perfor-
mance, particularly on the SE dataset. Furthermore, SKS,
benefiting from its sentiment knowledge-sharing mechanism
and multi-task learning, achieved the best performance among
all the baselines.

(3) Our model DCL outperformed all the baseline models
on the SE dataset. The improvement of DCL over the BERT-
based model is 13%, and the improvement over LSTM, GRU,
and SVM is more 10% in terms of the macro-F1 and the
accuracy. Compared with the best-performed baseline model
SKS, DCL is superior in terms of both metrics.

(4) On the DV dataset, DCL achieved the best performance
by accuracy, and better performance by weighted-F1 than all
the baseline models except SKS. This is because SKS used
an external sentiment dataset to enhance the performance.
Although DCL does not use any external data, DCL achieved
higher accuracy than SKS.

(5) We further analyze the impact of the sequence between
the two stages. Specifically, we reverse the order of self-
supervised and supervised contrastive learning, referred to as
DCL(R). As the result shown in TABLE II, regardless of the
order of DCL, it has a more competitive performance than
baselines on the two datasets. Meanwhile, if self-supervised
contrastive learning is before supervised contrastive learning,
DCL has better detection effects. This is because the features
learned from self-supervised contrastive learning represent
the context information of the text itself and they are more
adaptive than supervised training [13]. They can be considered
as prior knowledge facilitating model decisions on down-
stream tasks. Therefore, it is more reasonable to employ self-
supervised comparative learning as the first stage of DCL.

(6) Figure 2 shows the F1-Score of detection performance

Fig. 3. t-SNE plots of the learned sentence-level embedding zi on SemEval-
2019 Task-5 test set using the BERT model (left) and our model (right). Cyan:
non-hate examples; Pink: hate examples.

of hate and non-hate samples on SE and DV. From the figure,
we observe that our model has the more advanced performance
to distinguish whether the sentences contain hate speech than
BERT trained with binary cross entropy or focal loss. This
result indicates that the use of focal loss integrated with
dual contrastive learning largely alleviates the data imbalance
problem of hate speech detection. For DV, we find that the
capability of hate speech detection is much lower than that of
non-hate speech on a model trained using only cross-entropy.
This is because the DV dataset is extremely imbalanced, which
partly hinders the improvement of model performance.

To further validate the ability of dual contrastive learning
in reconstructing text representation, we use t-Distributed
Stochastic Neighbor Embedding (t-SNE) [33] to plot the
learned sentence embedding zi. t-SNE is utilized to reduce
the dimension of representations from high-dimensional vector
space to a two-dimensional plane. Since the number of hate
speech on DV is fewer, we perform the t-SNE based plotting
only on the test set of SE that contains 1180 hate speeches
and 1625 non-hate speeches.

We illustrate the t-SNE plots of the learned sentence em-
beddings in Fig. 3. From the figure, we can observe that
the distinction between hate speech and non-hate speech has
been improved by introducing dual contrastive learning loss.
Meanwhile, the vector space of the two classes still overlaps
in certain dimensions, which indicates that some sentences
with different labels have similar topical information such as
immigrants. The vector representations of hate speech samples
with the same topic tend to be closer than those with the same
labels (i.e. hate and non-hate). This also leads to the fact that
pseudo-labels generated by general self-supervised methods,
such as [36], will become unreliable, making it difficult to
determine whether a sentence contains hate speech or not. To
further investigate the effectiveness of the loss functions used
in our model, we provide an ablation study in the next section.

E. Ablation Experiments

In this section, we investigate the influence of contrastive
learning and the choice of weighting coefficient λ in our
model, respectively.

1) The influence of contrastive learning.: TABLE III shows
the influence of different parts of our model, where "-self"
is the proposed model without the self-supervised contrastive
learning, and "-sup" is the proposed model without supervised
contrastive learning.
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TABLE III
THE RESULT OF ABLATION EXPERIMENTS.

Dataset SE DV
Metrics Acc. macro-F1 Acc. weighted-F1
-self 64.4 63.0 95.1 95.0
-sup 57.5 57.2 95.8 95.5
DCL 67.8 67.2 95.9 95.6

Fig. 4. The accuracy of the model under different λ.

Based on the results in TABLE III, we observe that: (1)
The self-supervised contrastive learning loss contributes a lot
on both datasets, which demonstrates that self-supervised con-
trastive learning can enhance the model’s ability in acquiring
the high-level semantic features of potentially hate speech.
(2) On different datasets, the performance based on super-
vised contrastive learning is quite different. The performance
decreases more sharply on SE than that on DV. The reason
for this phenomenon is that the proportion of hate speech on
DV is much lower than SE, and our model hardly obtained
enough positive samples for supervised contrastive learning.
On SE, samples are relatively balanced and supervised con-
trastive learning can make the best of positive and negative
samples for learning an effective detection model. This finding
indicates that the label information is significant to supervised
contrastive learning in our model.

2) The choice of weighting coefficient λ.: To further ex-
amine the influence of contrastive learning in DCL, we tune
the weighting coefficient λ and report the performance change
in Fig. 4. From the figure, we observe that on DV, the best
performance of DCL can be achieved when λ = 0.2 or
λ = 0.6, while on SE, the best performance is achieved when
λ = 1.0. The results indicate that contrastive learning exhibits
higher performance on the balanced dataset SE, while the focal
loss contributes more to the imbalanced dataset DV.

F. Performance of Detecting the Speeches Containing Insult-
ing Words

In order to further verify whether our model has a stronger
ability in detecting speech containing insulting words, we
conducted this supplementary experiment. We first utilized
an insulting vocabulary collected from Twitter1 [32] and
NoSwearing2, a website listing swear words. The vocabulary

1https://github.com/Mrezvan94/Harassment-Corpus
2https://www.noswearing.com/

TABLE IV
PERFORMANCE OF MODELS TRAINED ON THE SAMPLES CONTAINING

INSULTING WORDS.

Dataset SE DV
Metrics Acc. macro-F1 Acc. weighted-F1
BERT(BCE) 64.4 63.0 98.3 98.4
DCL 70.6 70.1 98.8 98.8

contains a total of 1060 frequently insulting words which are
divided into six types of contexts: 1) Sexual 2) Appearance-
related 3) Intellectual 4) Political 5) Racial 6) Combined. This
resource is used to refine the samples with insulting words in
the SE and DV datasets. The statistics of the refined datasets
are illustrated in TABLE I, which indicates there is a large
proportion of speeches containing insulting words in these two
datasets. We then used the refined datasets to examine the
detection performance of the learned model compared with
the BERT-based model. The results on these refined datasets
are reported in TABLE IV and Fig. 2.

From TABLE IV, we observe that the improvements on
Acc. and macro-F1 are 6.2% and 7.1% on SE and 0.5% and
0.4% on DV, respectively. The experimental results showed
that our model has a much stronger ability in detecting
speeches containing insulting words than the BERT-based
model. The dual contrastive learning and focal loss of our
model unitedly contribute to the improved performance of hate
speech detection.

G. Detection Examples and Error Analysis

1) Detection Examples: One advantage of our model is its
capability in capturing span-level features. In this section, we
provide four case studies to illustrate this capability of our
model compared with the BERT-base-cased detection model.
TABLE V shows the detection results. From the table, we
observe that our model can precisely detect these examples,
but the BERT-based model wrongly predicts their labels.

Although the first sentence has two negative words,
“threats” and “lying”, that express somewhat insulting emo-
tions, the sentence is not an attack towards certain social
groups. Therefore, this sentence does not contain hate speech.
On the contrary, the second sentence, as an example of hate
speech, does not contain any insulting words but involves a
stereotype of immigrant children. Our model correctly predicts
that it is hate speech, which demonstrates the effectiveness
of our model. Similarly, the third and the fourth sentences
both contain an abusive word, “bitch”. By considering the
context of each sentence, only the fourth sentence expresses
hatred. For text containing the same insulting words, our
model can also make correct predictions. This is because
our model learns more contextual semantic information by
dual contrastive learning, which helps effectively distinguish
different kinds of samples, particularly hate speech containing
insulting words.

To further verify the effectiveness of our model, we visually
analyze the attention weights of the hidden layers of fine-tuned
BERT encoder in the learned DCL model and the BERT-based
model through two sentences. The result is shown in Fig. 5.
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TABLE V
EXAMPLES ON HATE SPEECH DETECTION OF OUR MODEL AND BERT.

Index Sentence Label BERT DCL

1 Like he ever kept out any threats. He’s lying as usual.
#BuildThatWall non-hate hate non-hate

2
stop w ’we have to worry about the children’ No we do not-
many R>20yrs old Go home and make your country better or
enter ours legally we can’t afford them #NODACA

hate non-hate hate

3 I can be a bitch and an asshole but I will love you and care
about you more than any other person you have met. non-hate hate non-hate

4 my own sister even called and said bitch you pregnant now
hoe know I can’t have another one hate non-hate hate

TABLE VI
MISCLASSIFIED INSTANCES ON HATE SPEECH DETECTION OF OUR MODEL AND BERT.

Index Sentence Label BERT DCL

1 >Harasses women and calls them bitch and crabby >They
block him >Plays the victim non-hate hate hate

2 Bitch how is you gonna claim to be a "real" nigga, yet still on
that hoe shit? I’m not understanding the math, i’m ???? non-hate hate hate

3
He is 100% accurate. Diversity is our greatest weakness. Unity
is our strength. United we stand, divided we fall. #buildthewall
#deportthemall #stoptheinvasion #americafirst

hate non-hate non-hate

Exp. 1

Exp. 2

Fig. 5. Attention weights for each word of two sentences in the hidden layer
of fine-tuned BERT encoder. For each sentence, the above one is trained with
DCL, and the below one is trained with the BERT-based model. The depth
of the background color indicates the weight of each word.

For each sentence, the above one is trained with DCL and the
below one is trained with the BERT-based model.

In Fig. 5, the depth of red indicates the attention weight of
the word. The darker the color, the more important the word
is to the hate speech detection of the entire sentence. In Exp.
1, the word set {Go, home, can’t, afford} gets more attention
from DCL than BERT. And in Exp. 2, the word set {I, will,
love, you} has a higher attention weight in sentences while
the insulting words, such as ”bitch” and ”asshole”, have a
lower weight. The above sentences show that the model can
better discover the key information of the context, which has a
certain guiding significance for the hate speech detection task.

2) Error Analysis: To gain more insights into the perfor-
mance of our model, a manual inspection has been performed
on a set of misclassified sentences. Two main types of error
have been identified:

Type I error refers to the sentences annotated as non-hate,
but classified as hate by the detection models. Type I error is
usually caused by colloquial and informal statements in tweets.

We enumerate two cases in TABLE VI as examples: The first
case describes the scene in an informal flowchart-like fashion,
while the second case contains many colloquial languages,
such as ”gonna”, ”yet still”, which is not conducive to
the model’s understanding of text semantics. Therefore, both
models wrongly predicted their labels.

Type II error refers to the sentence labeled as hate, but
classified as non-hate by the detection models. Type II errors
usually occur when there is a lack of necessary background
knowledge. For the third case in TABLE VI, the meaning of
this sentence is embodied by the information of hashtags, such
as "#buildthewall", which reflect the hatred of opposition to
racial diversity. Therefore, the stance contained in the hashtag
needs to be considered as background knowledge in hate
speech detection.

V. CONCLUSION

In this work, we propose a dual contrastive learning frame-
work to tackle the problem of hate speech detection. Our
framework integrates both self-supervised contrastive learn-
ing and supervised contrastive learning to capture high-level
semantic information and complex language usage pattern in
hate speech expressions. Furthermore, we integrate focal loss
with dual contrastive learning to alleviate data imbalance for
fine-grained hate speech detection. Experimental results on the
SemEval-2019 Task-5 and Davidson dataset demonstrate the
effectiveness of our model.

In the future, we will explore the following directions: (1)
The analysis of Type I error shows that noises in text affect
the model’s performance. Therefore, we will further explore
the impact of insulting words in informal contexts on hate
speech detection. (2) The analysis of Type II error certifies
the necessity of external knowledge in hate speech detection.
We will explore how to introduce useful external knowledge
to further improve detection performance.
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