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Oracle Teacher: Leveraging Target Information for
Better Knowledge Distillation of CTC Models

Ji Won Yoon, Hyung Yong Kim, Hyeonseung Lee, Sunghwan Ahn, and Nam Soo Kim

Abstract—Knowledge distillation (KD), best known as an
effective method for model compression, aims at transferring
the knowledge of a bigger network (teacher) to a much smaller
network (student). Conventional KD methods usually employ the
teacher model trained in a supervised manner, where output
labels are treated only as targets. Extending this supervised
scheme further, we introduce a new type of teacher model for con-
nectionist temporal classification (CTC)-based sequence models,
namely Oracle Teacher, that leverages both the source inputs and
the output labels as the teacher model’s input. Since the Oracle
Teacher learns a more accurate CTC alignment by referring to
the target information, it can provide the student with more
optimal guidance. One potential risk for the proposed approach
is a trivial solution that the model’s output directly copies the
target input. Based on a many-to-one mapping property of the
CTC algorithm, we present a training strategy that can effectively
prevent the trivial solution and thus enables utilizing both source
and target inputs for model training. Extensive experiments are
conducted on two sequence learning tasks: speech recognition
and scene text recognition. From the experimental results, we
empirically show that the proposed model improves the students
across these tasks while achieving a considerable speed-up in the
teacher model’s training time.

Index Terms—Speech recognition, scene text recognition, con-
nectionist temporal classification, knowledge distillation, teacher-
student learning, transfer learning

I. INTRODUCTION

S deep neural networks bring a significant improvement

in various fields such as speech recognition, computer
vision, and natural language processing, they also become
wider and deeper. However, as models grow in size and
complexity, high-performing neural network models become
either computationally expensive or consume a large amount
of memory, hindering their wide deployment in resource-
limited scenarios. To mitigate this computational burden, sev-
eral techniques such as model pruning [1]], [2]], quantization
[3], and knowledge distillation [4], [S] have been suggested.
Among these approaches, knowledge distillation (KD) is a
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popular compression scheme, which is the process of trans-
ferring knowledge from a deep and complex model (teacher)
to a shallower and simpler model (student).

Conventional KD methods [5]-[11] typically share a com-
mon feature; they require a teacher model with high capacity
that has been trained in a supervised manner, where the
ground-truth labels are required as a target. However, training
the teacher from scratch can be costly since many of the
current state-of-the-art (SOTA) models suffer from excessive
training time and difficult hyper-parameters tuning. Thus,
some existing approaches [12[]-[[14] rely heavily on the pre-
trained model, provided by other prior research, as the teacher
to save the training time and resource cost. Even though
making full use of the provided pre-trained models is one
important motivation of KD, this dependency might limit
the flexibility of our consideration. If we can train a better
teacher model with fewer resources and training time, KD
from various teachers will be possible on different tasks or
databases.

We revisit the teacher model in KD from a different perspec-
tive. In a conventional KD scenario, there is no guarantee that
the teacher can find the correct solution for every complicated
problem in an optimal way, implying that the teacher model
may provide suboptimal guidance for the student. The key
idea of our framework is to derive a more accurate problem-
solving process by referring to the existing solutions so that
the teacher can provide better guidance to the student. On this
basis, we introduce a new type of teacher for Connectionist
Temporal Classification (CTC) [[15]]-based sequence models,
namely Oracle Teacher. The conventional teacher is typically
built in a supervised manner whose goal is to predict the target
output for a given source input data. In contrast, the proposed
teacher model utilizes not only the source input but also the
target value to estimate better CTC alignment.

However, it may be somewhat confusing to understand
what it means to train a model using both the source inputs
and the output labels as the model’s input. Specifically, the
Oracle Teacher is likely to heavily rely on the target input,
i.e., the output label, while ignoring the embedding from
the source input. To overcome this problem, we propose a
training scheme that uses the many-to-one mapping property
of the CTC algorithm. Since the relationship between the
CTC alignment and the original target is many-to-one, we
can prevent a trivial solution that the model’s output directly
copies the target input. To the best of our knowledge, this
is the first attempt of using the target input to improve the
ability of the teacher model. Utilizing the target input for
training the teacher model brings several benefits for KD.



Firstly, the proposed teacher model produces a more accurate
CTC alignment by referring to the target information so that its
knowledge can provide more optimal guidance to the student.
Secondly, the representation of the proposed teacher contains
target-related embedding that can be supportive for student
training. For example, the Oracle Teacher for automatic speech
recognition (ASR) is trained to use both speech and text as the
model’s input during training. Different from the typical ASR
teachers that take only acoustic features into consideration, the
Oracle Teacher performs a fusion of both acoustic (speech)
and linguistic (text) features when generating the prediction.
Since unifying acoustic and linguistic representation learning
generally enhances the performance of the speech processing
[16]-[20], the Oracle Teacher’s representation, which consid-
ers not only the acoustic but also linguistic information, can be
more effective for the ASR student. Also, the Oracle Teacher
can boost up the speed of the training since the target input
is used as the guidance to reduce the candidate scope of the
prediction. Compared to the conventional teacher models that
require tremendous time and GPU resources, our framework
dramatically reduces the computational cost required to train
the teacher model.

Extensive experiments are conducted on two different se-
quence learning tasks: ASR and scene text recognition (STR).
Empirically, we verify that the student distilled from the
Oracle Teacher achieves better performance compared to the
case when it is distilled from the other pre-trained models,
which yield the high performance for each task. Apart from
performance, we measure the computational cost for training
teacher model and show that a powerful teacher can be trained
with a reduced computational burden via the proposed scheme.
Through an in-depth case study, we also analyze the effect of
target injection and the linguistic information acquired from
the encoder. Additionally, it is verified that Oracle Teacher
performs well in different KD scenarios, including a transducer
framework and a self-training setting.

Our main contributions are summarized as follows:

1) Our paper introduces a new type of teacher for CTC-
based sequence models, namely Oracle Teacher, that
utilizes the output labels as an additional input for model
training. The proposed teacher model can estimate a
more accurate CTC alignment, providing more optimal
guidance to the student. To the best of our knowledge,
this is the first attempt of using the target input to improve
the performance of a teacher model.

2) Through extensive experiments on two sequence learning
tasks, including ASR and STR, we verify the superiority
of the Oracle Teacher compared to the conventional
teacher models. Moreover, our framework dramatically
reduces the computational cost of the teacher model in
terms of the training time and required GPU resources.

3) In a detailed case study and analysis, we validate why the
proposed method can result in better KD performance
than the conventional teacher and check if the Oracle
Teacher is correctly trained while preventing the trivial
solution.

II. RELATED WORK
A. Knowledge Distillation

There has been a long line of research on KD, which
aims at distilling knowledge from a big teacher model to a
small student model. Bucila er al. [4]] proposed a method to
compress an ensemble of models into a single model without
significant accuracy loss. Later, Ba and Caruana [21]] extended
it to deep learning by using the logits of the teacher model.
Hinton et al. [5] revived this idea under the name of KD
that distills class probability by minimizing the Kullback-
Leibler (KL)-divergence between the softmax outputs of the
teacher and student. In the case of the ASR task, the most
frequently employed KD approach is to train a student with the
teacher’s prediction as a target, in conjunction with the ground
truth. For the conventional deep neural network (DNN)-hidden
Markov model (HMM) hybrid systems, Li et al. [22] first
attempted to apply the teacher-student learning to a speech
recognition task, and Wong et al. [23]] applied sequence-level
KD to the acoustic model. Several researchers applied KD to
improve the performance by minimizing the frame-level cross-
entropy loss between the output distributions of the teacher
and student [24]-[28]. For end-to-end speech recognition, KD
has been successfully applied to CTC models [[7]-[11], [29]
and attention-based encoder-decoder models [11], [30]-[32]].
However, as reported in previous KD studies [9]-[11], [29],
simply applying the frame-level CE to the CTC-based model
can worsen the performance compared to the baseline. To
cover this problem, Kurata and Audhkhasi [7]], [8] proposed
KD approaches, where the CTC-based student can be trained
using the frame-wise alignment of the teacher. Takashima et
al. [9], [10] explored sequence-level KD methods for training
CTC models. Yoon et al. [11] suggested that 5 loss is more
suitable than the conventional KL-divergence to distill frame-
level posterior in the CTC framework. Moritz et al. [33]]
newly proposed graph-based temporal classification (GTC)
objective, which is applied for self-training with WFST-based
supervision.

The hidden representation from the teacher also has been
proven to hold additional knowledge that can contribute to
improving the student’s performance. Recently, some KD
methods [|6], [34]]-[40], particularly in computer vision, were
proposed to minimize the mean squared error (MSE) between
the representation-level knowledge of the two models. They
address how to extract a better knowledge from the teacher
model and transfer it to the student. Yoon et al. [11] first at-
tempted to transfer the the hidden representation across differ-
ent structured neural networks for end-to-end speech recogni-
tion while using frame weighting that reflects which frames are
important for KD. Recently, several KD approaches [41]-[43]]
suggested using the hidden representation-level knowledge to
improve the self-supervised speech representation learning-
based models, like Hidden-Unit BERT (HuBERT).

B. Connectionist Temporal Classification

Generally, an end-to-end sequence model directly converts
a sequence of input features ;.7 into a sequence of target
labels y;.;, where y; € Z with Z being the set of labels. 7" and



L are respectively the length of x = z1.7 and y = y;.z. To
cope with the mapping problem when the two sequences have
different lengths, the Connectionist Temporal Classification
(CTC) framework [[15]] introduces “blank’ label and allows the
repetition of each label to force the output and input sequences
to have the same length. A CTC alignment 7.7 is a sequence
of initial output labels, as every input x; is mapped to a certain
label ; € 7’ where 7' = ZU{blank}. A mapping function 5,
which is defined as y = B(w), maps the alignment sequence
m into the final output sequence y after merging consecutive
repeated characters and removing blank labels. The conditional
probability of the target sequence y given the input sequence
z is defined as

P(ylr)= Y P(nla). (D)

meB~(y)

where B~! denotes the inverse mapping and returns all pos-
sible alignment sequences compatible with y. Given a target
label sequence y, the loss function Lo is defined as:

Lore = —log P(ylx). 2)

C. Recurrent Neural Network Transducer

An alternative approach to the end-to-end mapping between
1.7 and y1.7, is to use the recurrent neural network transducer
(RNN-T) [44]. The RNN-T model typically consists of the en-
coder network, the joint network, and the prediction network.
The encoder network generates the acoustic embedding from
the speech source, and the prediction network processes labels
independent of the acoustics. The joint network integrates the
outputs of the encoder and prediction networks in generating
the prediction.

D. Text Injection ASR Model

There are some techniques in ASR literature that use both
speech and text inputs. Chen et al. [45] proposed Maestro,
which is a self-supervised training method that learns unified
representations from both speech and text. Thomas et al. [46]
suggested Textogram that integrates the text input for training
the ASR model. It employs a concatenation of the one-hot
encodings of the symbols making up the reference text. In
contrast to the conventional KD framework that improves the
teacher model through back-propagation of a loss based on
the target, the proposed Oracle Teacher leverages the target
through forward propagation to improve the teacher model,
similar to other text-injection approaches.

IIT. ORACLE TEACHER

This section introduces how to design the Oracle teacher
that utilizes the output labels as an additional input. As shown
in Fig. |I} we let the Oracle Teacher model learn a function
from the source x and the target y inputs to the CTC alignment
.
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Fig. 1. Overview of the Oracle Teacher. The proposed teacher model mainly
consists of three components: the SourceNet, the encoder, and the decoder.
Different from the conventional teacher, the target y is used as the additional
input to the model. Note that the Oracle Teacher is a non-autoregressive model
where the look-ahead mask is not included in the decoder. The architecture
selection of the SourceNet depends on the task we are interested in. When
the main task is ASR. the SourceNet corresponds to an acoustic model part
of the conventional ASR model. In our experiment for ASR, the SourceNet is
based on the architecture of Japser [47]]. For STR, we apply the CRNN [48]]
as the SourceNet.
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Fig. 2. The relationship between the CTC alignment 7 and the target input y.
A many-to-one mapping function 53 converts the alignment sequence 7 into
the final output sequence y.

A. Oracle Teacher Training

Let + = z1.7 = {x1,..,x7r} be an input sequence
of length T, and y = w1.. = {v1,...,yr} be a target
sequence of length L. As mentioned in Section the
CTC algorithm employs the intermediate CTC alignment
7 = m.p = {m,...,7r} to align variable-length input and
output sequences. Note that the initial output of the CTC
model is 7. As shown in Fig. [2] the relationship between the
alignment 7 and the target input y is many-to-one via the
mapping B. Let us consider the single word “cat”, there are
many possible alignment sequences compatible with vy, e.g.,
B({blank,c,blank,a,t,t}) = B({c,c,blank, a,blank,t}) =



B({blank,blank,blank,c,a,t}) = {cat} where {cat} de-
notes ¥, and the other sequences represent 7. This many-to-
one setting is the key to training the Oracle Teacher while
preventing the trivial solution. Intuitively, predicting the CTC
alignment 7 (many) from the target input y (one) should be
difficult since many possible paths are compatible with y. To
generate an accurate CTC prediction, the linguistic information
from {cat} is not enough. The model needs to be trained to
assign suitable text information for each frame, like {c, c,
blank, a, blank, t}. Since aligning linguistic information to
each frame is related to the acoustic information, the proposed
model is trained to use the embeddings of both x and y. The
detailed analysis will be described in Section

The Oracle Teacher learns the parameters 6 to minimize the
following training loss:

Lirgin=—log Y P(r|z,y;0) 3)
neB~1(y)

where B is the many-to-one mapping function in (1)) that maps
the latent alignment 7.7 into the target y;.r.

B. Knowledge Distillation with Oracle Teacher

We can interpret KD framework from a different perspective
by applying the additional target input. Given a source z,
the student model learns the parameter ¢ to maximize the
following conditional probability:

log P(y|z; ¢) = log Y _ P(y, w|z; ¢) dr
_ Pz, y;0)
_IOgXﬂ:P(yaTﬂxv(b) (7T|.’E y’ )dﬂ'

Y5 0
~log 30y ~ Bm) Plalas o) e dn
_ gy Pl o)
= log e;( P(r|x,y;0) Pnlw,y:0) dm

ﬂ )
P(nl|z; ¢)
>ﬂ€;(y) (]z,y; 6 logip( 7.5:0) dm
= —Dgr(P(r|z,y;0) || P(r|z; ¢)) “4)
—_—————— ——

Oracle Teacher Student

where the inequality follows from Jensen’s inequality, B
represents the mapping function in (3, and Dg, denotes the
KL-divergence. In our framework, P(7|z,y;6) and P(w|x; ¢)
correspond to the alignment probability derived from the Or-
acle Teacher and the student, respectively. By minimizing the
KL-divergence between the Oracle Teacher and the student,
we can maximize the conditional probability of the student
model P(y|x; ¢).

Directly optimizing the KL-divergence in ) is intractable
because the KL divergence involves the integral that is difficult
to calculate. To sidestep this problem, we can minimize the
CE between the softmax outputs of the Oracle Teacher and the
student. However, as reported in previous KD studies [9]], [[10]],
[29], simply applying the frame-level CE to the CTC-based
model can worsen the performance compared to the baseline
trained only with the ground truth. Instead, we adopt FitNets
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Fig. 3. KD procedure with the Oracle Teacher.

[6] as the basic KD technique, which considers the hidden
representation for distillation, and there are two reasons for
this choice: (1) In the CTC framework, transferring the hidden
representation is much more effective than the softmax-level
KD approach [[11]]; (2) Recent KD approaches for sequence
learning [11]], [41]], [43] are based on the Fitnets.

As depicted in Fig. Wieq and wsge,, respectively denote
the hidden representation obtained from the last layer of
the teacher and student models. Since usually the hidden
layer dimensions of wy., and wgy, are different, we apply
a fully connected layer g to bridge the dimension mismatch.
The process of KD initializes the student by minimizing the
distance between hidden representation of the teacher model
Wyeq and student model wgy,,. The objective for KD is given
by

Lkp (wsmm wtea) = ”wtea - g(wstu)Hg- )

C. Model Structure

The Oracle Teacher mainly consists of three components:
1) an encoder to encode the target input, 2) a SourceNet
to extract the features from the source input data, and 3)
a decoder to predict the CTC alignment. Its architecture
follows the encoder-decoder structure of the Transformer [49]],
which allows the model to attend to related target information
when making a prediction. Note that the Oracle Teacher is a
non-autoregressive model where the look-ahead mask is not
included in the decoder. In Fig. [T} we illustrate the schematics
of the Oracle Teacher model which can also be summarized
as follows:

hS = SourceNet(z; 0g), (6)
h¥ = Encoder(y; 0g), (7)
P(r|x,y) ~ Decoder(h”, h®;6p). (8)

Compared to the vanilla Transformer, the main architectural
difference lies in the cross attention. The encoder takes inputs
from the whole target y, and its resulting vectors h¥ are
treated as key-value pairs of the cross attention. In addition,
we do not employ a look-ahead mask, which is used in the
vanilla Transformer to mask the future tokens, in the multi-
head attention layer of the decoder.



1) SourceNet: The SourceNet converts the source input x
into high-level representations k. Since h° serves as query
for the decoder, the length of the decoder output has the
same length as A°. The architecture of the SourceNet depends
on the task we are interested in. When the main task is
ASR. the SourceNet corresponds to an acoustic model part
of the conventional ASR model. In our experiments, we apply
CTC-based architecture as the SourceNet, and consequently
|h®| > |y|. The Oracle Teacher has the SourceNet with 8
convolutional layers. In the case of the STR task, we adopt
the architecture of the CRNN [48]] for the SourceNet.

2) Encoder: In the encoder, we adopt the same structure
as the encoder of the original Transformer. The self-attention
captures dependencies between different positions in y and
outputs intermediate representations h”.

3) Decoder: The representations h° and h¥ are fed into
the decoder, which follows the architecture of the conventional
Transformer decoder. The self-attention layer, the first atten-
tion layer of the decoder, takes the representations h° as the
input. Then, the output serves as queries for the cross attention,
whose key-value pairs are the representations h”. The cross
attention allows the decoder to look into the relevant target
information when producing the prediction. Note that the look-
ahead mask is not included in the decoder. Different from the
autoregressive model that only uses the past output tokens
in producing the results, the Oracle Teacher can utilize more
global output features when predicting the output.

In the proposed framework, the representation of the source
x corresponds to the queries for the cross-attention. This is
because, for KD, the length of the decoder output (= the
length of the query ) should have the same length (T') as the
student’s output, which is determined by the source x. If the
decoder output has a different length from that of the student’s
output, the Oracle Teacher cannot transfer the knowledge to
the student.

IV. EXPERIMENTAL SETTINGS
A. Datasets and Baselines

1) Speech Recogniton: For ASR, we evaluated the per-
formance of the models on LibriSpeech [50]. In the train-
ing phase, “train-clean-100”, “train-clean-360”, and “train-
other-500” were used. For evaluation, ‘“dev-clean”, “dev-
other”, “test-clean”, and  “test-other” were applied. We
adopted the current high-performing models for the conven-
tional teacher in each task. In the case of ASR, we applied
pre-trained Jasper Dense Residual (Jasper DR) [47] with 54
convolutional layers and pre-trained Conformer [S1] large
(Conformer-CTC L) with 18 Conformer layers. Recent ASR
studies [11]], [52]-[54] utilized Jasper DR as the baseline.
According to the previous study [47]], Jasper DR produces
word error rate (WER) 2.62 % on dev-clean with strong
Transformer-XL [55] LM, still SOTA performance on Lib-
riSpeech. As for the CTC-based student, we used two models:
(1) Jasper Mini, composed of 33 depthwise separable 1D
convolutional layers, and (2) Conformer small (Conformer-
CTC S) consisting of 16 Conformer layers with 176 dimen-
sions. The Jasper-based Oracle Teacher had the SourceNet

with 8 convolutional layers, and both the encoder and decoder
consisted of 2 layers. In the case of the Conformer-based
Oracle Teacher, the SourceNet of the Oracle Teacher consisted
of 16 Conformer layers with 176 dimensions. The encoder and
decoder of the Oracle Teacher consisted of 1 layer. When we
conducted experiments for the RNN-T framework, we com-
pared the Oracle Teacher with a large Conformer-Transducer
model (Conformer-T L), which is the current SOTA for ASR.
Its encoder network consisted of 17 Conformer layers with
512 dimensions. To extract the knowledge of the Conformer-
T L model, we used the pre-trained checkpoint provided
by the NeMo [56] toolkit. The RNN-T student was based
on based on a small Conformer model, where the encoder
network consisted of 16 layers with 176 dimensions. For the
RNN-T-based Oracle Teacher, the SourceNet had the same
architecture with the encoder network of the RNN-T student,
consisting of 16 Conformer layers. The encoder and decoder
of the Oracle Teacher consisted of 1 layer. In the RNN-T
framework, the Oracle Teacher included joint and prediction
networks. The joint and prediction networks had the same
architecture as the RNN-T student. We trained the Oracle
Teacher using the hybrid CTC/RNN-T framework, which is
the recent RNN-T configuration in NeMo. The additional CTC
objective helped achieve stable training for the Transducer-
based Oracle Teacher.

2) Scene Text Recognition: We evaluated STR models on
seven benchmark datasetsﬂ Street View Text (SVT) [58], SVT
Perspective (SVTP) [59], HIT5K-Words (IIIT) [60], CUTESO
(CT) [61]], ICDARO3 (IC03) [62], ICDAR13 (IC13) [63]], and
ICDARI15 (IC15) [64]. For validation, IC13, IC15, IIIT, and
SVT were applied. As training datasets, we used the two
most popular datasets: MJSynth [65] and SynthText [66]. We
adopted Rosetta [67] and STAR-Net [68]], considered as the
benchmarking SOTA models in recent researches [69], [70].
In the case of the student model, CRNN [48|] was adopted
with a thin-plate spline (TPS), which normalizes curved and
perspective texts into a standardized view. The SourceNet
followed the TPS-CRNN structure, and both the encoder and
decoder used 1 layer.

B. Implementation Details

1) Speech Recognition: For the LibriSpeech dataset, We
used the OpenSeq2Seq [71]] and NeMo [56] toolkits for the
implementation. In the case of Jasper-based ASR models, they
were based on character-level CTC models. The character
set had 29 labels. In the case of Jasper DR, we used the
pre-trained model provided by the OpenSeq2Seq toolkit. The
student model was run on three Titan V GPUs, each with
12GB of memory. We used a NovoGrad optimizer [72] whose
initial learning rate started from 0.02 with a weight decay of
0.001. When applying the Conformer-based student model, we
used byte-pair encoding (BPE) [73]] tokens as the output units.
It was run on four Quadro RTX 8000 GPUs. We employed a
AdamW optimizer with the initial learning rate 5.0. For KD,
the Japser-based student was initially trained with FitNets [6]]

'We applied the datasets used in the comparative study conducted by Baek
et al. [57].



TABLE I

WER (%) PERFORMANCE COMPARISON ACROSS CTC-BASED ASR MODELS ON LIBRISPEECH. THE BEST RESULT OF THE STUDENT IS IN BOLD.

ASR baseline w/o LM w/IM
model Params. dev test dev test
clean other clean other clean other clean other
Jasper DR [47] 333 M 3.61 11.37 3.77 11.08 2.99 9.40 3.62 9.33
Jasper Mini 8§ M 8.66 23.28 8.85 24.26 4.78 15.14 5.15 15.77
w/o LM w/ LM
Student Teacher dev test dev test
clean other clean other clean other clean other
None 8.66 23.28 8.85 24.26 4.78 15.14 5.15 15.77
Jasper Mini Jasper DR [47] 7.05 19.41 7.03 20.41 4.80 14.32 5.00 14.99
Oracle Teacher (ours) 6.64 18.91 6.67 19.82 4.65 14.31 4.90 14.65
Oracle Teacher w/o target 7.22 20.39 7.32 21.10 4.72 14.67 491 15.15

loss for 5 epochs. After initialization, 50 epochs were spent
on CTC training for the Jasper-based student model In the
case of RNN-T, the student was trained with FitNets for 10
epochs. After that, it was trained with the RNN-T training for
100 epochs. In addition, we trained the Jasper-based Oracle
Teacher for 30 epochs on a single Titan V GPU using Noam
learning rate scheduler with 4000 steps of warmup and a
learning rate of 1.5. When applying beam-search decoding
with language model (LM), we used KenLLM [74] for 4-gram
LM, where the LM weight, the word insertion weight, and
the beam width were experimentally set to 2.0, 1.5, and 512,
respectively. The Oracle Teacher for Conformer-CTC model
was trained for 15 epochs on four Quadro RTX 8000 GPUs,
adopting the AdamW optimizer with the initial learning rate
5.0. In the case of RNN-T-based Oracle Teacher, it was trained
for 25 epochs on four Quadro RTX 8000 GPUs. It also adopted
the AdamW optimizer with the initial learning rate 5.0.

For the Mandarin ASR dataset, the character set had a total
of 5207 labels. Pre-trained Jasper DR, which was used as the
conventional teacher, was provided by the NeMo [56] toolkit.
The student was trained in an identical way to LibriSpeech,
but the initial learning rate was set to 0.005. Instead of WER,
we measured the character error rate (CER) since a single
character often represents a word for Mandarin.

2) Scene Text Recognition: When training the STR models,
our experiments were conducted using the official implementa-
tion provided by Baek et al.E] [57]. STR models were based on
the character-level CTC models. The character set had a total
of 37 labels. All STR models, including the Oracle Teacher,
were trained for 300k iterations on a single Titan V GPU
(12GB) in the CTC framework. We employed the AdaDelta
optimizer [75] with a decay rate of 0.95, and the initial learning
rate was 1.0. In FitNets [6] training, we trained 300k iterations
for the student.

V. EXPERIMENTAL RESULTS
In the subsequent part of this paper, A — B means that
teacher model A transfers knowledge to the student model B.

As mentioned in Section [[II-B] we employed FitNets [6] as
the basic KD technique.

Zhttps://github.com/clovaai/deep-text-recognition-benchmark

A. Main Results: Performance Comparison

Since the Oracle Teacher is the teacher model for KD, not
the baseline model performing the learning task, the evaluation
results of the Oracle Teacher itself are not described in this
section. Note that the model size and the performance of the
Oracle Teacher will be additionally discussed in Section [V-E]
and [V-G3]

1) Speech Recognition: The results for LibriSpeech are
shown in Table Il We measured WER to quantify the per-
formance. The best performance was achieved when training
the student with the Oracle Teacher. In addition, to further
check the effectiveness of the target input y, which is used
as the additional input of the Oracle Teacher, we applied an
incomplete Oracle Teacher model, called Oracle Teacher w/o
target. In Oracle Teacher w/o target, zero arrays were treated as
the additional input instead of the target input y during training
and inference phases. Since the Oracle Teacher w/o target only
consumed the source input, its architecture was similar to that
of the conventional CTC model. When applying the Oracle
Teacher w/o target, the distilled student achieved improvement
over the baseline student, which indicates that the knowledge
of the SourceNet contributed to improving the performance of
the student. However, their performances were worse than the
Oracle Teacher — Jasper Mini in all configurations, implying
that the oracle guidance helped the Oracle Teacher extract a
more supportive knowledge for the student.

As presented in Table we can confirm that the Oracle
Teacher still works well with KD on the Mandarin dataset.
Interestingly, when the Oracle Teacher was applied, the dis-
tilled student (CER: 9.74 % on dev-iOS) performed similarly
to the pre-trained Jasper DR (CER: 9.69 % on dev-iOS),
notwithstanding its smaller parameter size (14 M parameters)
than Jasper DR (333 M parameters). In some cases, including
test-iOS and test-Android, the student distilled from the Oracle
teacher outperformed the Jasper DR teacher. When transferring
the knowledge from the Oracle Teacher w/o target, the results
show that Oracle Teacher w/o target — Jasper Mini performed
better than Jasper DR — Jasper Mini. It indicates that, even
without the additional target information, the student can
benefit from the knowledge of the SourceNet. However, our
best performance was achieved when applying the Oracle
Teacher as the teacher model.

2) Scene Text Recognition: For the STR task, we used
accuracy, the success rate of word predictions per image, as



TABLE II
CER (%) ON AISHELL-2 WHEN GREEDY DECODING WAS APPLIED. THE BEST RESULT OF THE STUDENT IS IN BOLD.

ASR baseline Params dev test
model : i0S Android Mic i0S Android Mic
Jasper DR [47] 338 M 9.69 1148 | 1223 | 937 1084 | 1184
Jasper Mini 14 M 1177 | 1423 | 1503 | 1138 | 1271 | 1427
dev test
Student Teacher i0S | Android | Mic | i0S | Android | Mic
None 1177 | 1423 | 1503 | 1138 | 1271 | 1427
. Jasper DR [47] 1070 | 1278 | 13.66 | 10.12 | 1131 | 12.60
Jasper Mini
Oracle Teacher (ours) 9.74 11.49 12.31 9.27 10.36 11.99
Oracle Teacher w/o target 10.45 12.42 13.13 9.76 10.92 12.19
TABLE III
PERFORMANCE OF CTC-BASED STR MODELS. THE BEST RESULT OF THE STUDENT IS IN BOLD.
STR baseline mT 1C03 IC13 I1C13 IC15 IC15 Total
model Params. 3000 | SVT | g0 | 857 | 1015 | 1811 | 2077 | SYTP | ST | accuracy
Rosetta [67] 6M 8553 | 84.85 | 94.19 | 91.95 | 90.74 | 7322 | 7055 | 76.12 | 6899 | 82.45
Star-Net [68] 49M 85.50 | 8547 | 93.84 | 9277 | 91.92 | 72.50 | 69.77 | 73.80 | 70.38 | 82.24
CRNN [48] 10M 83.87 | 80.37 | 93.02 | 9043 | 89.46 | 70.07 | 67.53 | 72.09 | 65.51 | 80.10
T IC03 | ICI3 | ICI3 | ICI5 | ICI5 Total
Student Teacher 3000 | YT | 860 | 857 | 1015 | 1811 | 2077 | VTP | CT | accuracy
None §3.87 | 80.37 | 93.02 | 90.43 | 89.46 | 70.07 | 67.53 | 72.09 | 6551 | 80.10
Rosetta [67] 84.70 | 8346 | 9291 | 91.02 | 90.15 | 71.89 | 6920 | 71.16 | 65.85 | 81.04
CRNN [48] Star-Net [68] 8520 | 84.39 | 9349 | 91.60 | 90.74 | 7245 | 69.77 | 72.25 | 70.04 | 81.77
Oracle Teacher (ours) | 85.77 | 84.54 | 93.61 | 9148 | 9054 | 73.11 | 7040 | 7426 | 7038 | 8221
Oracle Teacher w/o target | 85.40 | 82.84 | 93.02 | 90.78 | 89.75 | 7173 | 69.04 | 7271 | 6899 | 81.30

a performance metric. As reported in Table [[TI} the student
distilled from the Oracle Teacher showed better performance
than those distilled from other teachers, and its total accuracy
(82.21 %) was almost similar to that of the conventional
teacher Star-Net (82.24 %) while having much fewer parame-
ters (10 M parameters). On IC13 datasets, the performances of
Star-Net — CRNN were slightly better than those of Oracle
Teacher — CRNN. However, the differences were negligible
since Oracle Teacher — CRNN showed better improvements
in most cases, including the total accuracy. Oracle Teacher w/o
target — CRNN performed better than Rosetta — CRNN in
some cases. It means that, even without using the additional
target input, the student can benefit from the knowledge of
the SourceNet. However, the distilled student from the Oracle
Teacher w/o target had worse achievements than Star-Net —
CRNN and Oracle Teacher — CRNN, indicating that the
target input played an important role in the effectiveness of
the Oracle Teacher.

B. Case Study: The Effect of Target Input

To validate why the proposed method could result in better
KD performance than the conventional teacher, we conducted
a case study for ASR on LibriSpeech test-other dataset. By
comparing predictions between the conventional teacher and
the Oracle Teacher, we verified the effect of using the target
information and the behaviour of the Oracle Teacher.

In Fig. @l we visualized the softmax prediction (CTC
alignment) of the conventional teacher and the Oracle Teacher.
The x-axis refers to acoustic frames, and the y-axis refers to
the character labels. As displayed in Fig. @] the conventional
teacher converted a given speech into “but the king left
him to scorn thou a sword equalle” and made erroneous
predictions with “left” and “equalle”. When conditioning on

the speech voice only, it is hard to distinguish “left”/*laughed”
and “equalle”/*he quoth”. However, the Oracle Teacher gave
accurate CTC alignment by utilizing the additional target (text)
information, implying that a more optimal problem-solving
could be derived by referring to both source (speech) and target
(text) information.

Also, the distilled student properly learned the behavior
of the Oracle Teacher. As shown in Fig. 4] the student
distilled from the conventional teacher could not distinguish
“equate”/“he quoth”, indicating that the knowledge of the
conventional teacher led to a sub-optimal solution for training
the student. In contrast, the distilled student from the Oracle
Teacher produced an accurate prediction. This means that the
student could effectively benefit from the better alignment
of the Oracle Teacher. Since the Oracle Teacher produced
more accurate alignment by using the additional text oracle
information, it could transfer a more optimal knowledge to
the student.

In CTC, the blank label relieves the network from mak-
ing label predictions at a frame when it is uncertain [15],
[76], [[77]. Interestingly, as shown in Fig. 4| most frames of
the conventional teacher had the highest probability for the
“blank” token, meaning that the model was uncertain about
the corresponding acoustic regions. In contrast, the Oracle
Teacher had fewer frames that were predicted as “blank”
token. Based on the linguistic information from the text input,
multiple frames of the Oracle Teacher were more likely to be
predicted as non-blank character labels rather than the “blank”
during the active speech periods. Thus, the Oracle Teacher was
likely to have less uncertainty in many acoustic regions while
containing much more information about non-blank labels.
Since the Oracle Teacher could achieve an accurate alignment
and less uncertainty on most frames, the knowledge of the
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Fig. 4. Frame-wise label probability example on LibriSpeech test-other dataset. Conventional teacher denotes the Jasper DR model. The x-axis refers to
acoustic frames, and the y-axis refers to the character labels. The last label index represents the “blank™ label in the CTC framework.

Target you owe me some bills gov'nor no wait another half hour

Conventional Teacher no aight another a half hour

(w/ greedy decoding)

yuowe me some bills gov'nor

Conventional Teacher no wait another half hour

(w/ KenLM)
Oracle Teacher
(w/ greedy decoding)

you owe me some bills gov'nor

you owe me some bills gov'nor no wait another half hour

Fig. 5. Recognition example on LibriSpeech test-clean dataset.

Oracle Teacher was more helpful for training the student.

In addition, we compared the ASR predictions of the
conventional teacher and the Oracle Teacher, as shown in
Fig. 0] In Fig. [5] the conventional teacher made erroneous
predictions with “yuowe”, “aight”, and “a” using the greedy
decoding. When considering the acoustic (speech) feature
only, it is challenging to distinguish some words, such as “you
owe”/“yuowe” and “wait”/““aight”. The conventional teacher
generated an accurate prediction when decoding with the ex-
ternal KenLM that provided additional linguistic information.
However, the proposed Oracle Teacher could produce correct
ASR prediction without using the external LM. This is because
the Oracle Teacher leveraged both the source input (speech)
and the output label (text) as the teacher model’s input. Unlike
the conventional teacher that only considered acoustic features,
the Oracle Teacher performed a fusion of acoustic (speech)
and linguistic (text) features when generating the prediction.
Since unifying acoustic and linguistic representation learning
generally enhances the performance of the speech processing
[16]-[20], the Oracle Teacher that considered linguistic in-
formation could estimate better CTC prediction, and also its

representation was a more supportive knowledge for the ASR
student.

C. Case Study: Linguistic Information from Encoder

To further check the behavior of the proposed teacher,
we fed unpaired speech and text inputs to the pre-trained
Oracle Teacher, allowing us to explore the model’s behavior
regardless of the speech input. Note that the Oracle Teacher
was already pre-trained with paired speech and text inputs.
In this experiment, “unpaired speech” means a speech that
was unrelated to the transcription. For unpaired speech, we
randomly selected an utterance from the LibriSpeech when
the transcription was “but the king laughed him to scorn thou
a sword he quoth”. In Fig. [6] we visualized the recognition
examples and softmax predictions of the Oracle Teacher with
paired speech (original Oracle Teacher) and the Oracle Teacher
with unpaired speech. Since the paired and unpaired speeches
had different lengths, the acoustic frames were different. The
results showed that the encoder sufficiently captured linguistic
information from the ground truth. When using the unpaired
speech input, even though some information related to the
word “king” might be lost, the prediction still included infor-
mation about other characters.

However, we observed that the encoder alone could not
assign suitable text information for each frame. As illustrated
in Fig. [6] the Oracle Teacher with unpaired speech produced
incorrect prediction with many unnecessary repetitions, such
as “E”, “H”, and “U”. Also, in Fig. we visualize the
cross attention scores of the Oracle Teacher, where the x-
axis refers to acoustic frames and the y-axis refers to the
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Fig. 6. Frame-wise label probability example on LibriSpeech test-other dataset. The x-axis refers to acoustic frames, and the y-axis refers to the character

labels. The last label index represents the “blank” label in the CTC framework.

<Oracle Teacher w/ paired speech>
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<Oracle Teacher w/ unpaired speech>
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(Transcription)
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(Acoustic frame)

Fig. 7. Visualized of the attention weight of the decoder.

transcription. When using unpaired speech, the attention scores
were incorrectly computed for the alignment between speech
and text. In contrast, as shown in Fig. [/} the Oracle Teacher
with paired speech correctly computed the alignment along
with the acoustic frames (query). This means that aligning
linguistic information to each frame depended on the acoustic
information from SourceNet.

In the sequence-to-sequence problem, learning the align-
ment between the source (speech) and target (text) is important

TABLE IV
WER (%) PERFORMANCE COMPARISON ACROSS CTC-BASED ASR
MODELS ON LIBRISPEECH. THE BEST RESULT OF THE STUDENT IS IN

BOLD.

Teacher Student KD method dev test
clean other clean other
None None 866 | 2328 | 885 | 24.26
Jasper DR 6.74 19.27 6.77 19.78
Oracle Teacher J . RKD [11] 6.44 18.36 6.43 18.97
Jasper DR ;\‘Z.pe. SKD (1] |64 [ 2136 [ 781 | 2241
Oracle Teacher m 757 | 2120 | 771 | 2171
Jasper DR ) 705 | 1941 | 7.03 | 2041
Oracle Teacher FitNets [6) ' —¢ 611891 | 667 | 19.82

but difficult due to the length mismatch. To achieve a good
WER score, conventional ASR models are trained to learn
1) the linguistic information from speech input and 2) the
alignment between speech and text. However, the Oracle
Teacher already had sufficient linguistic information from the
text input. Based on the provided linguistic information, it
could also easily learn the alignment between speech and
text. Since both linguistic and alignment information existed
perfectly in the proposed framework, the Oracle Teacher could
provide the optimal knowledge to the student model while
having fewer parameters.

Additionally, we confirmed that the proposed teacher did not
just mimic the text input. If the Oracle Teacher simply copied
the ground-truth as the output, then it produced an accurate
prediction regardless of the speech input. However, when we
fed the model with unpaired speech, it produced incorrect
predictions, while the prediction of the original Oracle Teacher
was accurate.

D. Performance Comparison with Other KD Methods

In the previous results, we applied Fitnets [6] as the ba-
sic KD method. To further validate the effectiveness of the
Oracle Teacher, we used other KD methods for performance
comparison.



TABLE V
WER (%) PERFORMANCE COMPARISON ON LIBRISPEECH WITH GREEDY
DECODING.
ASR baseline Params dev test
model : clean other clean other
Conformer-CTC L 122M 2.47 6.03 2.78 6.18
Conformer-CTC S 13M 4.63 12.21 4.87 12.05
dev test
Student Teacher clean other clean other
None 4.63 12.21 4.87 12.05
Conformer-CTC S Conformer-CTC L 4.20 10.86 4.20 10.90
Oracle Teacher 4.02 10.77 4.10 10.39

Firstly, we applied RKD [[11] as the KD method, a recent
KD approach in ASR task. It transfers the representation-level
knowledge by considering a frame weighting, reflecting which
frames were important for KD. In addition to the RKD, we
adopted SKD [11]] for KD, which effectively transfers the
softmax-level knowledge in the CTC framework. From the
results in Table [IV] it is confirmed that Oracle Teacher was
more supportive than the conventional Jasper DR teacher in
all configurations. Also, we verified that RKD achieved better
improvements than other KD methods, including FitNets and
SKD. The best performance was achieved when using the
Oracle Teacher with the RKD. We can observe the consistent
performance gain of the Oracle Teacher over the conventional
teacher for various KD methods.

To further improve the WER performance, we adopted
Conformer [51]-CTC as the baseline. In this setting, the
SourceNet of the Oracle Teacher consisted of 16 Conformer
layers with 176 dimensions. Also, both RKD and SKD were
applied as KD methods. The Conformer-based student was
trained with RKD loss for 10 epochs, and 100 epochs were
spent on CTC training with SKD. Table [V] gives the WER
results on LibriSpeech with greedy decoding. From the results,
we observe that the student (Conformer-CTC S) distilled from
the Oracle Teacher achieved WER 10.39 % (RERR: 13.78
%) on test-other with greedy decoding, while the student
distilled from a large Conformer-CTC model (Conformer-CTC
L) produced WER 10.90 % (RERR: 9.54 %). This indicates
that the Oracle Teacher was more supportive in distilling the
knowledge compared to the Conformer-CTC L. Considering
that the Conformer-CTC L is the current SOTA ASR model,
the KD using the proposed framework was quite effective and
efficient.

E. Computational Cost Comparison

In addition to the previous experiments, we proceeded to
verify the computational efficiency of the proposed teacher
model. Computational resource consumption compared to the
conventional teacher models are shown in Table

1) Speech Recognition: Since it is difficult to reproduce
the reported WER results of Jasper DR [47] without a large
number of resources, we used the checkpoint for LibriSpeech,
provided by the OpenSeq2Seq [71]] toolkit. For LibriSpeech,
the pre-trained Jasper DR model required eight 32GB GPUs
for 400 epochs with a batch size of 256. Its training time
had not been reported previously, either in the paper of Li

et al. [47] or the toolkit. In the case of the Oracle Teacher,
we trained the model for 30 epochs on a single 12GB GPU,
which took about 22 hours (= 1 day) to finish the training.
Considering that the reported training of the Quartznet [73],
which is more computationally efficient than Jasper DR, for
400 epochs took 122 hours (= 5 days) with eight 32GB GPUs
with a batch size of 256, the Oracle Teacher dramatically
reduced the computational cost of the teacher model. Note
that the SourceNet consisted of 8 convolutional layers and was
not based on a large Jasper DR architecture. Since the Oracle
Teacher used a small SourceNet, the number of parameters
in the Oracle Teahcer was about 33M. Also, we trained the
Oracle Teacher from the scratch and did not use the pre-trained
model parameters.

In the case of Conformer-CTC, the training of Conformer-
CTC L required 128 GPUs for 1000 epochs with a batch
size of 2048. Compared to the conventional Conformer-CTC
teacher model, our framework dramatically reduced the com-
putational cost to train the teacher model.

2) Scene Text Recognition: As presented in Table the
training of Star-Net [68]] took about 27 hours on a single
Titan V GPU (12GB) with a total batch size of 192, and the
training of Rosetta [|67]] required about 27 hours. Compared to
the two conventional models, the training of Oracle Teacher
consumed much less training time (10 hours) with the same
computational resource.

F. The Effect of SourceNet Size

The proposed framework yielded considerable performance
improvement while achieving better computational efficiency.
To further check the effect of the SourceNet of the Oracle
Teacher, we changed the SourceNet’s model size. For ease of
comparison, we let Oracle Teacher-S (about 33M) and Oracle
Teacher-L (about 76M) denote the original Oracle Teacher
and bigger Oracle Teacher, respectively. The only difference
between the Oracle Teacher-S and Oracle Teacher-L was the
size of the SourceNet. As shown in Table [VTI| interestingly, the
student distilled from the Oracle Teacher-S performed better
than another. In the KD framework, the size (capacity) gap
between the teacher and student is important. When the size
gap is small, KD could be more effective [79], [80]. Since
SourceNet’s architecture of the Oracle Teacher-S had a similar
size to that of the student, the Oracle Teacher-S was more
supportive in training the student compared to the Oracle
Teacher-L.

G. Analysis

From the previous experimental results, we validate the
superiority of the proposed teacher model. Therefore, it is
necessary to test if the model has been correctly trained.

1) Visualization of Cross Attention: We trained another
incomplete Oracle Teacher, called Oracle Teacher w/o source.
The zero arrays, which had the same size of =, were treated
as the input instead of the source input x during the training.
Then, the Oracle Teacher w/o source only considered the
target input y when making a prediction, similar to the
aforementioned trivial solution. In Fig. 8] we visualize the



TABLE VI
COMPUTATIONAL RESOURCE CONSUMPTION COMPARISON ACROSS TEACHER MODELS.

Task Training dataset Teacher model Params. GPU Batch | Times Epochs

oo Jasper DR [47] 333M 8 * 32GB 256 - 400 epochs

ASR LibriSpeech Oracle Teacher (ours) | 33 M 1#12GB 64 2h 30 epochs
oo Conformer-CTC L 122M 128 * 50GB 20438 - 1000 epochs

ASR LibriSpeech Oracle Teacher (ours) | 14M 4% 45GB 204 8h 15 epochs

Jasper DR [47] 338 M 8 *32GB 128 - 50 epochs

ASR AISHELL-2 Oracle Teacher (ours) 34 M 1 *12GB 64 118 h 30 epochs

Star-Net [68]] 49 M 1 *12GB 192 27h 300k iter.

STR | MISynth + SynthText Rosetta [67] 46 M 1*12GB 192 27h 300k iter.

Oracle Teacher (ours) 12M 1*12GB 192 10h 300k iter.

TABLE VII TABLE VIII

COMPARISON OF WER (%) ON LIBRISPEECH. TEACHER MODEL IS
ORACLE TEACHER, AND WE VARIED THE SOURCENET’S SIZE.

Oracle Teacher’s dev test
Student
params. clean | other | clean | other
33M Jasper Mini 6.64 18.91 6.67 19.82
76 M Sp 6.97 19.80 6.97 20.17
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(b) Oracle Teacher w/o source

Fig. 8. Visualization of the attention weights of the Oracle Teacher with and
without the source input

cross attention scores of the decoder for the ASR task, where
the x-axis refers to acoustic frames and the y-axis refers to
characters. For the Oracle Teacher w/o source, the attention
had almost diagonal alignment along with the key position
(text) while ignoring the length of query, as shown in Fig. [8(b)]
In contrast, the Oracle Teacher considered both speech and text
alignment in the cross attention, and the attention scores were
correctly computed along with the acoustic frames (query), as
shown in Fig. B(a)] It means that the Oracle Teacher utilized
the source = for model training while preventing the trivial
solution. Therefore, we can confirm that the Oracle Teacher,
including SourceNet, has been correctly trained.

2) KD with Oracle Teacher w/o source: In addition to the
previous experiments, we proceeded to train the student model
with the knowledge of the Oracle Teacher w/o source. How-
ever, as we expected, the distilled student failed to converge.
From this additional result, we can verify that the source
input x is the necessary factor of the Oracle Teacher, and
the proposed Oracle Teacher has been correctly trained.

3) Performance of Oracle Teacher: We also evaluated the
performance of the Oracle Teacher itself compared to the

PERFORMANCE AND PARAMETER COMPARISON BETWEEN THE ORACLE
TEACHER AND THE CONVENTIONAL TEACHER.

WER (%)
Task Model Param. dev test
clean other clean other
ASR Jasper DR [47]] 333 M 3.61 11.37 3.77 11.08
Oracle Teacher 33 M 2.87 3.10 4.03 3.29
TABLE IX

PERFORMANCE COMPARISON ON LIBRISPEECH TEST DATASETS WITH
GREEDY DECODING. CONFORMER-T REPRESENTS THE
CONFORMER-TRANSDUCER.

ASR baseline WER (%) RERR (%)
Params.
model clean other | clean other
Conformer-T L 120 M 2.31 5.02 - -
Conformer-T S 14M 3.82 9.25 - -
Student Teacher WER (%) RERR (%)
clean other | clean other
None 3.82 9.25 - -
Conformer-T S Conformer-T L 3.62 8.94 5.24 3.35
Oracle Teacher 3.51 8.65 8.12 6.49

conventional teachers, as shown in Table If the Oracle
Teacher copies the target input y without utilizing the source
input z, the performance of the Oracle Teacher should be
perfect. We measured WER (%) results on LibriSpeech. The
results show that the performance of the Oracle Teacher was
more effective than that of the conventional teacher model,
which seemed reasonable because the Oracle Teacher was
trained with the guidance of y. Meanwhile, the predictions
of the Oracle Teacher were not the same as each ground truth.
This implies that the Oracle teacher’s output did not simply
copy the target input y, and the information from a properly-
trained SourceNet was utilized to generate the prediction.
Compared to the ‘“clean” datasets, the difference of WER
was huge in “other” sets. Since the “other” dataset represents
a noisy dataset, the conventional ASR model (Jasper DR)
showed low performance for the “other” dataset. However,
the Oracle Teacher could result in high performance for the
noisy dataset since it used text information from the target.
This indicates that the Oracle Teacher could be a noisy robust
teacher with small parameters. From the results, we can verify
that the Oracle Teacher provided more accurate and better
guidance to the student than the conventional ASR teacher
model.



TABLE X
COMPUTATIONAL RESOURCE CONSUMPTION COMPARISON ACROSS
TEACHER MODELS.

Teacher model Params. GPU Batch Epochs
Conformer-T L 120 M 128 * 50GB 2048 200 epochs
Oracle Teacher (ours) 16 M 4 *45GB 64 25 epochs
TABLE XI

PERFORMANCE COMPARISON ON LIBRISPEECH TEST DATASETS WITH
GREEDY DECODING.

ASR baseline WER
model clean other
Jasper DR 3.77 11.08
Jasper Mini 8.85 24.26

. WER
Student Teacher Target input Siean Sther
Jasper Oracle Ground truth 6.67 19.82
Mini Teacher Pseudo label (Jasper DR) 6.68 19.85
Pseudo label (Jasper Mini) 6.89 20.05

H. Application to Transducer Framework

In previous experiments, we mainly focused on the dis-
tillation for CTC models. To check the applicability of the
proposed method to the RNN-T model, we conducted a
new distillation scenario, where the teacher and student were
based on the RNN-T framework. Since the RNN-T also
adopted the many-to-one alignment process, we could easily
apply the proposed method to the Transducer model. As
for the conventional teacher, we adopted a large Conformer-
Transducer (Conformer-T L) model, the current SOTA for
ASR. The RNN-T student was based on a small Conformer
model (Conformer-T S), where the encoder network consisted
of 16 layers with 176 dimensions. In the proposed framework,
the encoder network of the RNN-T model was replaced with
the Oracle Teacher. By using both acoustic and linguistic
information, the Oracle Teacher learned the unified repre-
sentation. Then, the joint network integrated the outputs of
the Oracle Teacher and prediction network in generating the
prediction. In this experiment, the SourceNet had the same
architecture as the encoder network of the RNN-T student
model, consisting of 16 Conformer layers. When distilling the
knowledge, we used FitNets as the KD technique. As shown
in Table it is verified that the student distilled from the
proposed teacher model was better than the student distilled
from the conventional Transducer teacher (Conformer-T L).
While the student distilled from Conformer-T L produced
WER 3.62 %/8.94 % on test-clean and test-other, the student
distilled from the Oracle Teacher yielded 3.51 %/8.65 % on
test datasets. This means that the Oracle Teacher was more
supportive in distilling the knowledge to the RNN-T student.
Also, as reported in Table our framework dramatically
reduced the computational cost to train the teacher model. The
training of Conformer-T L required 128 GPUs for 200 epochs
with a batch size of 2048. Compared to the conventional
RNN-T teacher model, the proposed method could achieve
meaningful results with relatively limited resources in the
RNN-T framework.

1. Training Oracle Teacher with Pseudo Label

This work offered a powerful but efficient teacher model in
the KD framework. However, using ground truth transcription
in KD could limit its usage on unsupervised data. One possible
way to apply the Oracle Teacher in the unsupervised setting
is leveraging the pseudo label instead of the ground truth. To
check the feasibility, extending the proposed framework fur-
ther, we conducted a new KD scenario, where the pseudo label
was used in the proposed framework instead of the ground
truth. We extracted the pseudo label from the two Jasper DR
and Jasper Mini models. In the previous experiment, the Jasper
DR and Jasper Mini were adopted as the conventional ASR
teacher and the student baseline, respectively. We utilized the
pseudo label instead of the ground truth during the teacher
training and knowledge extraction stages. Note that the pseudo
label was employed as both additional input and target of the
Oracle Teacher during the teacher training. Interestingly, as
reported in Table we confirmed that using the pseudo label
was possible with the proposed method, being robust to the
error in the ground truth. When using the pseudo label from
the Jasper DR, there was no significant performance difference
from the original Oracle Teacher since the pseudo label might
be similar to the ground-truth. In the case of leveraging the
prediction from the Jasper Mini, the corresponding Oracle
Teacher was worse than the others, implying that the error
in the pseudo label affected the WER performance of the
student model. However, it still worked well in distilling the
knowledge, providing WER 6.89 % and 20.05 % on test-clean
and test-other, respectively. From the results, it is confirmed
that we could use the Oracle Teacher with the unlabeled
dataset, like self-training.

VI. CONCLUSIONS

We introduced a novel teacher for CTC-based sequence
models, namely Oracle Teacher, that leverages the output
labels as the additional input to the model. Through a num-
ber of experiments, we confirmed that the student distilled
from the Oracle Teacher performed better compared to the
one distilled from the conventional teacher. Furthermore, our
framework significantly reduced the computational cost of
the teacher model in terms of the training time and required
GPU resources. As the effective teacher can be trained with
a reduced computational cost, the Oracle Teacher can be a
new breakthrough in KD. We also explored the feasibility of
applying the Oracle Teacher approach to different applications,
including the transducer framework and the self-training-like
setting that utilized pseudo labels instead of ground-truth
labels. We expect the application of the Oracle Teacher in
various tasks, such as regression, ranking, etc., in the future.
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