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Abstract—Expressive speech synthesis is crucial for many
human-computer interaction scenarios, such as audiobooks, pod-
casts, and voice assistants. Previous works focus on predicting
the style embeddings at one single scale from the information
within the current sentence. Whereas, context information in
neighboring sentences and multi-scale nature of style in human
speech are neglected, making it challenging to convert multi-
sentence text into natural and expressive speech. In this paper,
we propose MSStyleTTS, a style modeling method for expressive
speech synthesis, to capture and predict styles at different levels
from a wider range of context rather than a sentence. Two sub-
modules, including multi-scale style extractor and multi-scale
style predictor, are trained together with a FastSpeech 2 based
acoustic model. The predictor is designed to explore the hierar-
chical context information by considering structural relationships
in context and predict style embeddings at global-level, sentence-
level and subword-level. The extractor extracts multi-scale style
embedding from the ground-truth speech and explicitly guides
the style prediction. Evaluations on both in-domain and out-
of-domain audiobook datasets demonstrate that the proposed
method significantly outperforms the three baselines. In addition,
we conduct the analysis of the context information and multi-
scale style representations that have never been discussed before.

Index Terms—text-to-speech, expressive speech synthesis,
multi-scale, style modeling, hierarchical.

I. INTRODUCTION

TEXT-TO-SPEECH (TTS), which aims to generate nat-
ural and intelligible speech from text, has widespread

applications in human-computer interaction. The traditional
TTS methods include concatenative synthesis [1]–[5] and
statistical parametric speech synthesis [6]–[10]. With the rapid
development of deep learning, neural network based TTS
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models [11]–[17] are devised to generate spectrograms directly
from phoneme sequences, which brings great progress in
synthesizing high-quality speech with a neutral style. However,
there is still a clear gap between synthesized speeches and
human recordings in terms of expressiveness, which hinders
the advancement of speech synthesis technology. One impor-
tant factor is that there are complex and multi-scale stylistic
variations in human recordings, affected by multiple factors
(including contextual information, speaker’s intention, etc.),
causing difficulties for TTS models to learn directly from
phoneme sequences.

To model the style, one general approach is style transfer
TTS [18]–[25]. It is designed to generate speech with the
same style as the given reference audio. In [18], a reference
encoder is trained to obtain the style embedding at global
level from the given speech. The global style token (GST) and
their derivatives further utilize several learnable style tokens
to represent the global style, and perform well on the style
transfer at sentence-level [19]–[22]. Other recent proposed
methods seek to control the local prosodic characteristics by
considering fine-grained style representations [25]–[27].

Compared with style transfer TTS that require auxiliary
inputs in inference, the approach that directly predicts style
from text is more practical and flexible. The text-predicted
global style token (TP-GST) model [28] firstly introduces the
idea of predicting style embedding or style token weights
from input phoneme sequence. Speeches with more pitch and
energy variations than baseline Tacotron [12] can be generated
in this way. Considering that style and semantic information
of utterance are closely related, the text embeddings derived
from pre-trained language models (PLMs), e.g., Bidirectional
Encoder Representations from Transformer (BERT) [29], have
been incorporated to TTS models to improve the expressive-
ness of the synthesized speech [30]–[32]. Fine-grained style
representations to model local prosodic variations in speech,
such as word level [33]–[35] and phoneme level [36], [37],
are also considered in some works.

However, the above text-predicted methods have two major
limitations. First, these approaches only take into account the
information of the current sentence to be synthesized. For the
same sentence, these models lack the ability to capture the
diverse speech variations (e.g., intonation, stress and emotion)
that may be affected by its neighboring sentences. It leads
to the lack of coherence between adjacent sentences and
accurate expression of synthesized speech. This is against the
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human perception that the speech style of the current utterance
should be primarily influenced by the context [38]–[40]. In
this regard, it has shown that considering a wider range of
context is helpful for expressive speech synthesis [41]–[44].
Second, these methods only focus on modeling the mono-scale
style representations of human recordings. However, the style
expressiveness of human recordings varies from coarse to fine
granularity [45]–[47]. It shall be regarded as a composition
of multi-scale acoustic factors, among which global scale
is typically observed as timbre and emotion and is tended
to be consistent throughout the entire utterance. The other
is the local scale, which is closer to the prosody variation,
including the stress, pause, pitch, and other acoustic features
of speech. These different scales of style work together to
produce rich expressiveness in speech. Towards this end, some
recent studies on similar tasks, like emotional speech synthesis
[48], [49] and style transfer [24], attempt to model stylistic
variations at multiple scales. But these approaches require
auxiliary inputs, such as emotion labels and reference speech,
and only consider sentence in isolation. To the best of our
knowledge, there is currently no work investigating multi-scale
speaking style modeling by considering only text information.

In this paper, we propose MSStyleTTS, a novel multi-
scale style modeling method that models styles at global-level,
sentence-level, and subword-level1 from hierarchical context
information for expressive speech synthesis. It contains a
multi-scale style extractor, a multi-scale style predictor, and
an acoustic model based on FastSpeech 2 [17]. The acoustic
model synthesized speech of the current sentence with the
multi-scale style embedding provided by the extractor or the
predictor. The extractor is used to extract style embeddings
at the above three levels from the corresponding ranges of
mel-spectrograms, respectively. It is jointly trained with the
acoustic model to learn the multi-scale style representations
in an unsupervised way and then explicitly guide the training
of the predictor. Besides, we represent the style variations
at different levels as residuals to reduce the overlap of style
information between different levels, which make the subse-
quent prediction task easier. The predictor generates the style
embeddings at these three levels by utilizing a wider range of
contextual information. By utilizing the hierarchical context
encoder, the predictor considers both structural relationships
in context and the contextual information given by the pre-
trained BERT [29]. Evaluations on both in-domain and out-
of-domain audiobook datasets demonstrate that the naturalness
and expressiveness of speeches generated by MSStyleTTS
are significantly better than those of baseline FastSpeech 2
[17], WSV* [33], and HCE [50] models. The speech samples
generated by our proposed model are available online 2.

Our preliminary work has been presented in [51]. In this
study, the preliminary model is extended with an autore-
gressive style predictor to effectively capture the multi-scale
speaking style and maintain coherence between sentences,
which shows the effect on improving paragraph-based speech

1For Chinese, one Chinese character corresponds to one subword, and one
subword is composed of at least one phoneme.

2Speech samples: https://thuhcsi.github.io/TASLP-MSStyleTTS

synthesizing. We conduct extensive subjective evaluations and
ablation studies to demonstrate the effectiveness of the tech-
niques employed in our model. Moreover, we further analyze
how the expressiveness of synthesized speech is influenced by
different ranges of context information and different levels of
style representations utilized in MSStyleTTS, which has never
been studied in previous work. Overall, the main contributions
of this paper are summarized as follows:

• This paper presents MSStyleTTS, to our knowledge,
which is the first attempt to model the multi-scale style
from the context. It significantly improves the expressive-
ness and coherence of generated speech for both single-
sentence and multi-sentence test.

• To learn the style representations, we propose a multi-
scale style extractor that extracts style embeddings at
subword-level, sentence-level and global-level from the
corresponding ranges of mel-spectrogram and represents
the style variations at different levels as residuals.

• For style prediction, we propose a hierarchical context
encoder and two hierarchical style predictors to explore
the structural relationship in context and predict styles at
different levels with residual connections. Moreover, an
autoregressive style predictor is designed for achieving
paragraph-based synthesis.

• Evaluations on both in-domain and out-of-domain
datasets show that MSStyleTTS achieves the goal of syn-
thesizing speech with rich expressiveness. Extensive ab-
lation studies demonstrate the effectiveness of techniques
employed in MSStyleTTS, especially for the context
information usage and multi-scale style representation.

The rest of the paper is organized as follows. We introduce
related work in Section II, followed by details of our proposed
approach in Section III. Experimental results and ablation
studies are presented in Section IV. Section V gives conclusion
of our work.

II. RELATED WORK

A. Reference Audio based Style Modeling

The reference audio based style modeling aims to generate
speech with the style that is transferred from a given audio.
In [18], an unsupervised reference encoder is utilized to ex-
tract sentence-level global style embedding from given audio.
Multiple works have been conducted to study more effective
global style representations. Specifically, the global style could
be represented by utilizing a fixed number of learnable global
style tokens (GST) [19], or by incorporating the variational
autoencoder [52] to achieve better style disentanglement [20],
or by using several GST layers with residual connections to
learn hierarchical embeddings implicitly [21]. In addition, [22]
further introduces an explicit relationship between style tokens
and emotion categories in order to enhance the interpretability
of the learned style tokens.

Instead of modeling the global style of speech in a sentence
level, some researches focus on local prosodic characteristics
[25]–[27], [36]. [25], [26] introduce the idea of utilizing an
additional reference attention mechanism to align the extracted
style embedding sequence with the phoneme sequence. Other

https://thuhcsi.github.io/TASLP-MSStyleTTS
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studies, such as [27], [36], achieve the same goal based on the
forced-alignment technology. Moreover, a recent study con-
sidering the multi-scale nature of speech style [24] also draws
our attention. It proposes a multi-scale reference encoder to
extract both the global-scale sentence-level and the local-scale
phoneme-level style features from the given reference speech.

In this paper, the proposed method also learns the style
representations at different levels. In addition to the sentence-
level and subword-level, we also consider the global-level
that presents the overall style of a wider range of speech
containing adjacent sentences. Furthermore, MSStyleTTS can
directly predict the multi-scale style representations from the
context without reference audio. Besides, the residual style
embeddings is used to represent style variations at each level
rather than using the extracted style embeddings directly,
which facilitates the subsequent prediction task.

B. Text Predicted Style Modeling
It is important to note that during inference stage, aux-

iliary inputs, such as manually-determined reference audio
or token weights, are required for all of the aforementioned
researches [18]–[22], [24]–[27], [36]. To prevent these manual
interventions at inference stage, the text-predicted global style
token (TP-GST) model [28] extends the GST [19] by mod-
eling style embedding or style token weights from the input
phoneme sequences. Thus, it is possible to synthesize stylistic
speech conditioned on the predicted style embedding during
the inference stage without the use of manually-determined
audio. Considering that the style and semantic information of
sentences are closely related to each other, the PLMs, such
as BERT [29], have been used to provide richer semantic
information for expressive speech synthesis [30]–[32]. In these
works, the semantic representations derived from pre-trained
BERT are added to the acoustic model as additional inputs
according to attention mechanism or forced-alignment technol-
ogy. Several previous works [33]–[37] attempt to model fine-
grained style from text in order to control local prosodic vari-
ations in speech. The word-level style variation (WSV) [33]
designs an unsupervisedly-learned fine-grained representations
to describe local style properties. Multiple studies combine
word-level style modeling with the non-autoregressive acoustic
model to improve the efficiency of speech synthesis [34], [35],
and other studies further model the finer-grained style, such
as at phoneme level [36], [37].

Our work is distinct from the above in two aspects: (i)
previous models only focus on mono-scale style information
while our work takes into consideration style information at
difference levels beyond the sentence level; (ii) other models
utilize the semantic information of only the current sentence to
improve pronunciation and expressiveness of the synthesized
speech, while we make use of the context information contain-
ing multiple adjacent sentences. To our best knowledge, there
is currently no research conducting multi-scale style modeling
from the context for expressive speech synthesis.

C. Context-aware Style Modeling
Recently, some efforts have been made to consider a wider

range of contextual information to improve the performance

of expressive speech synthesis. [41] obtains context-aware
text representations of the current sentence by feeding both
the neighboring and current sentences to BERT. Moreover,
some recent researches [42], [43] have further utilized cross-
utterance information obtained from neighboring sentences to
improve the prosody. Apart from the contextual text informa-
tion, it has been reported that contextual speech information
can also lead to improvement of expressiveness [53], [54].
In addition to synthesize speech at the sentence-level, [44]
has also implemented paragraph-based speech synthesis by
inputting phoneme sequence of the entire paragraph.

Above methods use context information as additional inputs
to implicitly learn the prosody or style of speech. Different
from this implicit way, our proposed method utilizes a multi-
scale style extractor to extract style representations at the
three levels from ground-truth speech and explicitly guide
the style prediction. In addition to the contextual semantic
information, the hierarchical structural relationships in context
are also considered in our method. Then, with the help of two
style predictors, style embeddings of each level are generated
for single sentence or whole paragraph. Moreover, compared
with ParaTTS [44] that considers phoneme sequence only,
our proposed MSStyleTTS further considers the semantic and
structural information in the context and models the style at
different levels in the paragraph in an explicit way.

III. PROPOSED METHOD

A. Model Architecture
The framework of MSStyleTTS is presented in Fig.1. It

consists of a modified FastSpeech 2 [17] as acoustic model to
generate mel-spectrogram from phoneme sequence, a multi-
scale style extractor and a multi-scale style predictor to learn
the style information at global level, sentence level, and
subword level. The extractor is utilized to respectively extract
the three levels of style embedding from the corresponding
ranges of mel-spectrogram. The predictor is utilized to model
the style embedding at above three levels from a wider range
of context beyond a sentence. The multi-scale style embedding
obtained from either the extractor or the predictor is then added
to the output of the phoneme encoder and fed to the variance
adaptor for predicting speech variations more accurately and
for generating speech with expressive style. The details of each
component are as follows.

1) Multi-Scale Style Extractor: The multi-scale style ex-
tractor is specifically designed to derive three levels of style
embedding from a wider range of mel-spectrogram rather than
a sentence. As shown in Fig.2, the extractor is made up of three
reference encoders and three style token layers corresponding
to the global-level, sentence-level, and subword-level. The
structure and hyperparameters of each of these modules remain
the same as those of the original GST [19] model.

The reference encoder contains 6 convolution layers fol-
lowed by a gated recurrent unit (GRU) [55] layer to extract
high-level representation from the mel-spectrogram. In addi-
tion to the current sentence, the mel-spectrograms of L past
sentences and L future sentences are also considered to obtain
the global-level style in our method. The ground-truth mel-
spectrograms of all 2L+ 1 sentences are concatenated before
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Fig. 1. MSStyleTTS model architecture. The blue boxes represent the multi-scale style extraction procedure, purple boxes represent multi-scale style prediction
procedure, and yellow boxes are the TTS backbone.

Fig. 2. Architecture of the multi-scale style extractor.

passing through the global reference encoder. The output of
this encoder is denoted as global-level reference embedding
Eg . The mel-spectrogram of the current sentence is then
passed to the sentence reference encoder, whose output is de-
noted as sentence-level reference embedding Es. Meanwhile,
the mel-spectrogram corresponding to the current sentence
is split by the subword boundaries and fed to the subword
reference encoder. The subword reference encoder extracts
the subword-level reference embedding Ew for each subword
from the corresponding mel-spectrogram. In our practice, the
subword boundaries are derived from the subword-to-phoneme
alignments and forced-alignment phoneme boundaries.

The information from the extracted reference embeddings

of different levels may be overlapped since the wider range
mel-spectrogram covers the smaller range mel-spectrogram.
More specifically, the finer-grained reference embedding Ew

may contain redundant style information that has already been
covered in the coarser-grained reference embedding Es, and
likewise for Es and Eg . To address this issue, instead of
using the extracted reference embeddings directly, the residual
embeddings are proposed to represent effective style variations
at different levels. The residual embeddings at different levels
can be obtained from the following functions:

Rg = Eg, (1)
Rs = Es − Eg, (2)
Rw = Ew − Es, (3)

where Rg , Rs, and Rw are the residual embeddings corre-
sponding to global-level, sentence-level, and subword-level,
respectively. Then the residual embedding of each level goes
through the style token layer of the corresponding level and
is decomposed into a set of style tokens. These tokens are
trained to learn the stylistic or prosodic information at different
levels and help to predict the style. Here, we regard the
output of the style token layer of each level as the style
embedding of the corresponding level, denoted as the global-
level style embedding Sg , sentence-level style embedding Ss,
and subword-level style embedding Sw, respectively.

2) Multi-Scale Style Predictor: During inference, instead of
extracting multi-scale style embedding from manually-selected
reference audio, we propose a multi-scale style predictor to
predict the style embedding at different levels from a fixed size
sliding window containing past, current and future sentences.
The architecture of the multi-scale style predictor is illustrated
in Fig.3, which comprises a hierarchical context encoder and
two optional hierarchical style predictors.
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Fig. 3. Architecture of the multi-scale style predictor.

To derive better text representation as predictor input, we
introduce a pre-trained BERT to further encode the raw text
sequence for Chinese. Together with the current sentence, the
predictor also take into account past and future L sentences,
which is consistent with the extractor. Let U0 denote the text
sequence of the current sentence. U−L, U1−L, ..., U−1 and U1,
U2, ..., UL are the text sequences of past and future sentences,
respectively. The text sequences of all 2L + 1 sentences are
concatenated to form a longer sequence U , which is then
fed to BERT to obtain a subword-level semantic embedding
sequence. It is calculated as follows:

U = Concat(U−L, U1−L, · · · , UL), (4)
W−L,1,W−L,2, · · · ,WL,length(UL) = BERT (U), (5)

where Concat(•) is the concatenation operation, length(Ui)
is the number of subwords in Ui, and Wi,j is the 768-dim
subword-level semantic embedding corresponding to the jth
subword of sentence Ui in BERT outputs.

Inspired by [56], we design a hierarchical context encoder
to derive three levels of context information. The hierarchical
context encoder has two layers of attention modules, i.e., the
inter-subword module and inter-sentence module, to explicitly
exploit the structural relationship of the context. These two
modules share the same architecture consisting of a bidi-
rectional GRU [55] and a scaled dot-product attention [57].
The inter-subword module is utilized to derive the sentence-
level representation based on the semantic of each subword
and the inter-subword relationships in a sentence. Specifically,
for each sentence, the semantic embedding sequence derived
from BERT is fed into the bidirectional GRU to consider the
temporal relationship, and the output is regarded as subword
context embedding Cw. Since that not all subwords contribute
equally to the meaning of their sentence, we introduce the
attention module to derive the weight of each subword and
then aggregate them into a sentence-level embedding. Like-
wise, the inter-sentence module is utilized to derive the global-
level representation based on each sentence-level embedding
and inter-sentence relationships in the context. We denote the
output of bidirectional GRU in the inter-sentence module as

sentence context embedding Cs and the output of attention
module in the same module as global context embedding Cg .
It is noteworthy that this hierarchical structure encodes inter-
subword and inter-sentence relationships in a wide range of
context, which contributes to be a hierarchical information
aware model.

Considering the top-down hierarchical structure of speech
style, we design a hierarchical style predictor to infer the
style embedding at the three levels from corresponding context
information in a top-down manner. It consists of three style
predictors with residual connections, where each style pre-
dictor consists of a linear layer activated by Tanh function.
The coarser-grained style embedding that is closer to the
global-level is predicted by the corresponding level of style
predictor, and then fed into the finer-grained style predictor as
the conditional input, which is symmetrical with the residual
strategy in the multi-scale style extractor. In this way, the style
embedding at three levels are sequentially generated from the
three style predictors by considering both context information
and stylistic information. This can be formulated as:

Ŝg = fg(Cg), (6)

Ŝs = fs(Cs, Ŝg), (7)

Ŝw = fw(Cw, Ŝg + Ŝs), (8)

where fg , fs, and fw are the style predictors corresponding
to global-level, sentence-level, and subword-level, respectively.
Ŝg , Ŝs, and Ŝw are the predicted style embeddings correspond-
ing to global-level, sentence-level, and subword-level. In this
way, the style embeddings at above three levels are predicted
to reconstruct the multi-scale style in human recordings by
considering different levels of context information.

To synthesize speech directly for paragraph-level text input,
we propose an optional extension of the hierarchical style
predictor. Since the style coherence among sentences is equally
important for paragraph-level speech in addition to expressive-
ness, this predictor utilizes previous style embedding in an au-
toregressive manner to help the prediction of the current style
embedding, denoted as AR. Different from the hierarchical
style predictor, the hierarchical style predictor (AR) utilizes
GRU-based sentence style predictor (AR) and subword style
predictor (AR) to sequentially predict the style of sentences in
the whole paragraph. In the sentence style predictor (AR), the
sentence-level style embedding of each sentence is predicted
autoregressively, using the corresponding sentence context
embedding and the predicted global-level style embedding as
the conditions. Similarly, the subword-level style embedding
of each subword is predicted autoregressively in subword style
predictor (AR), which uses corresponding subword context
embedding and the coarser-grained style embedding corre-
sponding to its sentence as the conditions. Finally, the style
embeddings corresponding to each sentence are fed into the
acoustic model to generate the speech of this sentence.

3) Acoustic Model: As illustrate in Fig.1, our proposed
MSStyleTTS adopts a modified FastSpeech 2 [17] as the
acoustic model. First, the extracted or predicted multi-scale
style embeddings are replicated to the phoneme-level using
subword-to-phoneme alignment. After replication, the em-
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beddings of the phonemes are added to the outputs of the
phoneme encoder and fed into the variance adaptor to predict
variations more accurately. Moreover, the duration predictor
and length regulator are moved to the back of the variance
adaptor. This indicates that the variance adaptor predicts
phoneme-level variations rather than frame-level, which has
been demonstrated to enhance the naturalness of synthesized
speech [58]. Here, FastSpeech 2 is only utilized to combine our
proposed predictor and extractor to generate acoustic features.
Our proposed method can be easily extended to other TTS
models, such as Tacotron2 [13].

B. Model Training

In general, it is difficult for the predictor to implicitly predict
different levels of styles from the context under the situation of
limited TTS data. The parameters of MSStyleTTS are trained
in three steps using the knowledge distillation strategy, in order
to encourage the model learn style representation better.

At first, the extractor is jointly trained with the acoustic
model to learn the latent style representations at different
levels in an unsupervised manner. For each training utterance,
the phoneme sequence of the current sentence and a wider
range of mel-spectrogram containing adjacent sentences are
sent into the acoustic model and the extractor, respectively.
We conduct the same training criteria as FastSpeech 2, which
includes a mel-spectrogram loss and the mean square error
(MSE) loss of pitch, energy, and duration. Moreover, we train
the reference encoders and style token layers corresponding
to global-level, sentence-level, and subword-level sequentially
and independently, in order to avoid the leaning of style
representations at different levels interfering with one another.
That is, while training any of these three level modules, the
others are frozen, so that the reference encoder and style token
layer of the current level are trained without disturbance.

Second, we transfer the knowledge from the extractor to
the predictor by leveraging knowledge distillation strategy.
Thus, the extracted style embeddings for each level are used
as the target outputs to guide the predictor’s training. For
each training utterance, its context, which contains current
and adjacent sentences, is employed to predict the styles at
different levels by the predictor. The predictor is trained by
minimizing the sum of the MSE losses between the extracted
and predicted style embeddings of the three levels.

In the end, the acoustic model is jointly trained with the
predictor at a lower learning rate by considering both the
losses of the predicted mel-spectrogram and style to improve
the naturalness of synthesized speech further. In particular,
for the hierarchical style predictor (AR), we generate the mel-
spectrogram for each sentence in the paragraph and calculate
the corresponding losses of mel-spectrogram and style.

C. Inference

During the inference for the current sentence, the proposed
method automatically derives the multi-scale style embedding
from the context and generates mel-spectrograms based on the
phoneme sequence of the current sentence with the help of the
style embedding. During the inference for the paragraph-based

synthesis, we prefer to use the hierarchical style predictor
(AR) which directly predicts the multi-scale style embedding
for the entire paragraph. Then we send the multi-scale style
embedding and phoneme sequence corresponding to each sen-
tence into the acoustic model to generate mel-spectrograms of
each sentence, and then combine them in order. The predicted
mel-spectrogram goes through the HiFi-GAN [59] vocoder to
obtain the speech waveform. In this way, expressive speech can
be synthesized without the dependency on additional inputs
besides text.

IV. EXPERIMENTS

A. Experimental Setup

In our experiments, an internal single-speaker audiobook
corpus is adopted to train and evaluate all the models3.
This corpus contains around 87 chapters of a fiction novel
recorded by a professional Chinese male speaker, about 30
hours in total. This audiobook corpus is suitable for expressive
speech synthesis, as the styles vary between utterances, and
the prosody characteristics fluctuate significantly within each
utterance, such as pitch, energy, and speed. The corpus is
divided into 14,558 utterances, of which 200 are used for
testing, 456 for validation, and the remainder for training. To
further test the performance of the models outside the training
corpus domain, we select 30 sentences with its context from
other different audiobooks as the evaluation dataset for the
out-of-domain experiments.

All the text sequence is transformed to the phoneme se-
quence and provided as input to the acoustic model. The
80-dimensional mel-spectrograms are extracted from the raw
waveform with frame size 1,200, hop size 240, and sampling
rate 24kHz, and are used as the target output. Silences at the
beginning and end of each utterance are trimmed. We force-
align the audio and phoneme sequence by an automatic speech
recognition tool to obtain phoneme boundaries and durations.
Meanwhile, we use the Python library of PyWORLD4 to
extract the frame-level pitch and energy values, and then derive
the pitch and energy values at phone-level by averaging frame-
level values based on the forced-aligned phoneme boundaries.

In our implementation, the sentences considered in the
extractor and predictor are made up of the current sentence, its
two past sentences, and its two future sentences. We conduct
an open-source pre-trained Chinese BERT-base model released
by Google5 to extract the semantic information. Its parameters
are fixed when training the predictor. The model is trained
using a single NVIDIA V100 GPU with a batch size of 16
for 220k steps. For MSStyleTTS, 180k iterations are required
for the first train step, with 60k for each of the global-level,
sentence-level, and subword-level modules, then 20k for the
second train step and 20k for the final train step. We utilize
Adam optimizer [60] with β1 = 0.9, β2 = 0.98, ϵ = 10−9

and employ the warm-up strategy before 4,000 iterations.
Moreover, a well-trained HiFi-GAN [59] model is utilized
as the vocoder to transform the mel-spectrogram into the

3Implemented based on: https://github.com/ming024/FastSpeech2
4https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
5https://github.com/google-research/bert

https://github.com/ming024/FastSpeech2
https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
https://github.com/google-research/bert
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Fig. 4. The ABX preference test results on naturalness and expressiveness
among the proposed MSStyleTTS and three baseline models. NP means “no
preference”.

waveform, which is pre-trained on a large standard corpus
and is adapted with 200k iterations on our audiobook corpus.

B. Baseline Methods

In order to test the performance of our proposed multi-
scale model, we choose three baselines for comparison. All
baselines and proposed models only use text input at the
inference stage, and share the same input context sequence and
phoneme sequences. The details of the three baseline models
are described as follows:

FastSpeech 2 An open-source implementation3 of Fast-
Speech 2 [17]. The model architecture is consistent with that
of the acoustic model in our MSStyleTTS.

WSV* To build this baseline model, the Word-Level Style
Variations (WSVs) [33] approach with several modifications
is followed, which is referred as WSV*. To ensure a fair
comparison, FastSpeech 2 is employed as the acoustic model
in our implementation, rather than the Tacotron 2 [13] in the
original version of WSV [33]. Moreover, we input the same
context as MSStyleTTS into BERT, and then utilize an extra
bidirectional GRU to consider the context information. Thus
it is also a context-aware method and models style at the word
level.

HCE We conduct the Hierarchical Context Encoder (HCE)
[50] model which models the style at the global level from
the context. For a fair comparison, instead of XLNet [61]
which is used in the original version of HCE, BERT has
been used to obtain semantic information. The structure and
hyperparameters of the pre-trained BERT model, acoustic
model, and hierarchical context encoder are the same as those
in MSStyleTTS.

C. Subjective Evaluation

Two mean opinion score (MOS) tests are applied to evaluate
the naturalness and expressiveness of the synthesized speech:
1) Single-sentence MOS (S-MOS): evaluate the synthesized
speech of single sentence; 2) Multi-sentence MOS (M-MOS):
evaluate the entire long-form speech which combines the
synthesized speeches of multiple sentences in order. A group
of 25 listening subjects who are native Mandarin speakers are
recruited to rate the generated speeches on a scale from 1 to 5
with 1 point interval. They also score the audio reconstructed
from the ground truth mel-spectrogram by HiFiGAN vocoder.
Additionally, we conduct the ABX preference test between
our proposed MSStyleTTS and each of the three baselines to

further analyze the perceived quality of the synthesized speech.
The same 25 listeners are asked to give their preferences
between a pair of speeches synthesized by different models.

1) S-MOS results: The results are shown in Table I. For
the in-domain dataset, it is observed that FastSpeech 2 has
achieved the lowest MOS, with a significant gap compared
to Ground Truth, suggesting that it is difficult to directly
predict the rich and complex prosodic variations only from
phonetic descriptions. By considering context information,
the other three models (WSV*, HCE, and MSStyleTTS)
all perform better. Our MSStyleTTS achieves the highest
score of 4.058, exceeding WSV* that just considers the fine-
grained style representation by 0.377 and HCE that narrowly
considers the coarse-grained style representation by 0.273.
This demonstrates that while each mono-scale baseline has
different degrees of improvement in the expressiveness of the
synthesized speech, the overall performance can be significant
enhanced by merging them into a comprehensive multi-scale
style model. For the out-of-domain dataset, we observe a de-
crease in scores for each model compared with the in-domain
dataset, and MSStyleTTS still receives the highest score. It
indicates that our proposed model successfully learns to model
different levels of style representations with robustness and
generalization.

2) M-MOS results: The last column in Table I shows the
results of M-MOS. We observe that speech synthesized by
FastSpeech 2 has relatively smooth style transitions among
sentences but lacks of expressiveness, while the speech syn-
thesized by WSV* and HCE has rich expressiveness but varies
greatly from one sentence to the next, both of which result in
poor performance in the paragraph-based synthesis. Benefiting
from modelling the style representation beyond the sentence
level, our proposed model achieves a higher score of 3.758.
Moreover, with the help of autoregressive style predictor, the
M-MOS score of the proposed MSStyleTTS (AR) gains fur-
ther improvement compared to the MSStyleTTS. This demon-
strates that in paragraph-based synthesis, the style coherence of
the synthesized speech is important for the perceived quality.

3) ABX test results: The preference test results are
presented in Fig.4, which demonstrate that our proposed
MSStyleTTS model significantly outperforms all the base-
lines. With the additional context semantic information,
MSStyleTTS gets an extra preference (54.8%) over Fast-
Speech 2. In addition, our MSStyleTTS is 38% more preferred
than the WSV*, indicating that modeling the coarse-grained
style can synthesize speech with richer expressiveness. Com-
pared with HCE, the advantage of MSStyleTTS is that fine-
grained style representation is able to control the local style
characteristics, such as intonation and stress pattern, leading
to a higher preference of 26% than HCE.

D. Objective Evaluation

To measure the prosody and naturalness of synthesized
speech objectively, we calculate mel-cepstrum distortion
(MCD), the root mean square error (RMSE) of F0 and energy,
and the MSE of duration as the metrics of objective evaluation
following [17], [44]. Since the lengths of the predicted and
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TABLE I
THE MOS TEST SCORES OF DIFFERENT MODELS WITH 95% CONFIDENCE INTERVALS.

Models S-MOS M-MOS
In-domain Out-of-domain

Ground Truth 4.665± 0.074 - 4.560± 0.071
FastSpeech 2 3.573± 0.094 3.569± 0.057 3.669± 0.072

WSV* 3.681± 0.080 3.579± 0.059 3.664± 0.068
HCE 3.785± 0.084 3.681± 0.065 3.682± 0.075

MSStyleTTS 4.058± 0.074 3.997± 0.061 3.758± 0.069
MSStyleTTS (AR) - - 3.867± 0.072

TABLE II
OBJECTIVE EVALUATION RESULTS FOR MCD, F0 RMSE, ENERGY RMSE

AND DURATION MSE OF DIFFERENT MODELS ON THE TEST SET.

FastSpeech 2 WSV* HCE MSStyleTTS
MCD 5.066 5.062 5.031 4.979

F0 RMSE 65.266 64.807 63.683 62.544
Energy RMSE 5.162 5.221 5.045 4.926
Duration MSE 0.218 0.205 0.209 0.201

ground truth mel-spectrograms may be different, we first apply
dynamic time warping (DTW) to derive the alignment relation-
ships between the two mel-spectrograms. Then, we compute
the minimum MCD by aligning the two mel-spectrograms.
Following the alignment relationships, the F0 and energy
sequences extracted from the synthesized speech are also
aligned towards ground truth. For the duration, we directly
calculate the MSE between the predicted phoneme duration
and the ground truth one.

The objective evaluation results are presented in Table
II. The model with fine-grained style modeling (WSV*) or
coarse-grained style modeling (HCE) outperforms FastSpeech
2 in most metrics, and our MSStyleTTS is the best. From the
results, it is observed that even though the fine-grained style
is more closely associated with the prosody, WSV* does not
show better performance than HCE in terms of the RMSE of
F0 and energy. Possible reason is that the hierarchical structure
of context is ignored. Better performance is achieved by
MSStyleTTS with the multi-scale style modeling framework,
demonstrating the advantages of modeling style at different
levels. It restores more accurate prosody characteristics such
as pitch, energy, and duration for expressive speech synthesis.

E. Case Studies

To further explore the impact of the multi-scale style mod-
eling framework on the expressiveness and prosody of synthe-
sized speech, two case studies are conducted to compare our
MSStyleTTS with two mono-scale baselines, respectively. The
ground truth speeches are also provided as references. Fig.5
shows the mel-spectrograms and pitch contours of ground truth
speeches and speeches synthesized by different models for two
test utterances.

It is observed that the speech synthesized by HCE contains
larger pitch fluctuation than our MSStyleTTS. Nevertheless,
due to the absence of fine-grained style, it is difficult to control
the local style variations of generated speech, resulting in a
significant difference in the intonation trend compared with
ground truth. The intonation trend of the speech synthesized

Fig. 5. Mel-spectrograms and pitch contours of ground truth speech and
speech synthesized by different models for two test cases. The red line in test
case 1 represents the intonation trend, and the red dashed line in test case
2 represents the average pitch value. The text transcription of test case 1 is
“mı́ng bǎo tı̄ng le dà wéi gāo xı̀ng a” (English translation: “Ming Bao was
very happy to hear that”), and the text transcription of test case 2 is “yù hú
lǔ shı̀ yáo le yáo tóu” (English translation: “Yuhulu shakes her head”).

by WSV* is similar to MSStyleTTS but has a higher overall
pitch value that is inconsistent with ground truth. Compared
with these two mono-scale baselines, the proposed multi-scale
MSStyleTTS generates speech that is more similar to ground
truth in terms of both the overall pitch value and local style
variations, such as the intonation trend and stress patterns.

F. Ablation Studies

We conduct ablation studies to demonstrate the effectiveness
of several techniques used in our proposed MSStyleTTS,
including using knowledge distillation strategy to train the
predictor, using residuals to represent style variations for style
extraction, utilizing context information in the predictor, using
multi-scale style predictor for style prediction, and designing
multi-scale style representations.

1) The Effect of Using Knowledge Distillation Strategy to
Train the Predictor: As introduced in Section III-B, our pro-
posed model is trained with a knowledge distillation strategy
in three steps. In this part, we conduct ablation studies by
removing this strategy. That is, the multi-scale style predictor
is jointly trained with the acoustic model directly. Table
V presents the results. We can see that using knowledge
distillation strategy can gain significant improvements in both
in-domain and out-of-domain datasets. It demonstrates that
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TABLE III
OBJECTIVE EVALUATION RESULTS OF THE PROPOSED EXTRACTOR AND THE EXTRACTOR WITHOUT RESIDUAL STRATEGY ON THE TEST SET. HERE,
“EXTRACTED STYLE” AND “PREDICTED STYLE” STAND FOR SYNTHESIZED SPEECH WITH THE MULTI-SCALE STYLE EMBEDDING PROVIDED BY THE

EXTRACTOR AND PREDICTOR RESPECTIVELY. “-RESIDUAL STRATEGY” STAND FOR REMOVING THE RESIDUAL EMBEDDINGS USED IN THE EXTRACTOR.

Models MCD F0 RMSE Energy RMSE Duration MSE
Proposed (extracted style) 4.710 44.457 3.237 0.098

-residual strategy (extracted style) 4.723 44.416 3.116 0.097
Proposed (predicted style) 4.979 62.544 4.926 0.201

-residual strategy (predicted style) 5.013 62.956 4.993 0.203

TABLE IV
RESULTS OF THE CMOS TEST BETWEEN MSSTYLETTS AND THE MODEL

WITHOUT USING RESIDUALS TO REPRESENT STYLE VARIATIONS.

Models CMOS
MSStyleTTS 0

-residual strategy −0.516

TABLE V
RESULTS OF THE CMOS TEST BETWEEN MSSTYLETTS AND THE MODEL

WITHOUT USING THE KNOWLEDGE DISTILLATION STRATEGY TO TRAIN
THE PREDICTOR.

Models CMOS
In-domain Out-of-domain

MSStyleTTS 0 0
-knowledge distillation −0.620 −0.469

the predictor can learn better style representations of different
levels by utilizing a pre-trained extractor as teacher model.

2) The Effect of Using Residuals to Represent Style Vari-
ations: As shown in Fig.2, we represent the style variations
at different levels as residuals. To verify the effectiveness of
this representation method, we build a new extractor without
residual strategy. Firstly, we synthesize speeches with style
embeddings extracted from ground-truth speech by two extrac-
tors, which is also regarded as the upper bound performance
of our proposed technique. The objective evaluation results are
presented in the first two rows of Table III. As can be seen, the
style embeddings extracted by two extractors have comparable
performance, indicating that using residual strategy does not
affect the power of style extraction.

Considering the purpose of extracting style embedding is to
guide the training of the predictor rather than style transfer,
we further trained two style predictors by utilizing these two
style embeddings as target. The last two rows in Table III
show the objective evaluation results of the generated speeches
based on the predicted style embedding. We can see that
removing the residual strategy performs worse in terms of all
evaluation metrics, indicating that using residuals to represent
style variations is beneficial for style prediction.

The comparison mean opinion score (CMOS) test further
compares perceived quality of the generated speeches. The
listening subjects are asked to rate the comparative degree
between two compared models on a scale from -3 to 3 with
1 point interval, where lower rate indicates that the first
model performs better than the second model and higher
rate indicates that the second model performs better than the
first model. As shown in Table IV, the neglect of residual
strategy results in −0.516 CMOS. These results indicate that
our proposed style extraction approach can effectively obtain

TABLE VI
OBJECTIVE EVALUATION RESULTS OF THE PROPOSED MSSTYLETTS ON

THE TEST SET WHEN USING DIFFERENT RANGES OF CONTEXT IN
PREDICTOR. HERE, “L” STANDS FOR THE NUMBER OF SENTENCES

CONSIDERED IN BOTH THE PAST AND FUTURE CONTEXT. “L=0” MEANS
ONLY CONSIDERING THE TEXT OF THE CURRENT SENTENCE.

L MCD F0 RMSE Energy RMSE Duration MSE
0 5.041 64.410 5.155 0.207
1 5.016 62.704 5.108 0.207
2 4.979 62.544 4.926 0.201
3 5.048 63.130 5.082 0.206
4 5.121 63.277 5.143 0.210

Fig. 6. The MOS test scores on naturalness and expressiveness when using
different ranges of context in predictor with 95% confidence intervals.

multi-scale style information from the speech and facilitate
the subsequent prediction task by reducing the interference or
overlap between different levels of styles.

3) Comparisons of Utilizing Different Ranges of Context
Information in Predictor: As introduced in Section III-A2,
we predict multi-scale style from the context information that
is composed of the current sentence, L past sentences and L
future sentences. By increasing or decreasing the number of
sentences considered in the predictor, this experiment explores
how the range of context influences the performance of the
style modeling. The objective evaluation results are shown in
Table VI. The model achieves the best performance across all
evaluation metrics when L = 2 (i.e., the number of sentences
considered in the context is 5).

Fig.6 further presents the MOS test results when different
ranges of the context are used as input of the predictor.
First, we can see that all models perform well in terms of
expressiveness, except the model considering only the text of
the current sentence (L = 0) and the model considering too
many sentences in the context (L = 4). Second, the highest
MOS result is obtained when the range of the context is 5
sentences (L = 2) in comparison test, which is consistent
with the objective evaluation results shown in Table VI. As
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TABLE VII
OBJECTIVE EVALUATION RESULTS OF ABLATION STUDIES FOR THE MULTI-SCALE STYLE PREDICTOR AND THE STYLE REPRESENTATIONS AT DIFFERENT

LEVELS. HERE, “-RESIDUALS CONNECTIONS” STAND FOR REMOVING THE RESIDUALS CONNECTIONS IN THE PREDICTOR, “-GLOBAL-LEVEL STYLE”
STAND FOR IGNORING THE GLOBAL-LEVEL STYLE MODELING, AND “-SENTENCE-LEVEL STYLE” STAND FOR FURTHER IGNORING THE SENTENCE-LEVEL

STYLE MODELING ON TOP OF IGNORING GLOBAL-LEVEL STYLE.

Models MCD F0 RMSE Energy RMSE Duration MSE Style loss
MSStyleTTS 4.979 62.544 4.926 0.201 1.459

-residuals connections 5.012 62.350 4.968 0.203 1.491
-global-level style 5.037 63.148 4.975 0.205 -

-sentence-level style 5.181 64.833 5.201 0.214 -

Fig. 7. Attention weights of the inter-sentence level attention module in
predictor when the number of sentences considered in the context is 9. The
sentences in the context are numbered sequentially from 0 to 8 as vertical axis,
where 0 means the first sentence in the context, 8 means the last sentence in
the context, and 4 means the current sentence.

TABLE VIII
RESULT OF THE ABX PREFERENCE TEST BETWEEN MSSTYLETTS AND

THE MODEL WITHOUT USING RESIDUAL CONNECTIONS IN THE PREDICTOR
(-RESIDUAL CONNECTIONS). N/P DENOTES “NO PREFERENCE” AND p

MEANS THE p-VALUE OF t-TEST BETWEEN TWO MODELS.

MSStyleTTS -residual connections N/P p
52.6 26.7 20.7 <0.001

the number of sentences considered in the context decreases,
the MOS of the synthesized speech decreases significantly,
especially it shows the lowest MOS of 3.793 when L = 0.
That is, the context information in the adjacent sentences is
crucial for expressive speech synthesis, and increasing the
range of context information can improve speech prosody.
However, we find that the expressiveness of the synthesized
speech decreases with increasing contextual range when the
number of sentences considered in the context is greater than
5. It illustrates that considering the extra-long range of context
information does not improve the perceived quality of the
synthesized speech. We suppose the reason is that the context
with a long distance to the current sentence is not relevant for
determining the style of the current.

To verify this hypothesis and visualize the contributions to
style modeling of difference sentences that are of different
distances to the current utterance, we randomly select 20
examples in the test set and plot the attention weights of the
inter-sentence level attention module in the multi-scale style
predictor when 9 sentences are considered in the context. The
result is shown in Fig.7. As expected, although the input of the
multi-scale style predictor contains 4 sentences in both the past
and future context, the attention weights of the inter-sentence
network tends to focus mainly on the past 2 sentences, the
current sentence and the future 2 sentences (i.e., the sentence

TABLE IX
RESULTS OF THE CMOS TESTS AMONG THE PROPOSED MODEL, THE

MODEL WITHOUT GLOBAL-LEVEL STYLE MODELING AND THE MODEL
WITHOUT BOTH GLOBAL-LEVEL AND SENTENCE-LEVEL STYLE

MODELING.

Models CMOS
MSStyleTTS 0

-global-level style −0.428
-sentence-level style −0.640

positions from 2 to 6). That is, when sentences more than 5 are
considered in the context, the extra context information does
not sufficiently contribute to the style modeling, but increases
the complexity of the modeling and affects the expressiveness
of the synthesized speech. This supports our hypothesis and
explains why we only consider the past 2 sentences, the current
sentence and the future 2 sentences in our implementation.

4) The Effect of Multi-Scale Style Predictor: The multi-
scale style predictor consists of a hierarchical context encoder
and a hierarchical style predictor. Hierarchical context encoder
is indispensable in the proposed multi-scale framework to
extract the context information at different levels, and its
effectiveness has been demonstrated in our previous work [50].
Therefore, we only evaluate the performance of the proposed
hierarchical style predictor. An ablation model has been built
by removing the residual connections in this module. The
first two rows in Table VII show the objective evaluation
results of MSStyleTTS and the ablation model. As can be
seen, removing the residual connections causes worse MCD,
RMSE of energy and MSE of duration. This indicates the
advantages of the residual connections in the hierarchical
style predictor, which explicitly provides information about
coarser-grained style when predicting the finer-grained style.
In addition, to measure the accuracy of style prediction, we
calculate the MSE of style embedding between the predicted
and the ground truth. The results are shown in the last column
in Table VII. With the residual connections in the predictor,
MSStyleTTS has improved in style prediction, compared with
the ablation model. The ABX preference test is conducted
between MSStyleTTS and the model without using residual
connections in the hierarchical style predictor. The results
and the corresponding p-value are shown in Table VIII.
The preference rate of our MSStyleTTS exceeds the ablation
model by 25.9%, which demonstrates the effectiveness of our
proposed hierarchical style predictor.

5) Comparisons Between Global-Level, Sentence-Level and
Subword-Level Style Representation: In previous experiments,
we have adopted two baseline models that consider mono-scale
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Fig. 8. Mel-spectrograms and pitch contours of ground truth speeches,
speeches synthesized with all three levels of style representations and speeches
synthesized without each of the three levels of style representation for three
test cases.

style modeling, including HCE for global-level style modeling
and WSV* for word-level style modeling. Comparison with
these two models illustrates the advantage of multi-scale
style modeling. Although these two baseline models use the
same context information and acoustic model as our proposed
MSStyleTTS, they differ in extracting style representation and
predicting style representation.

To further demonstrate the effectiveness of the global-
level, sentence-level, and subword-level style representation,
we first build an ablation model by removing the global-level
style extraction module and prediction module. The objective
evaluation result is shown in the third row of Table VII.
Our MSStyleTTS significantly outperforms the model without
global-level style modeling, which indicates the effectiveness
of modeling the global-level style variations for expressive
speech synthesis. Second, a new ablation model is built by
further removing the sentence-level modules, that is, only
modeling the subword-level style from context. The last row
in Table VII shows the objective evaluation result of the new
ablation model. Comparing the results of these two ablation
models, we can see that neglecting the sentence-level style
modeling leads to a further decrease in all the metrics.

Table IX shows the results of CMOS tests among our
MSStyleTTS and the two ablation models mentioned above.
It can be seen that neglecting the global-level style affect the
perceived quality of synthesized speech, while further neglect-
ing the sentence-level style degrades the perceived quality of
synthesized speech even more significantly. These subjective
evaluation results are consistent with the objective ones shown
in Table VII and again verify that in addition to fine-grained
style modeling (e.g., word-level), coarse-grained style model-
ing (e.g., sentence-level and global-level) contributes equally
to the perceived quality of the synthesized speech.

TABLE X
OBJECTIVE EVALUATION ON EMOTION CLASSIFIERS OF USING STYLE

REPRESENTATION AT DIFFERENT LEVELS. “GLOBAL-LEVEL” AND
“SENTENCE-LEVEL” STAND FOR USING GLOBAL-LEVEL OR

SENTENCE-LEVEL STYLE REPRESENTATION TO TRAIN EMOTION
CLASSIFIER, RESPECTIVELY, “BOTH” STAND FOR USING BOTH THE
GLOBAL-LEVEL AND SENTENCE-LEVEL STYLE REPRESENTATION.

Granularity Overall accuracy (%) F1 Weight (%) Kappa value
Global-level 82.77 76.12 0.0773

Sentence-level 81.55 75.16 0.0606
Both 83.54 77.90 0.1644

To analyze what each level of style representation learns,
we conduct three case studies to synthesize speeches without
global-level, sentence-level, and subword-level style represen-
tations, respectively. The style representation extracted from
the ground truth speech is used in this evaluation. We plot
the mel-spectrograms and pitch contours of these speeches
in Fig.8, the ground truth speeches and speeches synthesized
with all three levels of style representation are provided for
comparison. It can be seen that removing the global-level or
sentence-level style representation results in a higher overall
pitch value, which is inconsistent with the ground truth speech.
It indicates the ability of global-level and sentence-level style
representation to control the overall prosody of the sentence.
Moreover, the word enclosed by the red box is emphasized
through a higher pitch value in the ground truth speech of test
case 3. However, the pitch contour of the word synthesized
without subword-level style representation is much flatter
than that of the ground truth and of the speech synthesized
with all three levels of style representations. It demonstrates
that subword-level style representation can learn the prosody
variations such as stress.

We have performed an emotion classification task on differ-
ent levels of style representation to further analyze the effect of
global-level and sentence-level style. Table X shows the clas-
sification results. As can be seen, the global-level style repre-
sentation contains richer emotion-related information than the
sentence-level style representation. When utilizing both global-
level and sentence-level style representation, the classifier has
achieved the best results in terms of all evaluation metrics. We
conjecture that the possible reason may be the sentence-level
style representation acts as supplement of the global-level one,
which is more relevant to emotion strength and sentence-level
prosody pattern.

G. Discussion

With the multi-scale style extractor and the multi-scale style
predictor, our proposed method can synthesize speech with
rich expressiveness by modeling multi-scale style from a wider
range of context information.

In the current method, the different levels of style repre-
sentations are obtained from the ground truth speech in an
unsupervised way. Although the experiments in Section IV-F5
illustrates that coarse-grained style representations contain
emotion-related information, they do not perform well on the
emotion classification task. For future work, training the style
extractor in a self-supervised manner is an alternative way to
establish the connection between emotion and coarse-grained
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style representation without explicit emotion labels. As for
style prediction, it is worth exploring how to learn more
efficient style representations with large amounts of speech
data in an unsupervised manner.

It is worth noting that comparing the first and third rows
in Table III, there is still a large gap between the speeches
synthesized based on the extracted style representations and
the predicted style representations in terms of all evaluation
metrics. This indicates that it is still challenging to model
complex style variations in the real-world corpus. In future
work, we will explore a new model structure to further model
speaking style by considering more contextual information.

V. CONCLUSION

This work proposes MSStyleTTS, an unsupervised multi-
scale context-aware style modeling method for expressive
speech synthesis. MSStyleTTS allows modeling the speech
style at different levels from hierarchical context information.
Experimental results show that our proposed method can
synthesize speech with richer expressiveness and higher natu-
ralness than baseline FastSpeech 2, WSV* and HCE models on
both in-domain and out-of-domain datasets. Extensive ablation
studies demonstrate the effectiveness of the several techniques
used in our proposed MSStyleTTS, especially for the context
information usage and multi-scale style representation.
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