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Alternating Least-Squares-Based Microphone Array
Parameter Estimation for a Single-Source
Reverberant and Noisy Acoustic Scenario

Changheng Li , Graduate Student Member, IEEE, and Richard C. Hendriks

Abstract—Acoustic-scene-related parameters such as relative
transfer functions (RTFs) and power spectral densities (PSDs) of
the target source, late reverberation and ambient noise are essential
for microphone array signal processing and are challenging to
estimate. Existing methods typically only estimate a subset of the
parameters by assuming the other parameters are known. This can
lead to unmatched scenarios and reduced estimation performance
on the parameters of interest. Moreover, many methods process
time frames independently, despite they share common information
such as the same RTF. In this work, we consider a noisy scenario
by modelling the noise component as a spatially homogeneous
sound field with a time-invariant spatial coherence matrix and
time-varying PSD. We first modify an existing alternating least
squares (ALS) method to obtain more accurate estimates using
a single time frame. Then, we extend the method to use multiple
time frames that share the same RTF. Furthermore, we propose
more robust constraints on the PSDs to avoid large estimation
errors. We compare our proposed methods to the state-of-the-art si-
multaneously confirmatory factor analysis (SCFA) method, a joint
maximum likelihood estimation (JMLE) method and an existing
ALS-based method. The experimental results in terms of estimation
accuracy, noise reduction performance, predicted speech quality,
and predicted speech intelligibility demonstrate that our proposed
methods achieve similar performance compared to the state-of-the-
art SCFA method, which outperforms the existing ALS method in
all scenarios and outperforms the JMLE method particularly in low
SNR scenarios. Moreover, our proposed methods have significantly
lower computational complexity than SCFA.

Index Terms—Dereverberation, noise reduction, microphone
array signal processing, RTF estimation, PSD estimation.

I. INTRODUCTION

HANDS-FREE speech communication applications like
mobile phones and hearing aids are commonly used

nowadays. Equipped with microphone arrays, these de-
vices can record and analyze the speech signal for various
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applications. Unavoidably, the microphone signals are corrupted
by reverberation and ambient noise, which can degrade the
speech quality and intelligibility [1], [2]. Hence, techniques like
spatial filtering are used to extract the target signal from the
noisy microphone signals. Typically, these spatial filters depend
on acoustic-scene-related parameters such as relative transfer
functions (RTFs) and power spectral densities (PSDs) of the
source, the late reverberation and the ambient noise. In practice,
these parameters are typically unknown. Therefore, an essential
problem with hands-free speech communication applications
is to estimate the aforementioned parameters. Note that there
are non-parametric techniques such as blind beamforming or
blind source separation [3], [4] that can extract the target signal
without estimating the parameters. However, in this work we
only focus on parametric beamformers where the estimated
parameters can be used as a prior information on the acoustic
scene.

Due to the non-stationarity of the speech signal, the PSDs
of the target source and the late reverberation are time-varying.
The PSDs of the ambient noise can be time-varying as well,
depending on the working environment of the microphone ar-
rays. The RTFs can change over time as well depending on
whether the source is moving relative to the array. The facts that
these parameters can be time-varying and corruptions caused by
reverberation and ambient noise are present, make the estimation
of these parameters rather challenging.

In recent years, many methods have been proposed to estimate
these parameters, see e.g., [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14]. Many of these methods only estimate a subset of the
parameters by making some strict assumptions about the acous-
tic scenarios and the knowledge of the remaining parameters.
For example, in [5], [9], [12], the RTFs of the target source are
assumed to be known such that the speech PSD, late reverber-
ation PSD and noise PSD can be estimated. In [6], the PSD of
the late reverberation is assumed to be known and the RTF of
the target source is estimated. In [7], the RTFs and the PSDs
of all sources and the noise covariance matrix are estimated.
However, it is assumed that the late reverberation component is
stationary and only a single source is active per time frequency
tile. In [8], the noise covariance matrix is assumed known and the
late reverberation PSD is estimated. In [13], [14], the noiseless
scenario is assumed, neglecting the estimation of the ambient
noise PSD.
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From the above overview, we see that existing methods for
parameter estimation from the acoustic scene all assume a subset
of parameters to be known. However, erroneously assuming a
subset of the parameters to be known can lead to unmatched
scenarios, and thus to reduced noise reduction performance.
This emphasizes the importance of accurate joint parameter
estimation. A second important point is the fact that, apart
from a few exceptions, e.g., [11], [14], many of these methods
process the time frames independently, despite the fact that they
may share some common information. For instance, the RTFs
corresponding to some adjacent time frames are the same if the
sound source is static during these time frames. In such cases,
we could use these time frames jointly to obtain better estimates
of the RTFs [11], [14].

The joint estimation of parameters using multiple time frames
is realized in [11] in a reverberant and noisy environment, using
the simultaneous confirmatory factor analysis (SCFA) method.
As expected, SCFA has much better estimation performance
compared to methods using each time frame independently,
especially for the RTF estimation [11]. Nevertheless, SCFA has a
rather high computational cost. Therefore, we recently proposed
some alternative methods that can achieve a nearly similar
performance as SCFA, but at a much lower complexity [14].

In [14], we considered a single reverberant source scenario
and proposed a joint maximum likelihood estimator (JMLE)
for the parameters of interest. In the current work, we extend
the signal model from [14] to the noisy case. Specifically, we
model the noise component as a spatially homogeneous sound
field characterized by a time-invariant spatial coherence matrix
with a time-varying PSD. We can assume the spatial coherence
matrix is known, as assumed in [9]. Further, we consider the
use of multiple time frames to jointly form a segment. The RTF
is considered constant across the segment, while the PSDs of
the target’s early reflections, the PSDs of the late reverberation
and the ambient noise PSD are allowed to change from frame-
to-frame. The focus herein is to jointly estimate the source’s
RTF, and the PSDs of the early reflections, the late reverberation
and the ambient noise at low complexity. We will use the
least squares (LS) error as a cost function, i.e., minimizing the
Frobenious norm of model error matrices. Note that the LS cost
function has been considered in [10] as well to estimate these
parameters and the LS minimization was solved by an alternating
least squares (ALS) method. However, we will show in this
work that the ALS based method from [10] can suffer from a
parameter identifiability issue and thus needs to be modified to
obtain more accurate estimates. Note also that the ALS method
from [10] uses each time frame separately. Hence, we will extend
the modified ALS method such that it uses multiple time frames
jointly to improve the estimation performance. In addition, we
propose constraints on the estimated PSDs that are more robust
than the ones used in [10] to avoid large estimation errors. Note
that minimizing the least squares cost function for multiple
time frames jointly can be seen as a special case of the joint
diagonalization problems modeled in [15], [16], [17], except that
the problem proposed in our work has additional constraints on
some of the parameters and the single target source is disturbed
by both the late reverberation and the ambient noise.

The remaining parts of the article are structured as follows. In
Section II, we introduce the notation used in this article, present
the signal model and formulate the problem discussed in this
article. In Section III, we will present the existing ALS method,
propose a modified ALS method and extend it to a method using
multiple time frames. After that, we will compare our proposed
methods to some state-of-the-art reference methods in various
simulated acoustic experiments in Section IV. Finally, we will
draw the conclusions in Section V.

II. PRELIMINARIES

A. Notation

In this article, we use lower-case letters to denote scalars,
bold-face lower-case letters for vectors and bold-face upper-case
letters for matrices. Matrix notation with subscripts using two
lower-case letters (e.g. Pyi,j) denotes the element of the matrix.
Matrix notation with superscripts T, ∗, H denotes taking the
transpose, the conjugate and the conjugate transpose of the
matrix, respectively. �(x) and �(x) represent the real part and
the imaginary part of a complex-valued variable x, respectively.
Further, E[·] refers to the expectation operator, tr(·) refers to tak-
ing the trace of a matrix, and if not further specified, | · | denotes
taking the determinant of a matrix. Finally, diag [a1, . . . , aM ]
denotes a diagonal matrix with diagonal elements a1, . . . , aM
and ‖ · ‖F denotes taking the Frobenius norm of a matrix.

B. Signal Model

We consider a reverberant and noisy environment, in which a
single acoustic point source is recorded by an array of M micro-
phones with an arbitrary geometric structure. The microphone
signal received at the mth microphone in the short-time Fourier
transform (STFT) domain is given by

ym(l, k) = em(l, k) + rm(l, k) + vm(l, k), (1)

where l is the time-frame index and k is the frequency bin index,
em(l, k) is the sum of the direct sound and the early reflections,
rm(l, k) is the sum of all the late reflections in time frame l
and frequency bin k, and vm(l, k) contains the ambient noise
and microphone self-noise. Since the direct components and
early reflections are beneficial for speech intelligibility [18], the
combination of these components forms our target signal,

em(l, k) = am(l, k)s(l, k), (2)

where s(l, k) contains the direct and early speech component
recorded by the reference microphone and am(l, k) is the rela-
tive transfer function (RTF) between the reference microphone
and the mth microphone. By selecting the first microphone as
the reference microphone, we have the prior information that
a1 = 1. Note that, we use the multiplicative transfer function
(MTF) approximation in (2) for ease of analyzing, instead of the
convolutive transfer function (CTF) approximation [19], [20].
Stacking the M microphone STFT coefficients into a column
vector, we have

y(l, k) = a(l, k)s(l, k) + r(l, k) + v(l, k) ∈ C
M×1, (3)
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where y(l, k) = [y1(l, k), . . . , yM (l, k)]T and the other vectors
are defined in the same way.

C. Cross Power Spectral Density Matrices

By processing in short time frames, we can assume the three
components in (3) to be stationary and mutually uncorrelated
within a time frame. The PSD matrix of the noisy microphone
recordings can therefore be expressed as

Py(l, k) = E
[
y(l, k)yH(l, k)

]
= Pe(l, k) +Pr(l, k) +Pv(l, k) ∈ C

M×M , (4)

where Pe is given by

Pe(l, k) = φs(l, k)a(l, k)a
H(l, k), (5)

and φs(l, k) = E[|s(l, k)|2] is the PSD of the target source at
the reference microphone with | · | taking the absolute value.
However, notice that across frames, s and r might be correlated.

The CPSD matrix of the late reverberation component is
commonly modelled as [5], [21]

Pr(l, k) = φγ(l, k)Γ(k), (6)

which is a spatially homogeneous and isotropic sound field with
a time varying PSD φγ(l, k). The spatial coherence matrix Γ(k)
is time-invariant. Hence,Γ(k) can be estimated in advance using
the information on the microphone array geometry [22], [23],
[24]. We assume a spherically isotropic noise field [25] and
model the {i, j}-th element of Γ(k) as

Γi,j(k) = sinc

(
2πfsk

K

di,j
c

)
, (7)

where sinc(x) = sinx
x , di,j is the inter-distance between micro-

phones i and j, fs is the sampling frequency, c denotes the speed
of sound and K is the number of frequency bins.

Lastly, we assume that the residual noise component has a
similar CPSD matrix formulation as the late reverberation, i.e.,

Pv(l, k) = φv(l, k)Ψ(k), (8)

where Ψ(k) is the known spatial coherence matrix and φv(l, k)
is unknown PSD. We assume that Ψ(k) is non-singular and
linearly independent withΓ(k) (i.e.Ψ(k) is not a scaled version
of Γ(k)). Note that when considering the microphone self noise
only, we have Ψ(k) = I.

D. Problem Formulation

Based on the assumptions made in the previous subsection
and (5), (6) and (8), we can rewrite the noisy CPSD matrix for
each time frame l as

Py(l)=φs(l)a(l)a
H(l) + φγ(l)Γ+ φv(l)Ψ. (9)

Note that we omit the frequency bin index k in (9) and
hereafter for legibility since the signals will be processed for
each k independently. By making the RTF vector a dependent
on the time-frame index l, we implicitly assume that the relative
source position or room acoustics can change from time frame
to time frame. However, we consider in this work a semi-static

Fig. 1. Visualisation of the definition of time segment (TS), time frames (TF)
and sub frames (SF).

source scenario by assuming the RTF a does not change for
N (a finite number) time frames (N ranges from 1 to 8 in our
experiments, corresponding to a duration of approximately 0.5 s
to 5 s). We denote the set of N time frames sharing a single RTF
by a time segment with index β. The noisy CPSD matrix then
becomes

Py(l)=φs(l)a (β)a
H(β) + φγ(l)Γ+ φv(l)Ψ, (10)

with β = � l−1N �+ 1.
Further, we define sub frames indexed by ts, where Tsf

overlapping sub frames form a time frame. See Fig. 1 for a visual
interpretation of time segment, time frame and sub frame. Since
the noisy signal is assumed to be stationary within a time frame,
we can estimate the CPSD matrix per time frame i based on a
sampled covariance matrix using the sub-time frames, that is,

P̂y(l) =
1

Tsf

lTsf∑
ts=1+(l−1)Tsf

y (ts)y(ts)
H , (11)

where y(ts) denotes the STFT coefficients vector.
Accurate estimation of the parameters from the signal model

in (10) is very important for speech enhancement and intel-
ligibility improvement algorithms. However, this is also very
challenging when the source is only stationary for a short time
and microphone and source positions are time varying. The main
goal of this article therefore is to estimate the RTF vector, the
PSD of the source, the PSD of the late reverberation and the PSD
of self-noise simultaneously using N sequentially estimated
CPSD matrices P̂y(l) for one time segment β, i.e., for N time
frames, while the source is only stationary within a time frame
and the RTF changes from segment-to-segment.

III. ALS-BASED JOINT ESTIMATION

To jointly estimate the parameters of interest, we consider
the use of alternating least squares (ALS) based methods. Note
that a two-step ALS method has been proposed before in this
context [10]. In Section III-A, we will first introduce the method
proposed in [10]. Then in Section III-B we will propose a mod-
ified version of the ALS method based on two improvements
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over the original method to overcome parameter identifiability
issues and potential numerical issues due to matrix singularities.
Note that in [10] each time frame is utilized separately. However,
if we assume the CPSD matrices for multiple time frames in a
single time segment share the same RTF vector, we can use these
time frames jointly to estimate RTF a with improved accuracy.
Therefore, we will extend the modified ALS method to the case
using the PSD matrices for multiple time frames in Section III-C.

A. ALS for a Single Time Frame

In [10], for each single time frame, the estimates of the RTF
vector a and the PSD vector φ = [φs, φγ , φv]

T are obtained
by minimizing the Frobenius norm of a model mismatch error
matrix, i.e.,

argmin
a,φ

∥∥∥P̂y − φsaa
H − φγΓ̂− φvΨ̂

∥∥∥2
F
, (12)

where Â means the estimated A. Note that the cost function in
(12) is non-convex. To solve (12), a two-step ALS method is
used by assuming that for either a or φ, an estimate is given and
then estimating the other parameter vector.

More specifically, by assuming the RTF vector a is known or
already estimated, the estimate of φ can be obtained by solving

argmin
φ

∥∥∥P̂y − φsââ
H − φγΓ̂− φvΨ̂

∥∥∥2
F
, (13)

which has the following closed form solution

φ̂ = Φ−1a b, (14)

where

Φa =

⎡
⎢⎢⎣
(
âH â

)2
âH Γ̂â âHΨ̂â

âH Γ̂â tr
{
Γ̂HΓ̂

}
tr
{
Γ̂HΨ̂

}
âHΨ̂â tr

{
Γ̂HΨ̂

}
tr
{
Ψ̂HΨ̂

}
⎤
⎥⎥⎦ , (15)

and

b =

⎡
⎢⎢⎣

âHP̂yâ

tr
{
Γ̂HP̂y

}
tr
{
Ψ̂HP̂y

}
⎤
⎥⎥⎦ . (16)

When assuming the PSD vector φ̂ is already estimated, the
RTF vector a can be estimated by minimizing the cost function
with respect to a, that is

argmin
a

∥∥∥P̂y − φ̂saa
H − φ̂γΓ̂− φ̂vΨ̂

∥∥∥2
F
, (17)

which also has a closed form solution [26] given by the scaled
principal eigenvector of the matrix P̂x = P̂y − φ̂γΓ̂− φ̂vΨ̂,
which is

â =

√
λ

φ̂s

ν, (18)

where λ and ν are the principal eigenvalue and eigenvector of
P̂x. The two steps are performed iteratively.

For the first step, the method in [10] finds an initial estimate
of the RTF vector a by taking a random value or using a coarse

Algorithm 1: ALS Method.

estimate of the direction of arrival of the target source. For the
second step, the PSD vector φ is estimated via (14) with Φa and
b calculated using the initial estimate â. Using the estimate ofφ,
matrix P̂x is calculated in the second step and the RTF vector a
can be estimated again via (18). For the next iterations, the two
steps are repeated and the estimates of a and φ are updated
in an alternating fashion until a given convergence criterion
is achieved or a certain number of iterations I are executed.
Note that since each step reduces the cost function value, this
method can converge to a local minimum even though the global
minimum is not guaranteed. The ALS method is summarized in
Algorithm 1.

Since PSDs should be positive by definition, all the estimated
PSDs need to be lower bounded. In [10], the estimates of the
PSDs are updated in the following way:

{φs, φγ , φv} = max ({φs, φγ , φv} , ε) , (19)

and

{φs, φγ , φv} = min

⎛
⎝{φs, φγ , φv} ,

tr
(
P̂y

)
M

⎞
⎠ , (20)

where ε is the machine precision.

B. Modified-ALS for a Single Time Frame

An important condition for parameter estimation is the fact
that the estimation problem itself needs to be identifiable [27].
Specifically, in the problem of jointly estimating the RTF vector
a and the PSDs, the following condition should be satisfied
for any two sets of parameters {a, φs, φγ , φv} and {ā, φ̄s,
φ̄γ , φ̄v}:

φsaa
H + φγΓ+ φvΨ = φ̄sāā

H + φ̄γΓ+ φ̄vΨ

⇔
φs = φ̄s,a = ā, φγ = φ̄γ , φv = φ̄v (21)

In the ALS method [10], however, (21) does not hold. To see
this, let φ̄s = 4φs and ā = a

2 , we have φsaa
H = φ̄sāā

H but
φ̄s 
= φs and ā 
= a. Therefore, any proper scaling of a and φs

can be a solution as well. To solve this issue, we use the prior
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information that a1 = 1. In the final iteration, after estimating a
using (18), we add a normalization step for both a and φs using
the constant c = â1:

â← â

c
(22)

and

φ̂s ← φ̂s |c|2 . (23)

Notice also that in each iteration of the ALS method, if
the estimated φs has an unusually small value (e.g. eps), the
elements of the estimate ofa in (18) will have rather large values.
This will lead to large values of the first column and the first row
of the matrix Φa in (15), which means Φa is close to being
singular or badly scaled. To solve this issue, we can constrain
the norm of the estimate of the scaled RTF vector to 1 by simply
using the principal eigenvector instead of the scaled one in (18),
i.e. â = ν. Note that, estimating the scaled a and φs is allowable
because we will normalize them using (22) and (23) eventually
in the last step.

The modified alternating least squares (MALS) method aims
at minimizing the following cost function

argmin
ã,φ̃s,φγ ,φv

∥∥∥P̂y − φ̃sãã
H − φγΓ̂− φvΨ̂

∥∥∥2
F
, (24)

where ã = a√
aHa

and φ̃s = φsa
Ha. Since φ̃sãã

H = φsaa
H ,

the solution to (24) will also be the solution to (12). Once the
estimates ã and φ̃s are obtained, the estimates of the RTF vector
and the PSD of the source are given by

a← ã

ã1
, (25)

and

φs ← φ̃s|ã1|2. (26)

Similarly as in [10] and as described in Section III-A, The
optimization problem in (24) can be solved in an alternating
fashion. Assuming ã is already available (from a previous itera-
tion or initialization), φ̃ = [φ̃s, φγ , φv] is estimated by the least
squares estimate

ˆ̃
φ = Φ−1ã b̃, (27)

where

Φã =

⎡
⎢⎢⎣

1 ˆ̃a
H
Γ̂ˆ̃a ˆ̃a

H
Ψ̂ˆ̃a

ˆ̃a
H
Γ̂ˆ̃a tr

{
Γ̂HΓ̂

}
tr
{
Γ̂HΨ̂

}
ˆ̃a
H
Ψ̂ˆ̃a tr

{
Γ̂HΨ̂

}
tr
{
Ψ̂HΨ̂

}
⎤
⎥⎥⎦ , (28)

and

b̃ =

⎡
⎢⎢⎣

ˆ̃a
H
P̂y

ˆ̃a

tr
{
Γ̂HP̂y

}
tr
{
Ψ̂HP̂y

}
⎤
⎥⎥⎦ . (29)

When an estimate of ˆ̃
φ is known from the previous iteration,

we calculate the matrix P̂x = P̂y − φ̂γΓ̂− φ̂vΨ̂ and obtain the

Algorithm 2: MALS Method.

estimate of ã by

ˆ̃a = ν, (30)

where ν is the principal eigenvector of P̂x. After a sufficient
number of iterations, a and φ are obtained using (25) and (26).

The MALS method is summarized in Algorithm 2.

C. ALS for Multiple Time Frames

In the previous subsections, the joint estimation of the RTF
vector a and the PSD vector φ is performed for a single time
frame based on the ALS approach. However, in many cases,
a can be assumed to be constant across multiple frames in a
time segment. With this prior information, we consider in this
subsection the joint estimation of a, and the PSD vector φ =
[φ(1 + (β − 1)N)T , . . . ,φ(βN)T ]T using all time-frames in a
segment, where φ(l) = [φs(l), φγ(l), φv(l)]

T for l = 1 + (β −
1)N, . . . , βN.

The alternating least squares method using multiple time
frames jointly (JALS) aims at minimizing the sum of the Frobe-
nius norms of the model mismatch error matrices for all time
frames l that fall in the same segment β, i.e.,

argmin
a,φ

βN∑
l=1+(β−1)N∥∥∥P̂y(l)− φs(l)aa

H − φγ(l)Γ̂− φv(l)Ψ̂
∥∥∥2
F
. (31)

Like the MALS method, we reparameterize a and φs(l) for l =
1 + (β − 1)N, . . . , βN by ã = a√

aHa
and φ̃s(l) = φs(l)a

Ha,
which gives us the following cost function

argmin
ã,φ̃

βN∑
l=1+(β−1)N∥∥∥P̂y(l)− φ̃s(l)ãã

H − φγ(l)Γ̂− φv(l)Ψ̂
∥∥∥2
F
. (32)

To solve (32), we also use a two-step ALS method by either
assuming ã is given and estimating φ̃ or assuming φ̃ is estimated
and estimating ã.
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When an estimate of ã is already given, the minimization with
respect to φ̃ is

argmin
φ̃

βN∑
l=1+(β−1)N∥∥∥P̂y(l)− φ̃s(l)ˆ̃aˆ̃a

H − φγ(l)Γ̂− φv(l)Ψ̂
∥∥∥2
F
, (33)

which is equivalent to minimizing the cost function for each time
frame l separately, i.e.

argmin
φ̃(l),

∀l∈1+(β−1)N,...,βN

∥∥∥P̂y(l)− φ̃s(l)ˆ̃aˆ̃a
H − φγ(l)Γ̂− φv(l)Ψ̂

∥∥∥2
F
,

(34)
as φ̃(l) is defined per time frame. For each time frame l, (34)
has a closed form solution

φ̃(l) = Φ̃−1ã b̃(l), (35)

where

Φ̃ã =

⎡
⎢⎢⎣

1 ˆ̃a
H
Γ̂ˆ̃a ˆ̃a

H
Ψ̂ˆ̃a

ˆ̃a
H
Γ̂ˆ̃a tr

{
Γ̂HΓ̂

}
tr
{
Γ̂HΨ̂

}
ˆ̃a
H
Ψ̂ˆ̃a tr

{
Γ̂HΨ̂

}
tr
{
Ψ̂HΨ̂

}
⎤
⎥⎥⎦ , (36)

and

b̃(l) =

⎡
⎢⎢⎣

ˆ̃a
H
P̂y(l)ˆ̃a

tr
{
Γ̂HP̂y(l)

}
tr
{
Ψ̂HP̂y(l)

}
⎤
⎥⎥⎦ . (37)

When an estimate of φ̃ is given, ã can be obtained for a segment
β by minimizing

argmin
ã

βN∑
l=1+(β−1)N

∥∥∥P̂y(l)− ˆ̃
φs(l)ãã

H−γ̂(l)Γ̂−φ̂v(l)Ψ̂
∥∥∥2
F
.

(38)
The solution for ã is the principal eigenvector of

∑βN
l=1+(β−1)N

ˆ̃
φs(l)[P̂y(l)−φ̂γ(l)Γ̂−φ̂v(l)Ψ̂] (See Appendix A).

The alternating least squares method using multiple time
frames jointly (JALS) is summarized in Algorithm 3.

D. Robust PSDs Constraints

In [11], it has been shown that linear inequality constraints on
the parameters of interest can be used to improve the robustness
of the estimation. In [10], the PSD of the source, the PSD of
the late reverberation and the PSD of the ambient noise are
constrained by (19) and (20). In this section, we introduce more
robust constraints on the PSDs to avoid large underestimation
and overestimation errors.

1) Upper Bounds: To avoid large overestimation errors, we
can use upper bounds for the PSDs. For the diagonal elements
of Py , it holds that

Pym,m(l) = φ̃s(l) |ãm|2 + φγ(l)Γm,m + φv(l)Ψm,m. (39)

Algorithm 3: JALS Method.

Since the three additive terms in (39) are positive, we have{
φ̃s(l) |ãm|2 , φγ(l)Γm,m, φv(l)Ψm,m

}
≤ Pym,m(l), (40)

for all m. Hence, the upper bound for the PSDs of the target
source is

φ̃s(l) ≤ min
m

⎧⎪⎨
⎪⎩

P̂ym,m
(l)∣∣∣ˆ̃am∣∣∣2
⎫⎪⎬
⎪⎭ . (41)

Similarly, the upper bounds for the PSDs of the late reverber-
ation and the ambient noise are

φγ(l) ≤ min
m

{
P̂ym,m

(l)

Γ̂m,m

}
, (42)

φv(l) ≤ min
m

{
P̂ym,m

(l)

Ψ̂m,m

}
. (43)

Note that Γ̂m,m = 1 in (7) and that Ψ̂m,m = 1 when consider-
ing only self-noise and each microphone has the same self-noise
PSD. In that case we thus have

{φγ(l), φv(l)} ≤ min
m

{
P̂ym,m

(l)
}
≤

tr
(
P̂y

)
M

, (44)

which is tighter than the bound in (20) as used in [10]. Hence,
by using (42) and (43), the overestimation errors for the PSDs
of the late reverberation and the ambient noise are smaller than
the errors using (20), resulting in better speech intelligibility
performance [28], [29].

2) Lower Bounds: To avoid large underestimation errors, we
need lower bounds for the PSDs as well. In both [10] and [11],
the prior information was used that the PSDs should be positive,
setting the lower bounds for all PSDs to ε. That is, when
obtaining negative incorrect estimates of the PSDs, these are
replaced by the minimum value ε. However, this will lead to very
large under estimation errors. Therefore, we propose the use of
tighter lower bounds derived from other prior information on
the PSDs.
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Fig. 2. Time frame and frequency distribution of the target source PSD and
the late reverberation PSD.

For the normalized PSD of the source φ̃s and the PSD of
the late reverberation φγ , we can see that they have a similar
distribution on the time-frequency domain as illustrated in Fig. 2.

Based on this, we make the assumption that the ratio between
the normalized PSD of the source and the PSD of the late
reverberation is bounded on both sides, i.e.

C1 ≤ φ̃s(l)

φγ(l)
≤ 1

C2
, (45)

or

C1φγ(l) ≤ φ̃s(l), (46)

and

C2φ̃s(l) ≤ φγ(l), (47)

for all (l, k) pairs. Note that this assumption is weaker than the
one made in [30], where it is assumed that the ratio between the
sound source PSD and the late reverberation PSD is a constant.
Using (46) and (47), we can constrain the estimated PSDs of the
source and the PSDs of the late reverberation in the following
way. We first initialize C1 and C2 by an initial value like C1 =

Fig. 3. Decision flow for updating C1, C2,
ˆ̃
φs and φ̂γ .

C2 = 1 for the first time frame l = 1. For the l-th time frame,

we update C1 and C2 while making ˆ̃
φs(l) and φ̂γ(l) positive

in the way shown in Fig. 3 and Appendix B, where ˆ̃
φ
min

s (l) is
calculated by

ˆ̃
φ
min

s = min

⎧⎪⎨
⎪⎩
∣∣∣∣∣∣∣
P̂ym,m

− P̂ym+1,m+1∣∣∣ˆ̃am∣∣∣2 − ∣∣∣ˆ̃am+1

∣∣∣2
∣∣∣∣∣∣∣
⎫⎪⎬
⎪⎭

M−1

m=1

, (48)

and

φ̂min
γ = min

{∣∣∣∣P̂ym,m
− ˆ̃
φ
min

s

∣∣∣ˆ̃am∣∣∣2 − φ̂v

∣∣∣∣
}M

m=1

. (49)

For the PSD of the ambient noise, the lower bounds depend
on the stochastic property of the noise component. We use the
following way to constrain φv(l). First, we give the lower bound
C3 an initial small value ε. Then, we update C3 as

C3(l)=

{
C3(l−1)+φ̂v(l)

2 ifφ̂v(l) > 0
C3 (l − 1) else

. (50)

With C3, we estimate φv(l) by

φ̂v(l)=

{
φ̂v(l) ifφ̂v(l) > 0

C3 (l − 1) else
, (51)

Note that the above procedure dealing with non-positive esti-
mates of the PSDs might give us values larger than the upper
bounds we derived before in (41) to (43). Therefore, we first
execute the above procedure and then upper bound all the
estimates.

IV. EXPERIMENTS

In this section, we will evaluate our proposed ALS-based
methods in various scenarios. In addition to the ALS method
proposed in [10], we introduce in Section IV-A two more
reference methods, namely JMLE [14] and SCFA [11]. In
Section IV-B, we present the evaluation metrics for all methods.
We compare the performance of all methods in various scenarios
in Sections IV-C and IV-D.
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A. Reference Methods

The two reference methods introduced here are both based on
the maximum likelihood (ML) cost function:

min
N∑
l=1

log |Py(l)|+ tr
(
P̂y(l)P

−1
y (l)

)
. (52)

1) JMLE: In our recent work [14], we assumed a noiseless
scenario and proposed a joint maximum likelihood estimator
(JMLE) to estimate the RTF of the target source, the PSDs of the
target source and the PSDs of the late reverberation jointly. The
JMLE method performances well and has low computational
complexity. However, the performance of JMLE is not robust for
low SNR scenarios due to the noiseless signal model assumed
in [14], which is

Py(l) = φs(l)a (β)a
H (β) + φγ(l)Γ. (53)

2) SCFA: The last reference method we use for comparison
is the simultaneous confirmatory factor analysis (SCFA)
method [11]. SCFA performs well in reverberant and noisy
environments. However, SCFA comes with a high computational
cost due to solving the following non-convex optimization
problem

argmin
φs(l),a (β)
φγ(l), φv

N∑
l=1

log |Py(l)|+ tr
(
P̂y(l)P

−1
y (l)

)

s.t. Py(l)= φs(l)a (β)a
H (β) + φγ(l)Γ+ φvI,

a1 (β) = 1, φs(l) ≥ 0, φγ(l) ≥ 0, φv ≥ 0,

, (54)

where φvI corresponds to the microphone self noise, which
is assumed to be white Gaussian noise. In [11], the above
optimization problem is computed iteratively. At each iteration,
the parameters are updated and the cost function value is
reduced by solving a non-linear constrained optimization
problem. The updating procedure is terminated when meeting
a local minimum. Note that due to the non-convexity of the
optimization problem, the number of iterations needed is large.
Hence the computational cost of this method is relatively high.

B. Evaluation Metrics

1) Estimation Errors: The first evaluation metric is the esti-
mation error of the parameters of interest. For the RTF vector,
we calculate the Hermitian angles between the estimated RTFs
and the true RTFs and average them over different frequency
bins and time segments, that is,

Ea =

∑B
β=1

∑K/2+1
k=1 acos

( |a(β,k)H â(β,k)|
‖a(β,k)‖2‖â(β,k)‖2

)
B (K/2 + 1)

. (55)

Note that this metric evaluates the alignment of the estimated
RTF with the ground-truth RTF, but cannot reflect scaling errors.
For all types of PSDs, we use the symmetric log-error distortion
measure [31]

Ei =
10
∑B

β=1

∑βN
l=1+(β−1)N

∑K/2+1
k=1

∣∣∣log (φi(l,k)

φ̂i(l,k)

)∣∣∣
BN (K/2 + 1)

, (56)

with i ∈ {s, γ, v}. In the following experiments, we will also
show the detailed PSD estimation performance by using the
overestimating errors (denoted as Eov

φi
) and the underestimation

errors (denoted as Eun
φi

) as used in [28]

Eov
i =

10
∑B

β=1

∑βN
l=1+(β−1)N

∑K/2+1
k=1

∣∣∣min
{
0, log

(
φi(l,k)

φ̂i(l,k)

)}∣∣∣
BN (K/2 + 1)

,

(57)

and

Eun
i =

10
∑B

β=1

∑βN
l=1+(β−1)N

∑K/2+1
k=1 max

{
0, log

(
φi(l,k)

φ̂i(l,k)

)}
BN (K/2 + 1)

.

(58)

Note that, typically, large underestimation errors in the source
PSDs and large overestimation errors in the noise PSDs can
cause large target source distortions when applying the estimates
in a noise reduction framework. Also, large underestimation
errors in the noise PSD are likely to cause musical noise [28].
We therefore also quantify the performance in terms of predicted
quality and intelligibility when used in combination with a noise
reduction algorithm, as explained below.

2) Predicted Quality and Intelligibility: We can construct the
following multi-channel Wiener filter (MWF) [32] based on the
estimated parameters to extract the target signal,

ŵ(l) =
φ̂s(l)ŵMVDR(l)

φ̂s(l) + ŵMVDR(l)
HR̂nn(l)ŵMVDR(l)

, (59)

where wMVDR(l) is the minimum variance distortionless re-
sponse (MVDR) beamformer [33]

ŵMVDR(l) =
R̂−1nn(l)â(l)

â(l)HR̂−1nn(l)â(l)
, (60)

and

R̂nn(l) = φ̂γ(l)Γ̂+ φ̂v(l)Ψ̂, (61)

and where ŵ(l) is used as ŝ(l) = ŵ(l)Hy(l). After estimating
ŝ(l), the time domain signal is reconstructed by calculating the
IFFT followed by an overlap-add procedure. Note that for the
JMLE method, R̂nn(l) = φ̂γ(l)Γ̂ due to its noiseless signal
model.

After applying the MWF filter to the noisy signal, we ob-
tain the estimated target signal and evaluate the noise re-
duction performance using the segmental signal-to-noise-ratio
(SSNR) [34], the speech intelligibility performance using the
speech intelligibility in bits (SIIB) measure [35], [36] and the
speech quality performance using the perceptual evaluation of
speech quality (PESQ) measure [37].

3) Computation Time: The last evaluation metric is the com-
putational time comparison between our proposed methods and
the reference methods.
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Fig. 4. Geometric setup for the real RIRs.

C. Experiment 1

1) Setup: We use speech signals originating from the TIMIT
database [38] and recorded RIRs to simulate realistic acoustic
scenarios. The RIRs are downloaded from the database in [39],
which were recorded in a room with size 6 × 6 × 2.4 m. The
geometric setup for the recording is shown in Fig. 4. The sound
source was placed 2 m away from the center of the uniform
linear microphone array at 0◦. This array has 8 microphones
and 8 cm inter-distances. At each microphone, we synthesize
the reverberant signal by convolving the speech source (with
a duration of 35 s) with the corresponding RIR. Subsequently,
we add noise components to the reverberant signals simulating
the microphone noise at specified signal-to-noise ratios (SNRs)
to synthesize the microphone signals. In the following, we will
consider white Gaussian noise to simulate microphone selfnoise
with variance σ2

v calculated from given SNR values for each
microphone. Since the signal is non-stationary, we calculate the
SNR by averaging the target signal-to-noise ratio over the whole
time duration.

In this experiment, we used the following parameters setting:
The sampling rate is fs = 16 kHz. The sampled noisy micro-
phone signals are processed by the STFT for each sub-time
frame. As analysis and synthesis window we use the square-root
Hann window with a length of 32 ms with 50% overlap between
adjacent sub-time frames. Note that each time frame consists
of Tsf = 40 overlapping sub-time frames and has a duration
of 0.64 s. The FFT length is 512. The speed of sound is set to
344 m/s. Note that the first 512 samples of the RIRs are used to
calculate the true RTFs as these parts of the RIRs fall within each
current sub-time frame and the remaining parts are considered
as the late reverberation. Note that for ALS-based methods, we
use the same random vector as an initial estimate of the RTF for
the first time frame in a time segment (ALS and MALS) or for
a time segment (JALS).

2) Results: In Fig. 5, we compare our proposed methods with
all the other reference methods as a function of the number
of time frames in a time segment varying from 1 to 8. The
reverberation time is 0.61 s and the SNR is fixed at 0 dB. To
evaluate how the robust constraints of the PSDs proposed in
Section III-D help the estimation of the parameters of interest,
we also included the modified ALS method without using the
robust constraints in Section III-D but using (19) and (20),
referred to as MALSu. When using only a single time frame in
each time segment, the RTF estimation errors for the ALS-based

Fig. 5. Performance vs the number of time frames. In Figs (b), (c) and (d),
the gray bars indicate the underestimation errors, the colored bars indicate
overestimation errors and the methods from left to right are SCFA, JALS,
JMLE(in Figs (b) and (c)), ALS, MALS and MALSu.

methods and the SCFA method have similar values which are
much lower than the JMLE method as shown in Fig. 5(a).
The reason is that JMLE was derived from a noiseless signal
model [40]. The signal model mismatch error is thus large for
the JMLE in a 0 dB environment. When increasing the number
of time frames in each time segment, the RTF estimation errors
for ALS, MALSu and MALS (the three ALS-based methods
using a single time frame) do not vary much; while the RTF
estimation errors for JALS, JMLE and SCFA (methods using
multiple time frames) become much lower. The RTF estimation
errors Ea for methods using a single time frame fluctuate
slightly because the first time frame of a time segment use
random initial estimate of the RTF. The other time frames use the
estimate in the previous time frame as the initial estimate.Ea for
ALS and MALSu are close to MALS due to the normalization
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process in the Hermitian angle metric in (55). The drawback of
the Hermitian angle metric is that any scaled estimate will have
the same value. The bad scaling of ALS can be reflected in the
target source PSD estimation errors, where ALS has much larger
errors compared to the other methods as shown in Fig. 5(b). In
Fig. 5(c) and (d), we can see that MALSu has similar perfor-
mance with ALS, which both use the PSDs constraints in (19)
and (20). While, MALS using the robust constraints of the PSDs
proposed in Section III-D has much lower errors compared to
ALS and MALSu. As expected, the PSDs estimation errors do
not change much as a function of the number of frames in a
segment since the PSDs are time frame variant parameters. In
Fig. 5(b)–(d), we show the underestimation error and overes-
timation error for the PSDs. Our proposed methods (MALS
and JALS) have improved performance compared to ALS and
similar performance compared to SCFA. As shown, ALS has
the worst underestimation errors for all the PSDs. This is due
to the lack of a normalization step and using the value ε to
replace negative values in the ALS method. JMLE has the largest
overestimation errors for PSDs of the late reverberation. This is
due to the noiseless signal model that is assumed with JMLE.
In a low SNR environment, the JMLE method considers the
ambient noise as late reverberation and gives larger values when
estimating the PSDs of the late reverberation. For noise reduction
performance evaluated by SSNR in Fig. 5(e), our proposed
JALS has the best performance, which is slightly better than
SCFA but much better than the other methods. For the speech
intelligibility performance evaluated by SIIB and the speech
quality performance evaluated by PESQ in Fig. 5(f) and (g),
the proposed JALS, MALS and the reference method SCFA
outperform the other methods.

In Fig. 6, we compare all the methods while changing the
variance of the ambient noise component such that the SNR
increases from 0 dB to 40 dB. The reverberation time is 0.36 s
and each time segment contains 8 time frames. As shown in
Fig. 6(a), the RTF estimation errors become lower for all meth-
ods when the SNR becomes larger. SCFA and our proposed
method JALS have the best overall performance, which is much
better than methods using a single time frame (ALS and MALS).
For low SNR, JMLE is worse than JALS, but when increasing
the SNR, JMLE improves the fastest as its model mismatch error
is smaller and has a smaller RTF estimation error than JALS for
40 dB SNR. We can see that when the signal model mismatch
error is neglectable, the MLE-based methods (SCFA and JMLE)
perform better than the ALS-based methods (JALS). For the
PSDs estimation errors in Fig. 6(b) to (d), SCFA has the best
performance with only JMLE reaching a similar performance
for high SNR scenarios. Our proposed ALS-based methods
(MALS and JALS) perform much better than ALS. For noise
reduction and speech intelligibility performance in Fig. 6(e) to
(g), MALS and JALS have similar performance with SCFA and
much better performance than ALS. When increasing the SNR,
JMLE has the most significant improvement and gets close to
the performance of MALS, JALS and SCFA for 40 dB SNR.

We also evaluate the computation time for all methods and
average these over all cases shown in Fig. 6. Then, we averaged
and normalized the run time for all methods with respect to the

Fig. 6. Performance vs SNR. In Figs (b), (c) and (d), the gray bars indicate
the underestimation errors and the colored bars indicate overestimation errors.

TABLE I
COMPUTATION TIME COMPARISON

run time for JALS as shown in Table I. We sort the run time for all
the methods in descending order from left to right. As expected,
SCFA is the most time-consuming method. JALS and JMLE are
the two fastest methods. The computational cost mainly comes
from the inversion of a 3× 3matrix (complexity of order 33) and
the eigenvalue decomposition of anM ×M matrix (complexity
of order M3) for the ALS-based methods (ALS, MALS and
JALS). For the case that each time segment has N time frames,
ALS and MALS process each time frame separately and execute
I iterations N times. Hence, they have a complexity of order
I ×N × (33 +M3). For JALS, we only need to calculate the
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Fig. 7. Top view of the acoustic scene with a zoom-in of microphones.

eigenvalue decomposition I times. Hence, its complexity order
is I ×M3 + I ×N × 33. The complexity order of JMLE is
(N + I)×M3 [40]. In this experiment, we haveM = 8,N = 8
and I = 10. Therefore, the time cost ratio among ALS/MALS,
JMLE and JALS is I ×N × (33 +M3) : (N + I)×M3 : I ×
M3 + I ×N × 33 ≈ 5.92 : 1.27 : 1, which is approximately
similar to the real averaged run time ratio in Table I.

D. Experiment 2

1) Setup: In this experiment, we generate the RIRs using
the image source method [41]. The dimension of the room is
7× 5× 4m. In this simulated room, we have a single speaker,
four microphones and a recorded wash machine noise from the
ESC-50 database [42] as shown in Fig. 7. Note that we also added
a white Gaussian noise to each microphone signal to simulate the
microphone selfnoise at a SNR of 50 dB. The other settings are
the same as those of Experiment 1. For ALS-based methods, we
assume an ideal voice activity detector is used and the spatial
coherence matrix of the ambient noise is calculated using the
noise only time frame with the following equation

Ψi,j(k) =

∑Tn

tn=1 yi (tn, k) yj(tn, k)
∗√(∑Tn

tn=1 |yi (tn, k)|2
)(∑Tn

tn=1 |yj(tn, k)|2
) ,
(62)

with |x| the absolute value of x and {i, j} the microphone
indices. For SCFA, the spatial coherence matrix of the ambient
noise is modeled as the identity matrix in [11]. For JMLE, the
ambient noise is not considered. Hence, these two methods will
have sever model mismatch errors in this experiment. Note that
SCFA can be extended to handle spatial coherence matrices
different from the identity matrix. However, it takes some effort
to calculate the gradient and the Hessian matrix of the cost
function and will not be addressed in this work.

2) Results: In Fig. 8, we compare all the methods while
changing the reverberation time T60 of the RIRs from 0.2 s to
1 s. Each time segment contains 8 time frames. We can see that
our proposed JALS method has the best performance in all the
metrics evaluated. For the RTF estimation error in Fig. 8(a),
the ALS-based methods ALS, MALS and JALS have degraded
performance as T60 increases. However, SCFA and JMLE have
improved performance. This is due to the model mismatch
caused by the ambient noise component. When increasing T60,

Fig. 8. Performance vs T60. In Figs (b), (c) and (d), the gray bars indicate the
underestimation errors and the colored bars indicate overestimation errors.

the ratio between the correctly modeled late reverberation com-
ponent and the incorrectly modeled ambient noise component
becomes larger. For the PSDs estimation errors of the target
source and the late reverberation in Fig. 8(b) and (c), SCFA and
JMLE have large over estimation errors due to considering the
ambient noise as the target source and the late reverberation. The
ALS method still has the worst performance in Fig. 8(b) and (c).
While, for the noise PSD estimation error in Fig. 8(d), SCFA
has the worst performance due to erroneous spatial coherence
matrix used. In Fig. 8(e) to (g), our proposed multiple time
frames method JALS has improved performance over our single
time frame method MALS, which both outperform all the other
reference methods.

V. CONCLUDING REMARKS

We proposed alternating least square (ALS) based methods
to estimate the RTFs, the PSDs of the source, the PSDs of the
late reverberation, and the PSDs of the ambient noise jointly for
a single reverberant and noisy scenario. We first modified an
existing ALS method to obtain more accurate estimates using a
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single time frame. Then, we extend the method to use multiple
time frames that share the same RTF jointly. Furthermore, we
imposed more robust constraints on the estimated PSDs. Exper-
imental results demonstrated that the proposed methods achieve
similar performance compared to the SCFA method in terms
of estimation accuracy, noise reduction performance, speech
quality, and speech intelligibility. The proposed methods out-
perform the existing ALS-based method and the JMLE method
assuming a noiseless signal model, especially in low SNR
scenarios.

Further studies can be conducted to extend the proposed meth-
ods to handle more complicated scenarios, such as multi-source
signals.

APPENDIX A
SOLUTION TO (38)

We define P̂x(l) = P̂y(l)− φ̂γ(l)Γ̂− φ̂v(l)Ψ̂ and reformu-
late (38) as

argmin
ã

βN∑
l=1+(β−1)N

∥∥∥P̂x(l)− ˆ̃
φs(l)ãã

H
∥∥∥2
F

= argmin
ã

βN∑
l=1+(β−1)N

[(
φ̂s(l)ã

H ã
)2
−2 ˆ̃φs(l)ã

HP̂x(l)ã

]

= argmin
ã

−2ãH
⎛
⎝ βN∑

l=1+(β−1)N

ˆ̃
φs(l)P̂x(l)

⎞
⎠ ã

= argmax
ã

ãH

⎛
⎝ βN∑

l=1+(β−1)N

ˆ̃
φs(l)P̂x(l)

⎞
⎠ ã, (63)

where we have used the fact that ãH ã = 1. The solution for ã
is the principal eigenvector of

∑βN
l=1+(β−1)N

ˆ̃
φs(l)P̂x(l).

APPENDIX B
DECISION FLOW FOR UPDATING C1, C2,

ˆ̃
φs AND φ̂γ

We first update C1(l) and C2(l) by

C1(l)=

⎧⎨
⎩min

{
C1 (l − 1) ,

ˆ̃
φs(l)

φ̂γ(l)

}
if
ˆ̃
φs(l) > 0, φ̂γ(l) > 0

C1 (l − 1) else.
,

(64)
and

C2(l)=

⎧⎨
⎩min

{
C2 (l − 1) ,

φ̂γ(l,k)
ˆ̃
φs(l)

}
if
ˆ̃
φs(l) > 0, φ̂γ(l) > 0

C2 (l − 1) else.
(65)

With C1(l) and C2(l), we update ˆ̃
φs(l) by

ˆ̃
φs(l) =

⎧⎪⎪⎨
⎪⎪⎩

ˆ̃
φs(l) if

ˆ̃
φs(l) > 0

C1(l)φ̂γ(l) ifφ̂γ(l) > 0,
ˆ̃
φs(l) ≤ 0

ˆ̃
φ
min

s (l) ifφ̂γ(l) ≤ 0,
ˆ̃
φs(l) ≤ 0

(66)

where ˆ̃
φ
min

s (l) is calculated by

ˆ̃
φ
min

s = min

⎧⎪⎨
⎪⎩
∣∣∣∣∣∣∣
P̂ym,m

− P̂ym+1,m+1∣∣∣ˆ̃am∣∣∣2 − ∣∣∣ˆ̃am+1

∣∣∣2
∣∣∣∣∣∣∣
⎫⎪⎬
⎪⎭

M−1

m=1

, (67)

where we used the fact that Pym,m
= φ̃s|ãm|2 + φγ + φv

for m = 1, . . . ,M and Pym,m
−Pym+1,m+1

= φ̃s(|ãm|2 −
|ãm+1|2). Then, we update φ̂γ(l) by

φ̂γ(l) =

⎧⎪⎨
⎪⎩

φ̂γ(l) if
ˆ̃
φγ(l) > 0

C2(l)
ˆ̃
φs(l) ifφ̂s(l) > 0,

ˆ̃
φγ(l) ≤ 0

φ̂min
γ (l) ifφ̂s(l) ≤ 0, φ̂γ(l) ≤ 0

(68)

where φ̂min
γ (l) is calculated by

φ̂min
γ = min

{∣∣∣∣P̂ym,m
− ˆ̃
φ
min

s

∣∣∣ˆ̃am∣∣∣2 − φ̂v

∣∣∣∣
}M

m=1

. (69)
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