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Abstract—As a type of biometric identification, a speaker
identification (SID) system is confronted with various kinds of
attacks. The spoofing attacks typically imitate the timbre of
the target speakers, while the adversarial attacks confuse the
SID system by adding a well-designed adversarial perturbation
to an arbitrary speech. Although the spoofing attack copies a
similar timbre as the victim, it does not exploit the vulnerability
of the SID model and may not make the SID system give the
attacker’s desired decision. As for the adversarial attack, despite
the SID system can be led to a designated decision, it cannot
meet the specified text or speaker timbre requirements for the
specific attack scenarios. In this study, to make the attack in
SID not only leverage the vulnerability of the SID model but
also reserve the timbre of the target speaker, we propose a
timbre-reserved adversarial attack in the speaker identification.
We generate the timbre-reserved adversarial audios by adding
an adversarial constraint during the different training stages of
the voice conversion (VC) model. Specifically, the adversarial
constraint is using the target speaker label to optimize the
adversarial perturbation added to the VC model representations
and is implemented by a speaker classifier joining in the VC
model training. The adversarial constraint can help to control
the VC model to generate the speaker-wised audio. Eventually,
the inference of the VC model is the ideal adversarial fake
audio, which is timbre-reserved and can fool the SID system.
Experimental results on the Audio deepfake detection (ADD)
challenge dataset indicate that our proposed method improves
the attack success rate significantly compare with the vanilla VC
model without additionally introducing an adversarial noise to
the attack speech. Objective and subjective evaluations illustrate
that the quality of fake audio generated by our proposed method
is better than directly adding adversarial perturbation to the
VC-generated audio. Furthermore, the analysis shows that our
generated adversarial fake audios also meet the specified text and
target speaker timbre-reserved requirements of the attacker.

Index Terms—Speaker identification, adversarial

timbre-reserved, voice conversion.

attack,

I. INTRODUCTION

Speaker identification (SID) [1], [2] is the process of au-
tomatically inferring the identity of a speaker from a spoken
utterance. As one of the most prominent biometric authentica-
tion methods, it is critical to ensure the robustness of the SID
system. A variety of attacks attempt to challenge the robust-
ness of the SID system. For instance, spoofing attack [3]]—[5]]
commonly includes impersonation, replay, voice conversion,
and speech synthesis. The ASVspoof challenge [6]-[8] is
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dedicated to addressing this problem, and it is organized to
contribute to the development of countermeasures to protect
speaker recognition from the threat of spoofing attacks. De-
pending upon the scenarios of the spoof samples attacking the
SID system, the spoofing attack can be broadly classified into
two categories, which are physical access (PA) attacks and
logical access (LA) attacks [8]]. In the PA attacks, the samples
are applied as input to the SID system through the sensor,
which directly attacks the SID system. The LA attacks are the
direct injection into the SID system, and the most common
approaches are speech synthesis and voice conversion. Both
of them aim to generate a speech based on the voice of the
target speaker. However, a spoofing attack normally depends
on the quality and size of the dataset and cannot take advantage
of SID model’s vulnerability, so that the spoofing attack is
difficult to accurately be classified to the target speaker by
the SID system since the spoofing attacks do not consider the
downstream SID task.

Moreover, the adversarial attack [9]-[12] is considered as
another type of attack, which is emerged in the last few years.
An adversarial attack is a malicious attempt that exploits the
vulnerability of the network itself and tries to perturb the
original sample into a new sample. The new sample, which
is also known as an adversarial example, can be misclassified
by the network. Adversarial attacks also can impact speech
processing tasks [13]-[18]]. Since recent work has explored
different deep neural network (DNN) architectures [19]-[21]]
to produce compact speaker embeddings, the SID system is
also vulnerable to adversarial examples. In recent years, many
researchers have successfully conducted adversarial attacks on
SID systems [22]-[30]. However, the perturbation is added
to an arbitrary speech to achieve the targeted adversarial
attack, which is hard to meet the requirement of speaker
similarity and intelligibility and can easily be detected by
humans. What’s more, although the perturbation is usually
designed too small to be heard by human beings through
multiple approaches [31]], [32], the adversarial perturbation is
not strictly inaudible.

Inspired by these two kinds of attacks above, qualified fake
audio for attacking the SID model should have the ability to
deceive both machines and humans at the same time. To fool
the machine, the downstream SID task needs to be considered
so that the fake audio has a distinctive speaker attribute, which
can make the SID model make the designated decision. From
a human perception perspective, when the timbre or the text
of the fake audio is far different from the target speaker’s real
audio, this kind of fake audio is easy to be detected. Therefore,
the timbre and text information also are concerns when we
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conduct attacks on the SID model. Moreover, the quality of
the fake audio is also crucial in the attack.

In this study, when we conduct an adversarial attack on
the speaker identification model, we aim to take the target
speaker’s timbre and text information into consideration. To
this end, we propose a timbre-reserved adversarial attack in
the SID system, which is to make the attack in SID not only
exploit the vulnerability of the SID model but also reserve
the timbre of the target speaker, as well as customize the
text of the fake speech. In particular, a speaker classifier is
jointly trained with the VC model to determine whether the
representations belong to the target speaker. If it is not clas-
sified into the target speaker class, an adversarial perturbation
is added to the VC model representation, which constrains
the representations to be classified to the target speaker. Then
the perturbed representation proceeds with optimizing the VC
model. Consequently, the VC model can generate fake audio
with distinctive target speaker information. We adopt various
levels of VC model representation during the VC model
training. In non-autoregressive based VC model training, the
adversarial constraint is added to the Mel-spectrogram and
latent representation. While in the end-to-end VC model
training, we add the adversarial constraint to the reconstructed
waveform. After that, by adding adversarial constraints to
optimize various voice conversion frameworks, we can obtain
the timbre-reserved and speaker-wised adversarial fake audios
for attacking the speaker identification system.

We evaluate our proposed methods on the Audio deepfake
detection (ADD) challenge dataset [33]]. With the given text
and speakerID, the fake audios generated by our proposed
method improve the attack success rate significantly compared
with the vanilla VC model. Since the proposed methods do
not introduce extra adversarial noise to the attack speech, the
objective and subjective evaluations also illustrate that the
quality of fake audio generated by our proposed method is
better than directly adding adversarial perturbation to the VC
generated audio. Furthermore, we also analyze the speaker
similarity and intelligibility of the fake audio, which both meet
the requirements.

We summarize our main contributions as follows.

o To our best knowledge, we are the first to propose adding
adversarial perturbation generation into voice conversion
framework training to achieve timbre-reserved adversarial
attacks for the speaker identification system.

e« We explore adding adversarial constraints to different
levels of representation of the VC training, which are
the VC predicted Mel-spectrogram, latent representation,
and reconstructed waveform, respectively.

o The timbre-reserved fake audio not only preserves the
timbre of the target speaker but also can effectively
targeted attack the SID system, and the text of the fake
audio can be customized as well.

The rest of the paper is organized as follows. In Section II,
related works are introduced. In Section III, we detail the
proposed timbre-reserved adversarial attack in the SID system.
Datasets and experimental setup are described in Section IV.
Section V presents the experimental results and analysis. We
conclude in Section VI.

II. RELATED WORKS
A. Spoofing attacks in speaker identification

In recent years, there are various kinds of attacks on
speaker identification. One of the most severe threats is a
spoofing attack. The spoofed speech samples can be obtained
through impersonation, replay, voice conversion, or speech
synthesis. Especially, speech synthesis and VC are also the
main concerns as typical types of deep fake in SID and are
the logical access (LA) tasks in spoofing attacks as well.

Speech synthesis, also known as text-to-speech (TTS), takes
arbitrary text as input and generates speech as output [34],
[35]. With the development of the TTS techniques, synthesized
speech is more indistinguishable from human speech. In [5]],
[6[], [36], [37], TTS-generated fake audios were used as the
spoofing attack in speaker recognition systems. However, the
attack on the speaker recognition system using the TTS-
generated fake audio is not very effective, since the down-
stream SID task is not taken into consideration. In [38|], Cai er
al. proved that samples generated with SampleRNN [39] and
WaveNet [40]] were unable to fool deep learning based speaker
recognition system. Wenger et al. [41] generated synthetic
speech using publicly available systems that can already fool
both humans and several popular software systems, but the
performance of the attack success rate is not that high enough.
In addition, the quality and size of the training set for the TTS
model are typically insufficient for genuine attacking a SID
model, as a result, it is difficult to attack the SID system with
speech synthesis itself.

Voice conversion (VC) is a process that converts or trans-
forms the voice of the original speaker into the target speaker
while keeping the linguistic content [42]. In this study, we
mainly focus on the generation of fake audio by VC. With
the development of VC, different kinds of VC models have
been explored, and they are typically divided into three types:
autoregressive based VC model [43], [44], non-autoregressive
based VC model [45]-[49], and end-to-end VC model [50]—
[52]].

The first type of VC model is autoregressive based. The
typical autoregressive based VC model [43], [44] is an im-
proved version of Tacotron 2 [53]], which leverages an encoder-
decoder framework and takes Mel-spectrograms or the bottle-
neck features of automatic speech recognition (ASR) model as
inputs. However, the autoregressive VC model predicts Mel-
spectrogram frame by frame and can not train in a parallel
way, which is unsuitable as the baseline model of adversarial
attack. As a result, we do not use it as our VC baseline model.

Secondly, various non-autoregressive VC models capa-
ble of synthesizing speech in a non-autoregressive manner
have been proposed to speed up the training and inference
process enormously. The non-autoregressive models gener-
ate parallel sequences, solving word skipping and repetition
problems caused by incorrect attention alignment. The typ-
ical non-autoregressive VC model is based on FastSpeech
2 [54], and consists of multiple feed-forward transformer
(FFT) blocks. Mel-spectrograms generated using a non-
autoregressive method do not rely on the previous frames and
are suitable for adding adversarial constraints. Therefore, the
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FastSpeech-based VC model is used as our first VC baseline
model for generating fake audio.

The third type is fully end-to-end (E2E) VC models, which
can generate speech waveform from waveform or bottleneck
features directly. Different from the previous two kinds of VC
models, the E2E VC model requires less human annotation
and feature development, while the joint optimization of the
E2E VC model can avoid the distribution mismatch between
the acoustic model and the vocoder. Moreover, the E2E VC
model can also reduce training and deployment costs. In this
study, to comprehensively investigate the effect of adversarial
constraints for different levels of representations of the VC
models, we adopt the HifiGAN-based E2E VC model [55] as
our second baseline model.

Different from the TTS-based fake audio generation, the
VC model does not have high requirements on the quality and
size of the training data. However, neither the TTS nor the
VC model takes the downstream SID task into consideration,
and the performance of attacking the SID model by spoofed
audios is not as expected. To better attack the SID model,
besides preserving the timbre of the target speaker, the attack
needs to leverage the vulnerability of the SID network as well.

B. Adversarial attack in speaker identification

The adversarial attack is typically divided into two cate-
gories according to whether the attackers expect the model
is misleading to a specific output, which are targeted and
non-targeted attacks. We mainly focus on targeted attacks
in speaker identification tasks in this study. Das et al. [56]
gave an overview of various types of attack on speaker
verification focusing on potential threats of adversarial attacks
and spoofing countermeasures from the attacker’s perspective.
In [25], Li et al. explored the existence of the universal ad-
versarial perturbations (UAPs) in speaker recognition systems
and proposed to generate UAPs by learning the mapping from
the low-dimensional normal distribution to the UAP subspace
via a generative model. Xie et al. [26] proposed the real-
time, universal, and robust adversarial attack against DNN-
based speaker recognition system by adding audio-agnostic
universal perturbations. Li et al. [27] launched a practical
and systematic adversarial attack against speaker recognition
systems and integrated the estimated room impulse response
into the adversarial example training for over-the-air attack.
In our previous work [31], to targeted attack the speaker
recognition system, we generated inaudible adversarial per-
turbations based on psychoacoustic principle of frequency
masking. Zhang et al. [32]] performed black-box waveform-
level targeted adversarial attacks against speaker recognition
systems by generating imperceptible adversarial perturbations
based on auditory masking. In [29]], Chen ef al. proposed
FAKEBOB to craft adversarial examples and conducted a
comprehensive and systematic study of the adversarial attacks
on speaker recognition systems to understand their security
weakness in the practical black-box setting.

However, to achieve a targeted adversarial attack, all the
studies mentioned above add adversarial perturbation to an
arbitrary speech. From a human perception perspective, these

adversarial audio sounds completely different from the target
speaker’s timbre. When the attack needs to meet the require-
ment of text and speaker similarity, these adversarial attack is
easy to be detected. Furthermore, even though these methods
introduce small perturbations as inaudible as possible to the
fake audio, the perturbations are usually directly added to the
waveform and it can still be perceived by humans.

III. METHODOLOGY

In this section, we introduce how we generate timbre-
reserved fake audio. We add adversarial constraints in different
levels of representations of voice conversion model training:
VC predicted Mel-spectrogram, latent representation, and re-
constructed waveform.

A. Adversarial constraint

To make the fake audios generated by the VC model have
distinctive speaker attributes, we add an adversarial constraint
process into VC model training, which can adversely restrict
the VC model representations and lead to the speaker classifier
giving the target prediction. In the adversarial constraint pro-
cess, suppose that a well-trained speaker identification model
is f(-), and the Mel-spectrogram M is the input of the SID
model, which is the VC model predicted representation. And
its corresponding speaker label predicted by the SID model
f() is y, while its VC target speaker label is y'. When y = ¢/,
the Mel-spectrogram M generated from the VC model has
the right speaker attribute. In contrast, when y # v’, the
adversarial constraint process is used to modify M generated
from VC model, and the adversarial constraint § can be defined
as follows:

min Log(f(M +6),y),

1
st 9]l < e, %

where Leg(-) is the loss function to make adversarial ex-
amples lead the SID model predicting the specific target
speaker label, and the hyperparameter € is used to control the
maximum perturbation generated. The 4 is initialized to a zero
vector and e is gradually reduced from a large value. For each
iteration, ¢ is updated as follows:

§ < clip, (6 — Ir - sign(VsLeg(f(M +46),y'))), (2)

where [r is the learning rate, VsLcg is the gradient of SID
model with respect to §. When we attempt to perturb the
original VC model, this adversarial constraint is added in
various VC representations during the VC model training to
reserve the distinctive target speaker information.

B. Adversarial constraint on Mel-spectrogram

Figure (1| is an overview of our first strategy of adversarial
constraint on Mel-spectrogram, which consists of a non-
autoregressive based voice conversion model and an attack
constraint process. The VC model is trained beforehand and
then jointly trained with the attack constraint process. In
order to make the VC model predict the Mel-spectrogram
with a distinctive target speaker attribute, we conduct our
first strategy in the following steps: first, the voice conversion
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Non-autoregressive based Voice Conversion Model
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Fig. 1: An overview of adversarial constraint on Mel-spectrogram. The gray box is the non-autoregressive based voice conversion
model, whose inputs are source wave and speaker ID. The predicted Mel-spectrogram is then classified by the speaker classifier,
and it is determined if it is the target speaker to decide whether to add the adversarial constraint.

model converts the source speaker’s identity to the target
speaker y’; then, the adversarial constraint is added to optimize
the predicted Mel-spectrogram when the prediction of speaker
classifier is not as same as the target speaker.

For VC model training, a pre-trained ASR model is first
used to extract speaker-independent linguistic information
from the source waveform. We employ the bottleneck feature
extracted from the ASR final encoder layer as linguistic
information. The acoustic model predicts the Mel-spectrogram
by a 6-layer conformer encoder-decoder structure similar to
FastSpeech 2 [54]. The speaker embedding from the speaker
encoder is fed to the decoder as conditions for target voice
generation. We adopt the L1 loss as reconstruction loss to
optimize the VC model and is defined as:

Erec:HMgt_MHh (3)

where M, and M represent the ground truth Mel-spectrogram
of source speech and the VC predicted Mel-spectrogram,
respectively.

As for joint training with attack constraint, we use the Mel-
spectrogram predicted by the VC model to attack the speaker
classifier, which is a well-trained speaker identification model
sharing the same speaker set as the VC training data. If the
attack fails, as shown in the right part of Figure |1} we add a
tiny adversarial perturbation to the predicted Mel-spectrogram
to generate the adversarial Mel-spectrogram M4, with an
adversarial constraint which can be defined as:

Madv = M + 5adv

4
st ||0aav]l <, @

here, 0.4, represents the tiny adversarial perturbation and
€ is used to control the maximum adversarial perturbation
generated. The tiny adversarial perturbation can be optimized
by:

min ECE (f(Madv)a y/) ) (5)

where L.z aims to make the M4, fool the well-trained
speaker identification system into predicting a specified target
label. Therefore, the joint training with adversarial constraint
can be optimized by the following loss function:

Loy = { HMgt - ]\ZAHD
| Magy — M|,

if succeeded,

6
if failed. ©)

A well-trained speaker classifier f(-) is added behind the VC
model, the Mel-spectrogram predicted from the VC model
M is used as the input of f(-), and the system determines
whether the prediction of the speaker classifier f (M ) is the
target speaker 4" or not. When f (M ) # ¢/, in other words, the
attack failed, we add an adversarial perturbation to the Mel-
spectrogram as the adversarial constraint. In order to force
the predicted Mel-spectrogram M of the VC model can be
classified to the target speaker, we expect to minimize the L1
loss between the predicted Mel-spectrogram M and the Mel-
spectrogram with the adversarial perturbation M,4, so that
the VC model can fool the well-trained speaker recognition
system. The adversarial perturbation §.4, is optimized by
Equation [2| until the predicted label f(M) is the target label.
In contrast, when the speaker classifier gives a prediction of
the target speaker label, which means the attack succeeds, the
VC model is optimized only using the original reconstruction
loss in Equation

After VC model joint training with the attack constraint
process, the generation of deep fake audio is based on the
HifiGAN vocoder [57], whose input is the Mel-spectrogram
predicted by the adversarial constrained VC model.

C. Adversarial constraint on latent representation

As shown in Figure 2] we add the adversarial constraint
to the latent representation of the VC model in the second
strategy. The encoder takes the bottleneck (BN) feature as
the input and outputs the high-level linguistic representation,
while the speaker encoder is adopted to generate speaker
embedding. The latent representation z is the concatenation of
the high-level linguistic representation and speaker embedding.
The adversarial constraint on latent representation z.q, i8S
operated by adding the adversarial perturbation, which can be
formulated as follow:

Zagy = 2+ 6adv- (7)

The following optimization of tiny adversarial perturbation and
joint training is as same as the first strategy:

min LC’E (f(DeC<Zadv))7 y/) ) (8)
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Non-autoregressive based Voice Conversion Model
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Fig. 2: Adversarial constraint on latent representation. The gray box is the non-autoregressive based voice conversion model.
The latent representation is the concatenation of the high-level linguistic representation and speaker embedding.
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Fig. 3: The architecture of end-to-end voice conversion model.

where Dec(-) represents the FFT-based decoder and
Dec(z,4y) is the Mel-spectrogram predicted by the FFT-based
decoder from the adversarial perturbed latent representation.
Next, the second strategy of adversarial constraint on latent
representation can be optimized by:

{ |[My. — M|y, if succeeded,
Eadv =

|[Dec(zagy) — M|y,  if failed.

The adversarial perturbation is added to the latent represen-
tation when f(M) # 3. And we minimize the difference
of predicted Mel-spectrogram M and the Mel-spectrogram
Dec(z,4v) decoded from the perturbed latent representation.
The adversarial perturbation cfadv is optimized by Equation [2]
until the predicted label f(M) is the target label y’. When
the attack succeeds, the VC model is optimized as normal in
Equation [3]

€))

D. Adversarial constraint on reconstructed waveform

In addition to adding adversarial perturbation on Mel-
spectrogram or latent representation, we also add adversarial
perturbation on the reconstructed waveform. An end-to-end
HiFiGAN-based voice conversion model replaces the VC
model and the detailed architecture is illustrated in Figure [3]

the VC module goes through single-stage training for efficient
end-to-end learning. The VC model consists of a convolutional
long short-term memory (CLSTM) based encoder, a speaker
encoder, and a HiFiGAN-based decoder [57], which aim at
high-level linguistic representation encoding and waveform
reconstruction, respectively. CLSTM consists of three stacks
of convolution layers, the LeakyReLU activation function, and
an LSTM layer. The speaker embedding from the lookup table
is fed to the decoder as conditions for target voice generation.
The architecture of the decoder generator follows the same
configuration as HiFi-GAN [57].

The training objective of the end-to-end VC HiFiGAN [55]],
which consists of reconstruction loss L., feature matching
loss L¢n, and adversarial loss L. .qv. As for reconstruction
loss, we compute L1 loss between spectrograms of the source
waveform X and predicted waveform X s, and the reconstruc-
tion loss can be formulated as:

Erec: HMsstHla (10)

where M, and M, represents the Mel-spectrogram of source
waveform and predicted waveform, respectively. To improve
the performance of voice conversion, we also employ adversar-
ial training for more natural speech. The adversarial generator
loss is calculated as:

£, = (D(Xs) — 1), (11)
£33, = (D(Xs) —1)2 + D(X,)?, (12)

where D(-) is a discriminator network. For adversarial training
stability, feature matching loss is also used as:

L

where T denotes the total number of layers in the discriminator
and D; produces the feature map of the ¢-th layer of the
discriminator with N; number of features.

Figure [4]is an overview of the third strategy, the adversarial
perturbation is directly added to the VC predicted waveform
and can be defined by:

Xagy = X + 0aau, (14)

where X represents the VC reconstructed waveform and X4,
represents the adversarial perturbed reconstruction waveform.
To adapt the input of the attacked speaker classifier, we convert
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End-to-end Voice Conversion Model
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Fig. 4: Adversarial constraint on the reconstructed waveform. The gray box is the end-to-end based voice conversion model.
The adversarial perturbation is added to the reconstructed waveform if the reconstructed waveform is not classified as the target

speaker by the speaker classifier.

the waveform to Mel-spectrogram after adding adversarial
perturbation and optimize the VC model as follows:

o || Mge — Mel(X )||1, ifsucceeded,
e HMel( saw) — Mel(X)||1, if failed,

where Mel(-) is computing the Mel-spectrogram from wave-
form. When f(Mel(X)) # y', we minimize the L1 loss
between the Mel-spectrogram of the VC reconstructed wave-
form Mel (X ) and the Mel-spectrogram of the perturbed
reconstruction waveform Mel(X 4, ). For the same purpose as
the former strategies, we expect the adversarial constraint can
force the VC model to generate the waveform with distinctive
speaker attributes.

5)

E. Generation of timbre-reserved fake audio

After the VC models with adversarial constraints are trained,
the generation process of fake audio is shown in Figure 5] With
the given text, we generate the audio of a random speaker by a
TTS system. The TTS system is based on the FastSpeech [54]]
model and modified the encoder and decoder structure inspired
by the DelightfulTTS 2 [58] conformer block. Then the given
speakerID and the TTS generated audio are the inputs of
the adversely constrained VC model to predict the attack
Mel-spectrogram. A HifiGAN vocoder [57] is followed to
reconstruct the waveform from Mel-spectrogram. After that,
the timbre-reserved fake audios are obtained for the adversarial
attack against the SID model.

TS Model

fsrrbee

Adversarial Constraint
SID Model
based VC Model }—» Wt s ——> e
Timbre-reserved
Fake Audio

Fig. 5: The flowchart of the timbre-reserved fake audio gen-
eration.

IV. EXPERIMENTAL SETUP
A. Datasets

In this study, we use AISHELL-3 [59] to train the speaker
identification model and voice conversion model. AISHELL-3

is a multi-speaker Mandarin Chinese audio corpus containing
88035 recordings from 218 native speakers. And the test set
of AISHELL-1 [60] is used to evaluate the performance of
the SID model. For the timbre-reserved adversarial attack, the
dataset of audio deepfake detection (ADD) challenge [33] is
used to evaluate our proposed method. Since ADD challenge
corpus is an open-source dataset, and is specifically designed
for deep fake audio attack and detection, we employ this
corpus to establish a solution to first address the adversarial
attack while remaining the timbre and also customizing the
text. The training and adaptation sets for ADD Track 1 and 2
are used to train the fake detection models and the test set of
these two tracks are used to evaluate the detection models. In
the test set of ADD challenge Track 3.1, 10 speaker IDs and
500 texts are given to generate the fake audio. We generate
fake audio according to the given text and speaker identities
and the fake audio can fool the fake detection model and SID
model. Furthermore, the generated attack samples need also to
meet the certain requirement of intelligibility and similarity.

B. Setup

The detailed experimental setup of all the models shown in
Figure [3 is described as follows:

e TTS model: The TTS model we use to generate wave-
forms from the given text is a 6-layer conformer encoder-
decoder structure, which is similar to the Delightful TTS
2 proposed in [58|]. With the given text, we generate the
waveforms by using a randomly selected speaker timbre,
and the waveforms are used as the source waveform of
the VC system.

e VC models: For VC model training, a pre-trained ASR
model by the WeNet toolkit [61] is first used to ex-
tract speaker-independent linguistic information from the
source waveform and the ASR model is available on the
official website |'| After that, the non-autoregressive and
end-to-end VC models are adopted to generate the fake
audios: Firstly, the non-autoregressive VC model used to
convert source speaker timbre to attack speaker timbre is
an 8-layer transformer encoder-decoder structure similar

Uhttps://github.com/wenet-e2e/wenet
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to FastSpeech2 [54] and we choose HifiGAN with multi-
band processing as the vocoder [57]. On the other hand,
the end-to-end VC model consists of a convolutional long
short-term memory (CLSTM) encoder and a HiFiGAN-
based decoder. CLSTM consists of three stacks of con-
volution layers followed by the LeakyReLU activation
function and an LSTM layer.

After these VC models are trained, we add the speaker
classifier in VC models to adversely constrain the dis-
tinctive speaker information to the generation. In the ex-
periments of adversarial constraint on Mel-spectrogram,
the learning rate Ir in Equation [2] is set to be 8¢ — 4
and the ¢ is updated 1000 times for each mini-batch.
We use the /o, norm to measure the perturbation bound.
The € starts from 0.8. While in the experiments on latent
representation, the learning rate Ir is set to be 1le —4 and
e starts from 0.1. Moreover, the end-to-end VC model is
trained with a Ir of 5e —4 and a e starting from 0.5, and
the § is updated 2000 times for each mini-batch.
Speaker identification model: The SID model we used
in this study is ECAPA-TDNN [21]], which is also used as
the speaker classifier in voice conversion. The EER of this
model on the AISHELL-1 test set is 1.91%. The architec-
ture of ECAPA-TDNN in this study incorporates 3 SE-
Res2Block modules, and channel size and the dimension
of the bottleneck in the SEBlocks are set to 1024 and
256, respectively. The loss function is additive angular
margin softmax (AAM-softmax) [62]] with a margin of
0.2 and a scale of 30.

ability to cheat the detection systems and have com-
parable results with the ADD challenge participating
teams. We evaluate the fake audio on open-source deep
fake detection models provided by the ASVspoof Chal-
lenge [63]] and ADD Challenge [33|], which are available
on the websites: https://github.com/asvspoof-challenge/
2021/tree/main/DF/Baseline-RawNet2| [64] and https:/
github.com/clovaai/aasist [65]]. We further implement two
similar fake detection models as the baseline systems
listed in [33]], which are based on GMM and ECAPA-
TDNN models. We test the EER of these two models on
the test set of Track 1 and 2, which are 25.6%, 33.1%,
45.7%, and 40.7%, respectively. These are comparable to
the EER of the baseline system in [33]].

Objective evaluation: The MOSNet [66] was proposed
to automatically predict the mean opinion score (MOS) of
an utterance. We use the objective mean opinion score (o-
MOS) predicted by the MOSNet as an objective metric of
the generated fake audio quality. A pretrained MOSNetE]
is used to make the 0-MOS prediction, and the higher
0-MOS represents the better quality of the audio.
Subjective evaluation: We also conduct subjective eval-
uations to value the fake audio from the human percep-
tibility of audio. The evaluation set contains 20 samples
of each VC system and a total of 100 samples. We use
comparative mean opinion score (CMOS) to compare the
quality of the fake audios generated by the vanilla VC
model and other adversarial based methods. For each
pair of utterances in CMOS test, 25 native participants
are asked to give a score ranging from -3 (the proposed
system is much worse than baseline) to 3 (the proposed

C. Evaluation metrics system is much better than baseline) with intervals of

1. Moreover, to further effectively evaluate the quality
and similarity of the fake audio, we also conduct a
MOS test on all the fake audio. Participants are asked

We adopt several criteria listed below to measure the
performance of various kinds of generated fake audio.

« Attack success rate: is used to evaluate the performance

of targeted attacks in speaker identification. The attack

success rate is also the accuracy predicted from the SID,

denoted as Acc. Formally, the accuracy is calculated as:
N,

Ace = N (16)
where N is the total number of fake audios we generated
to test and N, refers to the number of audios attacking
successfully. The higher the Acc in a targeted attack
means the better the targeted attack is conducted.
Deception success rate (DSR): reflects the degree of
fooling the audio deepfake detection model by the gen-
erated utterances, which is defined as followed:

w

DSR = e i’ a7
where W is the count of wrong detection samples by
all the detection models, A is the count of all the
evaluation samples, and M is the number of detection
models. Since we follow the rule of ADD challenge
track 3.1 to generate fake audio, we also evaluate the
DSR in our experiments. In order to prove that our
generated timbre-reserved fake audios also have the

to listen to the provided audio and evaluate their quality
and similarity on a 5-point scale: 1-bad, 2-poor, 3-fair,
4-good, 5-excellent.

Character error rate (CER): In order to make sure the
generated fake audio meets the specific text requirements,
the CER is used to evaluate the intelligibility of the fake
audio, the CER is used to evaluate the intelligibility of
the fake audio, and can be calculated as follows:

D+1
CER = SJFTJF (18)

where S represents the number of substitution errors,
D represents the number of deletion errors, I is the
number of insertion errors, and N represents the total
number of characters in the reference answer. he model
we used to calculate CER is a pre-trained ASR model
by the WeNet toolkit [61], which is available on the
official website: https://github.com/wenet-e2e/wenet/tree/
main/examples/wenetspeech.

Zhttps://github.com/lochenchou/MOSNet
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V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct experiments to test our proposed
strategies on ADD challenge dataset and then give further
analyses on our method.

A. Results on different reconstructed representations

Table [T shows the attack success rates and deception suc-
cess rates of the fake audios generated by various kinds of
generation methods. The first method is only generated by
the vanilla VC model, which is adopted as the lower limit
of all the comparisons and is denoted as ‘VC’ in the Table.
The second fake audio generation method is to add adversarial
perturbation directly based on the fake audios generated by the
VC model using the approach we previously proposed in [31]].
Since the perturbation is directly optimized by the SID system
and straightforwardly added to the waveform, this method is
the upper limit of the adversarial attack and is denoted as
‘VC+adv’. The rest three proposed methods are the VC model
trained with multiple kinds of adversarial constraints as we
described in Section and we denote these three strategies
based on the location of adversarial constraints added as ‘Mel’,
‘Latent’, and ‘Waveform’, respectively.

1) Attack success rate: As shown in Table [I, the attack
success rate of VC model based fake audio is 29.60%, while
the VC audio with adversarial perturbation achieves 76.50%.
Meanwhile, the Acc results of our proposed strategies are
60.58%, 54.94%, and 66.30%, respectively. We can observe
that the fake audios generated based on all these three pro-
posed timbre-reserved adversarial strategies are significantly
improved compared to the fake audios generated by the origi-
nal vanilla VC model, which are 30.98%, 25.34%, and 36.7%
absolute improvement. And our proposed methods also have
comparable results with the direct perturbations to the vanilla
VC generated fake audios. Since the adversarial constraint for
latent representation is difficult to have an effect on the SID,
in other words, it is hard to optimize, the result of the second
strategy is the lowest of these three strategies.

Due to the adversarial constraint being added only during
the model training instead of directly added to the attack
waveform, the attack success rates of the proposed strategies
have a small gap with the VC+adv method. The results also
illustrate that the performance varies when the adversarial
constraint conducts on the different kinds of reconstructed
representation. Moreover, as the reconstructed representation
with adversarial constraint gets closer to the SID model, the
better attack effect.

TABLE I: Attack success rates (%) and deception success rates
(%) of different kinds of generation methods.

Method Acc (%) T DSR (%) 1
Baseline VC 29.60 84.58
Upper limit VC+adv 76.50 87.34
Mel 60.58 90.44
Proposed Latent 54.94 87.88
Waveform 66.30 88.26

2) Deception success rate: As shown in Table [} the DSR
results of different kinds of generation methods. We can ob-
serve that the DSR results of all these three proposed strategies
outperform the vanilla VC and VC+adv method. In addition,
the DSR results of all these fake audio generation methods
have a comparable performance with the ADD challenge
participating teams [33]], which indicates that the fake audio
generated by our proposed strategies also has the ability to
fool the detection systems.

B. Objective and subjective evaluation

1) Objective evaluation: The MOSNet [66] prediction o-
MOS is employed as the objective measurement and Figure []
shows the objective performance of the o-MOS of various
generation methods. We can observe that all the 0o-MOS results
of fake audio generated by our proposed strategies are higher
than the methods of directly adding adversarial perturbation to
the audio. This indicates that compared to methods of adding
adversarial perturbation directly to the audio, the fake audios
generated based on our proposed strategies have better quality
since we add adversarial constraints to the VC model avoiding
directly introducing extra perturbations to the fake audio.

VC+adv 3.21
Mel 3.30

Latent 3.26

Fig. 6: The 0o-MOS of different kinds of generation methods.

2) Subjective evaluation: We conduct a CMOS evaluation
shown in Table [l The result shows that our proposed strate-
gies achieve 0.22, 0.20, and 0.17 CMOS higher than the
VC+adv method, demonstrating the fake audio generated by
our proposed strategies is more similar to audio generated by
the vanilla VC model. Compared to the VC+adv method in-
troducing extra noise to the waveform, our proposed strategies
can get rid of the influence of the additional perturbation by
adding adversarial constraints in the generation model.

We also conduct MOS tests on various generation methods,
to evaluate the quality and speaker similarity of all kinds of
fake audio. The results of the MOS test are shown in Table [l
We can observe from the MOS results of quality that our
proposed strategies outperform the VC+adv method, indicating
that the audio quality generated from our proposed strategies
is better than the VC+adv method, while is comparable to
the quality of the audio generated by the vanilla VC model.
This demonstrates that the adversarial constraint added during
the VC model training does not influence the quality of the
generated audio. For the speaker similarity, the MOS results
of our proposed strategies are also slightly higher than the
VC+adv method.

These subjective results demonstrate the proposed strategies
based on adversarial constraints can avoid the quality damage
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caused by extra adversarial perturbations and also do not
influence the capability of the VC model.

TABLE II: CMOS and MOS results of fake audios generated
by different strategies.

CMOS 1 - MOS 1 —

Quality Similarity

vC - 3.9140.07 3.8740.06
VC+adv -0.34 3.42+40.11 3.79+£0.08
Mel -0.12 3.85+0.08 3.86£0.06
Latent -0.14 3.82+0.08 3.84+0.07
Waveform -0.17 3.78+0.09 3.884+0.07

C. Analysis

1) Speaker similarity of fake audios: As shown in Figure
and [8] we utilize a pre-trained speaker encoder [21]] to extract
speaker embeddings of real and fake speech, which are visual-
ized through t-SNE [67]]. The distribution of male and female
speakers are respectively visualized. In these two figures, all
the ‘x’ represents the real data from various speakers, while
all the ‘o’ represents the generated fake audio. Different colors
on behalf of different speakers. In particular, the fake audios
in the left parts of both figures are generated by the vanilla
non-autoregressive based VC model, while those in the right
are generated by the VC model with adversarial constraint.

We can observe the fake audio samples generated by the
VC with adversarial constraints are more clustered and nearer
to the real audio samples than the samples generated by the
original VC model. It means the similarity of the fake audio
generated by the proposed method is closer to the real audio
of target speakers, since the adversarial constraints exploit the
weakness of SID model.

From the analysis above, the fake audios generated by our
proposed methods are not only timbre-reserved but also more
speaker-wise than the original vanilla VC model. The speaker
similarity is improved after the adversarial constraint, which
is beneficial to successful attacks.

Voice Conversion VC with Adversarial Constraint
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Fig. 7: Visualization of male speaker distributions.
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Fig. 8: Visualization of female speaker distributions.

2) Intelligibility of fake audios: The CER results are shown
in Table Since our proposed adversarial attack is also text
customized, we can see that the CERs of all kinds of fake
audio generation methods are low, which indicates that the
text of the fake audio can meet specific requirements. In the
specified attack scenarios, we also can customize the text.

TABLE III: CERs (%) of fake audios generated by different
methods.

Method vC
CER (%) | | 3.97

VC+adv
3.57

Mel
393

‘Waveform
3.99

Latent
3.97

From the discussion mentioned above, both speaker simi-
larity and intelligibility are indicated to be guaranteed.

D. Comparison of different kinds of constraints

Cai et al. [68] added a speaker identity-related loss to
constrain the centralized to improve the speaker similarity
between the synthesized speech and its natural reference audio.
This feedback constraint (FC) also can be added to VC model
to constrain the distance of the VC predicted Mel-spectrogram
and the real Mel-spectrogram. As shown in Table [V] we can
observe that our proposed adversarial constraint based on Mel-
spectrogram outperforms the feedback constraint (FC). Since
the adversarial constraints exploit the weakness of SID model,
it is more beneficial to adversarial attack, while the FC mainly
focuses on generating Mel-spectrogram fitting the real Mel-
spectrogram as much as possible.

TABLE IV: Comparison of adversarial constraint and feedback
constraint [68]].

Method Acc (%) T DSR (%) 1
Adversarial constraint (Mel) 60.58 90.44
Feedback constraint [[68]] 47.84 88.32

VI. CONCLUSION

In this study, we propose to generate timbre-reserved fake
audios for the adversarial attack in the speaker identification
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system. By adding adversarial constraints to different levels
of representations of the VC model, we can generate timbre-
reserved and speaker-wised fake audio to attack the SID
model. Experiments on ADD challenge corpus show that our
proposed strategies significantly improve the attack success
rate compared to the vanilla VC model. The objective and
subjective evaluation demonstrate that adversarial constraints
do not affect the quality of the VC model and also can get rid
of the influence of the extra noise by adversely constraining
the fake audio generation model instead of directly adding
adversarial perturbation to the waveform. Moreover, we also
analyze the speaker similarity and intelligibility of the fake
audio, the speaker similarity is improved after the adversarial
constraint, which is beneficial to attack successfully. And this
can also prove that our generated timbre-reserved fake audio
is speaker-wised and the text of our adversarial attack can be
customized.
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