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DiCLET-TTS: Diffusion Model based Cross-lingual
Emotion Transfer for Text-to-Speech — A Study

between English and Mandarin
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Abstract—While the performance of cross-lingual TTS based
on monolingual corpora has been significantly improved recently,
generating cross-lingual speech still suffers from the foreign
accent problem, leading to limited naturalness. Besides, current
cross-lingual methods ignore modeling emotion, which is indis-
pensable paralinguistic information in speech delivery. In this
paper, we propose DiCLET-TTS, a Diffusion model based Cross-
Lingual Emotion Transfer method that can transfer emotion
from a source speaker to the intra- and cross-lingual target
speakers. Specifically, to relieve the foreign accent problem while
improving the emotion expressiveness, the terminal distribu-
tion of the forward diffusion process is parameterized into a
speaker-irrelevant but emotion-related linguistic prior by a prior
text encoder with the emotion embedding as a condition. To
address the weaker emotional expressiveness problem caused
by speaker disentanglement in emotion embedding, a novel
orthogonal projection based emotion disentangling module (OP-
EDM) is proposed to learn the speaker-irrelevant but emotion-
discriminative embedding. Moreover, a condition-enhanced DPM
decoder is introduced to strengthen the modeling ability of
the speaker and the emotion in the reverse diffusion process
to further improve emotion expressiveness in speech delivery.
Cross-lingual emotion transfer experiments show the superiority
of DiCLET-TTS over various competitive models and the good
design of OP-EDM in learning speaker-irrelevant but emotion-
discriminative embedding.

Index Terms—Speech synthesis, cross-lingual, emotion transfer,
disentanglement, diffusion model

I. INTRODUCTION

CROSS-lingual text-to-speech (TTS) [1], [2], [3] refers
to the task that requires the system to generate speech

in a language foreign to a target speaker. This task has
many applications, such as code-mixed speech synthesis for a
voice agent, foreign movie dubbing [4], and computer-assisted
pronunciation teaching [5]. Due to the difficulty of obtaining
a bilingual corpus produced by a highly proficient speaker
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in both languages, more practically, current studies mainly
build a cross-lingual TTS system based on corpora from
monolingual speakers in different languages [6], [7], [8], [9].
However, these approaches mostly ignore modeling emotion
aspects during speech generation, while emotion is a kind
of indispensable paralinguistic information that reveals the
speaker’s intentions and moods. Without properly delivering
such paralinguistic information, the gap between synthetic and
real speech cannot be mitigated. This paper aims to address
this emotional speech synthesis problem in cross-lingual TTS
with only monolingual corpora available. Specifically, a cross-
lingual emotion transfer method in the same-gender scenario is
introduced. With cross-lingual emotion transfer, a cross-lingual
TTS model can directly synthesize emotionally diverse speech
in a language foreign to the target speaker, i.e., synthesizing
emotional speech in authentic Mandarin for an English speaker
by transferring the emotion from a Mandarin speaker, without
employing any Mandarin emotional speech from the English
speaker during system building.

Although the current studies have made many efforts to
cross-lingual TTS, there is still a gap between generated
speech and those of native speakers in terms of naturalness, as
synthetic speech often comes with a strong foreign accent [1].
The reason for this phenomenon is that each speaker in the
training set speaks only one language, and the entanglement
between different speech factors, such as linguistic content,
speaker identity, and emotion, makes it hard to only transfer
the speaker’s timbre across different languages. Therefore, the
key to alleviating this foreign accent issue is how to properly
disentangle the speaker and language or linguistic content [8],
[9], [10].

Based on the disentanglement strategy, the existing cross-
lingual approaches can be roughly divided into implicit-
based and explicit-based methods [9]. Implicit-based methods
mainly study the unified linguistic/phonetic representations
across languages to disentangle language and speaker timbre
implicitly [11], [12], [13], [14], [15], [16]. On the other hand,
to further solve the foreign accent problem, the explicit-based
methods prefer to adopt adversarial learning [1], [7], [9],
[17] or mutual information [6] to minimize the correlation
between different speech factors, thus encouraging the model
to automatically learn disentangled linguistic representations.
However, the disturbance caused by adversarial learning could
degrade the naturalness of the generated cross-lingual speech.
Furthermore, the above cross-lingual studies have not consid-
ered the emotion factor yet, while proper emotion is essential
to speech expressiveness, as just mentioned.
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To improve the emotion diversity of synthetic cross-lingual
speech, we need to implement a cross-lingual TTS model
with the ability of cross-speaker emotion transfer as well,
which can produce emotional speech for target speakers by
transferring the emotion from another source speaker [18].
Reference-based style transfer is the most popular strategy
for cross-speaker emotion transfer, where Reference En-
coder [19], Global Style Tokens (GST) [20], and Variational
Auto-Encoder (VAE) [21] are typically used to extract an
emotion embedding from the reference Mel-spectrum with
desired emotion. Usually, the speaker identity can be obtained
from either a trainable look-up table [22] or a pre-trained
speaker verification model [23].

The key to the reference-based methods is to learn speaker-
irrelevant emotion embedding from the reference spectrum by
disentangling the emotion and the speaker’s timbre [24], [25],
[18]. Otherwise, the speaker information retained in the emo-
tion embedding could contaminate the target speaker’s timbre,
making synthesized speech sound somehow like uttered by the
source speaker rather than the target speaker, i.e., the speaker
leakage problem [26]. However, due to the emotion and the
timbre being deeply entangled in speech, it is hard to remove
the speaker-related information while avoiding the emotion
information from being weakened in the emotion embedding,
which could lead to weaker emotional expressiveness problem
in the synthesized speech [27]. Furthermore, for cross-lingual
emotion transfer, a unique challenge is that emotion will make
the intonation change more violently [28] and then aggravate
the influence of foreign accents, resulting in a serious decline
in the naturalness of the emotional speech synthesized for
foreign speakers. In this paper, we attempt to enable English
speakers to express various emotions in Mandarin naturally
and expressively, which is a more challenging scenario since
Mandarin is a typical tonal language and English is a non-tonal
language [29], [30].

Recently, diffusion probabilistic models (DPMs) [31], [32]
have shown their superiority in various content generation
tasks [33], [34], [35], including the recent attempts in speech
generation tasks [36], [37], [38], [39]. A DPM aims to
gradually transform the raw data into a terminal distribution
(usually standard Gaussian) by a forward diffusion process
and then learns a reverse diffusion process parameterized
with a neural network to rebuild the raw data from the
terminal distribution [31]. Importantly, DPMs show superiority
in expressive data generation, which means they can generate
more diverse data due to their ability to essentially preserve
the semantic structure of the data. To leverage the advances of
DPMs, this paper proposes DiCLET-TTS, a novel DPM-based
TTS model for cross-lingual emotion transfer. DiCLET-TTS
consists of a prior text encoder, an orthogonal projection based
emotion disentangling module (OP-EDM), and a condition-
enhanced DPM decoder.

Specifically, to relieve the foreign accent problem and im-
prove emotional expressiveness, the prior text encoder aims to
parameterize the terminal distribution of the forward diffusion
process into a speaker-irrelevant but emotion-related linguistic
prior, achieved by two steps. First, the linguistic encoding
is constrained by speaker adversarial training to obtain a

speaker-irrelevant linguistic representation. A content loss is
particularly adopted to mitigate the interference of adversarial
training on linguistic encoding. An emotional adaptor is sub-
sequently adopted to convert the speaker-irrelevant linguistic
representation into a speaker-irrelevant but emotion-related
linguistic prior with the condition of emotion embedding
extracted from OP-EDM.

To address the weaker emotional expressiveness problem,
the emotion embedding space learned in OP-EDM is explicitly
constrained by an Orthogonal Projection Loss [40] to force
the emotion embeddings to be aggregated within the same
emotion category and orthogonal between different emotion
categories, leading to a discriminative emotion embedding
space and improved transferred emotion expressiveness in
synthetic speech.

The reverse diffusion process is further parameterized with
the DPM decoder to restore the target Mel-spectrum from the
speaker-irrelevant but emotion-related terminal distribution.
We particularly introduce a condition-enhanced decoder to
further improve emotion expressiveness in speech delivery.
Specifically, the decoder follows the Unet [41] structure in
Grad-TTS [36], but differently, the speaker and emotion em-
beddings are fed to each ResBlock as enhanced conditions.

During the experimental evaluation, different emotions are
transferred from the source speaker to the intra- and cross-
lingual target speakers, respectively, to verify the effectiveness
of DiCLET-TTS while comparing the performance difference
between intra- and cross-lingual emotion transfer. Results
show that although the performance of intra-lingual transfer
is better than that of more challenging cross-lingual trans-
fer, DiCLET-TTS can clearly improve speech naturalness,
emotion similarity, and speaker similarity compared to three
competitive methods in both intra- and cross-lingual emotion
transfer scenarios. Furthermore, the embedding visualization
and preference test demonstrates the advantages of OP-EDM
in learning speaker-irrelevant but emotion-discriminative em-
bedding.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III introduces the proposed
method in detail. Section IV and Section V describe the
experimental setups and results, respectively. The component
analysis is introduced in Section VI. Finally, the paper con-
cludes in Section VII. Examples of synthesized speech can be
found on the project page1.

II. RELATED WORK

This section describes related studies on cross-lingual,
cross-speaker emotion transfer, and recent DPM-based TTS.

A. Cross-lingual TTS

Most current studies realize cross-lingual TTS by mixing
monolingual corpora of different languages while disentan-
gling the speaker and language or linguistic representations in
implicit or explicit ways to alleviate the foreign accent prob-
lem. Implicit methods mainly focus on exploring language-
irrelevant input representations [11], [12], [14], [15]. Liu et

1The demo can be found on https://silyfox.github.io/DiCLETdemo/
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al. [42] introduce a shared phoneme set for different languages.
Language embedding is extended by tone/stress embeddings
to control the accent of synthetic speech. In [11], [12], the
Automatic Speech Recognition (ASR) models are employed
to extract language-irrelevant Phonetic Posterior Gram (PPG)
features as the input representations. Unicode bytes [13],
mixed-lingual Grapheme-to-Phoneme (G2P) [14] frontend,
and International Phonetic Alphabet (IPA) [43], [15], [16] are
also taken as the unified phonetic representations that share
pronunciation across languages [9]. These studies indicate
that language-irrelevant representations can help disentangle
speaker and language, but the complexity of the cross-lingual
TTS pipeline is increased.

The explicit methods encourage the cross-lingual model to
automatically learn disentangled representation, i.e., speaker-
irrelevant linguistic representations or language-irrelevant
speaker representations. Zhang et al. [1] and Nekvinda et
al. [17] employ domain adversarial training to remove speaker
identity entangled in linguistic representations. Xin et al. [7]
construct a language-irrelevant speaker space via domain
adaptation and perceptual similarity regression. In [6], mutual
information minimization and domain adversarial training are
adopted to disentangle the obtained language and speaker
embedding, which guides cross-lingual speech synthesis. Ye
et al. [9] introduce a triplet training scheme to enhance cross-
lingual pronunciation by allowing previously unseen content
and speaker combinations to be seen during training. Shang et
al. [8] alleviate the foreign accent problem by using existing
authentic style during inference and accordingly propose a
style encoder through adversarial training. The above studies
mainly address the foreign accent problem, while emotional
speech is not considered.

B. Cross-speaker emotion transfer

Cross-speaker emotion transfer in TTS shares similar meth-
ods with other kinds of style transfer, as emotions are ex-
pressed in a special style. For clarity, all of them are referred
to as emotion transfer. Currently, there are mainly two major
approaches for cross-speaker emotion transfer, i.e., label-
assisted and reference-based methods. Label-assisted[44], [45]
methods are proposed to predict emotion-related prosodic
information, i.e., pitch and energy, from input text with
speaker and emotion ID. However, since prosodic information
contained in text lack residual acoustic information other
than pitch and energy, these methods are prone to produce
synthesized speech with average expressiveness.

The reference-based methods [19], [46], [21], [47], [48],
[49] is the mainstream strategy, which learns an emotion rep-
resentation [50] from reference as a condition to guide emotion
transfer. Skerry-Ryan et al. [19] integrate the Tacotron [51],
[52] model with an extra prosody encoder, denoted as Ref-
erence Encoder, in which the reference is encapsulated into
a fixed-length embedding that is directly concatenated with
the linguistic representations. Global Style Tokens (GST) [46]
further extends Reference Encoder by an embedded library
to learn a latent high-dimensional representation. Variational
Auto-Encoder [21] is also introduced to learn the poten-
tial emotion representation from the reference to complete

emotion transfer. However, these methods ignore speaker
disentanglement and aggregate all emotion-related aspects,
e.g., pitch, energy, and speaker’s timbre, into one hidden
emotion embedding, resulting in speaker leakage. To achieve
speaker disentanglement, Bian et al. [24] propose a multi-
reference encoder and an intercross training scheme in which
emotion and speaker are disentangled and transferred inde-
pendently. Whitehill et al. [25] improve the performance of
the multi-reference model on disjoint datasets by unpaired
training strategy and adversarial cycle consistency scheme. Li
et al. [18] introduce an emotion disentangling module, which
constrains the emotion embedding to be speaker-irrelevant
via an orthogonal loss with the learned speaker embedding.
To summarize, the aforementioned methods mainly aim to
obtain a speaker-irrelevant emotion embedding space in dif-
ferent ways, while the trade-off between speaker timbre and
emotional expressiveness is inevitable [26], [27].

C. DPM-based TTS

The Diffusion Probabilistic Models (DPMs) aim to convert
the raw data distribution into random noise before reversing
the transformations step by step to rebuild a new sample
with the same distribution as the raw data [31], [53] and
have achieved the SOTA results in various tasks, e.g., im-
age generation [54], [33], super-resolution [35], [34], and
TTS [36], [37], [38], [55]. One major drawback of DPM-based
models is the slow sampling speed due to many iterative steps.
Therefore, many previous DPM-based TTS methods focus
on accelerating the sampling method to boost the inference
speed [38], [39], [56], [57], [58]. Some research considers
changing the training process to generate high-quality speech.
Grad-TTS [36] and PriorGrad [59] transform the raw data dis-
tribution into a data-dependent prior distribution obtained from
the conditional information. The studies [60], [61] also drive
unconditional DPM-based models trained on untranscribed
speech to generate high-quality samples by phoneme classifier
guidance, where the phoneme classifier is trained separately.
Liu et al. [62] and Xue et al. [63] introduce the DPM-based
model into singing voice synthesis (SVS), demonstrating its
superiority in the expressiveness synthesis tasks. In this study,
we introduce the DPM-based model to cross-lingual emotion
transfer TTS, a more challenging and unexplored task.

III. METHODOLOGY

This section first gives a system overview of the proposed
DiCLET-TTS and then introduces the design of each module
in detail.

Figure 1 illustrates the proposed DiCLET-TTS architecture
for cross-lingual emotion transfer, a DPM-based TTS model
consisting of three major components: a prior text encoder,
an orthogonal projection based emotion disentangling module
(OP-EDM), and a condition-enhanced DPM decoder. As dis-
cussed, the entangled speaker and linguistic representation can
lead to a foreign accent problem. Thus, the prior text encoder
is adopted to parameterize the forward diffusion’s terminal
distribution as a speaker-irrelevant but emotion-related lin-
guistic prior, to mitigating the foreign accent while improving
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Fig. 1: The architecture of the proposed DiCLET-TTS. The input text is represented as the phoneme sequence, and speech is represented by
Mel-spectrum, which can be converted to the waveform by a Hifi-Gan vocoder.

emotional expression. The speaker identity is only modeled by
a speaker look-up table with speaker ID in the DPM decoder
to further disentangle the speaker from other factors. Consid-
ering that the speaker disentanglement in emotion embedding
could lead to weaker emotional expressiveness in synthesized
speech, our disentangled emotion embedding space is further
constrained by an introduced orthogonal projection loss to
ensure that the embedding maintains intense emotion discrim-
ination after removing speaker-related information. Finally, a
condition-enhanced DPM decoder is adopted to restore the
target Mel-spectrum from the speaker-irrelevant but emotion-
related terminal distribution, guided by the speaker and emo-
tion embeddings.

A. Prior text encoder

The prior text encoder consists of a text encoder, a length
regulator, and an emotional adaptor, aiming to parameterize
the terminal distribution of the forward diffusion process into a
speaker-irrelevant but emotion-related linguistic prior. Specif-
ically, to remove the speaker information from the linguistic
representation 𝑙𝑖 , the text encoder is encouraged to encode
input phonemes in a speaker-irrelevant manner by introducing
a speaker adversarial classifier. Then, we encode the length-
regulated 𝑙𝑖 through an emotional adaptor under the condition
of emotion embedding (will be introduced in Section III-B)
to obtain the speaker-irrelevant but emotion-related linguistic
representation 𝜇𝑒𝑚𝑜. However, adversarial training could dis-
turb linguistic encoding to some extent. Therefore, a content
loss is introduced to mitigate this disturbance. Details of the
prior text encoder and the loss functions will be introduced.

1) Text encoder: The text encoder converts the phoneme
sequence into the hidden linguistic representation 𝑙𝑖 ∈ R𝐶𝑖×𝑑 ,
where 𝐶𝑖 denotes the length of the phoneme sequence, and 𝑑

denotes the dimension of representation. The speaker adversar-
ial classifier is to make the linguistic representation 𝑙𝑖 speaker-
irrelevant through the softmax layer with gradient reversal
(GR), and the loss function is defined as:

L𝑙𝑎𝑑𝑣 = −
𝑛∑︁
𝑖=1

log𝑃 (𝑠𝑖 | 𝑙𝑖) , (1)

where 𝑛 is the batch size, 𝑃(𝑠𝑖 | 𝑙𝑖) is possibility of 𝑙𝑖 belong-
ing to the speaker 𝑠𝑖 . So that we can minimize the speaker
classification loss to reversely optimize the text encoder on
the speaker classification task.

The content loss guarantees the text encoder’s stability to
encode the input phoneme sequence when using the speaker
adversarial classifier. The corresponding loss function is de-
fined as:

L𝑐 = −
𝑛∑︁
𝑖=1

𝐶𝑖∑︁
𝑗=1

log𝑃
(
𝑝
𝑗

𝑖
| 𝑙 𝑗

𝑖

)
. (2)

where 𝑝
𝑗

𝑖
denotes the ground-truth label of the 𝑗-th phoneme

in the 𝑖-th input sequence, and 𝑙
𝑗

𝑖
denotes the 𝑗-th hidden

linguistic representation of the 𝑖-th input sequence.
2) Length regulator: The length regulator has the same

architecture as that in FastSpeech [64]. It takes emotion
embedding as an extra input since the duration of the same
sentence in different emotions should be different. The 𝑙𝑖 is
length-regulated according to its real duration by the length
regulator during training. The duration predictor is trained
by the mean square error (MSE) loss with the ground-truth
duration. The duration loss is denoted as L𝑑𝑢𝑟 .

3) Emotional adaptor: The emotional adaptor aims to
transform the length-regulated 𝑙𝑖 into a speaker-irrelevant but
emotion-related linguistic representation 𝜇𝑒𝑚𝑜 through multi-
ple FFT blocks with Conditional LayerNorm [65], which takes
the emotion embedding as the condition. The 𝜇𝑒𝑚𝑜 has the
same dimension as the Mel-spectrum and is adopted to define
the forward diffusion’s terminal distribution (N(𝜇𝑒𝑚𝑜, 𝐼). An
MSE loss L𝑚𝑒𝑙 constrains the 𝜇𝑒𝑚𝑜 from the target Mel-
spectrum. Regarding the prior text encoder, the total objective
function is defined as:

L𝑝𝑟𝑖𝑜𝑟 = 0.01 ∗ L𝑙𝑎𝑑𝑣 + L𝑐 + L𝑑𝑢𝑟 + L𝑚𝑒𝑙 . (3)
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B. Orthogonal projection based emotion disentanglement
module

The orthogonal projection based emotion disentanglement
module (OP-EDM) is to learn an emotion encoder that ex-
tracts the speaker-irrelevant emotion embedding 𝑒𝑖 from the
reference. Ideally, the embedding 𝑒𝑖 should be free of speaker-
related information and discriminative in distinguishing differ-
ent emotion categories. To this end, the emotion encoder in
OP-EDM is trained with two loss functions: 1) an adversarial
loss to make the obtained embedding 𝑒𝑖 speaker-irrelevant; 2) a
classification loss to make the obtained embedding 𝑒𝑖 emotion-
dependent. Specifically, the emotion encoder in OP-EDM has a
similar architecture as the Reference Encoder [19] to generate
a 256-dimensional vector as the emotion embedding 𝑒𝑖 .

The adversarial loss aims to make the emotion embedding
𝑒𝑖 speaker indistinguishable. A GRL is adopted between the
emotion encoder and a speaker classifier. Then, the emotion
encoder is reversely optimized on the speaker classification by
minimizing the following loss function:

L𝑠𝑎𝑑𝑣 = −
𝑛∑︁
𝑖=1

log𝑃 (𝑠𝑖 | 𝑒𝑖) , (4)

where 𝑃(𝑠𝑖 | 𝑒𝑖) is the possibility of the emotion embedding
𝑒𝑖 extracted from speech with the speaker label 𝑠𝑖 .

The classification loss is implemented by an emotion clas-
sifier with the same structure as the above speaker classifier,
to make the obtained 𝑒𝑖 emotion-dependent. Note that the
sentences of all non-emotional speakers are treated as a
separate emotion category, denoted as neutral_N. Thus, the
softmax layer produces the probability of 8 emotion types,
i.e., 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, ℎ𝑎𝑝𝑝𝑦, 𝑠𝑢𝑟 𝑝𝑟𝑖𝑠𝑒, 𝑎𝑛𝑔𝑟𝑦, 𝑑𝑖𝑠𝑔𝑢𝑠𝑡, 𝑓 𝑒𝑎𝑟, 𝑠𝑎𝑑,
and 𝑛𝑒𝑢𝑡𝑟𝑎𝑙_𝑁 . The corresponding objective function is:

L𝑒𝑚𝑜 = −
𝑛∑︁
𝑖=1

log𝑃 (𝑡𝑖 | 𝑒𝑖) , (5)

where 𝑃(𝑡𝑖 | 𝑒𝑖) is possibility of emotion embedding 𝑒𝑖 be-
longing to the emotion label 𝑡𝑖 .

1) Explicit constraint for emotion embedding space: As
mentioned, the emotional information conveyed by the 𝑒𝑖
would be weakened after removing the speaker-related in-
formation, leading to weaker emotional expressiveness in
synthesized speech. To address this issue, we resort to the
Orthogonal Projection Loss [40] (OPL), a potent technique to
construct discriminative embedding space without learnable
parameters. The objective of OPL is to enforce constraints
to embedding space such that the embedding 𝑒𝑖 for different
emotion classes 𝑡𝑖 is orthogonal to each other and the 𝑒𝑖 for
the same class is similar, which can effectively disentangle
the class-specific characteristics of different emotions, further
improving the emotion discrimination of 𝑒𝑖 . The objective
function is defined as:

L𝑜𝑝𝑙 = (1 − 𝐸𝑠𝑎𝑚𝑒) + 0.5 ∗ |𝐸𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡 |, (6)

where | · | is the absolute value operator. When minimizing this
loss L𝑜𝑝𝑙 , the first term (1 − 𝐸𝑠𝑎𝑚𝑒) can ensure clustering of
same class samples, while the second term |𝐸𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡 | can

ensure the orthogonality of different class samples. The 𝐸𝑠𝑎𝑚𝑒

and 𝐸𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡 are defined as:

𝐸𝑠𝑎𝑚𝑒 =

𝑛∑︁
𝑡𝑖=𝑡 𝑗

〈
e𝑖 , e 𝑗

〉
, 𝐸𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡 =

𝑛∑︁
𝑡𝑖≠𝑡𝑘

⟨e𝑖 , e𝑘⟩ , (7)

where ⟨·, ·⟩ is the cosine similarity operator applied on two
emotion embeddings. The total objective function of OP-EDM
is defined as:

L𝑜𝑝−𝑒𝑑𝑚 = 0.2 ∗ L𝑠𝑎𝑑𝑣 + 0.8 ∗ L𝑒𝑚𝑜 + L𝑜𝑝𝑙 . (8)

C. Condition-enhanced DPM decoder

A DPM with data-dependent prior can be seen as such: a
forward diffusion converts the raw data into simple terminal
distribution (usually standard Gaussian) by gradually adding
Gaussian noise, then based on this terminal distribution, a
reverse diffusion parameterized with a neural network learns
to follow the trajectories of the reverse-time forward diffu-
sion [32], [55]. If the forward and reverse diffusion processes
have close trajectories, then the distribution of generated
samples will be very close to that of the raw data.

In DiCLET-TTS, the terminal distribution of forward dif-
fusion has been parameterized by the prior text encoder as a
simple linguistic-based prior distribution N(𝜇𝑒𝑚𝑜, 𝐼), which
is emotion-related but speaker-irrelevant. We parameterize the
reverse diffusion with a condition-enhanced DPM decoder to
further improve the emotion expressiveness in speech delivery.
Specifically, the condition-enhanced DPM decoder’s architec-
ture is based on Unet and is the same as that in Grad-TTS [36],
but the speaker and emotion embeddings are added to each
ResBlock rather than just concatenated with the decoder’s
input. The speaker and emotion embeddings are produced by
a speaker look-up table and the OP-EDM, respectively.

We mostly follow the formulation introduced in Grad-TTS,
the forward and reverse diffusion processes of DiCLET-TTS
as satisfies the following It𝑜 stochastic differential equations
(SDEs):

𝑑𝑋𝑡 =
1
2
Σ−1 (𝜇𝑒𝑚𝑜 − 𝑋𝑡 ) 𝛽𝑡𝑑𝑡 +

√︁
𝛽𝑡𝑑
−→
𝑊 𝑡 , (9)

𝑑𝑋𝑡 =

(
1
2
Σ−1 (𝜇𝑒𝑚𝑜 − 𝑋𝑡 ) − ∇ log 𝑝𝑡 (𝑋𝑡 | 𝑋0)

)
𝛽𝑡𝑑𝑡

+
√︁
𝛽𝑡𝑑
←−
𝑊 𝑡 ,

(10)

where the
−→
𝑊 𝑡 and

←−
𝑊 𝑡 are forward and reverse-time Brownian

motion. The 𝑋0 and 𝑋𝑡 are raw and noise data, where 𝑋𝑡 ∼
N(𝜇𝑒𝑚𝑜, 𝐼), 𝑡 ∈ [0, 1]. The 𝛽𝑡 is a noise schedule with the
same definition in Grad-TTS. The log 𝑝𝑡 (𝑋𝑡 | 𝑋0) is the log
probability density function which is predicted by a learnable
score function 𝑠𝜃

(
𝑋𝑡 , 𝜇𝑒𝑚𝑜, 𝑡, 𝐸𝑠𝑝𝑘 , 𝑒𝑖

)
parameterized with

the condition-enhanced DPM decoder 𝜃. The 𝐸𝑠𝑝𝑘 and 𝑒𝑖 are
speaker and emotion embeddings, respectively. The reverse
diffusion (10) is solved by a defined ordinary differential
equation (ODE):
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TABLE I: Dataset for the cross-lingual emotion transfer TTS.

Corpus Gender Language Emotion (sentences) UsageNeutral Happy Surprise Sadness Angry Disgust Fear

CN1 Female Mandarin 5k - - - - - - Training&Evaluation
CN2 Female Mandarin 5k - - - - - - Training

CN-emo Female Mandarin 5k 2k 2k 2k 2k 2k 2k Training&Evaluation
EN1 Female English 9k - - - - - - Training&Evaluation
EN2 Female English 9k - - - - - - Training

𝑑𝑋𝑡 =
1
2
(
𝜇𝑒𝑚𝑜 − 𝑋𝑡 − 𝑠𝜃

(
𝑋𝑡 , 𝜇𝑒𝑚𝑜, 𝑡, 𝐸𝑠𝑝𝑘 , 𝑒𝑖

) )
𝛽𝑡𝑑𝑡. (11)

This reverse diffusion process is trained by minimizing
weighted L2 loss as follows:

L(𝜃)𝑑𝑖 𝑓 𝑓 =arg min
𝜃

∫ 1

0
𝜆𝑡E𝑋0 ,𝑋𝑡

𝑠𝜃 (
𝑋𝑡 , 𝜇𝑒𝑚𝑜, 𝑡, 𝐸𝑠𝑝𝑘 , 𝑒𝑖

)
−∇ log 𝑝𝑡 (𝑋𝑡 | 𝑋0)∥22 𝑑𝑡,

(12)
where the 𝜆𝑡 = 1 − 𝑒−

∫ 𝑡

0 𝛽𝑠𝑑𝑠 , 0 < 𝑠 < 𝑡. In brief, the reverse
diffusion parameterized with the 𝑠𝜃

(
𝑋𝑡 , 𝜇𝑒𝑚𝑜, 𝑡, 𝐸𝑠𝑝𝑘 , 𝑒𝑖

)
is

trained to approximate gradient of log-density of 𝑋𝑡 given 𝑋0,
𝐸𝑠𝑝𝑘 , 𝑒𝑖 and 𝜇𝑒𝑚𝑜. During the inference, we first predict a
speaker-irrelevant but emotion-related 𝜇𝑒𝑚𝑜 from input text
with the emotion embedding 𝑒𝑖 . The 𝑒𝑖 is extracted by OP-
EDM from the reference with desired emotion. Then the
condition-enhanced DPM decoder gradually reconstructs the
target Mel-spectrum using the score predicted from 𝑠𝜃 in
adjustable iterations, with the conditions of 𝑒𝑖 and 𝐸𝑠𝑝𝑘 .

D. Final objective function

All modules introduced in the previous sections are trained
together. The final objective function of the proposed DiCLET-
TTS is defined as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑝𝑟𝑖𝑜𝑟 + L𝑜𝑝−𝑒𝑑𝑚 + L𝑑𝑖 𝑓 𝑓 , (13)

where L𝑝𝑟𝑖𝑜𝑟 , L𝑜𝑝−𝑒𝑑𝑚, and L𝑑𝑖 𝑓 𝑓 are loss functions of the
prior text encoder, OP-EDM, and condition-enhanced DPM
decoder.

IV. EXPERIMENTAL SETUPS

This section introduces the database configuration, evalua-
tion methods, training setups, and compared methods.

A. Dataset

As shown in Table I, the dataset used in this paper comprises
five female monolingual speakers, denoted as CN1, CN2, CN-
emo, EN1, and EN2. Note that CN1 and CN2 are publicly
available Mandarin corpus2 and EN1 and EN2 are internal
English corpora. Only CN-emo is the emotional corpus em-
ployed as the source speaker during emotion transfer. All data
are studio-quality recorded at 48KHz.

The test set consists of 1100 sentences in total. Specifically,
we randomly select 700 sentences from the CN-emo corpus,

2The dataset is available at http://www.data-baker.com/hc_znv_1.html

and each emotion category (including neutral) contains 100
sentences. In addition, 400 sentences are randomly selected
from the four neutral speaker corpora, and every speaker
contains 100 sentences.

B. Model Configurations

The text encoder has the same architecture in Delight-
fulTTS [66], which is composed of a pre-net (3 layers of
convolutions followed by a fully-connected layer), 6 Con-
former blocks [67] with multi-head self-attention, and the final
linear projection layer to generate 448-dimensional linguistic
representation. The speaker adversarial classifier in the text
encoder consists of a GRU layer, a fully connected (FC)
layer, and a softmax layer. Especially, a gradient reversal layer
(GRL) is adopted between the GRU and the FC layer. The
content loss is implemented by a phoneme classifier consisting
of two FC layers and a softmax layer. The emotional adaptor
consists of 1 layer of 1D convolution, 2 FFT blocks, and a 1D
convolution output layer, where each FFT block is followed by
a Conditional LayerNorm [65]. We employ the same structure
for speaker and emotion classifiers in OP-EDM: an FC layer
and a softmax layer. The difference is that a GRL layer is
inserted before the speaker classifier.

C. Evaluation Methods

Three types of human perceptual rating experiments are
performed: 1) Mean Opinion Score (MOS) [8] is used for
subjective evaluation of the naturalness, which can reflect the
influence of foreign accents and emotion on synthesized natu-
ralness. 2) Differential Mean Opinion Scores (DMOS) [18]
is adopted to subjectively evaluate the synthesized speech
from two aspects, emotion similarity (between the synthesized
speech and compared emotional reference) and speaker simi-
larity (between the synthesized speech and compared target
speaker’s reference). 3) AB preference test [68] (AB test)
is adopted to compare samples synthesized by two models,
where participants are asked to choose which speech sample
sounds closer to the compared reference in terms of speaker or
emotion. In both MOS and DMOS tests, the participants are
asked to rate given speech a score ranging from 1 to 5 based
on the specific purpose. The rating criteria is: bad = 1; poor
= 2; fair = 3; good = 4; great = 5, in 0.5 point increments.

During our experiments, we found that the results of dif-
ferent speakers in the same language were similar in human
evaluation. Consequently, to reduce the cost of human evalua-
tion, we randomly selected one speaker from each of the two
languages, i.e., CN1 and EN1, as our target speakers without
loss of generality. For MOS evaluation, 20 Mandarin and 20
English sentences are randomly selected from the test set to

http://www.data-baker.com/hc_znv_1.html
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TABLE II: Naturalness MOS results of DiCLET-TTS with M3, CSET, and Grad-TTS in transferring emotion to the intra- and cross-lingual
target speakers, with confidence intervals of 95%. The bold indicates the best performance of the four models in each emotion.

Emotion Language Intra-lingual scenario (target Mandarin speaker) Cross-lingual scenario (target English speaker)

M3 CSET Grad-TTS DiCLET-TTS M3 CSET Grad-TTS DiCLET-TTS

Neutral Mandarin 4.17±0.03 4.15±0.05 4.19±0.04 4.23±0.06 3.92±0.06 3.81±0.04 3.87±0.06 3.98±0.05
English 3.95±0.04 3.84±0.02 3.88±0.07 3.99±0.05 4.18±0.04 4.14±0.06 4.24±0.03 4.21±0.05

Fear

Mandarin

4.05±0.05 3.92±0.08 4.03±0.04 4.07±0.08 3.82±0.05 3.51±0.07 3.68±0.04 3.90±0.06
Disgust 4.08±0.09 4.05±0.10 4.10±0.09 4.12±0.07 3.87±0.08 3.69±0.09 3.72±0.09 3.93±0.04
Angry 4.00±0.10 3.93±0.07 4.02±0.05 4.03±0.05 3.76±0.03 3.42±0.10 3.59±0.10 3.82±0.07
Sadness 4.03±0.09 3.99±0.04 4.04±0.09 4.06±0.08 3.81±0.06 3.57±0.08 3.69±0.07 3.88±0.07
Happy 4.01±0.04 3.98±0.05 4.00±0.07 4.04±0.03 3.75±0.09 3.46±0.06 3.61±0.08 3.84±0.08
Surprise 4.02±0.07 3.96±0.06 4.05±0.04 4.09±0.02 3.73±0.07 3.44±0.11 3.64±0.08 3.83±0.05

synthesize speech foreign to the target speaker. For DMOS and
AB tests, we randomly select 10 Mandarin sentences from
the test set to synthesize speech with 6 types of emotions
for two target speakers, respectively, resulting in 120 testing
sentences. These synthesized emotional speech sentences also
are evaluated for naturalness by MOS. Twenty Chinese na-
tive speakers with basic English skills participated in these
experiments. The gender distribution was balanced, and their
ages ranged from 20 to 30. The final score for each utterance
was the average rating by all participants for this sample.
The results are associated with 95% confidence intervals in
all tests. Besides, speaker cosine similarity and embedding
visualization are adopted to evaluate speaker similarity and
emotion discrimination objectively.

D. Training setups

All the speech sentences are down-sampled to 16 KHz and
represented by 80-band Mel-spectrum with a frame length
of 50ms, frameshift of 12.5ms, and hop size of 200. A
grapheme-to-phoneme (G2P) module converts text sentences
into phoneme sequences. The phoneme duration is obtained
by a pre-trained Montreal Forced Alignment (MFA) tool [64].
We train all the models for 300K iterations with a batch size
of 38 on 4 NVIDIA Tesla V100 GPUs. During the inference,
a well-trained Hifi-Gan [69] is adopted as the neural vocoder
to reconstruct waveform from the predicted Mel-spectrum.

E. Compared methods

As this work, to our knowledge, is the first time that
attempts to synthesize foreign emotional speech based on
emotion transfer by a DPM-based model, there is no ex-
isting method that can be compared directly. Therefore, we
selected the most recent relevant methods to compare with
our proposed DiCLET-TTS. For fairness, some modifications
are made to make the compared methods suitable for cross-
lingual emotion transfer. The comparative model and the
corresponding improvements are as follows: 1) M3 [8] is a
FastSpeech-based [64] multi-speaker multi-style multi-lingual
speech synthesis method that introduced a fine-grained style
encoder to relieve the foreign accent problem. To make M3
suitable for emotion transfer, the emotion ID and emotion
classifier is introduced in the style predictor and style en-
coder, respectively. 2) CSET [18] is a reference-based cross-
speaker emotion transfer method, which introduced an emotion
disentangling module to Tacotron2. The text encoder and

decoder are extended by the speaker adversarial training and
language embedding [1], respectively. 3) Grad-TTS [36] is
also improved for cross-lingual emotion transfer. We follow
the original setting of Grad-TTS, where the decoder’s input
is concatenated with the speaker embedding and emotion
embedding obtained from two look-up tables with the speaker
ID and emotion ID as input, respectively. The text encoder
structure is the same as that in DiCLET-TTS and is trained by
the speaker adversarial loss.

V. EXPERIMENTAL RESULTS

In this section, the results of emotions transferred to the
intra- and cross-lingual target speakers are presented, i.e., the
comparison of DiCLET-TTS with other methods in natural-
ness, speaker similarity, and emotion similarity. The corre-
sponding demos can be found on the project page1, and we
recommend readers listen to those demos.

A. Performance on naturalness

Two MOS tests are conducted to evaluate the naturalness of
Mandarin emotional speech and cross-lingual neutral speech
generated by DiCLET-TTS, M3, CSET, and Grad-TTS for
intra- and cross-lingual target speakers. The results are shown
in Table II, and unsurprisingly, the highest MOS scores are
obtained when synthesizing intra-lingual neutral speech for the
target speaker in each method since the synthesized speech
is unaffected by the foreign accent and emotion. DiCLET-
TTS achieves higher scores in cross-lingual neutral speeches,
while there is no significant difference in scores between the
compared methods. This may be due to the fact that the text
encoder in these three compared methods is only constrained
by speaker adversarial training, which could somewhat disturb
the linguistic coding. In DiCLET-TTS, this disturbance is
mitigated by the content loss to stabilize the training and
effectively improve the naturalness.

For synthesized Mandarin emotional speech, generally
speaking, the naturalness of transferring emotion to the intra-
lingual target speaker is better than transferring emotion to
the cross-lingual target speaker among all methods. This
phenomenon is caused by the fact that emotion could make
the tone change more violently and the foreign accent more
obvious. The score gap between the synthesized Mandarin
emotional speech for intra- and cross-lingual target speakers
in DiCLET-TTS and M3 is smaller than that in Grad-TTS and
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TABLE III: Speaker and emotion similarity DMOS comparison of DiCLET-TTS, M3, CSET, and Grad-TTS in transferring the emotions to
intra- and cross-lingual target speakers, with a confidence interval of 95%. The bold indicates the best performance of the four models in
each emotion.

Emotion
Intra-lingual scenario (target Mandarin speaker)

Speaker similarity DMOS Emotion similarity DMOS

M3 CSET Grad-TTS DiCLET-TTS M3 CSET Grad-TTS DiCLET-TTS

Fear 4.04±0.04 3.91±0.02 4.02±0.01 4.01±0.05 3.85±0.03 3.71±0.06 3.17±0.03 4.04±0.04
Disgust 4.05±0.02 3.96±0.04 4.06±0.07 4.08±0.04 3.79±0.05 3.60±0.03 3.13±0.05 3.90±0.06
Angry 4.01±0.06 3.87±0.03 3.97±0.05 3.98±0.08 3.81±0.06 3.68±0.08 3.19±0.11 3.96±0.09
Sadness 4.02±0.02 3.77±0.05 4.03±0.02 4.00±0.06 3.90±0.04 3.89±0.04 3.28±0.08 4.02±0.03
Happy 3.97±0.05 3.79±0.04 3.94±0.06 3.96±0.04 3.92±0.07 3.87±0.06 3.30±0.04 4.04±0.08
Surprise 3.94±0.06 3.84±0.07 4.01±0.04 3.97±0.07 3.87±0.03 3.82±0.04 3.25±0.07 3.97±0.06

Cross-lingual scenario (target English speaker)

Fear 3.91±0.05 3.70±0.04 3.86±0.06 3.89±0.02 3.64±0.07 3.55±0.05 3.07±0.09 3.86±0.06
Disgust 3.94±0.04 3.74±0.07 3.92±0.08 3.90±0.09 3.51±0.08 3.39±0.04 3.05±0.08 3.81±0.07
Angry 3.81±0.05 3.66±0.10 3.78±0.04 3.79±0.07 3.62±0.11 3.56±0.03 3.14±0.04 3.84±0.09
Sadness 3.87±0.09 3.64±0.05 3.76±0.03 3.85±0.06 3.57±0.09 3.41±0.08 3.19±0.07 3.91±0.03
Happy 3.72±0.04 3.65±0.02 3.75±0.07 3.80±0.08 3.68±0.04 3.64±0.06 3.21±0.10 3.93±0.05
Surprise 3.68±0.06 3.68±0.09 3.71±0.03 3.74±0.07 3.60±0.05 3.55±0.02 3.20±0.06 3.79±0.04

CSET. This advantage mainly comes from DiCLET-TTS and
M3 adopting prosodic-related linguistic representation, which
can alleviate the foreign accent problem and improve the nat-
uralness of cross-lingual emotion transfer. Besides, DiCLET-
TTS achieves the highest naturalness score in synthesized
neutral and emotional speeches, indicating that the proposed
method can disentangle speakers and languages while stabiliz-
ing the training, making the speakers speak foreign languages
fluently and express various emotions in authentic Mandarin.

B. Performance on emotion transfer

Besides measuring the naturalness, the target speaker sim-
ilarity and transferred emotion similarity are also evaluated.
Four DMOS tests are conducted to evaluate the speaker simi-
larity and emotion similarity of generated Mandarin emotional
speech by DiCLET-TTS, M3, CSET, and Grad-TTS for intra-
and cross-lingual target speakers. The results are shown in
Table III, where the upper part is the speaker and emotion
similarity results of transferring emotion from the source
speaker to the intra-lingual target speaker, the lower part is
the results of transferring emotion from the source speaker to
the cross-lingual target speaker.

As seen in Table III, regarding the speaker similarity of all
emotion categories in each method, the scores of synthesized
emotional speech of the intra-lingual target speaker are higher
than that of the cross-lingual target speaker. This phenomenon
could be partially caused by emotion and language affecting
participants’ perception since the compared reference during
the DMOS test of the cross-lingual target speaker is neutral
English audio rather than Mandarin emotional audio. A similar
situation also occurs in emotion similarity DMOS. These
results indicate that compared with the cross-speaker emotion
transfer task, which only recombines the two factors (speaker,
emotion), it is more challenging to simultaneously recombine
the three factors (speaker, language, and emotion), which are
deeply entangled.

Specifically, regarding speaker similarity, the difference
between DiCLET-TTS, M3, and Grad-TTS are not noticeable,
while CSET performs the worst. Although the emotion sim-

TABLE IV: Speaker cosine similarity of synthesized speech with the
cross-lingual target speaker and emotional source speaker, respec-
tively.

Speaker Target speaker M3 CSET Grad-TTS DiCLET-TTS

Source speaker 0.18 0.23 0.29 0.21 0.25

Target speaker 0.80 0.75 0.65 0.72 0.73

ilarity of CSET is better than Grad-TTS, the poor scores in
speaker similarity and cross-lingual naturalness (see Table II)
indicate the weakness of CSET for the cross-lingual emotion
transfer task. Grad-TTS achieves reasonable speaker similarity
in transferring the emotion to intra- and cross-lingual speakers
but performs poorly in emotion similarity. It is mainly caused
by Grad-TTS adopting a look-up table in emotion modeling,
which produces average emotion expressiveness. DiCLET-
TTS outperforms Grad-TTS in terms of emotion and speaker
similarity, showing that such emotion transfer performance is
derived not only from the diffusion model but also from the
introduced OP-EDM and emotional adaptor.

DiCLET-TTS significantly outperforms all comparison
methods in emotion similarity and obtains a comparable
speaker similarity score with M3. The slight speaker similarity
gap between M3 and DiCLET-TTS could be caused by the
stronger emotional expressiveness of DiCLET-TTS, which
could affect participants on the rating of the timbre similarity.
Besides, M3 and DiCLET-TTS adopt speaker adversarial
training to remove speaker-related information in emotion
embedding. The emotional information conveyed by such
disentangled emotion embedding tends to be weakened since
the speaker and emotion are deeply entangled and both related
to the prosody. While in DiCLET-TTS, the emotion embedding
space obtained by OP-EDM is further constrained to ensure
that the emotion embedding retains high emotion discrimi-
nation after removing the speaker-related information, thus
promoting the expressiveness of transferred emotions. These
results show that DiCLET-TTS can well balance maintaining
the target speaker’s identity and enriching the transferred
emotion expressiveness in intra- and cross-lingual scenarios.
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TABLE V: Speaker and emotion similarity DMOS comparison of DiCLET-TTS, “w/o EA” and “w/o CE-D” in transferring the emotion to
the cross-lingual target speaker, with a confidence interval of 95%, and the higher value means better performance and the bold indicates
the best performance out of four models in terms of each emotion. 𝜇 and 𝜇𝑒𝑚𝑜 represent emotion-irrelevant and emotion-related linguistic
representation, respectively.

Emotion Speaker similarity DMOS Emotion similarity DMOS

“w/o EA” (𝜇) “w/o CE-D” (𝜇𝑒𝑚𝑜) DiCLET-TTS (𝜇𝑒𝑚𝑜) “w/o EA” (𝜇) “w/o CE-D” (𝜇𝑒𝑚𝑜) DiCLET-TTS (𝜇𝑒𝑚𝑜)

Fear 3.91±0.05 3.83±0.12 3.89±0.02 3.40±0.09 3.53±0.05 3.86±0.06
Disgust 4.00±0.04 3.88±0.07 3.96±0.09 3.41±0.08 3.46±0.04 3.81±0.07
Angry 3.82±0.03 3.73±0.05 3.79±0.07 3.60±0.04 3.66±0.03 3.84±0.09
Sadness 3.90±0.06 3.77±0.09 3.83±0.06 3.43±0.07 3.61±0.08 3.91±0.03
Happy 3.79±0.06 3.66±0.04 3.72±0.08 3.66±0.10 3.72±0.06 3.93±0.05
Surprise 3.75±0.08 3.63±0.04 3.68±0.07 3.58±0.06 3.69±0.02 3.79±0.04

C. Speaker similarity with target speaker and source speaker
in cross-lingual emotion transfer

To objectively show the speaker leakage degree of each
method, we calculate the speaker cosine similarity between
synthesized speech and ground-truth neutral speech from the
cross-lingual target speaker and emotional source speaker,
respectively. Specifically, we adopt a pre-trained speaker ver-
ification model ECAPA-TDNN [70] to extract the x-vectors
of synthesized and ground truth speech. The speaker cosine
similarity with the target speaker and the source speaker has
measured on 80 synthesized speech.

We first calculated the upper bound of cosine similarity
within the target speaker’s ground truth speech, and the lower
bound between the target speaker and the source speaker.
As shown in Table IV, the upper bound is 0.80, and the
lower bound is 0.18. Note that the synthesized speech from
CSET has the highest similarity with the source speaker and
the lowest similarity with the target speaker, consistent with
the results shown in Section V-B. The speech synthesized by
DiCLET-TTS achieves a comparable cosine similarity score
with M3, and as explained above, this gap may also be caused
by the stronger emotion expressiveness of DiCLET-TTS.

VI. COMPONENT ANALYSIS

In Section V, DiCLET-TTS has shown good performance
on emotion transfer in intra- and cross-lingual scenarios. In
this section, the effectiveness of each proposed component,
i.e., content loss, emotional adaptor, and condition-enhanced
DPM decoder, is evaluated by transferring emotion to the
cross-lingual target speaker. The advantages of the proposed
orthogonal projection based emotion disentanglement module
(OP-EDM) are also analyzed.

A. The effectiveness of content loss and emotional adaptor on
naturalness

In DiCLET-TTS, the content loss and emotional adaptor
are the keys to improving the naturalness of synthesized
cross-lingual speech. Besides, with the guidance of emotion
embedding extracted by OP-EDM, the emotional adaptor and
condition-enhanced DPM decoder are further committed to
enhancing emotion expressiveness. Therefore, we first conduct
an ablation study via the MOS test to verify the benefits of
content loss and emotional adaptor in improving naturalness.
We do not verify the benefits of the condition-enhanced DPM

decoder since it contributes little to improving naturalness.
Specifically, two variants are evaluated: 1) no content loss is
adopted for the text encoder’s output, which is constrained
only by speaker adversarial training. We denote this variant as
“w/o CTL”. 2) No emotional adaptor is adopted for the length
regulator’s output. We denote this variant as “w/o EA”.

Table VI shows the naturalness MOS results of DiCLET-
TTS and its two variants. Comparing DiCLET-TTS and “w/o
CTL”, we can find the drop of naturalness when discarding
content loss in “w/o CTL”, indicating that introducing content
loss in adversarial training can effectively improve the natural-
ness in synthesized speech. We also find that the degradation
is more prominent in some emotion categories, i.e., happy,
surprise, and angry, since the intonation changes in these
categories are more dramatic. Besides, the naturalness signif-
icantly drops in “w/o EA”, where the linguistic representation
is emotion-irrelevant. This result suggests that parameterizing
the terminal distribution of the diffusion process into emotion-
related linguistic prior by the emotional adaptor plays an
essential role in promoting naturalness.

TABLE VI: Naturalness MOS results of DiCLET-TTS, “w/o CTL”,
and “w/o EA” in transferring emotion to the cross-lingual target
speaker, with confidence intervals of 95%. Neutral (Mandarin) and
neutral (English) represent synthesized neutral Mandarin and English
speech, respectively.

Method “w/o CTL” “w/o EA” DiCLET-TTS

Neutral (Mandarin) 3.93±0.04 3.86±0.05 3.98±0.05
Neutral (English) 4.15±0.07 4.11±0.04 4.21±0.05

Fear 3.84±0.09 3.71±0.07 3.90±0.06
Disgust 3.85±0.08 3.76±0.12 3.93±0.04
Angry 3.71±0.05 3.66±0.11 3.82±0.07
Sadness 3.83±0.10 3.74±0.07 3.88±0.07
Happy 3.74±0.09 3.70±0.05 3.84±0.08
Surprise 3.72±0.07 3.69±0.08 3.83±0.05

B. The effectiveness of emotional adaptor and condition-
enhanced DPM decoder on speaker and emotion similarity

The effectiveness of the emotional adaptor in improving
naturalness has been verified in Section VI-A. In this section,
we further present the benefits of the emotional adaptor and
condition-enhanced DPM decoder in terms of the speaker and
emotion similarity by two DMOS tests. Therefore, besides the
variant “w/o EA”, the variant “w/o CE-D” is also taken into the
test, where the emotion embedding and speaker embedding are
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concatenated with the input of the decoder rather than being
added to each ResBlock.

As shown in Table V, regarding the emotion similarity, the
two variants in all categories have dropped compared with
DiCLET-TTS, and the degradation of “w/o EA” is the most
significant. The lower emotion similarity of “w/o EA” brings a
weaker impact on the speaker identity of synthesized speech,
resulting in a slightly better performance than DiCLET-TTS
in speaker similarity. Specifically, the emotion modeling of
“w/o EA” is only completed in the condition-enhanced DPM
decoder under the condition of the emotion embedding learned
by OP-EDM. And the linguistic prior of “w/o EA” is emotion-
irrelevant. This result indicates that parameterizing the termi-
nal distribution of the diffusion process as an emotion-related
linguistic prior by the emotional adaptor can also effectively
improve the expressiveness of transferred emotion. Besides,
referring to the results in Table III, the emotion similarity
of “w/o EA” is superior to that of Grad-TTS in terms of
all emotion categories, and “w/o EA” also has an improved
performance than CSET in most cases (except disgust). These
results also reflect the effectiveness of the introduced OP-EDM
in learning speaker-irrelevant emotion embedding, which can
result in a good performance in terms of speaker similarity
and emotional expressiveness.

For “w/o CE-D”, although it achieves better performance
than “w/o EA” on emotion expressiveness, this improvement
is not always significant. Emotion expressiveness is still
unsatisfactory for emotions (e.g., 𝑑𝑖𝑠𝑔𝑢𝑠𝑡 and 𝑓 𝑒𝑎𝑟) that
rely on speaking speed and stress. Meanwhile, for emotions
partially reflected in the changes of the source speaker’s timbre
(e.g., ℎ𝑎𝑝𝑝𝑦 and 𝑠𝑢𝑟 𝑝𝑟𝑖𝑠𝑒), the target speaker similarity of
“w/o CE-D” is dropped. All these results show that with the
guidance of speaker-irrelevant emotion embedding extracted
from OP-EDM, the emotional adaptor and condition-enhanced
DPM decoder can effectively improve the performance of
cross-lingual emotion transfer while maintaining reasonable
speaker similarity and speech naturalness.

C. Advantages of emotion embedding space with orthogonal
projection

This section analyzes the benefits of the proposed orthog-
onal projection based emotion disentanglement module (OP-
EDM) by comparing it with the variant “w/o OPL”, in which
“w/o OPL” means the orthogonal projection loss in OP-EDM
is removed. Ideally, the emotion embedding learned by the
emotion disentanglement module is expected to be irrelevant
to the speaker identities but holds high emotion discrimination.
Therefore, the t-distributed stochastic neighbor embedding (t-
SNE) [71] is adopted to demonstrate the capacity of emotion
embedding learned from these two modules on distinguishing
emotion categories or speaker identities.

1) Emotion discrimination ability: To display the distribu-
tion of emotion embeddings extracted by “w/o OPL” and OP-
EDM, 80 speeches of each emotion category from the CN-
emo’s test set are randomly selected, resulting in 560 reference
speeches in total and then embedded as emotion embeddings
by these two modules, respectively. The distributions of these
embeddings are presented in Fig. 2, where each point indicates

(a) “w/o OPL” (b) OP-EDM
Fig. 2: Emotion distribution of the emotion embedding created
different models (a) “w/o OPL” and (b) OP-EDM. The presented
data are 80 sentences randomly selected from each emotion category
of the CN-emo’s test set.

(a) “w/o OPL” (b) OP-EDM
Fig. 3: Speaker distribution of the emotion embedding created by
different models (a) “w/o OPL” and (b) OP-EDM module. The
presented data are 80 neutral sentences randomly selected from each
speaker’s test set.

an emotion embedding, and points with the same color are
from the same emotion category. Smaller distances between
the two points indicate that the embeddings are more similar.
As shown in Fig. 2 (a), the emotional embedding generated by
“w/o OPL” only retains weak emotion discrimination, where
emotions with similar characteristics tend to be confused:
(1) happy, surprise, and angry with a higher pitch and fast
speech speed; (2) sad, fear, and disgust with a deep voice and
slower speech speed. In contrast, in Fig. 2 (b), the emotion
embeddings from the same emotion category are clustered
together while different clusters are separated, demonstrating
that benefits from the orthogonal projection loss, OP-EDM can
obtain an embedding space with high emotion discrimination.
We notice that although these embeddings are all from the
same speaker, the neutral embeddings are far away from the
others. This phenomenon could be due to the fact that emo-
tions are mainly reflected in pitch, energy, and speech speed,
and these attributes are relatively flat in neutral emotions.

2) Speaker identity removal capability: For speaker iden-
tity visualization, 80 neutral speeches are randomly selected
from each speaker’s test set, resulting in 400 speeches. The
visualization results are shown in Fig. 3, in which the same
color colors the embeddings from the identical speaker. As
mentioned, the emotion embedding should contain no speaker-
related information but only emotional information, which
implies embeddings extracted from different speakers’ speech
are expected to be inseparable. As shown in Fig. 3(a), the
embeddings from different speakers extracted by “w/o OPL”
are indeed inseparable, while the cost is that these embeddings
maintain little emotion information from the reference audio
(see Fig. 2(a)). For the OP-EDM module (see Fig. 3(b)),
the embeddings from the four neutral speakers’ corpus are
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Fig. 4: Emotion similarity AB preference test for “w/o OPL” and
DiCLET-TTS with confidence intervals of 95%.

Fig. 5: Speaker similarity AB preference test for “w/o OPL” and
DiCLET-TTS with confidence intervals of 95%.

clustered into one cluster. It is worth noting that the neutral
speech from CN-emo is treated as an independent emotion
category, so the embeddings from CN-emo are clustered
into a separate cluster in Fig. 3(b). This distribution indi-
cates that the proposed OPL-EDM can effectively remove
the speaker-related information while greatly retaining the
emotion-related information, resulting in speaker-irrelevant but
emotion-discriminative embedding.

3) Preference test: To further investigate the effectiveness
of using OPL in learning emotion embedding for emotion
transfer. We conducted two AB tests between DiCLET-TTS
and the variant “w/o OPL” regarding emotion and speaker
similarity. The results are shown in Fig. 4 and Fig. 5, re-
spectively. As shown in Fig. 4, we can find that “w/o OPL”
obtains lower preference in all emotion categories, showing
lower emotion similarity is perceived. In contrast, the listeners
preferred DiCLET-TTS more when we inserted OPL into
OP-EDM. As analyzed, the performance gain is essentially
contributed by the OPL strategy in learning discriminative
emotion embeddings. Regarding speaker similarity, as shown
in Fig. 5, there is no significant difference between “w/o OPL”
and DiCLET-TTS, i.e., most listeners give No preference. All
the above evidence shows that OP-EDM introduced in this
paper contributes to better emotion similarity without reducing
speaker similarity.

VII. CONCLUSION

This paper proposes a DPM-based cross-lingual emotion
transfer model – DiCLET-TTS. We adopt prosodic information
to alleviate the foreign accent problem, where a prior text en-
coder takes emotion embedding as a condition to parameterize
the terminal distribution of the forward diffusion processes into
a speaker-irrelevant but emotion-related linguistic prior. To
address the weaker emotional expressiveness problem caused
by removing speaker information from emotion embedding,
an orthogonal projection based emotion disentangling module
(OP-EDM) is proposed to learn the speaker-irrelevant but high
emotion-discriminative embedding. The reverse diffusion pro-
cess is parameterized by a condition-enhanced DPM decoder,
where the modeling ability of the speaker and emotion is
enhanced to further improve emotion expressiveness in syn-
thetic speech. Experimental results demonstrate that DiCLET-
TTS performs well in intra- and cross-lingual emotion transfer
while preserving the timbre of the target speaker and synthe-
sized naturalness. The results also prove the advantages of OP-
EDM in learning speaker-irrelevant but emotion-discriminative
embedding.

In this study, only the same-gender speakers are involved
in our experiments while cross-gender emotion transfer is
considered a difficult task itself and it can be more challenging
in the cross-lingual scenario. We will further study this cross-
gender task as a follow-up work.
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