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Abstract—In addition to conveying the linguistic content from
source speech to converted speech, maintaining the speaking
style of source speech also plays an important role in the
voice conversion (VC) task, which is essential in many scenarios
with highly expressive source speech, such as dubbing and data
augmentation. Previous work generally took explicit prosodic
features or fixed-length style embedding extracted from source
speech to model the speaking style of source speech, which is
insufficient to achieve comprehensive style modeling and target
speaker timbre preservation. Inspired by the style’s multi-scale
nature of human speech, a multi-scale style modeling method
for the VC task, referred to as MSM-VC, is proposed in this
paper. MSM-VC models the speaking style of source speech
from different levels, i.e., global, local, and frame levels. To
effectively convey the speaking style and meanwhile prevent
timbre leakage from source speech to converted speech, each
level’s style is modeled by specific representation. Specifically,
prosodic features, pre-trained ASR model’s bottleneck features,
and features extracted by a model trained with a self-supervised
strategy are adopted to model the frame, local, and global-level
styles, respectively. Besides, to balance the performance of source
style modeling and target speaker timbre preservation, an explicit
constraint module consisting of a pre-trained speech emotion
recognition model and a speaker classifier is introduced to MSM-
VC. This explicit constraint module also makes it possible to
simulate the style transfer inference process during the training
to improve the disentanglement ability and alleviate the mismatch
between training and inference. Experiments performed on the
highly expressive speech corpus demonstrate that MSM-VC
is superior to the state-of-the-art VC methods for modeling
source speech style while maintaining good speech quality and
speaker similarity. Furthermore, ablation analysis indicates the
indispensable of every style level’s modeling and the effectiveness
of each module.

Index Terms—voice conversion, style modeling, multi-scale.

I. INTRODUCTION

OICE conversion (VC) aims to modify speech from a
source speaker to sound like that of a target speaker while
maintaining the linguistic content and speaking style. Tradi-
tional VC methods [1]-[3] primarily rely on statistical para-
metric approaches to learn the conversion function between
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the source and target parallel utterance. Due to the high cost
of collecting parallel data, many recent VC approaches [4]-
[11] using non-parallel data have been proposed. Despite
recent progress, most voice conversion methods focus on
preserving the linguistic content and do not explicitly consider
the speaking style of source speaker. In many scenarios, such
as dubbing and data augmentation, it is essential to preserve
the source speech’s speaking style, including emotion, pitch,
loudness, and duration. In this paper, we focus on accurately
delivering the source speech style in the converted speech
while preserving the linguistic content.

One popular approach for style modeling in the VC task
is to extract the style embedding of the source speech [12]-
[17], which captures the style information at a global level.
Commonly employed strategies to obtain the style embedding
include the use of a reference encoder [[18]], a global style
token (GST) [19], and a variational autoencoder (VAE) [20].
For instance, in [13]] and [[15]], GST is adopted to learn a high-
dimensional representation that encodes source speech style.
Du et al. [17]], [21] introduce a speech emotion recognition
model (SER) trained on an emotion speech corpus to extract
a hidden representation to represent source speech style. How-
ever, the global level style is too coarse to describe the various
aspects of style. Hence, the conversion result may inevitably
have a speaking style not so consistent with the source speech.
In addition to modeling the global level style information,
some efforts also have been conducted from a fine-grained
level [22[]-[25[]. A straightforward way to represent the fine-
grained style of source speech is to extract explicit prosodic
features [22]], such as fundamental frequency (f0) and energy.
However, handcrafted acoustic features have difficulties to per-
fectly describe style. Some studies [23]], [25] attempt to model
frame-level style representations from the mel spectrogram
along with explicit prosodic features, which have demonstrated
superiority in the VC task compared to using explicit prosodic
features alone. The most recent work [24] tries to describe the
style at the phoneme level by leveraging the transcription of
the source speech.

While the above progress has been made in modeling the
source speech style, it is insufficient to accurately represent the
richness of style information found in human speech at just
one or two levels. In general, human speech has a multi-scale
nature [26]] and can be seen as a combination of multi-scale
acoustic factors. The style of speech has rich and detailed
variations that manifest at different scales. Specifically, we
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can categorize an utterance based on its speaking style, e.g.,
reading style, storytelling style, and poetry style, which is
based on the style from the global level. From the local level
perspective, each speech unit within an utterance, such as
syllable or phoneme, has its own characteristics, such as tone,
stress, speed, and pause. In addition to the style reflected from
the global and local levels, the style can also naturally be
reflected at the frame level when speech is represented by
frame-level acoustic features. Many previous efforts [[27[]—[32]]
in TTS task have proved the effectiveness of multi-scale style
modeling. But most methods primarily focus on modeling
style predefined within the corpus. In VC task, modeling
arbitrary style without predefined style categories is needed
due to the inherent diversity of source speech in practice.
Another challenge in VC is the issue of speaker leakage caused
by the entanglement of style and speaker timbre [12f], [14],
i.e., the speaker’s timbre of the source speech is also passed
to the converted speech with style representation, consequently
impacting the speaker similarity.

With the aim to convey the speaking style of source speech
while maintaining the target speaker’s identity, this paper
proposes a new VC model called MSM-VC. Inspired by the
multi-scale nature of human speech, MSM-VC employs a
multi-scale style modeling approach that captures style at dif-
ferent levels, i.e., global, local, and frame levels. Considering
the unique character of the style reflected from each level
and preventing speaker timbre leakage from source speech,
each level’s style is modeled by a specific representation.
Specifically, the self-supervised learning (SSL) features ex-
tracted by vq-wav2vec [33] and bottleneck (BN) features from
ASR encoder are used to perform global and local-level style
modeling, respectively. As for frame-level style modeling, the
prosodic features, including logarithmic domain fundamental
frequency (1f0), the short-term average amplitude (energy), and
the voice/unvoice flag (VUV), are used. Besides, an explicit
constraint module consisting of a speaker classifier [9]] and a
pre-trained speech emotion recognition model (SER) [34] is
introduced to ensure the retention of the source speech style
and target speaker timbre. And inspired by the training process
of CycleGAN [35], we further employ this explicit constraint
module to simulate the style transfer inference process during
training to improve the style and speaker disentanglement
ability further and alleviate the mismatch between the training
and inference process. Experimental results demonstrate that
the proposed approach performs superior to the previous state-
of-the-art systems on source style modeling while maintaining
high speech quality and speaker similarity. Additionally, ab-
lation analysis highlights the importance of each style level,
indicating the good design of the proposed model.

Our preliminary work has been presented in [[14]], in which
only global-level and frame-level style modeling was consid-
ered. In this paper, we improved the model’s style modeling
ability with the proposed multi-scale style modeling module
and explicit constraint module. To sum up, the main contribu-
tions of this work are as follows:

e We propose a novel multi-scale framework for source

style modeling in voice conversion. The multi-scale style
modeling module is designed to model source speech’s

style from different levels, i.e., global, local, and frame
levels, with a specific feature for each level.

o We introduce an explicit constraint model to ensure the
retention of the source speech style and target speaker’s
timbre and meanwhile eliminate the mismatch between
training and inference.

The rest of this paper is organized as follows. Section
reviews related work on style modeling. Section presents
the proposed multi-scale source style modeling method for
VC. Section describes the experimental details. Section
[V] presents the experimental results. Section [VI] discusses the
performance and limitations of the proposed method and also
the possible future research direction. Finally, Section
concludes the paper. Examples of synthesized speech can be
found on the project pagd]

II. RELATED WORK

Regarding the different levels of style modeling, this section
will review related works on speaking style modeling. Besides,
we will also introduce the literature on speaker and style
disentanglement.

A. Speaking Style Modeling

Using the style category label to explicitly control the
speaking style of synthetic speech is an intuitive way [36]],
[37]. But it is limited to predefined style categories in the
manually labeled corpus. In contrast, obtaining the style rep-
resentation from reference speech makes it possible to elim-
inate the dependence on the explicit label [17]-[20]]. Skerry-
Ryan et al. [[18]] propose the reference encoder to extract
style embedding with fixed length from reference speech. To
make the learned style embedding prominent, global style
token (GST) [[19]] model, which extends the reference encoder
by adding a style token layer, and variational autoencoder
(VAE) [20] model are proposed subsequently. Due to the flex-
ibility of these reference speech embedding-based methods,
many further efforts are then conducted based on them [12],
[13], [15]], [38]—[45]]. For instance, the emotion classifier are
used to improve the interpretability of style representation
learned by GST [42]]. And to enhance the style control ability,
Raitio et al. [[39] adopt a reference encoder to extract global-
level prosodic features, including pitch, energy, and spectral
tilt. Some recent work [46]—[50] tries to model fine-grained
style representations. The phoneme-level and word-level style
representations are two intuitive local-level representations.
Fastspeech2 [46|] adopts a variance predictor to predict the
phoneme-level duration, pitch, and energy to represent style in
speech. In [50]], word-level style variation (WSV) is proposed
to describe the word-level style, in which WSV is extracted
from reference speech during training or text with BERT [51]]
during inference. In addition to word and phoneme levels,
finer-grained style representations could be obtained from the
spectrogram, resulting in frame-level style features [4]], [[16],
[22], [23], [25]. In [4], [22]], explicit prosodic features in the
frame level are used to represent the style information. Qian et

'The synthesized samples can be found on |https://kerwinchao.github.io/
VCStyleModeling.github.10
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Fig. 1. The architecture of the proposed MSM-VC model. Note that local-level style representation is concatenated with BN, and meanwhile, global-level
and frame-level style representations are concatenated with the output of the conformer encoder. The explicit constraint model does not involve the inference

process. The ASR, vg-wav2vec, SER, and LPCnet are pre-trained models.

al. [25]] and Lian et al. [23] utilize an implicit style extractor
to extract frame-level style from mel spectrogram to enhance
the ability of style modeling.

Compared with the above-mentioned style modeling meth-
ods based on a single coarse or fine-grained level, the most
recent methods that consider different levels show superiority
in style modeling [14], [27]-[32]. For instance, a multi-scale
reference encoder is introduced in [28] to extract the global-
level and local-level features from reference speech. In [27]],
the authors use phoneme-level emotion strength representa-
tions and global-level emotion categories to achieve fine-
grained emotional speech synthesis. In the multi-speaker and
multi-style TTS task [29], the phoneme-level features, e.g.,
pitch, duration, and energy, and global style tags are used to
model the speaking style.

Despite the superiority of the multi-scale modeling methods
on style modeling, few related efforts of multi-scale style
modeling have been conducted on the VC task. Meanwhile,
in the absence of ground-truth transcription [52]], accurate
pronunciation unit boundaries are unavailable, making mod-
eling local-level style challenging. Besides, most previous
methods mainly focus on modeling styles defined in the
corpus. However, in practice, the VC system generally has to
face arbitrary source speech with a style and speaker that never
appears in the training stage, making an effective speaker-style
disentanglement method rather than the predefined category-
based style modeling method necessary.

B. Style and Speaker Disentanglement

The speaking style and speaker timbre are highly entangled.
It is therefore crucial to squeeze out the source speaker’s tim-
bre information while modeling the speaking style. Adversarial
training [12]], [14], [53[], [54] is a popular method to squeeze
out speaker-related information from style representations,
which usually utilizes an auxiliary speaker classifier to predict
speaker identity. To suppress the information of the source
speaker’s identity, this speaker classifier is optimized with
adversarial training to make the obtained style embedding

speaker-indistinguishable. Besides, constraining the relation-
ship between speaker embedding and style embedding is an-
other popular strategy. For instance, mutual information [21]],
[55] and Frobenius norm [38|] have been adopted to reduce the
correlation between speaker representation and style represen-
tation. Qian et al. [4f], Lian et al. [23]], and Gan et al. [24] set
the small size bottleneck of style representation to squeeze the
speaker information out of the style path. Instead of obtaining
the style embedding from the spectrogram, some recent work
tries to utilize speaker-irrelevant but style-related features as
reference features. For instance, in [31]], the features extracted
from a pre-trained ASR model are used to present the speaking
style. Lei et al. [56] model speaking style on the perturbed
waveform in which the speaker identity has been changed.

Due to the need to face unlabeled and even unseen styles,
disentanglement methods based on limited style categories are
difficult to apply in our task. Besides, style modeling methods
in VC are usually designed in an unsupervised manner without
explicit supervision, which makes it difficult to balance the
style consistency and speaker similarity of the converted
speech. For instance, if the speaking style of the source speech
is too different from the speaking style of the target speaker,
the speaker similarity will easily be affected. In the training
stage, speaking style, linguistic content, and speaker identity
all come from the same speech but different speeches during
style transfer inference. This mismatch between the training
and inference brings insufficient disentanglement and potential
performance degradation.

III. METHODOLOGY
A. Overview

The proposed MSM-VC is built with a typical encoder-
decoder architecture, as shown in Fig. E} This framework
consists of three main components: a multi-scale style mod-
eling module, a conversion module, and an explicit constraint
module. The multi-scale style modeling module extracts com-
prehensive style representations from three levels, i.e., global,
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Fig. 2. The architecture of the multi-scale style modeling module. Please note that in the figure, we assume v = 3, we average each group of three vectors
and use the averaged vector as the prosodic representation of the current segment.

local, and frame levels. To obtain the global-level and local-
level representations, SSL and BN features extracted from
source speech are adopted, respectively. Prosodic features,
including 1f0, VUV, and energy, are used to represent the
frame-level style. The conversion module, which consists of a
conformer encoder [57] and an auto-regressive decoder [58]],
takes speaker id, ASR-based content representation BN, and
style representations from different levels as input and outputs
the mel spectrogram with target speaker timbre and source
speaker’s speaking style. Besides, to effectively optimize the
proposed MSM-VC, an explicit constraint module consisting
of a speaker classifier and a pre-trained SER model is intro-
duced in our framework during training. Finally, a modified
LPCnet [59] is adopted to reconstruct waveform from mel
spectrogram. Note that ASR, vg-wav2vec, SER, and LPCnet
are pre-trained models and will not be optimized further during
the training of the proposed model.

B. Global-level Style Modeling

The global-level style indicates overall speaker style, inten-
sity, and diversity in utterance. The global-level style represen-
tation is generally extracted from the mel spectrogram or BN
of reference speech using a neural style extractor, e.g., GST,
VAE, and reference encoder. However, the mel spectrogram
is far from ideal for style modeling due to the redundant
information, such as speaker timbre. In contrast, while lim-
ited irrelevant acoustic information remained in the BN, the
damage to the style information makes it hard to obtain a
comprehensive style from BN. Inspired by the characteristic of
discrete self-supervised learning feature (SSL) extracted by the
self-supervised model vg-wav2vec [33[], [[60], which contains
less speaker information than mel spectrogram and richer style
information than BN, SSL is adopted for the global-level style
modeling. This conclusion will be verified in Section

As shown in Fig. 2] the global-level style modeling module
consists of three parts, i.e., pre-trained vq-wav2vec model,
vg-wav2vec indices look-up table, and global-level reference
encoder. The SSL features are first extracted by the pre-
trained vg-wav2vec model with the reference speech as input,
resulting in features with the dimensionality of Dgg; and

sequence length of T'. Here, the SSL feature value indicates
the VQ codebook’s index. Following Huang et al. [60], the
SSL features are then separated into different groups along
the dimension axis to look up different embedding tables,
which is helpful for the convergence of training. The resulting
embeddings are used as input to the global-level reference
encoder [18] to obtain the final global-level style embedding.
It is essential to note that the SSL feature still contains speaker
information which may be conveyed to the converted spectro-
gram (See Section.[V-D). In order to prevent the speaker timbre
of the source speaker from leaking to the target speech, we set
a small bottleneck [4], [23] in the global-level style embedding
with the dimension Dgyj,. Finally, the obtained global-level
style embedding is repeated 7" times along the time dimension
and concatenated with the conformer output.

C. Local-level Style Modeling

While global-level style information can convey the overall
speaking style, the local style expression, e.g., tone, stress,
speed, and pause, is also crucial for speaking style. Therefore,
it is important to model the local style. Generally, the local
style expression is reflected in the speech units, e.g., phonemes
or syllables. It is natural to model local style from the phoneme
level or syllable level. Unfortunately, the lack of ground-truth
transcription in practice makes accurate speech pronunciation
unit boundaries inaccessible. To face this challenge, pseudo-
speech units are obtained with fixed-length speech segments.
While SSL features show superiority in reducing redundant
information and maintaining style information, it is not fit to
work as the local style modeling feature due to the mispro-
nunciation issue [61]]. The discrete process may lead the SSL
features of vg-wav2vec to discard some linguistic content.
In contrast, the training object of ASR model makes BN
extracted from a pre-trained ASR model contain the integrity
of the pronunciation information and the consistency within
the speech pronunciation unit. Therefore, instead of SSL, here,
BN is used for the local-level style modeling.

As shown in Fig. we use BN extracted by a pre-
trained ASR model as local-level modeling’s input with the
dimension of Dpy and the length of 7. A modified reference



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

encoder [23] is adopted to extract frame-level features. The
modified reference encoder consists of six 2D convolutional
layers and a GRU layer. The output of the GRU is taken as
the frame-level feature, which is then downsampled along the
time axis with a fixed ratio v to obtain local-level features.
Specifically, taking ~ frames as a pronunciation unit, we
divide the sequence into several segments, and the average
of the frames within each segment represents the current
pronunciation unit. Then the local-level feature with sequence
length of T'/v is broadcast-concatenated to the conformer
output. As the common duration of consonant-vowel syllables
ranges from 150ms to 200ms [|62], we use ~ as 16 in practice.
To be specific, the duration of each speech pronunciation unit
is 200ms with a frameshift of 12.5ms. This pseudo speech
unit feature can get rid of the dependency on the transcrip-
tions, making it convenient in the VC task. Meanwhile, the
characteristics of BN also ensure that speaker timbre leakage
will not happen.

D. Frame-level Style Modeling

When speech is represented as frame-level acoustic features,
e.g., spectrogram, the style naturally varies with the frame.
Therefore, in addition to global level and local level, finer
grain, i.e., frame-level style, should also be considered. To
this end, source speech’s explicit acoustic features, including
pitch and energy, are adopted. To be specific, If0 and short-
term average amplitude are extracted from source speech to
present the pitch and energy, respectively. Besides, VUV,
which indicates the frame’s voicing, is also used in frame-
level style modeling. In practice, 1f0 and energy of each
utterance are normalized to [0, 1] by utterance-level min-
max normalization, which is helpful to prevent naturalness
and speaker similarity degradation caused by the unseen style
and unseen speaker during the inference process. Normalized
energy and 1f0 are used to indicate the trend of pitch and
energy in the source speech. These features are embedded
by linear layers respectively to work as frame-level style
embeddings.

E. Explicit Constraint Module

Achieving high style modeling performance and speaker
similarity is an essential goal of the VC task. Since specific
representations mentioned above still contain speaker-related
information (See Section. [V-D)), only using them is insufficient
to achieve information coupling between speaker and style.
Meanwhile, style modeling methods in VC are usually de-
signed in an unsupervised manner without explicit supervision,
which makes it difficult to balance the speaking style and tim-
bre, in which the former should be consistent with the source
speech while the latter should same as the target speaker. If
the speaking style of the source speech is far from that of the
target speaker, the speaker similarity will easily be affected.
Thus style matching to source speech and speaker similarity
to the target speaker should be simultaneously considered to
explicitly guide the disentanglement process and balance the
source style modeling and target speaker timbre preservation.
In this paper, an explicit constraint module consisting of a

pre-trained SER model and a speaker classifier is introduced
to achieve this end.

1) Style matching to source speech: An intuitive way to
constrain the style category is to use a style classification
objective function. However, since the speaking styles are
distributed in a continuous space, discrete style labels are
too coarse to capture finer-grained variation between styles
and cannot cover all possible styles. In contrast, represen-
tations directly extracted from speech via learnable deep
neural networks are considered more suitable as style de-
scriptor [34], [41], [63]. This representation can capture style-
related attributes from a specific utterance, even if the speaking
style cannot be accurately represented by manually defined
labels. Therefore, the style matching loss here is suitable for
measuring the style consistency between style representations
of source speech and converted speech. In practice, pre-trained
on a style classification task, an SER model is used as a style
descriptor to obtain the style representations and calculate the
style matching loss.

2) Speaker similarity to target speaker: Since the target
speaker’s recordings are contained in the training dataset,
a speaker classifier is commonly introduced to ensure the
speaker similarity to the target speaker, as in Kameoka et
al. [9]. In practice, the speaker classifier takes the predicted
mel spectrogram as input and outputs the probability of this
spectrogram belonging to the target speaker identity.

Generally, in the training phase, all conditional information,
including speaking style, content, and speaker identity, comes
from the same utterance and is used to reconstruct the original
utterance. However, in the style transfer scenario, i.e., the
inference stage, the content and speaking style are from
the source speech, while the speaker identity is from the
target speaker, resulting in inconsistency between these two
phases. This inconsistency could make it hard to measure the
disentanglement ability during training and result in limited
performance for the VC task. To solve this problem, inspired
by the training process of CycleGAN [35], applying the
explicit constraint module allows us to divide the training
process into two different modes, i.e., reconstruction mode,
and simulation mode. In the reconstruction mode, the whole
model is trained using paired data with style, content, and
speaker id of the same utterance. In contrast, to perform style
transfer simulation, style and content are extracted from the
same utterance, while the speaker id is randomly assigned.
Without ground-truth utterance in simulation mode, the ex-
plicit constraint module plays a core role in the balance of
style modeling and speaker timbre preservation.

F. Objective Functions

To effectively optimize the proposed model, style matching
loss, speaker classification loss, and mel reconstruction loss
are introduced to ensure style consistency with the source
speech, speaker timbre similarity with the target speaker, and
the reconstruction quality of the mel spectrogram, respectively.

1) Style matching loss: The matching loss measured by the
SER model ensures that the converted speech has the same
style as the source speech. As shown in Fig. [3] to constrain the
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style from different levels, style-related features extracted from
different layers of the SER model are obtained. Following [34],
2D convolution extracts a variable-length hidden representa-
tion hy,,, from the mel spectrogram Y, and the GRU extracts
the fixed-length vector h,,;qq4;e from the temporal information
of hjoy- Besides, we take the hidden representation calculated
by the second FC layer as hp;gn. Low, middle and high stand
for the abstraction degree of the hidden representation of the
style. Finally, with the features extracted from different layers,
the style matching loss between the source mel spectrogram
Y and the predicted mel spectrogram Y can be defined as

Loyie = Y ||hs — hs|[3, 5 € {low, middle, high} (1)

where £ and h are extracted from the SER model using Y and
Y as input, respectively.

ADELY GRU FC FC
Layers
Ground-truth

Mel Spectrum n o
i i

Predicted Mel
Spectrum

Angry
Surprise

Neutral

Happy

styleygy style migdie stylehigh

Fig. 3. The network architecture of the SER model. The features of the three
network layers are extracted to calculate the style matching loss.

2) Speaker classification loss: The architecture of the
speaker classifier is the same as the SER model. Same as
the practice in [9]], it takes the predicted mel spectrogram as
input to predict the current speaker identity. The corresponding
speaker classification loss is defined as:

£speak}er = - log P(SlY) (2)

where s represents the given target speaker label, Y is the
predicted mel spectrogram, and P(s|Y") represents the proba-
bility of being identified as speaker s under the condition of
inputting Y.

3) Mel reconstruction loss: The mel reconstruction loss,
working as a basic objective function for the speech synthesis,
is to make the model create reasonable target speech based on
style, speaker, and content. L2 distance between predicted mel
spectrogram Y and ground-truth mel spectrogram Y is adopted
as the mel reconstruction loss, which is defined as:

£recons = HY_)A/HE (3)

4) Overall objective function: The overall objective func-
tion is described as follows:

Liotal = a*Lyecons + Lspeaker + ax* l:styleluw @)
+ ‘CSt?/lemiddlc + [’Stylehigh
where the value of « is 0 or 1 to indicate the simulation mode
and the reconstruction mode of model training, respectively. In
particular, due to the lack of ground-truth mel spectrogram in
the simulation mode, the model is only optimized with Lgsye
and L;peqker due to the lack of ground-truth mel spectrogram.
Note that, due to the high similarity between h;,,, and mel
spectrogram [34], the low-level style feature h;,,, contains rich

speaker-related information. Therefore, the h;,,-based style
loss Lstyie,,,, is neither considered in the simulation mode to
avoid the effect on the speaker similarity.

In practice, we first train the model in reconstruction mode
(av = 1) until the model is converged. Then, we finetune the
trained model in both reconstruction and simulation modes.
Since only training exists in the simulation mode, where no
ground-truth mel spectrogram is available for mel reconstruc-
tion loss, the model attends to fit the other training objectives
and ignores the mel reconstruction ability which has been
learned in the first stage. Thus, following the similar process
of CycleGAN [35], to ensure the model’s mel reconstruction
ability, the reconstruction mode is introduced in the finetune
stage and used alternately with the simulation mode. Besides,
only the decoder is updated in this stage to further prevent the
forgetting of learned reconstruction ability, since intuitively
more training parameters are more likely to lead to overfit-
ting [64], [65].

IV. EXPERIMENTAL SETUP

To evaluate the performance of MSM-VC on the VC task,
experiments are conducted on a Chinese multi-speaker speech
corpus. In this section, the databases for the voice conversion
model and also for the pre-trained models will be introduced.
Besides, implementation details, compared methods, and the
evaluation method will also be introduced.

A. Corpus

An internal multi-speaker speech corpus licensed from
Databakeﬂ is adopted to evaluate the proposed method. This
corpus is a standard Mandarin reading corpus recorded by
57 professional voice actors, including 30 females and 27
males. Each speaker performs 500 utterances, resulting in a
total duration of 42h. One female speaker labeled with sl in
this corpus is used as the target speaker. A test set contains
a series of highly expressive speech in different scenarios,
including emotions, movies, novels, daily conversation, and
variety shows. Twenty sentences are randomly selected from
6 kinds of emotions and the other four speaking styles,
respectively, resulting in 200 utterances for the test. In the
experiments, the ASR model is trained with 10k hours of
speech from Wenetspeech [66]. The SER model is trained with
the open-source emotional data ESD [63]], which is recorded
by 20 Chinese and English speakers by performing five kinds
of emotions, i.e., Angry, Happy, Neutral, Sad, and Surprise.
The vg-wav2vec is an open-source pre-trained model trained
on the 960h Librispeech dataset [67].

B. Implement Details

All speech utterances are downsampled to 16kHz and rep-
resented by 80-dim mel spectrogram which is computed with
50ms frame length and 12.5ms frame shift. The ASR system
is a TDNN-F model implemented by Kaidi toolkits [68].
We use the 256-dim bottleneck features (Dgy = 256) as
the linguistic representation, which is extracted from the last

Zhttps://www.data-baker.com/data/index/compose
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fully-connected layer before softmax. The officially released
vg-wav2vec modeﬂ is used to extract 2-dim SSL features
(Dssr = 2). Pyworld toolkiﬂ is adopted to extract FO.
Note that 1f0, VUV, and energy used in this paper are all
1-dim features (Drro = Dyuyv = DEnergy = 1). Modified
LPCnet [59] based on official implementatiorﬂ is adopted to
reconstruct waveform from mel spectrogram. We use ground-
truth mel spectrogram to train the modified LPCnet on the
multi-speaker corpus and finetune it with data of the target
speaker s;.

The conformer encoder consists of one conformer block,
which contains eight heads of multi-head attention module,
convolution module with 31 kernel size, a feed-forward mod-
ule with one expansion factor and the settings of other parts
remain the same as the official setting®] The architecture
and hyperparameters of the global-reference encoder keep
the origin configuration [18]]. To be specific, it consists of 6
convolution layers and a GRU layer. Each convolution layer
is composed of 3x3 filters with 2x2 stride, SAME padding,
and ReLU activation. The number of filters in each layer is
32,32, 64, 64, 128, and 128, respectively. Batch normalization
is applied to each layer. The output of convolution layers is
fed into the GRU with four units (Dg, = 4). Different from
the global-level reference encoder, the frame-level reference
encoder adopts convolution layers composed of 3 x 3 filters
with 1 x 2 stride and the outputs of the GRU at every timestep
form the frame-level representation (D, = 4). The decoder
is an auto-regressive module [58|] which consists of prenet,
decoder RNN, and postnet. In the reconstruction training stage,
the conversion model is trained for 240 epochs with batch size
of 32. Adam optimizer is used to optimize the model with
learning rate decay, which starts from 1 x 10~ and decays
every 20 epochs with decay rate of 0.7. In the simulation
training stage, the conversion model is trained for 70 epochs,
in which process the learning rate starts from 1 x 10~ and
decays every 20 epochs with decay rate of 0.5.

C. Compared Methods

To evaluate the performance of the proposed method MSM-
VC on the VC task, three recent state-of-the-art systems
designed for VC are compared in the experiments. These
compared methods represent three typical VC approaches,
i.e., global-level reference embedding based method, frame-
level representation based method, and a hybrid strategy.
Note that all systems use the same vocoder LPCNET to
reconstruct waveform from the mel spectrogram. Details of
these compared methods are introduced as followings.

GST-VC [13] is a typical global reference representation-
based VC method. In this model, GST [19] extracts global
style information from the source speech’s mel spectrogram.
As for the linguistic content of source speech, a pre-trained
ASR model is used to obtain the phoneme sequence. Then,
the converted speech is produced conditioned on the phoneme

3https://github.com/pytorch/fairseq
“https://github.com/JeremyCCHsu/Python-Wrapper-for-World- Vocoder
Shttps://github.com/mozilla/LPCNet
Ohttps://github.com/sooftware/conformer

sequence, global style information, and target speaker identity
information.

REF-VC [23] is a frame-level style representation-based
method. In this model, the authors utilize a modified reference
encoder to learn frame-level style representation from the mel
spectrogram in an unsupervised manner. The speaking style
of source speech is conveyed to the converted result by this
learned frame-level style representation together with f0.

Hybrid-VC [14] is the preliminary work of the current
method, in which explicit prosodic features (1fO0 and energy)
together with global-level style representation are used to
model the speaking style. Unlike the current work, this pre-
liminary method simply describes style from two levels and
lacks explicit supervision for style and speaker.

D. Evaluation Metrics

With the input of source speech, the goal of the VC
task is to obtain the converted speech that shares the same
linguistic content and speaking style as the source speech but
with the timbre of the target speaker. Therefore, there are
two aspects that should be considered in the evaluation: 1)
the style similarity between the source speech and converted
speech; 2) the speaker similarity between the target speaker
and that of converted speech. Besides, as a kind of speech
synthesis task, the quality of the produced speech should also
be evaluated. To evaluate the converted speech from the above
three aspects, both objective and subjective evaluation methods
are conducted in the experiment.

1) Objective metrics: Considering both 1f0 and energy are
style-related acoustic features, Pearson correlation coefficients
of 1f0 and energy are calculated between the source speech and
convert speech to objectively reflect the style similarity. Higher
Pearson correlation coefficients of 1f0 or energy indicate better
style similarity. As for the evaluation of speaker similarity, a
pre-trained speaker verification system [69] trained on CN-
Celeb [70] is introduced. Cosine similarity between the SV
model-based speaker embeddings of converted speech and
speech from the target speaker shows speaker timbre similarity
between them. Higher cosine similarity means better similarity
between speaker timbres of converted speech and the target
speaker.

2) Subjective metrics: In addition to the objective eval-
uation, a human perceptual rating experiment is performed
to evaluate the converted speech in terms of style similarity
(between converted speech and source speech), speech quality,
and speaker similarity (between converted speech and target
speaker speech). To facilitate the comparison between different
models in terms of style modeling, a comparative mean opin-
ion score (CMOS) test is also performed in the experiment.
In the test, given the reference speech, listeners are asked
to rate whether the first sample is better or worse than the
second one in terms of style similarity, using a seven-point
scale comprised of +3 (much better), +2 (better), +1 (slightly
better), 0 (same), -1 (slightly worse), -2 (worse), -3 (much
worse). Besides, A/B preference is also presented, which can
be simultaneously obtained during the CMOS test, to provide
another perspective into the comparison. Different from the
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TABLE I
CMOS AND A/B PREFERENCE RESULTS FOR THE COMPARISON OF THE
PROPOSED METHOD WITH OTHER METHODS IN TERMS OF STYLE
MODELING. A POSITIVE CMOS VALUE MEANS THAT THE PROPOSED
METHOD IS BETTER THAN THE COMPARED METHOD AND VICE VERSA. p
DENOTES P-VALUE TO VERIFY THE SIGNIFICANCE OF THE RESULTS.

TABLE II
COMPARISON OF THE PROPOSED METHOD WITH GST-VC, REF-VC, AND
HYBRID-VC IN TERMS OF SPEECH QUALITY AND SPEAKER SIMILARITY
MOS WITH CONFIDENCE INTERVALS OF 95%. THE BOLD INDICATES THE
BEST PERFORMANCE OUT OF THE FOUR MODELS. p DENOTES THE
P-VALUE BETWEEN THE COMPARISON AND PROPOSED SYSTEMS.

Style CMOS Comared Preference (%)
Method Neutral MSM-VC| p
GST-VC 1.393 59 11.6 82.5 <0.01
REF-VC 0.507 20.0 26.2 53.8 <0.01
Hybrid-VC 0.461 21.6 28.4 50.0 <0.01

CMOS test, participants are asked to choose the better one or
“Neutral” when both samples are similar in A/B preference.
As for the evaluation of speaker similarity and speech quality,
following the typical mean opinion score (MOS) test method,
listeners are asked to rate a given speech a score ranging from
one to five for its speaker similarity or speech quality. A higher
score means better performance, and score value 1 means very
bad, and 5 means excellent. In the experiments, 60 utterances
are randomly selected from the test set, and 20 participants in
total join in both CMOS and MOS tests.

V. EXPERIMENTAL RESULTS

Experimental results, including the comparison with other
methods and ablation studies, will be presented in this section.
Besides, the rationality of the feature choosing for different-
level style modeling is also presented. We also investigate
the model’s behavior in two training modes and the model
size of different systems. We highly recommend readers listen
to the converted samples from https://kerwinchao.github.io/
VCStyleModeling.github.io.

A. Subjective Evaluations

1) Source style modeling performance: Table [I| presents
the comparison of the style modeling performances between
the proposed and compared methods, in which subjective
evaluation with CMOS is reported. In this subjective rating
test, participants have to rate two compared samples, in which
one is obtained by the proposed method and another one is
from a compared method. A positive value means that the
proposed method is better than the compared one and vice
versa. Besides, the A/B preference test is also presented to
give further evaluation between the compared methods and
the proposed method.

As shown in this table, all CMOS values are larger than 0,
which means that compared with all of these listed methods,
the proposed method shows superiority in style modeling.
And the scores of A/B preference also show that MSM-
VC significantly outperforms the compared methods (p-value
smaller than 0.01). These results demonstrate the effectiveness
of the proposed method on style preservation. When we
pay attention to the specific CMOS and preference scores
compared with different methods, it can be found that the
largest performance gap exists between the proposed method
and GST-VC, indicating the inferiority of GST-VC in style

MOS (1)
Speech Quality p Speaker Similarity p
GST-VC 3.60+0.094 0.331 3.71+0.106 0.141
REF-VC 3.4040.106 0.014 3.4610.080 0.011
Hybrid-VC 3.534+0.117 0.579 3.6040.194 0.470
MSM-VC 3.54+£0.083 - 3.66£0.086 -

modeling. This poor performance demonstrates that only mod-
eling the style from a global coarse-grained is insufficient for
style preserving in the VC task. In contrast, modeling the style
from a fine-grained level, e.g., the frame-level-based method
REF-VC, results in better performance. However, no matter
the coarse-grained style modeling method or fine-grained style
modeling method, this single-level modeling method is inferior
to Hybrid-VC and the proposed method, which indicates the
importance of modeling style from different levels.

2) Speech quality and speaker similarity: In addition to
style modeling ability, speech quality and speaker similarity
are also important aspects to evaluate the performance of a VC
model. The results of MOS tests in terms of speech quality and
speaker similarity for different models are shown in Table
Compared with REF-VC and Hybrid-VC, which are obviously
superior to GST-VC in terms of style modeling, the proposed
method achieves better MOS scores both in speech quality
and speaker similarity. Moreover, significant tests confirm that
MSM-VC outperforms REF-VC (p-value smaller than 0.05)
but no significant difference is shown between the MOS results
of MSM-VC and Hybrid-VC.

Compared with the proposed method, GST-VC gets better
MOS values in speech quality and speaker similarity. This
good performance is attributable to the phoneme-based content
modeling method and global-level modeling strategy. To be
specific, using the phoneme sequence as the content input
can filter out all information that is unrelated to the content
from the source speech, thus preventing the effect from the
source speech to the final results. Besides, the global-level
style embedding only indicates an overall style, which could
bring very limited noise information from the source speech
to the converted speech. However, this good performance in
the speech quality and speaker similarity is at the expense of
style modeling because of the limited information taken from
the source speech. Furthermore, the significance test result
between GST-VC and MSM-VC shows that the differences
are not significant (p-value greater than 0.05) in the speech
quality and speaker similarity. It demonstrates that MSM-VC
can maintain high speech quality and speaker similarity while
achieving modeling source style.

B. Objective Evaluations

The objective comparison among different models is shown
in Table [V-B] in which a higher Pearson correlation coefficient


https://kerwinchao.github.io/VCStyleModeling.github.io
https://kerwinchao.github.io/VCStyleModeling.github.io

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE III
OBJECTIVE COMPARISON OF DIFFERENT MODELS ON THE VC TASK IN
TERMS OF STYLE MODELING AND SPEAKER SIMILARITY. NOTE THAT
0.881 ARE CALCULATED FROM THE TARGET SPEAKER DATA.

Pearson Coefficient (1) | Cosine Similarity
Lfo Energy (1,0.881)
GST-VC 0.633 0.820 0.828
REF-VC 0.738 0.947 0.791
Hybrid-VC 0.742 0.971 0.811
MSM-VC 0.757 0.968 0.823
TABLE IV

CMOS AND A/B PREFERENCE RESULTS FOR EVALUATING THE EFFECT OF
DIFFERENT STYLE LEVELS ON THE SOURCE STYLE MODELING. p DENOTES
P-VALUE TO VERIFY THE SIGNIFICANCE OF THE RESULTS.

Style CMOS — Preference (%)
Meglo 4 Neutral MSM-VC| p
w/o Global 0.40 17.3 37.4 453 <0.01
w/o Local 0.44 17.4 32.0 50.6 <0.01
w/o Frame 1.06 9.4 12.0 78.6 <0.01

indicates the speaking style of source speech is better reflected
in the converted speech. As can be seen from this table, while
the energy Pearson coefficient of MSM-VC is slightly lower
than Hybrid-VC, the proposed system achieves overall better
scores than other compared methods, which is consistent with
the subjective evaluation results.

The objective comparison of different models on the speaker
similarity also presents similar results to that obtained in the
subjective evaluation test. To be specific, GST-VC gets the
highest speaker similarity, which means that GST-VC has the
best performance in achieving converted speech with the target
speaker’s timbre. The proposed MSM-VC ranks next to GST-
VC and shows better performance than REF-VC and Hybrid-
VC. As discussed in the subjective evaluation and also the
worst performance of GST-VC in the subjective style modeling
evaluation, the proposed method presents the most balanced
performance in the style modeling and speaker similarity,
demonstrating the superiority of MSM-VC in source style
modeling while achieving high speaker similarity.

C. Component Analysis

In this section, ablation studies will be conducted to validate
the effectiveness of each component of MSM-VC, i.e., the
multi-scale style modeling module, explicit constraint module,
and the simulation strategy for the training of MSM-VC.

1) Effectiveness of different style level: As we argue that
human speech’s multi-scale nature makes it is necessary to
model the speaking style from different levels, in this section,
we would like to analyze the effectiveness of style modeling
from each level on the VC task. To be specific, several
variants of MSM-VC are evaluated by dropping one of the
style modeling levels. As shown in Table w/o Global,
w/o Local, and w/o Frame indicate a variant of MSM-VC
without modeling the global-level style, local-level style, and
frame-level style, respectively. In this table, the performances

TABLE V
ABLATION ANALYSIS OF EXPLICIT CONSTRAINT MODULE AND
SIMULATION TRAINING METHOD

Cosine

-osIne Pearson Coefficient (1) Speech

Similarity - Quality(1)

(1,0.881) L0 Energy y
wlo Speaker |, 79, 0.748 0908 | 3.562£0.081

Classifier

w/o SER 0.827 0.715 0.883 3.584+0.089
w/o Simulation 0.810 0.724 0.906 3.5640.072
MSM-VC 0.823 0.757 0.968 3.5440.083

of those MSM-VC variants are compared with MSM-VC using
the CMOS test, in which a positive CMOS score means MSM-
VC is better than the compared variant. A/B preference and
significant tests also are conducted in this comparison.

As can be seen from this table, all CMOS values are
positive, indicating that without modeling the style from any
level will decrease the performance of style modeling. And
the scores of A/B preference also show similar results. Among
the three levels for style modeling, the frame-level modeling
module shows the most important role in style modeling, by
dropping which the CMOS value is larger than 1. This obvious
effect is attributed to those frame-level style representations,
i.e., If0, VUV, and energy, which are able to represent fine-
grained style from different perspectives directly. The global-
level modeling module and local-level modeling module also
play important roles in the final style modeling, which can be
demonstrated by the large CMOS values that are larger than
0.4. All these results show the necessity to model the speaking
style from different levels and also indicate the good design
of the proposed multi-scale modeling method.

2) Effectiveness of explicit constraint module: An ablation
study to analyze the effectiveness of the explicit constraint
module and simulation training stage driven by explicit con-
straints is also conducted. The results are shown in Table
in which the performances of two MSM-VC variants obtained
by dropping speaker classifier and SER, referred to as w/o
Speaker Classifier and w/o SER respectively, are presented.
Besides, the performance of MSM-VC trained without the
simulation stage, named w/o Simulation, is also compared.

As shown in this table, the speaker classifier and SER show
obvious effects on speaker similarity and style consistency, re-
spectively. To be specific, the dropping of the speaker classifier
brings a 3.5% relative decrease compared with MSM-VC in
speaker cosine similarity. After removing the SER, the pearson
coefficients of 1f0 and energy decrease by 5.5% and 6.2%
compared with the proposed method. As for the speech quality,
a tiny negative impact exists when the speaker classifier or
SER module is utilized. However, this negative impact is very
limited, indicating the effectiveness of the speaker classifier
and SER in modeling the speaker timbre and style while
maintaining the quality of synthesized speech. Furthermore, as
shown in Table [V] the simulation training stage also shows a
positive effect on speaker similarity and style modeling. The
model trained without the simulation stage presents a 1.5%
speaker similarity drop. The pearson coefficients of 1f0 and
energy also show 4.3% and 6.4% relative decrease. While
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TABLE VI
COMPARISON OF DIFFERENT FEATURES IN TERMS OF STYLE AND
SPEAKER RICHNESS.

MSE (1) Speaker Accuracy (1)
Lf0 Energy
Mel 1.25 0.032 0.93
BN 2.14 0.078 0.48
SSL 1.70 0.041 0.73
SSL (EN) 1.64 0.045 -

a slight performance decrease appears when the simulation
training stage is adopted in terms of speech quality, similar
to the effect of using speaker classifier and SER, this effect
is quite tiny. The reason behind this speech quality decrease
caused by the explicit constraint is straightforward, which is
caused by the lack of reconstruction constraints for performing
these explicit losses. However, the obvious improvements to
the speaker modeling and style modeling but a slight decrease
in the speech quality demonstrates the effectiveness of the
explicit constraint module in the VC task.

D. Analysis of Feature Choosing for Style Modeling

Using the appropriate feature for style modeling of a specific
level is important. In MSM-VC, SSL and BN features are
adopted for the global and local-level style modeling. Here,
we would like to show the information richness of these
features in terms of style and speaker information. In addition
to the BN and SSL features, mel spectrogram, which is the
commonly used acoustic feature, is also compared. Due to
the lack of direct indicators of information richness, these
features are compared in several prediction tasks, alternatively.
Specifically, each kind of feature is used to train models to
predict f0, energy, and speaker, respectively. The predicted
accuracy of fO and energy are evaluated by the MSE between
the predicted results and ground truth. A lower MSE of f0O and
energy means that more style information is contained in the
feature. The speaker classification performance is evaluated
by the classification accuracy, and higher speaker accuracy
indicates more contained speaker information. We use the
multi-speaker corpus mentioned in Section [IV] for the model
training and randomly select 50 sentences from each speaker
as the test set. The model’s structure is the same as the SER.

As shown in Table the mel spectrogram achieves the
best performance in speaker classification and prosodic feature
prediction, which is as expected due to the least acoustic
information loss compared with BN and SSL features. This
high speaker-related correlation makes mel spectrogram a non-
ideal styling modeling feature because of the speaker leakage
issue caused by the speaker information. In contrast, BN
and SSL show less speaker information. The characteristic of
SSL has richer style and speaker information than BN but
less speaker information than mel spectrogram making SSL
suitable for global style modeling, in which the obtaining
of the global style embedding could effectively reduce the
speaker-related information. As for the modeling of local-
level style modeling, more information could be kept in the

final style embedding, thus making the feature with rich
speaker information unsuitable. Therefore, the BN feature,
which contains the least speaker information, can prevent the
speaker leakage issue when it is taken for the local-level style
modeling. While less style information is contained in BN and
SSL compared with mel spectrogram, modeling the style from
different levels can effectively bridge this gap. Furthermore,
considering that the vg-wav2vec model is trained on English
data, we also tested the style richness of SSL extracted from
English data, referred to as SSL(EN). Fifty-seven speakers
from VCTK [71]] are selected for training and 50 sentences
from each speaker are used as the test set. As shown in Table
VI, SSL(EN) extracted from English speech has a similar style
richness to that extracted from Chinese speech, which indicates
the language independence of style information carried by the
SSL feature.

VI. DISCUSSION

In this paper, a multi-scale style modeling method for the
VC task, named MSM-VC, is proposed to preserve the speak-
ing style of source speech in converted speech. The multi-scale
modeling module is designed to model the source speech’s
style from different levels, i.e., global, local, and frame levels.
Besides, an explicit constraint module and simulation training
strategy are proposed to directly guide the training of MSM-
VC towards the aim of the VC task, i.e., preserving the
speaking style of source speech while maintaining the target
speaker’s timbre. In this section, more details of MSM-VC
and its limitations will be discussed as follows.

1) Visualization of reconstruction and simulation modes:
To explore the behavior of the simulation mode, the finetune
stage’s loss curves are visualized in different aspects, including
mel reconstruction (Lyecons), Style matching (Lgyie), and
speaker classification (Lgpeaker). As shown in Fig. [Z_f], the two
training modes show different behaviors. Specifically, from
the beginning of the finetune stage, in terms of Ly and
Lgpeaker, the loss value of the simulation mode is significantly
higher than that of the reconstruction mode. This high style
matching loss and speaker classification loss obviously drop
with the application of the simulation mode. Besides, in terms
of the reconstruction loss, the simulation mode does not
bring negative effects to the reconstruction process, indicating
the effectiveness of the simulation mode in alleviating the
mismatch between training and inference and improving the
disentanglement ability.

2) Model size investigation of different systems: To in-
vestigate the impact of model size on VC performance, the
trainable parameters amount among comparison, ablation, and
proposed models is shown in Table. The number of MSM-
VC’s trainable parameters has no significant increase com-
pared to other comparison systems. Compared with ablation
systems, the differences in the trainable parameter amount
come from the multi-scale style extraction of the source speech
and the generation of constraints for the training process,
which bring the enhancement of style modeling and target
speaker timber maintenance. Besides, we also investigated the
performance of the base model Base-VC, which is a variant
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Fig. 4. Visualization of loss curves for reconstruction and simulation modes in finetune stage.

TABLE VII
MODEL SIZE AND INFERENCE SPEED OF COMPARISON, ABLATION, AND
PROPOSED SYSTEMS.

Trainable Parameters (M) | Real-time Factor
GST-VC 4.44 0.087
REF-VC 3.92 0.083
Hybrid-VC 4.24 0.088
MSM-VC 4.14 0.088
w/o Global 3.97 0.087
w/o Local 3.85 0.085
w/o Frame 4.14 0.088
w/o Speaker Classifier 3.75 0.088
w/o SER 4.14 0.088
w/o Simulation 4.14 0.088
TABLE VIII

COMPARISON OF THE PROPOSED METHOD WITH BACKBONE MODELS.
3.17M, 4.44M, AND 4.14M ARE THE TRAINABLE PARAMETERS AMOUNT

OF MODELS.
Cosine Pearson S h
Similarity | Coefficient (1) peec
Quality(1)
(1,0.881) | Lfo Energy
Base-VC (3.17M) 0.830 0.596 | 0.788 | 3.57+£0.091
Base-VC (conformer 1—2,
4.44M) 0.833 0.603 | 0.776 | 3.58+0.109
MSM-VC (4.14M) 0.823 0.757 | 0.968 | 3.54+0.083

of the proposed model by dropping out the proposed multi-
scale style extraction and generation constraints, with simply
increased parameters. To be specific, we double the layers
of the conformer block in Base-VC, referred to as Base-VC
(conformer 1—2). As shown in Table. |VIII} compared with
Base-VC, Base-VC (conformer 1—2) gets performance gain in
speaker similarity and speech quality but worse style similar-
ity. It indicates that simply increasing the model size cannot
lead to obvious style modeling performance gain. In MSM-
VC, the role of the increased part of trainable parameters is
designed to provide more style-related information of source
speech from different scales instead of only model capacity.
Simply expanding the number of model parameters is unlikely
to provide additional style information.

3) Limitations: While experiments have demonstrated the
good performance of the proposed model on source style
modeling in most scenes, we have to point out that some
limitations still exist. Specifically, in some extreme cases,
such as speech with high emotional intensity, crying, laughing,
shouting, and murmuring, the intelligibility and quality of the
converted speech will be greatly affected. The high-quality
data of this kind of speech is very difficult to collect, and it
is hard to cover all categories simultaneously. Improving the
stability and generalization of semantic representation is an
interesting topic that needs to be paid more attention to in
practice. Furthermore, MSM-VC requires several pre-trained
models, e.g., ASR, SER, and vg-wav2vec, which would be
disadvantageous in a practical scenario. As presented in Table
[VII] we tested our model’s real-time performance on a single
NVIDIA RTX 2080 GPU, achieving a rate of 0.088, which
is slightly slower than the comparison methods. While our
model is capable of transferring source style to target speakers,
it is still non-real-time, limiting its potential applications.
Developing a streaming model to accomplish this task would
be valuable.

VII. CONCLUSION

This paper proposes a multi-style modeling approach for
the voice conversion task based on a recognition-synthesis
framework, which can convey not only the linguistic content
but also the speaking style of source speech to the converted
speech. In order to obtain comprehensive speaker-irrelevant
style representations, the multi-level style modeling module
obtains frame-level, local-level, and global-level styles from
specific representations. Besides, to directly guide the source
style modeling and target speaker timbre preservation of the
proposed model, an explicit constraint module consisting of a
speaker classifier and a pre-trained speech emotion model is
introduced. This explicit constraint module also makes it possi-
ble to simulate the style transfer inference process during the
training to encourage the speaker and style disentanglement
and prevent the mismatch between training and inference.
Experimental results demonstrate that the proposed approach
achieves superior performance in conveying source speech
style while maintaining target speaker timbre and good speech
quality.
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