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Abstract—Speech applications in far-field real world settings
often deal with signals that are corrupted by reverberation. The
task of dereverberation constitutes an important step to improve
the audible quality and to reduce the error rates in applications
like automatic speech recognition (ASR). We propose a unified
framework of speech dereverberation for improving the speech
quality and the ASR performance using the approach of envelope-
carrier decomposition provided by an autoregressive (AR) model.
The AR model is applied in the frequency domain of the sub-
band speech signals to separate the envelope and carrier parts.
A novel neural architecture based on dual path long short term
memory (DPLSTM) model is proposed, which jointly enhances
the sub-band envelope and carrier components. The dereverber-
ated envelope-carrier signals are modulated and the sub-band
signals are synthesized to reconstruct the audio signal back.
The DPLSTM model for dereverberation of envelope and carrier
components also allows the joint learning of the network weights
for the down stream ASR task. In the ASR tasks on the REVERB
challenge dataset as well as on the VOiCES dataset, we illustrate
that the joint learning of speech dereverberation network and
the E2E ASR model yields significant performance improvements
over the baseline ASR system trained on log-mel spectrogram as
well as other benchmarks for dereverberation (average relative
improvements of 10-24% over the baseline system). The speech
quality improvements, evaluated using subjective listening tests,
further highlight the improved quality of the reconstructed audio.

Index Terms—Frequency domain auto-regressive modeling,
Dereverberation, end-to-end ASR, Joint modeling.

I. INTRODUCTION

THE wide spread adoption of voice technologies like
meeting assistants, smart speakers, in-car entertainment

systems, and virtual assistants imply that the audio signal at
the input of these system is impacted by reverberation and
noise artifacts [1]. The performance of the downstream appli-
cations like, automatic speech recognition, speaker/language
recognition, emotion recognition or voice activity detection, is
shown to degrade significantly in reverberant conditions [2]–
[6]. The performance deterioration is primarily attributed to the
smearing of the temporal envelopes caused by reverberation
[7]. The temporal smearing is caused by the emplacement
of the direct path signal on reflected signals, resulting in a
weighted summation of delayed components [8].
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One of the approaches to deal with the adverse far-field
conditions is to develop a front-end which performs sig-
nal enhancement. Several techniques for dereverberation like
signal processing based (for example, weighted prediction
error (WPE) [9]), mask estimation based (for example, time-
frequency mask estimation [10]) and multi-channel beamform-
ing based (for example, time-delay estimation [11], general-
ized eigen-value [12], [13]) have been explored to improve the
signal quality. On the other hand, another effective approach
for system development in reverberant conditions is that of
multi-condition training [14]. However, even with these pre-
processing and multi-condition training methods, the beam-
formed signal contains significant amount of temporal smooth-
ing which adversely impacts the ASR performance [15].

In the traditional setting, the first step in the analysis of a
signal is the short-term Fourier transform (STFT). The key
assumptions about the convolution model of reverberation
artifacts, is applicable for a long-analysis window in the time
domain, or using convolutional transfer function with cross-
band filters in the STFT domain [16], [17]. In our case, we
use the former approach of long analysis window and explore
dereverberation in the sub-band envelope domain. As the
reverberation is a long-term convolution effect, we highlight
that room impulse response (typically with a T60 > 400ms)
can be absorbed as a multiplication in the frequency domain,
as well as a convolution in the sub-band envelope domain.

In this paper, we investigate the effect of reverberation on
the long-term sub-band signals of speech using an envelope-
carrier decomposition. The extraction of the sub-band envelope
is achieved using the autoregressive (AR) modeling approach
in the spectral domain, termed as frequency domain linear
prediction (FDLP). Our previous work showed that a feature
level enhancement with the FDLP envelope improves speech
recognition performance [18], [19]. However, the prior works
did not allow the reconstruction of the audio signal for quality
improvement. Further, the enhancement of the carrier signal
was not addressed in the previous work due to the challenges
in the handling the impulsive nature of the carrier signal.

In this paper, we propose a novel approach to the joint
dereverberation of the envelope and carrier signals using a
neural modeling framework. While using the sub-band sig-
nals directly, the sample level de-convolution with a suitable
loss function can be a difficult design choice to learn using
neural models. Hence, we propose using an envelope-carrier
decomposition of the sub-band signals. Our rationale for the
envelope-carrier decomposition based setup is the fact the
envelope information is alone used in the ASR experiments.
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Thus, the ASR loss has to impact only the envelope dere-
verberation branch. However, the carrier and the envelope
components are part of the signal reconstruction branch.

We develop a dual path long short term memory (DPLSTM)
architecture for the dereverberation of the temporal envelope
and carrier signals. In our case, the goal of the neural model
is to perform a dereverberation of the envelope and the carrier
components of the sub-band signal. These signals have a time
profile, with varying dynamic range and properties. Further,
merging all the sub-band signals in the decomposition also
brings in a frequency profile. Thus, the design choice of the
neural model, for enhancing the sub-band envelope-carrier
signals, has to learn the sequence level patterns in both the
time and frequency domains. The DPLSTM [20] is a suitable
choice, as the model is able to integrate information effectively
in both the time and frequency domains.

Following the dereverberation step, the sub-band modu-
lation and synthesis step generates the reconstructed audio
signal. The neural enhancement and sub-band synthesis can
also be implemented as a part of the larger neural pipeline for
downstream tasks like ASR, thereby enabling the joint learning
of the ASR and dereverberation model parameters. We refer
to the proposed approach as Dual path dereverberation using
Frequency domain Auto-Regressive modeling (DFAR) and the
joint end-to-end model as E2E-DFAR.

Various ASR experiments are performed on the REVERB
challenge dataset [21] as well as the VOiCES dataset [22],
[23]. The key contributions from this work, over the prior
work [18], can be summarized as follows,

• Proposing an analysis for dereverberation with a sub-band
decomposition and envelope-carrier demodulation.

• Proposing a dual-path long short time memory model
named, DPLSTM for the dereverberation of sub-band
envelope and carrier signals. This approach is termed as
DFAR.

• Developing a joint learning scheme, where the ASR
model and the DFAR model are optimized in a single
end-to-end framework. This model is referred to as the
E2E-DFAR.

• Evaluating the proposed approaches on speech quality
improvement tasks as well as on ASR tasks on two
benchmark datasets - REVERB challenge dataset and the
VOiCES dataset.

II. RELATED PRIOR WORK

A. Enhancement and dereverberation

For speech enhancement, Xu et. al. [24] devised a mapping
from noisy speech to clean speech using a supervised neural
network. In a similar manner, ideal ratio mask based neural
mappings [25] have been explored for speech separation tasks.
On the dereverberation front, Zhao et. al. proposed an LSTM
model for late reflection prediction in the spectrogram domain
[26]. Han et. al [27] developed a spectral mapping approach
using the log-magnitude inputs and Williamson et. al [10]
proposed a mask-based approach for dereverberation on the
complex short-term Fourier transform. In a different line of

work, speech enhancement in the time domain was pursued
by Pandey et. al [28].

The application of speech dereverberation as a pre-
processing step for downstream applications like ASR have
been explored in several works (for example, [29]–[31]). The
recent years have seen the use of recurrent neural network
architectures for dereverberation. For example, Maas et. al
[32], utilized a recurrent neural network (RNN) to establish
mapping between noise-corrupted input features and their
corresponding clean targets. Also, the use of a context-aware
recurrent neural network-based convolutional encoder-decoder
architecture was investigated by Santos et. al. [33].

B. Robust multi-channel ASR

In the design of robust ASR, Generalized sidelobe canceller
(GSC) [34], [35] is a common approach. It was introduced
by Li et. al in [36], where the authors proposed a neural
network-based generalized side-lobe canceller. To combine
spectral and spatial information from multiple channels using
attention layers, an end-to-end multi-channel transformer was
investigated in [37]. In another attention modelling approach,
the streaming ASR model based on monotonic chunk-wise
attention was proposed by Kim et. al in [38]. Ganapathy et.
al. [4] proposed a 3-D CNN model for far-field ASR.

C. Joint modeling of enhancement and ASR

The attempt proposed by Wang et. al. [39] incorporates a
DNN based speech separation model coupled with a DNN
based acoustic model. The work reported by Wu et. al. [40] ex-
plored a unification of separately trained speech enhancement
neural model and the acoustic model, where the joint model is
fine-tuned to improve the ASR performance. Here, the DNN
based dereverberation front end leverages the knowledge about
reverberation time. While traditional GSC is optimized for
signal level criteria, the neural network-based GSC, proposed
by Li et. al [36], was optimized for ASR cost function.

III. PROPOSED DFAR APPROACH

A. Quadrature Mirror Filter (QMF)

For the sub-band decomposition, we had the following
design considerations

• The decomposition approach should allow the long-term
artifacts of reverberation to be captured in the sub-band
domain as a convolution,

• The analysis method should allow a perfect reconstruc-
tion back to the audio using the synthesis part, and

• The sub-band components should be critically sampled
for efficient computation of the dereverberated compo-
nents in a deep neural model.

The quadrature mirror filter (QMF) met all the above require-
ments and hence, this work has used the QMF analysis and
synthesis for speech dereverberation task.

A quadrature mirror filter (QMF) is a filter whose magnitude
response is a mirror reflection at quadrature frequency (π2 )
of another filter [41]. In signal processing, the QMF filter-
pairs are used for the design of perfect reconstruction filter
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Fig. 1. Illustration of a 4-channel uniform QMF decomposition using a 2-stage binary QMF tree. In our work, we use 64-channel decomposition, using a
6-way binary tree.

banks. Let H0(e
jΩ) and H1(e

jΩ) denote low-pass and high-
pass filter’s frequency domain function, where Ω is the digital
frequency. In addition to the quadrature property (H1(e

jΩ) =
H0(e

j(Ω−π))), the filters used in QMF filter-banks also satisfy
the complimentary property,

|H0(e
jΩ)|2 + |H1(e

jΩ)|2 = 1. (1)

The design of sub-band decomposition scheme with QMF
involves a series of filtering and down-sampling operations
for the analysis [42]. The synthesis is achieved by up-sampling
and filtering operations. A tree-like structure can be formed us-
ing a recursive decomposition operation. The down-sampling
process enables a critical rate of processing, where the sum of
the number of samples in each sub-band equals the number
of the samples in the full-band signal.

In this work, we use an uniform 64-band Quadrature Mirror
Filter bank (QMF) for decomposing the input signal into
64 uniformly spaced frequency bands. Inspired by the audio
decomposition scheme outlined in Motlicek et. al. [43], we use
a 6-level binary tree structure. The schematic of the sub-band
decomposition is shown in Fig. 1. For the implementation in a
neural pipeline, the down-sampling operation is equivalent to
a stride, while the up-sampling operation is that of un-pooling.

B. Autoregressive modeling of temporal envelopes

The application of linear prediction model in the frequency
domain, an approach called frequency domain linear prediction
(FDLP), enables the modeling of the temporal envelopes of
a signal with an autoregressive (AR) model [8], [44]. The
sub-band signal is transformed to the spectral domain using a
discrete cosine transform (DCT) [8], where a linear prediction
model is applied.

Let the sub-band signal be denoted as xq[n], where q =
1, .., Q denotes the sub-band index. The analytic signal, in
signal processing theory, is a complex valued function, whose
real value is the original signal while the imaginary value is the
Hilbert transform of the signal. It finds application in single
side-band amplitude modulation and quadrature filtering. Let
the analytic version of sub-band signal, xq[n] be denoted as,
xa
q [n]. The corresponding analytic signal in the frequency

domain, Xa
q [k] can be shown to be the one-sided discrete

Fourier transform (DFT) [8] of the even symmetric version
of xq[n].

We apply linear prediction (LP) on the frequency domain
signal, Xa

q [k]. The corresponding LP coefficients are denoted

by {bp}mp=0, where m is the order of the LP. The temporal
envelope estimate of xa

q [n], is given by,

eq[n] =
α

|
∑m

p=0 bpe
−2πipn|2

(2)

where α denotes the LP gain. The envelope represents the
autoregressive model of the Hilbert envelope. In this paper,
we use the Burg method [45] for estimating the AR envelope.

The corresponding carrier (remaining residual signal), cq[n]
is found as,

cq[n] =
xq[n]√
eq[n]

(3)

The division operation in the expression above is well defined
as the envelope given in Eq. (2) is always positive. Further,
the modeling of the temporal envelopes using the AR model
ensures that the peaks of the sub-band signal in the time-
domain are well represented [46], [47].

C. Effect of reverberation on envelope and carrier signals

The effect of reverberation on the time-domain speech
signal can be expressed in the form of a convolution operation,

y[n] = x[n] ∗ r[n], (4)

where x[n] denotes the clean speech signal, r[n] is the impulse
response of the room and y[n], is the reverberant speech signal.
The room response function can be further split into two parts,
r[n] = re[n] + rl[n], where re[n] and rl[n] are the early and
late reflection components, respectively.

Let xq[n], rq[n] and yq[n] denote the sub-band versions of
the clean speech, room-response function and the reverberant
speech signal respectively. Assuming an ideal band-pass fil-
tering, it can be shown that the analytic signal, xa

q [n], is given
by [8], [48],

yaq [n] =
1

2
[xa

q [n] ∗ raq [n]], (5)

For band-pass filters with narrow band-width, the envelopes
of the reverberant speech can be approximated as [18],

eyq[n] ≃
1

2
exq[n] ∗ erq[n], (6)

where eyq[n], exq[n], erq[n] denote the sub-band envelopes
of reverberant speech, clean speech and room response re-
spectively. Prior efforts in envelope normalization focus on
suppressing the linear effects of reverberation by setting the
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Reverberant    speech AR estimation of sub-band envelopeand carrier64 – band uniformQMF analysis 
64 – band uniformQMF analysis 36 – band log-Mel filter bankfeature extraction E2E ASR system Transcription

Carrier

Envelope
LOG   concat DPLSTM neural model +

+

  concat 
64 – band uniformQMF synthesis Enhanced

   speech

Enhancement module

Fig. 2. Block schematic of speech dereverberation model, the feature extraction module and the E2E ASR model. The red arrows denote the envelopes, e[n],
and the green arrows represent the carrier, c[n]. The entire model can be constructed as an end-to-end neural framework.

gain of the reconstructed envelopes to unity [49]. However,
in this work, we develop neural models that can remove the
non-linear effects of reverberation. The reverberant sub-band
envelope can also be viewed an additive model [18], [50].

eyq[n] = eyqe[n] + eyql[n], (7)

where, eyqe[n] is the early reflection component (which in-
cludes the direct path and the early reflections), while eyql[n]
is the late reflection part of the sub-band envelope eyq[n].

The key assumptions about the reverberation model of
Eq. (4-6), is a long-analysis window in the time domain.
As the reverberation is a long-term convolution effect, we
highlight that the room impulse response (typically with a
T60 > 400ms) can be absorbed as a multiplication in the
frequency domain, as well as a convolution in the sub-band
envelope domain, only in the case of a long analysis window.
The widely used short-time Fourier transform (STFT) does
not capture the room impulse response function directly, and
hence does not allow a convolutive modeling of the artifacts.
Further, the phase effects in STFT domain are somewhat
cumbersome to model. The above mentioned issues of STFT
are also verified experimentally in Sec. V.

Envelope enhancement: A neural model can be used to
learn late reflection component exql[n] from the sub-band tem-
poral envelope exq[n]. The predicted late reflection component
can be subtracted from the sub-band envelope to suppress the
artifacts of reverberation.

We pose the problem in the log domain to reduce the
dynamic range of the envelope magnitude. The neural model
is trained with reverberant sub-band envelopes (log (exq[n]))
as input. The model outputs the gain (in the log domain, i.e.,
log

esq [n]
exq[n]

). This gain is added in the log-domain to generate
dereverberated signal envelope (log (êsq[n]).

Envelope-carrier dereverberation model: In a similar
manner, the non-linear mapping between the reverberant car-
rier, cxq[n] and clean carrier, cxq[n], can be learned using a
neural network. A neural model is trained with reverberant
sub-band carrier (cxq[n]) as input and model outputs the
residual (an estimate of the late reflection component, cxql[n]),
which when added with the reverberant carrier generates the
estimate of source signal carrier (ĉsq[n]). Instead of indepen-
dent operations of dereverberation of the envelope and the
carrier, we propose to learn the mapping between clean and

reverberant versions of both the envelope and the carrier in
a joint model. The input to the neural model is the sub-band
reverberant envelope spliced with the corresponding carrier
signal. The network is trained to output the late reflection com-
ponents of both the envelope and carrier. With this approach,
the model also learns the non-linear relationships between the
envelope and carrier signals for the dereverberation task. From
the model output, the estimate of the clean sub-band signal
ŝq[n] is generated. In our implementation, the audio signal is
divided into non overlapping segments of 1 sec. length and
passed through the envelope-carrier dereverberation model.
The model is outlined in Fig. 2.

D. DFAR model architecture using DPLSTM

We propose the dual path long short term model (DPLSTM)
for the dereverberation of the envelope-carrier components of
the sub-band signal. Our proposed model is inspired by dual
path RNN proposed by Luo et. al [20]. The block schematic
of the DPLSTM model architecture is shown in Fig. 3. For
1 sec. of audio sampled at 16 kHz, the envelope (Ey) and
carrier (Cy) components of the critically sampled sub-band
signals (64 channel QMF decomposition) are of length 250.
The envelope/carrier signals of all the sub-bands, for the
reverberant signal (Y ), is of size 64 × 250. The combined
envelope-carrier input is therefore of size 128 × 250, which
forms the input to the DPLSTM model. The DPLSTM model
outputs are also of the same size of the input, and the model
is trained using the mean squared error (MSE) loss.

The proposed DPLSTM has two paths, one LSTM path
models the recurrence along the time dimension, while the
other models the recurrence along the frequency dimension.
We use two separate 3-layer LSTM architectures for these
paths. The output dimensions are kept the same as the input
dimension for each of these paths. The frequency recurrence
LSTM output is transposed and these are concatenated in
the frequency dimension. This combined output is fed to a
multi layer bi-directional LSTM, which performs recurrence
over time. The final output is split into sub-band specific
envelope and carrier components. The modulation of the
envelope with the respective carrier components generates the
sub-band signals, which are passed through the QMF synthesis
to generate the full-band dereverberated signal.
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Fig. 3. The dual path LSTM model architecture for envelope-carrier dereverberation. The top LSTM path models the recurrence along the time dimension
while the one on the bottom models the recurrence along the frequency dimension.

E. Joint learning of dereverberation model for ASR

The joint learning of the envelope-carrier dereverberation
module with the E2E ASR architecture is achieved by com-
bining the two separate models to train a single joint neural
model. This is shown in Fig. 2. We initialize the modules
with weights obtained from the independent training of each
component. Specifically, the envelope-carrier dereverberation
model is trained using MSE loss, which is followed by a
sub-band synthesis (right side half of Fig. 1). The QMF
synthesis is implemented using a 1-D CNN layer to gener-
ate the dereverberated speech signal. Further, the E2E ASR
architecture is separately trained on the log-mel filter bank
features, obtained from the dereverberated speech. The mel-
filter bank feature generation can also implemented using a
neural framework. Thus, the final model, composed of neural
components from the envelope-carrier dereverberation, sub-
band synthesis, feature extraction and ASR, can now be jointly
optimized using the E2E ASR loss function. This model is
refered to as E2E-DFAR model1. The trainable components
are the DPLSTM model and the ASR model parameters, while
the sub-band synthesis and feature extraction parameters are
not learnable.

IV. EXPERIMENTAL SETUP

A. Datasets

1) REVERB Challenge ASR: The audio samples in RE-
VERB challenge dataset [51] are 8 channel recordings with
both real and simulated reverberant conditions. The real sam-
ples are utterances from MC-WSJ-AV corpus [52], spoken
by human speakers in a noisy reverberant room. The simu-
lated samples of the dataset are generated by convolving six
different room impulse responses with the clean WSJCAM0
recordings followed by the addition of noise at the signal-
to-noise ratio (SNR) of 20 dB. The training data consists
of 7861 ( ∼ 17.5 hours) utterances which are obtained by
convolving WSJCAM0 train data with 24 measured RIRs. The
reverberation time of the measured impulse responses range
from 0.2 to 0.8 sec. The training, development and evaluation

1The implementation of the work can be found in https://github.com/
anurenjan/DFAR

data sets consist of 92, 15 and 38 speakers respectively. The
development data consists of 1663 (3.3 hours) utterances and
the evaluation data consists of 2548 (5.4 hours) utterances.

2) VOiCES Dataset: The VOiCES training set is a subset
(80 hours) of the LibriSpeech dataset. This set has utter-
ances from 427 speakers recorded in clean environments with
close-talking microphones. The development and evaluation
sets are far-field microphone recordings from diverse room
dimensions, environments and noise conditions containing 19
and 20 hours of speech, respectively. The three sets namely
training, development and evaluation, do not have any overlap
in terms of the speakers. The robustness of the developed
models is challenged by the mismatch that exists between the
training and development/evaluation sets. We artificially added
reverberation and noise on the 80 hours training set, which
served as the training set for all the E2E ASR experiments on
the VOiCES dataset. The development set contains 20 hours of
distant recordings from the 200 speakers. The evaluation data
of 19 hours consists of recordings 100 speakers. The training
set has 22741 utterances, development set has 4318 utterances
and evaluation set has 4600 utterances.

B. E2E ASR baseline system

For all the ASR experiments, we use the weighted prediction
error based pre-processing [9] and unsupervised generalized
eigenvalue (GEV) beamforming [13]. The baseline features
are 36-dimensional log-mel filter bank features with frequency
range from 200 Hz to 6500 Hz. The ESPnet toolkit [57] is used
to perform all the end-to-end ASR experiments, with a Pytorch
backend [58]. The model architecture uses 12 conformer
encoder layers with 2048 units in the projection layer. The 6-
layer transformer architecture with 2048 units in the projection
layer serves as the decoder. Both connectionist temporal cost
(CTC) loss and attention based cross entropy (CE) loss are
used in the training, with CTC-weight set at 0.3 [59]. A single
layer of 1000 LSTM cell recurrent neural network is used for
language modeling (RNN-LM). For training the model, we use
stochastic gradient descent (SGD) optimizer with a batch size
of 32. For language model training, data is augmented from
Wall Street Journal (WSJ) corpus.

https://github.com/anurenjan/DFAR
https://github.com/anurenjan/DFAR
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TABLE I
WER (%) ON THE REVERB DATASET FOR ENVELOPE/CARRIER, ENVELOPE-CARRIER DEREVERBERATION (DFAR) AND THE JOINT E2E-DFAR MODEL.

THE RELATIVE IMPROVEMENTS (%) PERTAIN TO THE COMPARISON OF THE VARIOUS CONFIGURATIONS W.R.T. THE BF-FBANK BASELINE SYSTEM.

Model
Config.

Dev Eval

Real Sim. Avg. [Rel. Imp.] Real Sim Avg. [Rel. Imp.]

BF-FBANK (baseline) 12.8 8.7 10.8 [- - -] 11.9 7.9 9.9 [- - -]

DCCRN [53] + BF-FBANK 17.4 10.4 13.9 [-28.7] 15.3 8.8 12.1 [-22.2]
Fullsubnet + BF-FBANK [54] 11.8 7.9 9.9 [+8.3] 10.5 7.4 9.0 [+9.1]
Deep non-linear filter [55] + BF-FBANK 12.4 8.1 10.3 [+4.6] 10.5 7.2 8.9 [+10.1]
Reverb. time shortening [56]+ BF-FBANK 11.5 7.6 9.6 [+11.1] 10.1 7.6 8.9 [+10.1]

STFT Deverb. + BF-FBANK 12.0 7.8 9.9 [+8.3] 10.8 7.3 9.1 [+8.1]
Sub-band sig. Dereverb. + BF-FBANK 13.3 9.8 11.6 [-7.4] 12.8 8.6 10.7 [-8.1]

FDLP Env. Derevb. + BF-FBANK 12.7 8.5 10.6 [+1.9] 10.1 7.8 9.0 [+9.1]
FDLP Carr. Dereverb. + BF-FBANK 11.2 8.3 9.8 [+9.3] 10.8 7.6 9.2 [+7.1]
DFAR + BF-FBANK 10.6 7.6 9.1 [+15.7] 9.1 6.9 8.0 [+19.2]

E2E-DFAR 9.4 6.4 7.9 [+26.9] 7.3 5.7 6.5 [+34.3]

C. Performance metrics

1) ASR performance metrics:
• WER/CER (Word/Character Error Rate): The

word/character error rate is given by the ratio of
number of word/character insertions, deletions and
substitutions in the system output to the total number of
words/characters in the reference.

2) Speech quality metrics:
• SRMR: Speech to reverberation modulation ratio

(SRMR) is a non intrusive measure. Here, a represen-
tation is obtained using an auditory-inspired filter bank
analysis of critical band temporal envelopes of the signal.
The modulation spectral information is used to get an
adaptive measure termed as speech to reverberation mod-
ulation energy ratio [60], [61]. A higher value indicates
an improved quality of the given speech signal.

• MOS (Mean Opinion Score): To evaluate the perfor-
mance of dereverberation algorithms, subjective quality
and intelligibility measurement methods are needed. The
most widely used subjective method is the ITU-T stan-
dard [62], where a panel of listeners are asked to rate the
quality/intelligibility of the audio.

V. EXPERIMENTS AND RESULTS

The baseline features are the beamformed log-mel filter-
bank energy features (denoted as BF-FBANK).

A. REVERB Challenge ASR

The word error rates (WER) for the dereverberation experi-
ments are shown in Table I. Note that, all the experiments use
the same input features (log-mel filter bank features) along
with the same E2E ASR architecture (conformer encoder and
transformer decoder). The only difference between the various
rows, reported in Table I, is the dereverberation pre-processing
applied on the raw audio waveform. All the dereverberation ex-
periments use the DPLSTM architecture described in Sec. III.

TABLE II
COMPARISON OF THE RESULTS WITH OTHER WORKS REPORTED ON THE

REVERB CHALLENGE DATASET.

System Eval-sim. Eval-real Avg.

Subramanian et. al. [63] 6.6 10.6 8.6
Heymann et. al. [64] - 10.8 -
Fujita et. al. [65] 4.9 9.8 7.4
Purushothaman et. al. [18] 7.1 12.1 9.6
Zhang et. al. [66] - 10.0 -

This work 5.7 7.3 6.5

TABLE III
WER (%) IN REVERB DATASET FOR DIFFERENT ARCHITECTURES FOR

THE DEREVERBERATION MODEL.

Model
Config.

Dev Eval

Real Sim Avg Real Sim Avg

Baseline 12.8 8.7 10.8 11.9 7.9 9.9
CLSTM 14.5 9.7 12.1 12.4 9.1 10.8
4-layer LSTM 12.5 8.0 10.3 10.1 7.1 8.9
DPLSTM 10.6 7.6 9.1 9.1 6.9 8.0

1) Various dereverberation configurations: In Table I, the
first row is the baseline result with the beamformed audio (un-
supervised GEV beamforming [13] and weighted prediction
error (WPE) processing [9].

The next set of rows compare several prior works.

• Fullsubnet - A full-band and sub-band fusion model for
speech enhancement [54].

• DCCRN - Deep complex convolution recurrent neural
network model for speech enhancement [53].

• Deep non-linear filter for multi-channel audio [55]
• Reverberation time shortening [56]

The prior works are trained on the same data settings as used
in the DFAR framework. All the prior works, except DCCRN
(which is not designed for ASR), improve the baseline system
in range of 8-11% in terms of relative WER. However, the
proposed DFAR/E2E-DFAR approach is observed to provide
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TABLE IV
WER (%) IN REVERB DATASET FOR HYPER PARAMETER λ, IN

MSE loss = λ× env. loss+ (1− λ)× carr. loss.

Parameter
λ

Dev Eval

Real Simu Avg Real Simu Avg

0 12 8.2 10.1 10.4 7.5 9.0
0.2 11.9 8.6 10.3 10.7 7.7 9.2
0.4 11.6 8.2 9.9 10.1 7.2 8.7
0.5 11.3 7.2 9.3 9.7 6.5 8.1
0.6 10.6 7.6 9.1 9.1 6.9 8.0
0.8 13.1 8.7 10.9 10.9 7.9 9.4
1 13.5 8.0 10.8 10.4 6.9 8.7

the best WER, with relative improvement in WER of 19/34%
on the evaluation data.

In Table I, we have also performed two ASR experiments - i)
using STFT inputs (log magnitude), and ii) using the sub-band
signal directly without the envelope-carrier decomposition.
Both these experiments, use the DPLSTM dereverberation
model proposed in this work. As seen in Table I, the dere-
verberation on the STFT magnitude component improves
the ASR systems significantly over the baseline, while the
dereverberation on the sub-band signal directly is not effective.
However, the STFT approach is also seen to be inferior to the
DFAR approach where the envelope-carrier dereverberation is
performed.

The fourth set of rows corresponds to the WER results
with envelope/carrier based dereverberation alone. The relative
improvements of 2 − 9% are seen here compared to the
baseline BF-FBANK. Separately, with dereverberation based
on the carrier signal alone, a similar improvement is achieved.
Further, the dereverberation of the temporal envelope and
carrier components in a combined fashion using the DPLSTM
model improves the ASR results over the separate dereverber-
ation of envelope/carrier components. Here, average relative
improvements of 16% and 19% are seen in the development set
and evaluation set respectively, over the BF-FBANK baseline
system for the DFAR approach.

The final row in Table I reports the results using the joint
learning of the dereverberation network and the E2E ASR
model. The E2E-DFAR is initialized using the dereverberation
model and the E2E model trained separately. The proposed
E2E-DFAR model yields average relative improvements of
27% and 34% on the development set and evaluation set
respectively over the baseline system. The joint training is also
shown to improve over the set up of having separate networks
for dereverberation and E2E ASR. While the DFAR model is
trained only on simulated reverberation conditions, the WER
improvement in real condition is seen to be more pronounced
than those observed in the simulated data. This indicates
that the model can generalize well to unseen reverberation
conditions in the real-world.

2) Comparison with prior works: The comparison of the
results from prior works reported on the REVERB challenge
dataset is given in Table II. The Table includes results from
end-to-end ASR systems [63], [65], [66] as well as the joint
enhancement and ASR modeling work reported in [64]. We

TABLE V
PERFORMANCE (WER %) ON THE VOICES DATASET.

Model Config. Dev Eval

FBANK (baseline) 40.3 50.8
+ Env. derevb. 38.4 48.6
+ Env.-carr. derevb. (DFAR) 37.1 45.4
+ E2E-DFAR 36.4 44.7

also compare with our prior work reported in [18]. Specifically,
many of the prior works compared in Table II are based on
STFT based enhancement. The work reported in Subramanian
et. al. [63], used a neural beamforming approach in the STFT
domain, while the efforts described in Heymann et. al. [64],
used a long-short term memory network for mask estimation
in power spectral domain (PSD). The dynamic convolution
method proposed in Fujita et. al. [65] used deconvolution of
log-mel spectrogram features. Similar to the proposed work,
all these efforts have also used the E2E ASR model training.
As seen in Table II, the proposed work improves over these
prior works considered here, further highlighting the benefits
of the dereverberation in the sub-band time domain using long-
term envelope-carrier based DPLSTM models.

3) Dereverberation model architecture: The ASR experi-
ments on the REVERB challenge dataset, pertaining to the
choice of different model architectures used in the dereverber-
ation model, are listed in Table III. We have experimented
with convolutional LSTM (CLSTM) [50] and time-domain
LSTM (4-layer LSTM) architecture [67] in addition to the
DPLSTM approach. As seen here, the Dual-path recurrence
based DPLSTM gives the best word error rate in compar-
ison with the other LSTM neural architectures considered.
This may be attributed to the joint time-frequency recurrence
performed to the other approaches which perform only time
domain recurrence.

4) Dereverberation loss function: The MSE loss function
used in the DPLSTM model training consists of a combination
of loss values from the envelope and the carrier components.
We experimented with the hyper parameter, λ, which controls
the proportion of envelope based loss and carrier based loss
in the total loss (Total loss = λ × env. loss + (1 − λ) ×
carr. loss). The ASR results for the various choices of the hy-
per parameter λ are shown in Table IV. Empirically, the value
of λ = 0.6 gives the best WER on the REVERB challenge
dataset. Further, the choice of λ = 1 or λ = 0, corresponding
to envelope/carrier only dereverberation, are inferior to other
choices of λ, indicating that the joint dereverberation of the
envelope and carrier components is beneficial.

B. VOiCES ASR

The ASR setup used in the VOiCES dataset followed
the ESPnet recipe with the conformer encoder and a trans-
former decoder. The rest of the model parameters and hyper-
parameters are kept similar to the ones in the REVERB
challenge dataset. The WER results on the VOiCES dataset
are given in Table V. The dereverberation of the envelope
alone provides an absolute improvement of 1.9% and 2.2% on
the development and evaluation data respectively, compared
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TABLE VI
SRMR VALUES ON THE REVERB DATASET FOR VARIOUS SIGNAL ENHANCEMENT STRATEGIES.

Signal SRMR

Dev. (Real) Dev. (Sim.) Eval. (Real) Eval. (Sim.) REVB. (Train)

Unsupervised GEV beamforming [13] 5.18 4.1 4.58 4.67 4.23
+ WPE [9] 5.35 4.2 4.61 4.75 4.48

+ DCCRN [53] 5.43 4.37 4.63 4.94 4.67
+ Fullsubnet [54] 5.36 4.32 4.64 4.97 4.63
+ Deep Non-Linear Filters [55] 5.51 4.22 4.64 5.02 4.61
+ Reverberation Time Shortening Target [56] 5.49 4.57 4.62 5.2 4.58
+ STFT Mag. + DPLSTM 5.44 4.33 4.64 4.94 4.6
+ Sub-band signal + DPLSTM 5.45 4.28 4.61 4.87 4.63
+ env. derevb. (this work) 4.62 3.83 4.12 4.25 4.11
+ crr. derevb. (this work) 5.52 4.46 4.69 5.27 4.77
+ env. & crr. derevb. [DFAR] (this work) 5.52 4.47 4.69 5.27 4.77

TABLE VII
MOS VALUES IN REVERB DATASET FOR ENVELOPE AND CARRIER BASED ENHANCEMENTS.

ET Real - near ET Real - far ET Simu - near ET Simu - far

Baseline - GEV [13] + WPE [9] 3.78 3.65 3.74 4.12
+ env.-carr. derevb. [DFAR] (this work) 3.98 3.67 4.01 4.40

to the FBANK baseline system. The dereverberation based
on envelope-carrier modeling further improves the results.
An absolute improvement of 3.3%/5.4% on the develop-
ment/evaluation data is achieved, compared to the FBANK
baseline. Further, the joint training on envelope-carrier dere-
verberation network with the ASR model improves the WER
results. We observe relative improvements of 10% and 12%
on the development and evaluation data respectively .

C. Speech quality evaluation

A comparison of the SRMR values for different dereverber-
ation approaches is reported in Table VI. Here, we compare the
baseline unsupervised GEV beamforming [13] and weighted
prediction error (WPE) [9] with various strategies for beam-
forming. The deep complex convolutional recurrent network
(DCCRN) based speech enhancement [53] is also implemented
on the REVERB dataset, and these results are reported in
Table VI. While the envelope based dereverberation did not
improve the SRMR values, the carrier based dereverberation
is shown to improve the SRMR results. Further, the DFAR
model also achieves similar improvements in SRMR for all
the conditions over the baseline approach (GEV+WPE) and
the DCCRN approach.

We conducted a subjective evaluation to further assess the
performance of the dereverberation method. The subjects were
asked to rate the quality of the audio on a scale of 1 to 5, 1
being poor and 5 being excellent. The subjects listened to the
audio in a relatively quiet room with a high quality Sennheiser
headset. We perform the A-B listening test, where the two
versions of the same audio file were played, the first one
with GEV + WPE dereverberation and the second one with
the proposed dereverberation approach. We chose 20 audio
samples, from four different conditions (real and simulated
data and from near and far rooms) for this evaluation and
recruited 20 subjects.

The subjective results are shown in Table VII. As seen, the
proposed speech dereverberation scheme shows improvement
in subjective MOS scores for all the conditions considered.
The subjective results validate the signal quality improvements
observed in the SRMR values (Table VI).

VI. CONCLUSION

In this paper, we propose a speech dereverberation model
using frequency domain linear prediction based sub-band
envelope-carrier decomposition. The sub-band envelope and
carrier components are processed through a dereverberation
network. A novel neural architecture, based on dual path
recurrence, is proposed for dereverberation. Using the joint
learning of the neural speech dereverberation module and
the E2E ASR model, we perform several speech recognition
experiments on the REVERB challenge dataset as well as on
the VOiCES dataset. These results show that the proposed
approach improves over the state of art E2E ASR systems
based on mel filterbank features.

The dereverberation approach proposed in this paper also
reconstructs the audio signal, which makes it useful for audio
quality improvement applications as well as other speech
processing systems in addition to the ASR system. We have
further evaluated the reconstruction quality subjectively and
objectively on the REVERB challenge dataset. The quality
measurements show that the proposed speech dereverberation
method improves speech quality over the baseline framework
of weighted prediction error. The ablation studies on various
architecture choices provides justification for the choice of
the DPLSTM network architecture. Given that the proposed
model allows the reconstruction of the audio signal, it can be
used in conjunction with self-supervised neural approaches for
representation learning of speech as well. This will form part
of our future investigation.
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