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Blind identification of Ambisonic reduced room
impulse response

Srdan Kitić and Jérôme Daniel

Abstract—Recently proposed Generalized Time-domain Velocity
Vector (GTVV) is a generalization of relative room impulse
response in spherical harmonic (aka Ambisonic) domain, that al-
lows for blind estimation of early-echo parameters: the directions
and relative delays of individual reflections. However, the derived
closed-form expression of GTVV mandates few assumptions to
hold, most important being that the impulse response of the ref-
erence signal needs to be a minimum-phase filter. In practice, the
reference is obtained by spatial filtering towards the Direction-
of-Arrival of the source, and the aforementioned condition is
bounded by the performance of the applied beamformer (and
thus, by the Ambisonic array order). In the present work,
we circumvent this problem by directly modeling the impulse
responses constituting the GTVV time series, which permits not
only to relax the initial assumptions, but also to extract the
information therein in a more consistent and efficient manner,
entering the realm of blind system identification. Experiments
using simulated and recorded room impulse responses confirm
the effectiveness of the proposed approach.

Index Terms—blind identification, Ambisonic, microphone ar-
ray, RTF, Prony

I. INTRODUCTION

Room Impulse Response (RIR) can be thought of as an
“acoustic fingerprint” of the surrounding environment [1], and
its importance in spatial audio processing cannot be overstated.
It encodes the information about acoustic multipath - rever-
beration, which inevitably affects all indoor audio recordings.
Traditionally often seen as a nuisance, reverberation is known
to degrade the results of localization algorithms [2], worsen
automatic speech recognition (ASR) and intelligibility [3], and
negatively impact sound source separation [4]. Nevertheless,
a number of recent works has demonstrated that early rever-
beration actually have a potential to improve performances
in various tasks. These “echo-enabled” methods exploit early
reflections to boost performance of acoustic localization [5],
[6], [7], source separation [8], [9], [10], speech and sound
event recognition [11], [12], [13], but also to address some un-
conventional problems such as localization behind soundproof
obstacles [14], [15], [16], inference of room geometry [17],
[18], [19], distance estimation [20], [21], [22], identification
of room acoustic parameters [23], [24], [25] and acoustic
matching [26], [27].

While the availability of pre-recorded RIRs would be, there-
fore, very beneficial for many echo-enabled applications, such
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procedure demands specific equipment and skills. Moreover, a
particular RIR is dependent on the given acoustic conditions,
hence in dynamic scenes (e.g., when microphone or source are
mobile) one would require repeated RIR measurements, which
is clearly impractical. Thus, there is a growing interest for
adaptive blind system identification (BSI) methods - subject
to certain assumptions, these are capable of inferring RIRs
(up to a common delay and scale [28]) using only recorded
audio signals. However, classical adaptive BSI methods (e.g.,
multichannel least mean squares (MCLMS) algorithm [29]),
have notable drawbacks, such as their sensitivity to noise and
incorrect model order [30].

Recently, we have investigated properties of the so-called
Generalized Time-domain Velocity Vector (GTVV) [31], a
generalization of the well-known relative room impulse re-
sponse in spherical harmonic (SH) domain [32]. The main
advantage of GTVV over classical relative RIR is due to its
reference signal, which is obtained by beamforming towards
the (approximate) Direction-of-Arrival (DoA) of a far field
source. Assuming that the reference signal is dominated by
direct propagation, the GTVV representation admits a closed-
form expression that can be used to directly infer the DoAs and
relative delays of individual wavefronts (including the direct
component). To satisfy this assumption, beamformer needs to
be sufficiently selective, which is acceptable for Higher-Order
Ambisonic (HOA) [33] arrays, but becomes prohibitive when
prevalent [34] First Order Ambisonic (FOA) arrays are used.
Indeed, the beam width of FOA beamformers is too permissive
[32], thus a number of non-attenuated reflections invalidates
the former requirement.

The main contribution of this work is a method for the
identification of Ambisonic RIRs with scale and delay shifting
according to the principal wave front, directly from the GTVV
imprint (thus, blindly) and regardless of the array order. Hence,
we term this representation Reduced Room Impulse Response
(RdRIR), all the more that we are primarily interested in
extracting the early part of Ambisonic RIRs containing di-
rectional information, i.e. the “early echoes”. Our goal is also
to retain low computational complexity, as well as to facilitate
implementation. Therefore, we compare several algorithmic
variants having different levels of complexity, and evaluate
their estimation performance. We show through experiments
on simulated and real impulse response data that the proposed
methods are effective in extracting parameters of multiple
wavefronts, under various acoustic conditions.

This work unifies and complements our previous contri-
butions published as conference papers [7], [31]. The article
is organized as follows: after a review of prior art given in
Section II, we proceed to the signal model behind GTVV in
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Section III, and discuss its estimation and limitations. This
is succeeded by presenting the RdRIR estimation methods in
Section IV. The results of computer experiments are given in
Section V. The article is concluded in Section VI.

Notations: Real- or complex-valued scalar variables are
written in lowercase italic or greek alphabet, while we use
boldface font for vectors (lowercase) and matrices (uppercase).
Serif font is reserved for integers, with the uppercase serif
denoting constant integer values. For a matrix M , we use
mi,: and m:,j to specify its ith row and jth column, respectively,
and mi,j to denote the matrix entry at their intersection. The
sets of natural, real and complex numbers are denoted by N,
R and C, respectively. The Fourier transform (or the Discrete
Fourier Transform, where appropriate) and its inverse are given
by F and F−1, while a variable in frequency domain is
marked by the circumflex accent. The transpose and conjugate
transpose operations are denoted by (·)T and (·)H, respectively.
The notation x(i) refers to the ith iterate of some algorithmic
variable x. For a vector-valued function x(t), its corresponding
delay-magnitude representation is defined as ζx(t) = ∥x(t)∥2.

II. PRIOR ART

Research in BSI has flourished since the seminal work
of Sato [35] on self-recovering equalization for digital com-
munications. In the context of Single-Input-Multiple-Output
(SIMO) systems, where the same source excites multiple chan-
nels (as in our problem setting), the concept of cyclostationar-
ity in second order statistics (SOS) [36] was widely adopted.
Different SOS variants have been proposed, based on channel
cross-relation (CR) [29], subspace decomposition [37] and
maximum likelihood estimation [38]. The CR technique has
been particularly popular, and was later extended to adaptive
BSI for acoustic channel identification, either in time [39],
[40], or frequency domain [41], [42]. Nevertheless, while such
methods have evolved in order to improve their robustness to
noise, in general they are known to perform well only under
sufficiently high Signal-to-Noise Ratio (SNR) [30]. Some CR
variants have been tailored to estimation of early RIRs, the task
referred to as “under-modeled BSI” in the literature [43], [44].
Contemporary approaches based on deep learning have only
recently been employed for blind RIR estimation [45], [46],
[13]. Some of these models achieve impressive performance
on different metrics and datasets, but are currently limited
to predicting only single channel RIRs. The interpolation of
missing RIR channels of a circular microphone array, in the
SIMO context, has been formulated and solved as an inverse
problem regularized by deep prior in [47].

Relative Transfer Function (RTF) is a well-known con-
cept in microphone array signal processing, that has been
in widespread use for decades [48]. There are two distinct
conveniences of RTF: i) it is obtained using only received
multichannel signals as their ratio in frequency domain, and
ii) it is theoretically a source signal-agnostic representation
(thus, encoding only the propagating characteristics of the en-
vironment). Relative transfer functions have also been adopted
in Ambisonic domain [32], [49], [50], yet sometimes under
different names (e.g. relative harmonic coefficients (RHC) [51]

or frequency-domain velocity vector (FDVV) [7]). For FOA
signals, its real part is aligned with pseudointensity vector
[52], [53], a widely used alternative to steered beamforming
for low-cost DoA estimation. The temporal representation of
RTF is relative impulse response [54], [55] (again renamed
to time-domain velocity vector (TDVV) in our earlier work
[7]). An idea related to RTF and relative impulse response
was discussed by Gölles and Zotter in [56], where they
calculate the ratio of received Ambisonic signals directly in
time domain.

Classical RTF and relative impulse response have been
extended to generalized (frequency and time domain) velocity
vectors [31], mentioned before and explained in detail in the
next section1. The value of the beamformed reference has also
been recognized in [58], [59], where the authors take it to be
the proxy for the source signal, hence the obtained ratio is
considered an approximation of the acoustic transfer function
(ATF). However, this hypothesis can only be valid if the ap-
plied beamformer filters out all reflections, which is rarely the
case. To alleviate this issue, in [59] the authors propose to use
a time-frequency mask obtained by the improved direct-path-
dominance test [60], which is nonetheless a costly estimator in
terms of computational complexity. In [61], this representation
has been used for denoising, under the assumption that the
directions of acoustic reflections are known a priori.

As mentioned before, the central motivation of our work is
extracting spatio-temporal information about the early echoes,
and not identifying the complete propagation channels. A re-
lated work has been recently published by Shlomo and Rafaely
[62], where they propose the phase aligned spatial correlation
(PHALCOR) algorithm, for the same purpose. They obtain
convincing results on simulated data, at the expense of high
computational cost and somewhat intricate implementation,
involving singular vector decomposition, sparse analysis and
clustering.

III. GENERALIZED VELOCITY VECTOR

In this section we recall and extend the concept of gen-
eralized velocity vector, introduced in [31]. In particular,
generalized velocity vector definition is broadened to include
frequency-dependent beamforming and attenuation, and its
relation with RTF and pseudointensity is made more explicit.
Moreover, we provide a closed-form expression for GTVV for
the case where the dominant wavefront in the reference signal
is an acoustic reflection (instead of direct sound).

A. Signal model

Let b̂(f) ∈ C(L+1)2 denote the vector of concatenated spher-
ical harmonic expansion coefficients (the “HOA channels”) up
to order L, at frequency f . We assume that mode strength
compensation [32] has been applied, and that the recorded
signals are due to a far field point source at azimuth θ0,

1Note that, in [57], Herzog and Habets have proposed another acoustic
quantity termed generalized intensity vector, which, despite the naming
similarity, is different from generalized velocity vectors discussed here.
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elevation ϕ0 and range d0 from the microphone array, in an
indoor environment. We approximate b̂(f) as follows:

b̂(f) ≈ŝ(f)χ̂(f)
N−1∑
n=0

ν̂n(f)yne
−j2πfτ̄n + ê(f) (1)

=x̂(f) + ê(f). (2)

In the expression above, ŝ(f) represents the source (excita-
tion) wideband signal, such as speech, while χ̂(f) is an anti-
aliasing filter applied before the analog-to-digital converter.
The terms ν̂n(f) ∈ (0, 1), τ̄n ∈ R+ and yn ∈ R(L+1)2 are the
attenuation factor, Time-of-Arrival (ToA), and the real-valued
SH encoding vector of the nth acoustic wavefront, respectively.
The plane wave expansion has been truncated to N wavefronts,
aggregating direct propagation and early echoes in x̂(f), while
the late reverberation and diffuse noise are represented by an
additive term ê(f). The ToA of the direct signal is τ̄0 ≈ d0/c
(where c is the speed of sound), while τ̄max = maxn τ̄n
(roughly) corresponds to the mixing time [63] of the room.
Note that there is an implicit dependency between N, τ̄max

and the geometric and acoustic properties of the environment.
The diffuse component ê(f) is considered uncorrelated with

the directional term x̂(f) [32]. The latter is modeled by the
image source model (ISM) [64], which considers all reflections
to be specular, and approximates the frequency-dependent
factor ν̂(f) by absorption coefficient - an attenuation of the
signal magnitude by a positive factor lower than 1. In the
ISM model, hence, the phase shifts of individual wavefronts
are only due to differences in lengths of their acoustic paths.
This is a limitation of the model - in general, ν̂(f) is a
complex variable that encodes the material absorption and air
attenuation, and depends on the angle of incidence [1].

Given a beamformer ŵ(f) ∈ C(L+1)2 , constrained by
ŵ(f)Hy0 = β0 ∈ R+ = const (without loss of generality,
we consider β0 = 1), Generalized Frequency-domain Velocity
Vector (GFVV) has been defined [31] as

v̂(f) =
x̂(f)

ŵ(f)Hx̂(f)
=

y0 +
N−1∑
n=1

ĝn(f)e
−j2πfτnyn

1 +
N−1∑
n=1

ĝn(f)β̂n(f)e−j2πfτn

. (3)

Here, ĝn(f) = ν̂n(f)/ν̂0(f) < 1, τn = τ̄n − τ̄0 > 0
and β̂n(f) = ŵ(f)Hyn/β0 denote the attenuation, delay and
spatial response of the nth reflected plane wave relative to the
direct propagation component, respectively.

We further assume that κ̂n(f) = ĝn(f)β̂n(f) is sufficiently
smooth, such that its time domain counterpart κn(t) is com-
pact2. If ŵ(f) := w is a wideband beamformer, this condition
is usually satisfied, since ĝn(f) (which can be thought of
as a scaled attenuation factor), is often a slowly-varying
function of frequency in standard rooms [1]. However, care
should be taken with some data-dependent beamformers, such
as Minimum Power Distortionless Response (MPDR), which
may exhibit abrupt changes in directivity [66].

2By the virtue of Paley-Wiener theorem [65].

Note that GFVV is (ideally) agnostic with regards to ŝ(f)
and χ̂(f), hence, we can rewrite (3) as:

v̂(f) =
ĥ(f)

â(f)
, (4)

where ĥ(f) is the numerator of the rightmost part of (3),
while â(f) = ŵ(f)Hĥ(f). The channel-wise inverse Fourier
transform of GFVV, yields its temporal analogue, i.e., GTVV:

v(t) = F−1 (v̂(f)) = h(t) ∗ a−1(t), (5)

with (a ∗ a−1)(t) = δ(t).
It is noteworthy that the standard RTF in SH domain [32]

(i.e., FDVV), for which the reference is the first (omnidi-
rectional) Ambisonic channel, is a special case of GFVV
obtained by setting w = [ 1 0 0 ... 0 ]

T. Nonetheless, it would
be preferential to use a beamformer steered approximately
towards DoA of the source, as discussed later in this section.
This also clarifies the notion of “generality” in GFVV - its
reference channel does not correspond to one particular HOA
channel, but is a linear combination of all available channels.
Likewise, TDVV (relative impulse response in SH domain)
becomes a special case of GTVV. We remind the reader that
the pseudointensity vector [53], [52] corresponds to the real
part of RTF for the FOA signals. In [7], we have argued that
this classical DoA estimator is biased in the presence of strong
reflections, but, without providing a detailed explanation. We
take the opportunity to elaborate this claim in Appendix A.

B. GTVV estimation

The expression (3) cannot be used directly, even in the
noiseless setting, since we expect ê(f) to contain the dif-
fuse late reverberation components. Moreover, a practical
estimation method needs to be robust to low SNR levels.
The following computationally efficient estimator has been
proposed in [31], [22], and represents an adaptation of the
well-known estimator based on speech signal nonstationarity
[67], [55]. From (3), we have that a GFVV entry v̂l(f) could
be seen as the ratio between “denoised” versions of b̂l(f) and
the reference:

v̂l(f) =
b̂l(f)− êl(f)∑

l′ ŵ
∗
l′(f)

(
b̂l′(f)− êl′(f)

) . (6)

Rearranging the terms in the expression above gives

b̂l(f) = v̂l(f)
∑
l′

ŵ∗
l′(f)b̂l′(f) + n̂l(f) (7)

where we denote n̂l(f) = v̂l(f)
∑

l′ ŵ
∗
l′(f)êl′(f)− êl(f).

Since the two terms on the right hand side are correlated, we
will estimate v̂l(f) and noise statistics simultaneously, in the
least-squares sense, as originally proposed in [67]. First, the
signal is analyzed in time-frequency – particularly, Short-time
Fourier transform (STFT) – domain:

b̂l(f, t) = v̂l(f, t)
∑
l′

ŵ∗
l′(f)b̂l′(f, t) + n̂l(f, t), (8)
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where (f, t) designates discrete frequency and time frame in-
dices, respectively, with a slight abuse of notation. Multiplying
both sides by b∗l (f, t), and taking expectation yields

ϕ̂2
l (f, t) = v̂l(f, t)

∑
l′

ŵ∗
l′(f)ϕ̂l′,l(f, t) + σ̂l(f, t), (9)

where ϕ̂2
l (f, t) = E[|b̂l(f, t)|2] is the variance of the lth

channel, while ϕ̂l′,l(f, t) = E[b̂l′(f, t)b̂∗l (f, t)] and σ̂l(f, t) are
the cross-correlations between channels l′ and l, and between
the noise term n̂l and b̂l, respectively. Under the assumption
that the noise statistics σ̂l and the acoustics of the environment
(thus, GFVV) evolve slower than speech statistics, and by
rearranging the terms, the expression (9) is approximated by

ϕ̂2
l (f, t) ≈

[
ϕ̂:,l(f, t)

Hŵ(f) 1
] [

v̂l(f)
σ̂l(f)

]
, where (10)

ϕ̂:,l(f, t) = [ ϕ̂0,l(f,t) ϕ̂1,l(f,t) ... ϕ̂(L+1)2−1,l(f,t)] ]
T
. (11)

The approximation above is assumed to hold for a collection
of frames centered at t0, i.e. within t ∈ [t0 − T/2, t0 + T/2],
for T ∈ 2N. Note that v̂l(f) and σ̂l(f) are assumed constant
for this set of frames, which is compactly written as

ϕ̂
2

l (f) ≈
[
Φ̂:,l(f)

Hŵ(f) 1
] [v̂l(f)

σ̂l(f)

]
, where (12)

ϕ̂
2

l (f) = [ ϕ̂2
l (f,t0+T/2) ... ϕ̂2

l (f,t0−T/2)] ]
T
, (13)

Φ̂:,l(f) = [ ϕ̂:,l(f,t0+T/2) ... ϕ̂:,l(f,t0−T/2) ] (14)

and 1 is the all-one vector. This is an overdetermined linear
system that can be solved efficiently in the least squares sense
(amounts to the inversion of a 2 × 2 matrix), providing an
estimate of v̂l(f) at frame t0.

The quality of the GFVV estimate depends on a number
of factors, including the STFT parameters (window type and
length, overlap percentage), neighborhood size T, spectral
contents of the excitation signal and noise, and, naturally, room
acoustics. We will see later that the dominant wavefront is
positioned at the zero-delay index of the RdRIR representation,
i.e., in the middle of the time series. Hence, when the dominant
wavefront is due to direct sound, capturing the early echoes
requires the STFT frame length to be at least twice the mixing
time value τ̄max. The estimator presents certain advantages
and drawbacks. Conveniently, it requires only the information
about the activity of the target sound source. This is also
related to its susceptibility to directional interference, thus, a
reliable voice activity detector (VAD) is implied. While it can
adapt to changes in the acoustic environment, its performance
tend to degrade in highly dynamic scenarios. On the other
hand, if more refined information is available, such as the noise
covariance matrix, one could conceive adaptations of other
well-known RTF estimation techniques, e.g., the covariance
subtraction and covariance whitening methods [68], [32].

In addition to the previously discussed uncertainties, another
unknown parameter is the DoA of the source of interest, which
is often a required parameter to design the beamformer vector
ŵ(f). The following subsection is dedicated to the derivation
of a closed-form expression of GTVV, where we demonstrate
that – under certain conditions – GTVV can be used to

Algorithm 1 Self-steering GTVV estimator at a frame t0

Require: STFT tensor {b̂(f, t) | t ∈ t0 + [−T/2,T/2],
f ∈ [0,K), l ∈ [0, (L + 1)2)}, parametric SH dictionary
{y(θ, ϕ)}(θ,ϕ), num iter

Compute: ϕ̂2
l (f, t) = |b̂l(f, t)|2 and ϕ̂l′,l(f, t) = b̂l′(f, t)b̂

∗
l (f, t)

Assemble: ϕ̂
2

l (f) and Φ̂:,l(f) from eq. (13) and (14)
Set w = [ 1 0 0 ... 0 ]

T

for iter ∈ [1, num iter] do
for l ∈ [0, (L+ 1)2 − 1] do

v̂(f)← solve (12) for each f
v(t̃)← F−1 (v̂(f))

end for
(θ0, ϕ0)← argmax (θ,ϕ) v(t̃ = 0)Ty(θ, ϕ)
w ← y(θ0, ϕ0)/(L+ 1)2

end for
Return: v(t̃), v̂(f), (θ0, ϕ0)

directly infer the source’s DoA. However, we have observed
that even if these conditions do not hold, the GTVV vector
v(t = 0) is usually a good approximation of the SH encoding
vector parametrized by a steering angle pointed in the vicinity
of DoA. We exploit this observation to devise a heuristic
scheme that improves the DoA estimate iteratively. Indeed,
a “well-behaved” GTVV representation maintains v(t = 0)
that is invariant to the slight changes in ŵ(f), i.e., it should
always point towards DoA. We, therefore, use the current
DoA estimate to (re-)steer the beamformer and compute a
new GTVV representation. Starting with the omnidirectional
reference (the classical relative IR), we monitor the difference
in DoA between iterations to deduce whether GTVV has “con-
verged”. Typically, this procedure requires no more than ten
iterations. For reader’s convenience, its pseudocode is given
in Alg. 1 (the specification of the applied signal-independent
beamformer is given in Section V).

C. Closed-form expression

In order to derive a closed-form expression of GTVV,
we will treat the numerator and denominator of the GFVV
expressions (4) separately.

The numerator ĥ(f) is simply the “early” part of ATF, nor-
malized by the amplitude of direct component â0(f)e−j2πfτ̄0 .
Hence, its time domain counterpart is the early part of RIR,
normalized and shifted to temporal origin - dubbed hereafter
Reduced Room Impulse Response (RdRIR):

h(t) = δ(t)y0 +

N−1∑
n=1

gn(t− τn)yn. (15)

Note that, under the assumptions that have been stated earlier,
ĝn(f) is a real-valued, nonnegative and even function of
frequency. Hence, it is easy to show that gn(t) = F−1 (ĝn(f))
is also real and even, and that it attains global maximum at
t = 0. Since we also assumed that gn(t) has compact support,
temporally well-separated wavefronts (having sufficiently dis-
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Figure 1: The GTVV estimate’s delay-magnitude ζv(t) with-
out (top) and with (bottom) condition (17) satisfied. The latter
is approximately causal, as predicted.

tinct delays τn), could be identified by observing peaks of its
delay-magnitude time series ζh(t):

ζh(t) = ∥h(t)∥2. (16)

An explicit solution of a−1(t) requires more attention. We
introduce an additional hypothesis:∣∣∣∣∣

N−1∑
n=1

κ̂n(f)e
−j2πfτn

∣∣∣∣∣ < 1, ∀f, (17)

which is also a sufficient condition for assuring that the
impulse response of the reference is a minimum-phase filter
[69]. The importance of this condition for the extraction of
wavefront parameters will be discussed in the remainder of this
section. For the time being, we motivate its interest by visually
inspecting two instances of the time series ζv(t) = ∥v(t)∥2
in Fig. 1, with and without condition (17) satisfied by the
vector-valued GTVV function v(t).

The requirement (17) is obviously granted if the magnitude
of the direct component is larger than the cumulative magni-
tude of all reflections in the reference signal:

N−1∑
n=1

|κ̂n(f)| =
N−1∑
n=1

ĝn(f)
∣∣∣β̂n(f)

∣∣∣ < 1, ∀f. (18)

Clearly, this is highly unlikely if the reference is the omnidi-
rectional channel. Instead, by using a beamformer steered to-
wards DoA, this hypothesis becomes more and more plausible
with the increase in Ambisonic order. Indeed, for beamformers
such as maximum-directivity or Minimum Variance Distor-
tionless Response (MVDR) [32], having |ŵ(f)Hyn| < β0

leads to limL→∞ |β̂n(f)| = 0, due to the completeness prop-
erty of spherical harmonics [66]. Intuitively, with the increase
in L, the spatial response of the beamformer approaches
the delta function centered around DoA [32]. Alternatively,
one may consider forcing spatial nulls in the directions of
strong reflectors (known a priori), e.g. by using the Linearly
Constrained Minimum Variance (LCMV) [48] beamformer.

Should the condition (17) hold, we can reformulate the
GFVV denominator â−1(f) in (4) through the Taylor (geomet-
ric) series expansion. In the following, we omit the frequency
variable f for brevity, and let γn := −κ̂n(f)e

−j2πfτn . Then,
the denominator in (3) becomes

1

â(f)
=

1

1−
N−1∑
n=1

γn

=

∞∑
k=0

(
−

N−1∑
n=1

γn

)k

:=

∞∑
k=0

λk, (19)

where each element λk of the last sum is developed using
multinomial theorem into

λk =
∑

i1+i2+...+iN−1=k

k!

i1!i2! . . . iN−1!

N−1∏
q=1

γ
iq
q .

Evaluating λk for k = 0, 1, 2, 3 . . . yields:

λ0 = 1,

λ1 =
∑
i

γi,

λ2 =
∑
i

γ2
i + 2

∑
i

∑
m ̸=i

γiγm, (20)

λ3 =
∑
i

γ3
i + 3

∑
i

∑
m ̸=i

γ2
i γm + 6

∑
i

∑
m̸=i

∑
p ̸={i,m}

γiγmγp

. . .

where all sums correspond to indices in [1,N]. Due to direc-
tional beamforming, we expect only a subset of reflections to
have non-negligible magnitudes |κn(f)| ≫ 0, n ∈ [1,N − 1]
(with the size of this subset decreasing with the increase in
Ambisonic order, as discussed before). Therefore, the magni-
tudes of “cross-terms” in the expressions above are more likely
to diminish than the leftmost terms that correspond to isolated
reflections. We simplify the expression by aggregating all cross
terms in a single variable η(f), hence the GFVV denominator
is represented as

∞∑
k=0

λk = 1 +

N−1∑
i=1

∞∑
k=1

(−κ̂i(f))
k
e−j2πfkτi + η̂(f). (21)

In time domain, this yields the following expression:

a−1(t) = δ(t) +

N−1∑
i=1

∞∑
k=1

(−1)kκ∗k
i (t− kτi) + η(t),

(22)

where κ∗k
i (t) =F−1

(
κ̂i(f)

k
)
=

k−1 convolutions︷ ︸︸ ︷
(κi ∗ κi ∗ . . . ∗ κi)(t).

Plugging (15) and (22) into (5), and manipulating the terms
within, produces

v(t) = δ(t)y0 +

N−1∑
n=1

∞∑
k=1

(−1)kκ∗k
n (t− kτn)∗(

y0δ(t)− ynβ
−1
n (t)

)
+ η̃(t), (23)

where η̃(t) again accounts for η(t), augmented by addi-
tional cross-convolutions between different reflections. One
can make several observations of the GTVV representation
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(23). First, due to the assumed compact support of κn(t),
GTVV is approximately causal, i.e., v(t < 0) ≈ 0. Second,
if the stronger condition (18) holds, we expect GTVV to
be somewhat sparse (as the energy of κ∗k

n (t) decreases with
k). Third, interestingly, GTVV still allows us to immediately
identify the SH vector corresponding to direct component, by
evaluating v(t = 0), as for RdRIR in (15). However, even by
neglecting the cross-terms η̃(t), it is obvious that the remainder
of the GTVV expression is more complex, presenting itself as
a series of repeated convolutions with alternating sign, for each
wavefront n.

Hence, without additional assumptions, we cannot easily
identify the remaining wavefronts. For instance, if we conjec-
ture that the initial terms (k = 1) of each series are not strongly
affected by another series and that βn(0)≪ 1, then the largest
peaks of ζv(t) would likely3 correspond to SH vectors yn, i.e.

v(τn) = gn(0) (yn − βn(0)y0) ≈ gn(0)yn. (24)

If βn(0)≪ 1 does not hold, yet we still assume that v(τn)
could be isolated (e.g., for the strong reflections), we can
exploit the fact that y0 can be pre-estimated from v(t = 0) to
estimate the wavefront vector yn. In this case, we consider
only a wideband beamformer w and propose to solve a
nonlinear optimization problem:

(θn, ϕn) = argmin
(θ,ϕ)

v(τn)
T
(
I − y0w

T
)
y(θ, ϕ), (25)

where y(θ, ϕ) is a SH vector for the given azimuth and
elevation parameters. In the cost function (25), we have
used the expression for the (constant) spatial response of a
wideband beamformer βn = wTyn. To avoid explicitly solving
the optimization problem above, one may use a dictionary of
normalized SH encoding vectors y(θ, ϕ), parametrized from a
discrete grid of directions {(θ, ϕ)}, and choose the atom most
correlated with v(τn)

T
(
I − y0w

T
)
. Unfortunately, the matrix

I−y0w
T is not invertible (otherwise, one could directly obtain

an estimate of yn), which is easy to show by applying the
Sherman-Morrison formula [70].

Finally, we remark that the presented derivation does not
directly depend on the DoA direction y0 used for the dis-
tortionless constraint w(f)Hy = const, as long as the Taylor
series condition (17) holds. In other words, if a sufficiently
selective beamformer is focused on some other wavefront r
(e.g., a dominant reflection), one would replace y0 by yr, and
a similar expression applies:

v(t) = δ(t)yr +

N−1∑
n ̸=r

∞∑
k=1

(−1)kκ∗k
n (t− kτn)∗(

yrδ(t)− ynβ
−1
n (t)

)
+ η̃(t), (26)

except that the quantities gn and τn are now relative to the
absolute gain ar(f) and ToA τ̄r of this wavefront, respectively.
As a consequence, relative gains gn would not be bounded by
1, relative delays τn = τ̄n − τ̄r could have negative values,
and v(t = 0) would encode the reflection direction (θr, ϕr).

3It may still happen that later terms (k > 1) of dominant reflections have
larger peaks than the initial terms of weaker wavefronts!

Compared to the GTVV computed using DoA, this variant
would be “shifted” to the left by |τ0|.

IV. ESTIMATION OF REDUCED RIR

We have argued that GTVV is better adapted to reverber-
ant acoustic conditions than the “standard” relative impulse
response for which the reference signal is the zero-order Am-
bisonic channel. Nevertheless, it is still limited by the spatial
selectivity of the applied beamformer - for example, if the
signal-independent maximum directivity beamformer is used,
its directivity will be proportional to the square of Ambisonic
order [32]. However, affordable Ambisonic microphone arrays
usually do not provide very high order Ambisonic formats
- most often, they are only capable of recording the FOA
signals [34]. Furthermore, the frequency support of higher
order channels progressively decreases with the HOA order,
as noise amplification at low frequencies, and spatial aliasing
at high frequencies start to kick-in [71]. Unfortunately, the
favorable theoretical properties of GTVV tend to diminish at
low Ambisonic orders, due to the inability of the applied beam-
former to effectively suppress the reflections. The problem is
further exacerbated with the increase in the microphone-to-
source distance, since more reflections fall within the main
lobe of the beamformer. In practice, we observe that the GTVV
imprint is no longer causal (as seen in Fig. 1), and that the
estimated directions are less accurate.

Moreover, even when the GTVV expression (23) remains
valid, identifying the directions and delays by peak-picking
is not straightforward, as discussed in the previous section. In
fact, such a “well-behaved” GTVV can be seen as the reduced
RIR (15), convolved by the minimum-phase filter (22). The
consequence is that the same reflection is infinitely “echoed”
at the time instances corresponding to integer multiples of
its relative delay, with the alternating sign and the decreasing
magnitude. Thus, these series can interfere with one another,
altering the information within, or even masking the presence
of weaker reflections. Undoubtedly, it is much easier and
intuitive to extract information directly from RdRIR (15). In
this section, we propose a simple method to estimate the latter
from the observed GTVV time series, even if the convergence
condition (17) is not satisfied. The development is based on
the celebrated Padé-Prony method for the pole-zero model-
ing [72], which is very similar to traditional Autoregressive
Moving Average (ARMA) model for stochastic time series.

In the following, we consider a beamformer steered to-
wards DoA, since the same method could be straightforwardly
adapted when other wavefronts are considered. We start by
rewriting (5) as

(v ∗ a) (t) = h(t), (27)

and recall that a(t) = F−1
(
w(f)Hh(f)

)
, i.e.,

a(t) = F−1

(
1 +

N−1∑
n=1

κ̂n(f)e
−j2πfτn

)

= δ(t) +

N−1∑
n=1

κn(t− τn). (28)
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Since we have assumed that all κn(t) have compact support,
a(t) is a causal filter (but, not necessarily a minimum-phase!).
We already know from (15) that RdRIR h(t) is a causal vector
sequence, i.e., h(t < 0) ≈ 0. Moreover, RdRIR has finite
support - beyond the relative delay τmax = τ̄max − τ̄0, i.e.,
relative to the mixing time τ̄max, we expect h(t > τmax) ≈ 0
to hold as well (being the feature of the “denoising” estimator
presented in subsection III-B). Likewise, one may argue that
the early part of RIR (hence, RdRIR) is relatively sparse [48],
[43], [44]. The filter a(t) would be even sparser, as we expect
the beamforming operation to suppress certain reflections in
the reference signal. Finally, one may observe from (15) that,
for any t, the zero-order entry of h(t) is non-negative. Our
aim is to take advantage of all this prior knowledge to estimate
a(t) directly from v(t), and then extract h(t) by convolving
its estimate with GTVV, as in (27).

As usual in digital signal processing, we do not handle
continuous functions v(t), h(t) and a(t), but their sampled
versions. We make a leap of faith and assume that the latter
are not substantially affected by aliasing, meaning that the
properties discussed above are generally preserved. We denote
by j the time sample index taking values4 in [−J/2 + 1, J/2],
within an STFT frame of length J ∈ 2N. Thus, both GTVV
and RdRIR are represented by the real-valued matrices V and
H of size (L + 1)2 × J, i.e. their columns v:,j (accordingly,
h:,j) are akin to evaluating v(t) and h(t) at some time instant
t. Analogously, the rows vl,: (accordingly, hl,:) correspond to
the lth channels of the two representations. The filter a(t) is
replaced by a vector a ∈ Rjmax+1, where the hyperparameter
jmax denotes the sample index corresponding to τmax, i.e., the
assumed relative delay of the “last” wavefront in RdRIR. The
coefficients aj<0 and aj>jmax

are assumed to be zero, hence,
these are not included in the estimation vector a.

Setting aside the sparsity hypothesis for now, note that
enforcing ζh(t) = 0, for t < 0 and t > τmax, amounts to
minimizing the following cost function:

min
a

(L+1)2−1∑
l=0

∑
j/∈[0,jmax]

(vl,: ∗ a)2j , s.t. a0 = 1. (29)

The equality constraint is due to a(0) = δ(0) in (28), with
the Dirac delta distribution replaced by the Kronecker delta
function in the discrete version. We remark that (29) is a
particular multichannel linear prediction problem, with the
filter a being common for all channels l ∈ [0, (L+ 1)2 − 1].
This is advantageous - since the problem is overdetermined,
the estimate of a should be more resilient to GTVV estimation
errors and noise. Furthermore, the estimation should become
more accurate as the channel order L increases.

There are multiple approaches of addressing linear pre-
diction problems, but probably the most well-known are the
autocorrelation method and the covariance method [72]. In
both cases, solving the constrained quadratic problem comes

4We intentionally permit negative indexing, to preserve the intuition that
the temporal dimension is centered at zero.

down to a linear system, compactly written as

jmax∑
j=1

ajr(j, s) = −r(0, s), (30)

where r(j, s) =

(L+1)2−1∑
l=0

rl(j, s) =

(L+1)2−1∑
l=0

∑
j′

vl,j′−jvl,j′−s.

(31)

The two methods differ in the way they deal with the
signal edges, i.e., how they define the range of the summation
variable j′. The autocorrelation method applies zero-padding
(vl,j′ = 0, for j′ ∈ [0, jmax] and j′ /∈ [−J/2+1, J/2]), while the
covariance method considers only valid parts of the convolu-
tion (where the two sequences overlap and j′ /∈ [0, jmax]), and
discards the rest. Therefore, the coefficients r(j, s) would be
somewhat different, yielding different solutions. Particularly,
the filter a estimated by the autocorrelation method is always
minimum-phase [72], but the corresponding linear system has
Toeplitz structure, hence it can be solved by the Levinson-
Durbin algorithm [70] with O((jmax + 1)2) time complexity.
This is significantly more efficient compared to O((jmax+1)3)
of the covariance method.

Furthermore, calculating the coefficients (31) of the normal
equations (30) generally requires O((L + 1)2J2) multiplica-
tions, but for the autocorrelation method this cost is reduced,
thanks to the duality of autocorrelation and power spectrum
[72]. Due to the symmetry property of autocorrelation, we
have rl(j, s) = rl(j− s) = rl(s− j). Now define

v−l,j =

{
vl,j, j ∈ [−J/2− 1, 0),

0, otherwise,
(32)

v+l,j =

{
vl,j, j ∈ (jmax, J/2],

0, otherwise,
(33)

and let

r−l (j− s) =

J/2∑
j′=−J/2−1

v−l,j′−jv
−
l,j′−s = F

−1
(
|v̂−

l,:|2
)
j−s

, (34)

r+l (j− s) =

J/2∑
j′=−J/2−1

v+l,j′−jv
+
l,j′−s = F

−1
(
|v̂+

l,:|2
)
j−s

, (35)

where v̂−
l,: and v̂+

l,: are the frequency representations of v−
l,: and

v+
l,:, respectively. Having rl(j− s) = r−l (j− s)+ r+l (j− s) and

r(j, s) =

(L+1)2−1∑
l=0

rl(j− s)

= F−1

(L+1)2−1∑
l=0

(|v̂−
l,:|2 + |v̂

+
l,:|2)


j−s

, (36)

we obtain the multichannel linear prediction coefficients at
O((L+ 1)2J log J) computational cost.

We note that the presented approach is a variant of classical
Prony-like estimation, lauded for its computational efficiency,
yet a more elaborate technique may be applied. For instance,



8

Figure 2: Delay-magnitude ζh(t) of the ground truth (top) and
estimated (bottom) RdRIR, recovered from the acausal GTVV
representation given in Fig 1 (top).

one could perform alternating minimization to improve the
estimates of a(t) and h(t) iteratively, in the spirit of the
Steiglitz-McBride algorithm [73]. Therefore, to incorporate the
sparsity and non-negativity assumptions, we propose to jointly
optimize the two variables:

min
a,H

∑
j

∥h:,j∥2

s.t. hl,: = vl,: ∗ a, (37)
h∀l,j<0 = h∀l,j>jmax

= 0,

h0,∀j ≥ 0 and a0 = 1.

However, the imposed modeling constraints make this prob-
lem inconsistent in practice (e.g. due to estimation errors and
noise). While one could reformulate the problem such that
the constraints are relaxed - for instance, by introducing a
squared norm penalty instead of the first equality constraint,
it would require introducing a new regularization hyperpa-
rameter. Instead, we propose using Alternating Directions
Method of Multipliers (ADMM), a first-order optimization
framework based on Douglas-Rachford splitting [74]. ADMM
is particularly effective for optimization problems involving
linearly dependent variables, provided that the solutions of
intermediate optimization problems are efficiently obtained.
Another convenient feature of ADMM is that, in the inconsis-
tent setting, its iterates could produce the best approximation
pair, i.e., a pair of estimates of a and H for which the residuals
hl,: − vl,: ∗ a attain the lowest norm [75]. In Appendix B,
we instantiate ADMM for the problem (37) - an interested
reader can easily derive the algorithm by following the tutorial
article [76] by Boyd et al. Fig. 2 illustrates an example of the
reconstructed RdRIR using the proposed ADMM.

V. EXPERIMENTS

We evaluate RdRIR estimation on data generated using
simulated and recorded Ambisonic RIRs. In particular, the

autocorrelation (AC), covariance (COV) and ADMM meth-
ods applied to GTVV are benchmarked. As baselines, we
use the canonical MCLMS algorithm, as well as the noise-
robust multichannel frequency-domain least mean squares
(RNMCFLMS) [77] version. Both least mean squares (LMS)
implementations are from the Blind System Identification and
Equalization (BSIE) toolbox [78]. As additional baselines, we
use the “plain” GTVV and TDVV representations.

The ”fully blind” scenario is assured in all experiments,
i.e., the algorithms only have access to the (noisy) observed
signals, which are generated by convolving the multichannel
RIRs with 10 s of speech data, taken from the publicly
available LibriSpeech corpus [79]. The TDVV and GTVV
representations are estimated from these measurements using
the approach described in III-B, with the latter being obtained
through the “self-steering” heuristics, explained at the end
of the same subsection. The number of frames T used for
the estimation corresponds to the 0.5 s buffer. The GTVV
reference signal is obtained using a ”regular” (or ”Plane-Wave
Decomposition” or ”Maximum-Directivity”) beamformer [32]
pointing towards the iteratively estimated main DoA (θ̃0, ϕ̃0),
i.e.: w = y(θ̃0, ϕ̃0)/(L + 1)2, assuming that the spherical
harmonic function basis is 3D-Normalized [80]. Three HOA
orders are considered: L ∈ {1, 2, 3}, while the common
sampling rate is set to fs = 16 kHz. The STFT representation
is computed by applying Tukey window of length 0.128 s,
with 75% overlap between succeeding frames. The Hendriks
algorithm [81] is used as VAD. When applied to the clean
speech data, this algorithm estimates that about 50% of all
STFT frames are voiced.

Since the RdRIR representation is invariant to global scale
and ToA offset, it cannot be directly compared to the ground
truth multichannel RIRs. Moreover, since the measured RIRs
are sampled versions of continuous impulse responses, some
of their segments may have undergone sign inversion (due to
the action of the anti-aliasing filter). Assuming the same filter
has been applied to all channels, it suffices to observe the sign
of the omnidirectional component, and then, if the latter is
negative, change the signs of all channels at the given sample.
Following the sign correction, RIRs are shifted to temporal
origin, such that the strongest wavefront – which is assumed to
correspond to the direct propagation – is located at t = t0 = 0.
Finally, the obtained multichannel sequence h(t) is rescaled
such that the vector at t = 0 is of unit magnitude, and is
hereafter referred to as ground truth RdRIR.

The chosen evaluation metrics are aimed to reflect the
algorithms’ ability to recover directions and relative delays
of early echoes. For that reason, we have avoided the com-
mon “normalized project misalignement” (NPM) error [78],
which is a point-wise metric that indiscriminately penalizes
even small temporal deviations from the ground truth. In-
stead, N = 15 largest peaks of the ground truth delay-
magnitude representation (16) are selected, from which the
corresponding delays {t0, t1, . . . , tN−1} and encoding vectors
{h(t0),h(t1), . . . ,h(tN−1)} are logged. We independently
apply the same peak-picking procedure to the delay-magnitude
representation ζh̃(t) of a given estimator h̃(t), which yields
another set of delays {t0, t̃1, . . . , t̃N−1}, associated with en-
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Figure 3: Median detection rate P̃ results for all methods, with respect to the RT and SNR settings.

coding vectors {h̃(t0), h̃(t̃1), . . . , h̃(t̃N−1)} (note that the
zero-delay vector, akin to the DoA delay t0, is always re-
tained). We keep only Ñ of those estimates h̃j := h̃(t̃j) whose
delays t̃j are within a five-sample temporal neighborhood of
the ground truth wavefronts - hence, the relative delay error
tolerance is |ti − t̃j| ≤ 0.3 ms. The percentage of retained
estimates

P̃ =
Ñ

N
100%,

is to be interpreted as a detection rate indicator. Indeed, since
the number of retrieved peaks is equal for both ground truth
and the estimate, detection precision and recall have the same
value. For all ground truth wavefronts and retained estimates,
we then find the closest (in the least squared sense) SH vectors
yi := y(θi, ϕi), respectively ỹj = ỹ(θ̃j, ϕ̃j), parametrized by
the appropriate azimuth and elevation values. We use these
directions to evaluate angular errors between an estimate and
the associated ground truth wavefront:

ϵ̃i,j = ∠
(
(θi, ϕi), (θ̃j, ϕ̃j)

)
,

where ∠(·) denotes the great-circle distance for the given pair
of directions. Finally, knowing that measured RIRs do not
perfectly obey the structure of analytic SH vectors, we also
evaluate the coherence c̃i,j between a “raw” ground truth vector
hi := h(ti), and its estimate h̃j:

c̃i,j =
hT
i h̃j

∥hi∥∥h̃j∥
.

Let us summarize the steps involved:
1) Define the STFT frame length to be about 2τ̄max and

compute the tensor b̂(f, t).
2) Estimate v̂(f), v(t) and DoA through the “self-steering”

procedure in Alg. 1 (for TDVV, set num iter = 1).
3) If RdRIR estimation is used, get h̃(t) from either:

AC - compute coefficients (36) from v̂−
l,: and v̂+

l,:,
assemble and solve the linear Toeplitz system (30).

COV - directly compute coefficients (31), assemble
and solve the linear system (30).

ADMM - set the number of iterations and the
parameter µ, pre-compute the coefficients (51), iterate
the following steps: compute (47) and (52), solve the
Toeplitz system (48), compute (44), (45).
If RdRIR is not being estimated, set h̃(t) = v(t).

4) Compute ζh̃(t) = ∥h̃(t)∥2 and choose the delay indices
of N largest peaks. Preserve only the indices within the
prescribed relative delay error tolerance.

5) For the retained indices, estimate the direction of each
corresponding vector h̃j:

If RdRIR analysis has been applied, find the pa-
rameters (θ̃j, ϕ̃j) that minimize the ℓ2 distance of a SH
vector-valued function y(θ, ϕ) to h̃j.

If GTVV/TDVV is used directly, find the parame-
ters (θ̃j, ϕ̃j) that minimize (25).

6) Calculate the performance metrics discussed above.

A. Simulated RIRs

In simulated experiments, we mimic the scenario where
the microphone array is fixed, while the speech source is
mobile, slowly moving at the average speed of 0.97 km/h.
This value is only slightly below the average speed of a
moving talker in Task 3 of the LOCATA challenge [2]. We
have adapted the widely used RIR generator software [82], in
order to generate Ambisonic RIRs at each of 100 uniformly
sampled positions along 10 randomly generated smooth source
trajectories. The corresponding microphone array positions are
randomly chosen in the xy-plane, such that the array altitude
is kept fixed at 1.2 m. The microphone signals are obtained
by sliding convolution and the spatial interpolation technique
implemented in the Roomsimove toolbox [83]. The virtual
“room” has dimensions 5× 4× 3 m3, while the reverberation
time (RT) takes values from {0.2s, 0.4s, 0.6s}. Signals are
corrupted by diffuse babble noise whose impulse response has



10

Figure 4: Median angular error for the detected wavefronts, relative to RT and SNR levels. Out-of-scope values (for ADMM
(HOA 3) with SNR=20 or Inf dB, and RT=0.2s) are null.

Figure 5: Median coherence for the detected wavefronts, relative RT and SNR levels.

been obtained by extracting the reverberant parts of several
RIRs corresponding to random positions within the room, and
then computing their average, as done in [49]. The considered
SNR levels are 0, 10, 20 dB and noiseless (“∞” dB setting).

The reported results are computed on the ensemble of
generated data, i.e. from all generated trajectories. For every
performance metric, the experimental outputs are presented
as a set of subfigures relative to each RT setting. Within a
subfigure, the results are given as a function of the varying
SNR level. The detection rate P̃ results are given in the form
of bar plots in Fig. 3. The RdRIR-based methods generally
provide better detection than the baseline approaches, with the
ADMM variant obtaining the highest percentage of accurate
detections, most notably at low HOA orders. The angular error
and coherence performance on the detected wavefronts are

presented in Fig. 4 and Fig. 5, respectively. One may observe
the same trend, with the proposed methods outperforming
the baselines, often by a large margin. The LMS baselines
performed considerably worse than the other methods, which
is also reflected in their poor coherence scores in Fig. 5. They
yield essentially similar, quasi-random results across all RT
and SNR levels. The obtained results were confirmed by the
scores of two sample t-tests [84], evaluated for each pair of
estimation methods for a given HOA order. Statistical tests
also indicate that, when compared to one another, the proposed
RdRIR estimation methods achieve similar performance in
terms of the attained angular error and coherence.

With the exception of the LMS baselines, the performance
of all tested methods improves with the increase in SNR and
HOA order, and drops with the increase in RT. A possible
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(a) The (superposed) FOA channels. (b) Ground truth RdRIR. (c) AC method

(d) COV method. (e) ADMM method. (f) MCLMS method.

(g) RNMCFLMS method. (h) GTVV representation. (i) TDVV representation.

Figure 6: Delay-magnitude representations of the estimates for all tested methods (Figs. 6c-6i), from the FOA recording in
Fig. 6a. The ground truth RdRIR is given in Fig. 6b, and the selected peaks are denoted by red circles.

remedy for the latter may be to apply the “channel short-
ening” technique, i.e. to pre-process the input signals by a
multichannel dereverberation algorithm (e.g. [85]) before the
RdRIR estimation.

B. Recorded RIRs

In order to evaluate the performance of proposed methods
in more realistic conditions, we use the dataset of recorded
Ambisonic RIRs from University of Aalto, Finland [86]. The
dataset contains RIRs in different reverberation conditions,
obtained by varying acoustic absorbers in 5 steps, from mild
reverberation (T20 around 0.37 s) to highly reverberant (T20

about 1.21 s). The authors have recorded RIRs correspond-
ing to all combinations of 3 positions of a sound source
(Genelec 8331A coaxial loudspeaker), and 7 positions of a
microphone array (mhAcoustics Eigenmike® em32 and Zylia
ZM-1). However, we do not consider the two microphone
positions for which the source is facing the opposite direction.
Instead, we use these to generate the diffuse impulse response
for the additive babble noise, as discussed in the previous

subsection. In this series of experiments, the SNR is fixed to
20 dB (investigating the robustness of the proposed methods
under different SNRs, on real data, is left for future work).

For visual comparison, examples of the obtained delay-
magnitude representations, along with the corresponding input
FOA signals, are presented in Fig. 6 (note that each of the four
FOA channels in the subfigure 6a is given in a different color).
While for the proposed AC, COV and ADMM methods (and
even the GTVV representation), these strongly resemble the
ground truth, for TDVV and the LMS baselines this is clearly
not the case.

The results are given in Tables II and I, as a function of HOA
order, T20 and the type of spherical microphone array (SMA)
used for recording RIRs. The best results are emphasized by
the boldface font. The proposed methods clearly outperform
the baselines, in terms of all evaluation metrics. The three
RdRIR-based approaches obtain comparable results, without
a clear winner in terms of estimation performance. However,
given that the AC method is the least computationally demand-
ing, it seems to be best suited for practical applications. As
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Table I: Angular error / coherence / detection rate of the signals obtained using RIRs recoded by Zylia SMA.

HOA Method T20 = 1.21 s T20 = 0.77 s T20 = 0.57 s T20 = 0.45 s T20 = 0.37s

1

AC 44.75° / 0.71 / 47% 40.27° / 0.81 / 47% 39.53° / 0.83 / 47% 35.32° / 0.83 / 47% 32.35° / 0.82 / 47%
COV 44.82° / 0.71 / 47% 38.72° / 0.83 / 47% 38.04° / 0.81 / 47% 33.79° / 0.83 / 53% 30.80° / 0.85 / 47%
ADMM 46.69° / 0.70 / 47% 40.75° / 0.81 / 47% 44.14° / 0.78 / 53% 40.46° / 0.78 / 53% 38.28° / 0.80 / 53%
MCLMS 84.82° / 0.31 / 7% 85.95° / 0.30 / 7% 84.66° / 0.32 / 7% 80.4° / 0.35 / 7% 84.32° / 0.30 / 7%
RNMCFLMS 85.00° / 0.26 / 27% 83.08° / 0.28 / 27% 81.57° / 0.38 / 27% 82.19° / 0.28 / 20% 88.92° / 0.26 / 20%
GTVV 59.11° / 0.55 / 40% 61.43° / 0.63 / 40% 65.50° / 0.57 / 47% 61.37° / 0.63 / 47% 60.10° / 0.47 / 47%
TDVV 73.4° / 0.30 / 33% 67.85° / 0.44 / 33% 74.29° / 0.29 / 40% 70.89° / 0.23 / 40% 63.86° / 0.35 / 40%

2

AC 33.72° / 0.58 / 47% 21.30° / 0.77 / 47% 25.11° / 0.72 / 53% 26.33° / 0.73 / 53% 17.63° / 0.76 / 53%
COV 37.48° / 0.57 / 53% 21.82° / 0.75 / 53% 26.17° / 0.69 / 53% 25.55° / 0.69 / 53% 17.62° / 0.78 / 53%
ADMM 33.72° / 0.57 / 47% 22.9° / 0.77 / 53% 28.36° / 0.72 / 53% 24.68° / 0.76 / 53% 18.69° / 0.79 / 53%
MCLMS 83.23° / 0.15 / 7% 84.32° / 0.15 / 7% 77.11° / 0.20 / 7% 73.67° / 0.21 / 7% 74.01° / 0.18 / 7%
RNMCFLMS 101.93° / -0.07 / 27% 101.93° / -0.02 / 27% 100.7° / -0.01 / 33% 98.78° / 0.10 / 33% 102.83° / 0.04 / 33%
GTVV 56.07° / 0.41 / 47% 40.14° / 0.56 / 40% 47.87° / 0.54 / 47% 44.69° / 0.62 / 53% 40.27° / 0.54 / 47%
TDVV 67.13° / 0.25 / 40% 62.60° / 0.36 / 40% 72.56° / 0.17 / 40% 73.20° / 0.18 / 47% 59.03° / 0.27 / 47%

3

AC 17.32° / 0.65 / 53% 11.02° / 0.80 / 53% 13.56° / 0.77 / 60% 13.46° / 0.77 / 60% 11.58° / 0.79 / 60%
COV 16.92° / 0.66 / 53% 11.29° / 0.77 / 53% 14.34° / 0.74 / 53% 14.77° / 0.74 / 60% 11.34° / 0.78 / 60%
ADMM 14.25° / 0.66 / 53% 11.40° / 0.80 / 53% 14.50° / 0.77 / 60% 12.53° / 0.82 / 60% 8.16° / 0.83 / 60%
MCLMS 80.22° / 0.13 / 7% 83.16° / 0.10 / 7% 76.9° / 0.13 / 7% 70.84° / 0.12 / 7% 69.32° / 0.13 / 7%
RNMCFLMS 98.86° / 0.04 / 27% 98.86° / 0.03 / 27% 98.86° / 0.11 / 33% 99.97° / 0.10 / 33% 101.21° / 0.06 / 33%
GTVV 39.49° / 0.47 / 47% 21.62° / 0.61 / 47% 31.75° / 0.59 / 47% 18.47° / 0.69 / 53% 20.82° / 0.62 / 53%
TDVV 68.41° / 0.23 / 40% 64.22° / 0.31 / 40% 66.92° / 0.20 / 47% 66.77° / 0.19 / 47% 56.69° / 0.24 / 47%

Table II: Angular error / coherence / detection rate of the signals obtained using RIRs recoded by Eigenmike SMA.

HOA Method T20 = 1.21 s T20 = 0.77 s T20 = 0.57 s T20 = 0.45 s T20 = 0.37s

1

AC 19.71° / 0.91 / 53% 19.71° / 0.90 / 47% 19.88° / 0.90 / 53% 18.38° / 0.92 / 53% 19.99° / 0.92 / 53%
COV 19.57° / 0.91 / 47% 19.29° / 0.90 / 47% 20.24° / 0.90 / 47% 18.35° / 0.92 / 47% 19.85° / 0.91 / 53%
ADMM 19.58° / 0.89 / 53% 21.06° / 0.87 / 47% 20.64° / 0.90 / 47% 20.63° / 0.89 / 47% 19.91° / 0.90 / 53%
MCLMS 84.97° / 0.30 / 7% 82.66° / 0.32 / 7% 79.99° / 0.36 / 7% 81.26° / 0.31 / 7% 78.87° / 0.36 / 7%
RNMCFLMS 73.75° / 0.40 / 33% 69.41° / 0.42 / 33% 61.76° / 0.58 / 27% 68.05° / 0.50 / 27% 57.21° / 0.60 / 27%
GTVV 39.09° / 0.78 / 47% 45.46° / 0.69 / 40% 40.43° / 0.74 / 47% 37.42° / 0.78 / 53% 36.34° / 0.80 / 47%
TDVV 46.29° / 0.51 / 47% 48.57° / 0.49 / 40% 50.68° / 0.46 / 47% 49.92° / 0.49 / 40% 46.84° / 0.52 / 47%

2

AC 7.39° / 0.90 / 60% 7.77° / 0.88 / 53% 8.01° / 0.89 / 60% 8.21° / 0.90 / 60% 11.39° / 0.89 / 60%
COV 7.39° / 0.90 / 53% 7.91° / 0.88 / 53% 8.01° / 0.88 / 53% 8.21° / 0.90 / 60% 11.7° / 0.89 / 53%
ADMM 7.23° / 0.91 / 53% 7.77° / 0.86 / 53% 7.53° / 0.89 / 53% 7.67° / 0.89 / 53% 8.16° / 0.88 / 53%
MCLMS 80.35° / 0.09 / 7% 84.04° / 0.10 / 7% 70.14° / 0.17 / 7% 79.93° / 0.16 / 7% 64.91° / 0.26 / 7%
RNMCFLMS 80.54° / 0.13 / 40% 79.50° / 0.09 / 40% 75.43° / 0.17 / 40% 73.37° / 0.20 / 40% 71.56° / 0.24 / 40%
GTVV 13.02° / 0.84 / 53% 15.29° / 0.79 / 53% 13.25° / 0.83 / 53% 13.28° / 0.83 / 53% 13.95° / 0.84 / 53%
TDVV 35.36° / 0.44 / 47% 39.87° / 0.38 / 47% 33.85° / 0.43 / 53% 38.62° / 0.45 / 47% 38.68° / 0.47 / 53%

3

AC 7.05° / 0.89 / 53% 7.11° / 0.87 / 53% 7.05° / 0.87 / 60% 7.12° / 0.87 / 60% 7.31° / 0.85 / 60%
COV 7.11° / 0.89 / 53% 7.19° / 0.86 / 53% 7.12° / 0.85 / 53% 7.20° / 0.86 / 60% 7.31° / 0.85 / 60%
ADMM 7.02° / 0.90 / 53% 7.19° / 0.86 / 53% 7.20° / 0.87 / 53% 7.23° / 0.87 / 60% 7.20° / 0.87 / 60%
MCLMS 82.10° / 0.07 / 7% 78.31° / 0.09 / 7% 72.41° / 0.12 / 7% 73.13° / 0.11 / 7% 66.27° / 0.17 / 7%
RNMCFLMS 86.34° / 0.12 / 33% 84.39° / 0.10 / 33% 80.95° / 0.09 / 40% 82.09° / 0.13 / 40% 79.84° / 0.15 / 40%
GTVV 7.47° / 0.85 / 60% 7.77° / 0.81 / 53% 7.77° / 0.82 / 60% 8.21° / 0.80 / 53% 7.62° / 0.83 / 53%
TDVV 30.6° / 0.36 / 47% 39.62° / 0.31 / 47% 30.17° / 0.31 / 53% 31.18° / 0.35 / 53% 32.95° / 0.38 / 53%

expected, amongst baseline approaches, the GTVV represen-
tation produces the best results, especially for higher HOA
orders. One may also remark that the overall performance
of all tested methods improves with the HOA order, and –
somewhat surprisingly – is not much affected by the change
in sound absorption, i.e., by the RT of the room.

It is important to indicate that some degradation in per-
formance (particularly, in detection rate) may be due to the
chosen experimentation protocol, based on pre-selected peaks
of the ground truth RdRIR. Related to that, note that while the
angular precision and coherence are generally correlated, this
is not always the case, suggesting that a more refined method
for extracting directions from SH vectors (such as [87]) may
further reduce angular errors. This may also explain, to some
extent, the disparity between the results obtained from the
Eigenmike and Zylia SMAs.

VI. CONCLUSION

We have presented a detailed discussion on GTVV – Gen-
eralized Time-domain Velocity Vector – and proposed several
methods for the blind identification of early room impulse
responses by exploiting properties of this signal representation.
We term the time series extracted by these methods RdRIR -
Reduced Room Impulse Response. The numerical experiments
using simulated and recorded RIRs (acquired by different
SMAs) demonstrate the performance gains of RdRIR over
the baseline BSI approaches. We envision that some of the
proposed techniques, due to their implementation simplicity
and small computational overhead, could find their place in
many practical applications involving Ambisonics and immer-
sive sound. Future work will focus on improving the angular
precision of estimated wavefronts, use of RdRIR representa-
tion in learned models (e.g. deep neural networks), support
for multiple sound sources, and potentially, on extending the



13

benefits of RdRIR beyond Ambisonics, or even the spatial
audio context itself.

APPENDIX A
RELATION WITH PSEUDOINTENSITY VECTOR

Sound intensity is defined as the product of acoustic pres-
sure and particle velocity [88], [1]. In a pure-sound field
[88], its real part – active sound intensity – is orthogonal
to the incoming wavefront, suggesting it can be used for
determining DoA. The linearized fluid momentum equation
states that particle velocity is aligned with the spatial gradient
of acoustic pressure [52], hence one needs only an estimate
of the acoustic pressure and its gradient to approximate this
quantity. Pseudointensity vector is an FOA approximation of
active sound intensity, defined as [53], [52]

î(f) = ℜ
(
b̂0(f)

∗b̂1:3(f)
)
, (38)

where ℜ denotes the real part of a complex number, b̂0(f) is
the first (omnidirectional) channel, while b̂1:3(f) is the vector
of the remaining three FOA channels. Indeed, while b̂0(f) is
a good approximation of acoustic pressure at the center of an
array [66], the other FOA channels exhibit spatial response
similar to figure-of-eight microphones aligned with Cartesian
coordinate axes [33]. Hence, b̂1:3 is a decent approximation
of the spatial gradient vector.

Note that, for the trivial beamformer w = [ 1 0 0 ... 0 ]
T, we

can express î(f) using GFVV (3), as follows:

î(f) =
1

|b̂0(f)|2
ℜ

v̂1(f)v̂2(f)
v̂3(f)

 . (39)

Thus, î(f) is parallel to the real part of the RTF vector,
excluding its first entry (which is trivially equal to 1).

Consider a very simple scenario: in addition to the wave-
front coming from the DoA direction (θ0, ϕ0), there is an
impinging wavefront from a reflected sound in the direction
(θ1, ϕ1). Given the unit response of the omnidirectional chan-
nel in all directions, from (3) we can rewrite (39) as

î(f) ∝ ℜ
(
u⃗0 − u⃗1γ1
1− γ1

)
, (40)

where γ1 = −ĝ1(f)e−j2πfτ1 , while we use u⃗0 and u⃗1 to
designate the subvectors composed of entries [y[1], y[2], y[3]]T

of the SH encoding vectors y0 and y1, respectively.
Disregarding the scaling factors, we have

î(f) ∝ u⃗0 (1 + ĝ1(f) cosφ1) + u⃗1ĝ1(f) (ĝ1(f) + cosφ1) ,
(41)

where φ1 = 2πfτ1. Since φ1 varies linearly along frequencies
f , we generally have cos(2πfτ1) ̸= −ĝ1(f), hence the
pseudointensity vector î(f) produces a biased estimate of the
DoA direction u⃗0. At the same time, due to (18) and the
assumed ĝ1(f) < 1, the DoA estimate from GTVV (or even
TDVV) representation, would remain unbiased.

APPENDIX B
ADMM FOR THE PROBLEM (37)

With µ > 0, H̃
(0)

= U (0) = 0, and 0 ∈ R(L+1)2×J the
all-zero matrix, the proposed ADMM iterates the next steps:

H(q+1) = argmin
H∈Ξ

µ∥H∥2,1 +
1

2
∥H − H̃

(q) −U (q)∥2F

(42)

a(q+1) = argmin
a, a0=1

(L+1)2−1∑
l=0

∥vl,: ∗ a− h
(q+1)
l,: + u

(q)
l,: ∥

2
2 (43)

h̃
(q+1)

l,: = vl,: ∗ a(q+1) (44)

U (q+1) = U (q) + H̃
(q+1) −H(q+1), (45)

where h̃l,: and ul,: denote the lth rows of the matrices H̃ and
U , respectively, while Ξ is the set of all real (L + 1)2 × J
matrices for which first row has non-negative entries, while
the columns h:,j indexed by j /∈ [0, jmax] contain only zeros.
The mixed norm ∥ · ∥2,1 is equal to the sum of the ℓ2-norms
of matrix columns, while ∥H∥F denotes the Frobenius norm
of a matrix H .

Let PΞ(H) denote the operator that projects a matrix H to
Ξ, i.e., sets to zero all h0,∀j < 0 and h:,j, j /∈ [0, jmax]. Define
a group soft-thresholding [89] operator Sµ(·) as

Sµ(H)l,j = max

(
0, 1− µ

∥h:,j∥2

)
hl,j, (46)

where hl,j is an entry of the matrix H at the row l and the
column j. Then, the solution of the subproblem (42) is

H(q+1) = Sµ
(
PΞ

(
H̃

(q)
+U (q)

))
. (47)

The time complexity of the above operations is linear, i.e. of
the order O((L+ 1)2J).

The subproblem (43) is very similar to the initial constrained
quadratic problem (29), and can be rewritten as:

min
a

(L+1)2−1∑
l=0

∑
j

((vl,: ∗ a)j − dl,j)
2
, s.t. a0 = 1, (48)

where dl,j = h
(q+1)
l,j − u

(q)
l,j . It can again be cast into a linear

system, similar to (30):
jmax∑
j=1

ajr(j, s) = rdv(0, s)− r(0, s), (49)

where r(j, s) are defined as in (31), while the coefficients
rdv(0, s) correspond to the cross-correlation

rdv(0, s) =

(L+1)2−1∑
l=0

∑
j′

dl,j′vl,j′−s. (50)

In both cases, the summation with respect to j′ is now
done over the entire range [−J/2+ 1,−J/2]. This means that
the autocorrelation coefficients are directly obtained from the
power spectrum of GFVV, i.e.,

r(j, s) = F−1

(L+1)2−1∑
l=0

|v̂l,:|2


j−s

. (51)
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Since r(j, s) is constant across iterations, the Toeplitz matrix
and the autocorrelation part of the right hand side of (49) need
to be calculated only once.

Analogous to autocorrelation, the cross-correlation values
(50) can be computed in frequency domain from the cross-
spectra of the involved quantities at O((L+ 1)2J log J) cost:

rdv(0, s) = F−1

(L+1)2−1∑
l=0

d̂l,:v̂
∗
l,:


s

. (52)

Even though we have jmax < J/2 (cf. the discussion in sub-
section III-B), jmax and J are still comparable, hence the per-
iteration complexity of the ADMM algorithm is determined
by the cost of solving the linear system (49), which requires
O((jmax + 1)2) operations.

In practice, the convergence speed depends on the parameter
µ, which is set to 0.1 in our experiments. Convergence
criterion based on the primal and dual updates has been
presented in [76], however, we observe that the algorithm
typically produces meaningful results within tens of iterations.
Furthermore, the algorithm can be accelerated by warm-
starting, i.e., by initializing the iterations with the estimates
from the previous frame.
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[17] I. Dokmanić, R. Parhizkar, A. Walther, Y. Lu, and M. Vetterli, “Acoustic
echoes reveal room shape,” Proceedings of the National Academy of
Sciences, vol. 110, no. 30, pp. 12186–12191, 2013.

[18] M. Lovedee-Turner and D. Murphy, “Three-dimensional reflector
localisation and room geometry estimation using a spherical microphone
array,” The Journal of the Acoustical Society of America, vol. 146, no.
5, pp. 3339–3352, 2019.

[19] F. Antonacci, J. Filos, M. Thomas, E. Habets, A. Sarti, P. Naylor,
and S. Tubaro, “Inference of room geometry from acoustic impulse
responses,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 20, no. 10, pp. 2683–2695, 2012.
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