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Abstract—Conventional audio-visual approaches for active
speaker detection (ASD) typically rely on visually pre-extracted
face tracks and the corresponding single-channel audio to find
the speaker in a video. Therefore, they tend to fail every time the
face of the speaker is not visible. We demonstrate that a simple
audio convolutional recurrent neural network (CRNN) trained
with spatial input features extracted from multichannel audio
can perform simultaneous horizontal active speaker detection
and localization (ASDL), independently of the visual modality.
To address the time and cost of generating ground truth labels to
train such a system, we propose a new self-supervised training
pipeline that embraces a “student-teacher” learning approach.
A conventional pre-trained active speaker detector is adopted
as a “teacher” network to provide the position of the speakers
as pseudo-labels. The multichannel audio “student” network is
trained to generate the same results. At inference, the student
network can generalize and locate also the occluded speakers
that the teacher network is not able to detect visually, yield-
ing considerable improvements in recall rate. Experiments on
the TragicTalkers dataset show that an audio network trained
with the proposed self-supervised learning approach can exceed
the performance of the typical audio-visual methods and pro-
duce results competitive with the costly conventional supervised
training. We demonstrate that improvements can be achieved
when minimal manual supervision is introduced in the learning
pipeline. Further gains may be sought with larger training sets
and integrating vision with the multichannel audio system.

Index Terms—active speaker detection and localization, self-
supervised learning, multichannel, microphone array.

I. INTRODUCTION

SOUND and vision present different yet complementary
sensory information. On the one hand, visual sensors

such as cameras, typically operate in the frontal field of
vision (FoV) and cannot sense occluded objects, whereas
the audio’s field of audition (FoA) is omni-directional and
does not require direct line-of-sight with the target. On the
other hand, vision-based algorithms usually guarantee higher
spatial resolution compared to audio systems. A good audio-
visual (AV) system must be designed to take full advantage
of these complementary features but also to rely on a single
modality when its counterpart is corrupted or fails. This work
investigates whether these systems can benefit from joint AV
training to gain performance when the visual input fails.

In particular, we consider the active speaker detection and
localization (ASDL) task, i.e., detecting and locating the active
speaker within the visual reference frame. This task is vital as
it relates to many other AI tasks, such as speaker diarization
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Fig. 1. Block diagram of the proposed learning pipeline. The ‘teacher’
network, composed of an audio-visual active speaker detector (ASD) preceded
by a face tracker, produces pseudo-labels with the speaker’s position (x̂) at
each time instance. The ‘student’ audio network is trained to regress the
speaker’s horizontal position (x) from the directional audio features extracted
from the multichannel input. Voice activity annotations are used to supervise
the training for the detection subtask and to mask the teacher’s pseudo-labels
when the frame is silent.

[1], human-robot interaction (HRI) [2], human activity recog-
nition [3], scene understanding [4], augmented reality (AR)
[5] and immersive media production [6]. Therefore, it has a
huge breadth of potential applications in, for example, enter-
tainment, communications, human-robot collaborative manu-
facturing, assisted living in health and social care, and other
applications besides.

ASDL can be tackled in two separate stages. The first stage
corresponds to the localization task which is accomplished
in advance by a visual face detector that builds a set of
hypothetical candidate speakers. The second stage classifies
the detected faces as active/inactive. This classification stage
is called active speaker detection (ASD) and is typically per-
formed as an AV problem with single-channel audio [7]–[10].
In practice, the face of the speaker might not be visible from
the viewpoint of the camera and therefore not be included in
the set of candidates, causing the failure of the overall ASDL
system. We solve this problem holistically with an audio-
only system that tackles the task using multichannel audio.
Our system performs the detection and horizontal localization
of the speaker in the visual frames simultaneously thanks to
directional cues encoded in the multichannel audio signals.
However, annotating the ground truth speaker positions to train
the system, as is required in traditional supervised machine
learning, is expensive and time-consuming. Therefore, we pro-
pose a self-supervised student-teacher training approach that
leverages automatic pseudo-labels generated by a conventional
AV active speaker detector to supervise the training of our
multichannel audio-based network. To the best of our knowl-
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edge, this work is the first attempt to develop an audio ASDL
solution with automatic audio-visual supervision. Experiments
on the TragicTalkers dataset [11] show that the visual modality
can be employed as a helpful tool to automatically provide
supervision for the proposed task, purely from multichannel
audio signals. We demonstrate that, although only the visible
speakers are employed to generate the supervisory signal used
to train the audio network, the model is able to generalize
at inference and detect also the occluded ones. Furthermore,
we show how our self-supervised learning pipeline can be
augmented with little manual supervision. We demonstrate that
it is possible to achieve results on par with the fully supervised
case with considerably less labor-intense forms of supervision.
Our study presents the following three key contributions:

• For the first time, we leverage multichannel audio to
simultaneously detect and horizontally locate the active
speaker in the video frame domain, instead of state-of-
the-art audio-visual solutions that rely on face detection.
Additionally, we show via an ablation study that spatial
feature extraction and temporal modeling are essential to
properly tackle this task with multichannel audio;

• We propose a cross-modal self-supervised student-teacher
learning approach in which a multichannel audio network
is trained with localization pseudo-labels generated by
a pre-trained audio-visual teacher network. We test two
different teacher networks as well as hybrid versions of
manual-automatic labels to find an optimal compromise
for high performance and minimal human supervision;

• Experimental results on the TragicTalkers dataset demon-
strate that the student network, trained on the visible
active speakers detected by the teacher network, can
detect occluded faces and generalize the localization,
achieving higher recall and overall performance than its
teacher.

An early version of our work was presented in [12]. Here we
present an overhauled audio network with extended temporal
modeling. We adopt state-of-the-art audio input features in
contrast to the beamformer-based features in [12]. The dataset
size has been increased by ∼50% with TragicTalkers and voice
activity labels added. We now compare multiple teacher net-
works and a spectrum of supervision conditions. A substantial
performance improvement on this larger test set is achieved.

To encourage reproducibility and motivate future research,
our code is made available to the community1. The remain-
der of the paper is organized as follows: II presents the
background; III describes in detail the proposed student-
teacher learning method; IV the experimental settings and the
experiments conducted; V presents and discusses the results
and future work; VI concludes the paper.

II. BACKGROUND

The task and the learning method proposed in this paper can
be linked to three main research areas that are described below:
active speaker detection (ASD), sound event localization and
detection (SELD), and self-supervised audio-visual learning.

1https://github.com/dberghi/Leveraging-Visual-Supervision-for-Array-
based-ASDL

A. Active Speaker Detection

As shown in the upper half of Fig. 1, in the teacher network,
ASDL is commonly treated as a two-step process: first a
video-only face detector is applied to find and locate faces
in the image sequence, second the detected face tracks are
classified as active/inactive. This second subtask is termed
active speaker detection (ASD), which typically forms an AV
solution employing a single (mono) audio signal. Therefore,
ASD consists in identifying the presence of active speakers in
a video among a set of candidates.

Early works in this area attempted to find the correlation
between voice activity and lip or upper body motion [13]–[15].
In some cases, researchers proposed self-supervised solutions
to perform ASD, e.g., by training a visual network under
the supervision of its audio counterpart [15], or by audio-
visual co-training [16], [17]. What is probably the first, large,
annotated dataset for ASD was released for the ActivityNet
Challenge (Task B) at CVPR 2019: the AVA-ActiveSpeaker
dataset [7]. It provides 38.5 hours of audio-visual face tracks
(sequences of consecutive face crops) labeled for speech
activity. Chung et al. tackled the challenge with an AV model
pre-trained on audio-to-video synchronization, performing 3D
convolutions [8]. Alcázar et al. proposed Active Speakers in
Context (ASC) [9]. Instead of compute-intensive 3D convolu-
tions or large-scale AV pre-training, ASC uses context. Zhang
et al. have also tackled the ASD task by using contextual infor-
mation and proposed the Unified Context Network (UniCon)
[10]. Leveraging short- and long-term features and AV cross-
attention, Tao et al. introduced TalkNet [18]. Additionally,
motivated by the call for an ASD system that works properly
outside the AVA-ActiveSpeaker dataset domain, they formed
a second ASD dataset based on LRS3 [19] and VoxCeleb2
[20] called TalkSet. Recently, Alcázar et al. [21] proposed an
end-to-end ASD that unifies AV feature extraction and spatio-
temporal context aggregation. Although highly effective, these
solutions simply perform the audio-visual classification of the
provided pre-extracted face tracks. In practice, the speaker can
be occluded or facing away from the camera, causing face
detection to fail and degrade overall system performance. In
other words, the active speaker is detected only when visible.

The approach proposed in this study compensates for this
problem by extending the audio input front-end and employing
a microphone array for localization: at inference, the model
relates voice activity to the position of the speaker in the
visual frame through the audio modality only. Therefore, the
proposed solution simultaneously performs both detection and
localization. Additional AV studies using multichannel audio
signals in the field of ASDL learning include the work from
Qian et al. [22], where visual feature vectors encoding face
bounding box coordinates were used alongside audio features
to improve spatial accuracy, and Jiang et al. [5], where AV
cues are used to locate the speakers within an egocentric
environment for augmented reality (AR) applications. Other
AV solutions employ multi-view and microphone arrays for
3D speaker detection and tracking and are typically based
on classical (other than DNN-based) approaches [23]–[26].
However, they often rely on acoustic and optical calibration

https://github.com/dberghi/Leveraging-Visual-Supervision-for-Array-based-ASDL
https://github.com/dberghi/Leveraging-Visual-Supervision-for-Array-based-ASDL
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data and require a computationally-expensive global search
[27]. Additionally, learning-based solutions with appropriate
training have been shown to better generalize in highly rever-
berant environments and with low signal-to-noise ratio (SNR)
conditions [28].

In this work, an audio network that takes in input acoustic
features extracted from multichannel audio sequences has
been trained to perform ASDL. In order to build a deep
understanding of the task and the proposed components, the
problem analyzed in this report is limited to the case of a
single active speaker and horizontal localization.

B. Sound Event Localization and Detection

The audio ASDL task can be thought of as a specialization
of sound event localization and detection (SELD) [29] con-
sidering only speech and silence, defined purely in the audio
modality. SELD intersects two main subtasks, sound event
detection (SED) and direction of arrival (DoA) estimation:
SELD simultaneously recognizes the target sound class, with
its onset and offset times, while estimating its DoA. SELD
methods provide relevant inspiration for the proposed method.

SELD was introducted into the 2019 DCASE challenge as
Task 3 to advance state-of-the-art methods [30]. The dataset
used in the challenge provides sound scenes in two spatial
formats: 4-channel First-Order Ambisonics (FOA) and 4-
channel microphone array (MIC). In 2018, Adavanne et al.
pioneered the task by proposing SELDnet [29], a convolutional
recurrent neural network (CRNN) with magnitude and phase
spectrogram inputs from the array’s channels. A two-stage
learning strategy was adopted by Cao et al. [31] to decom-
pose the problem into its SED and DOAE subtasks. They
extracted generalized cross-correlation with phase transform
(GCC-PHAT) spatial features alongside log-mel spectrograms
as inputs for their two-stage network. Nguyen et al. [32]
also performed SED and DOAE separately, employing a
Sequence Matching Network (SMN) to learn the correct match
between the two subtasks’ outputs. Activity-Coupled Cartesian
Direction of Arrival (ACCDOA) vector-based loss unifies
the regression and detection loss terms [33]. The loss for
SELD typically sums the weighted SED and DOAE losses,
whereas, ACCDOA assigns sound event activity to the DOA
vector’s magnitude. To solve the problem of simultaneous
same-class events, Cao et al. proposed the Event Independent
Network (EIN) to generate independent track-wise predictions
[34]. Later, in EINv2 [35], they replaced the bidirectional
gated recurrent units (biGRUs) with multi-head self-attention
(MHSA) and introduced soft parameter sharing between the
SED and DOAE branches. Recently, Nguyen et al. [36]
proposed a new type of spatial input feature for SELD: the
Spatial Cue-Augmented Log-Spectrogram (SALSA) features.
SALSA consists of a normalized version of the principal
eigenvector of the array’s spatial covariance matrix computed
across microphone channels at each time-frequency bin of the
spectrograms. A faster lightweight variation of SALSA called
SALSA-Lite [37] uses a frequency-normalized version of the
inter-channel phase difference (NIPD).

C. Self-Supervised Audio-Visual Learning

Self-supervised AV learning is a research area that is rapidly
gaining interest across the audio and visual communities.
It provides not only multi-modal solutions to tackle tradi-
tional problems, e.g., exploiting visual information for speech
enhancement and separation or solving the ‘cocktail party’
problem [38], [39], but it has also given rise to new tasks:
e.g., Morgado et al. [40], Gao et al. [41], and Yang et al.
[42] proposed self-supervised approaches to generate spatial
audio from videos with monaural sound. Other researchers
performed localization or separation of audio sources that
were seen in the video [43]–[46]. These approaches rely
on the natural co-occurrence of audio and visual events to
learn a common audio-visual representation, e.g., to associate
the sound of a guitar with its visual appearance. However,
the localization task is performed visually. These approaches
require both modalities present, which might fail with poor
lighting or visual occlusion. In this paper, the visual modality
is employed only during training, drawing on the student-
teacher paradigm [47]–[50]. In AV learning, this paradigm
typically exploits the natural synchronization of audio and
visual signals to bridge modalities, enabling one to supervise
its counterpart. Owens et al. [49] used audio to supervise
and improve visual learning, while Aytar et al. [48] used
vision to supervise audio learning. Elsewhere, audio and vision
supervise each other [51]. Closest to the proposed work, [52]–
[54] adopted a student-teacher approach to detect vehicles
in the visual domain using multichannel audio input. The
audio student models are trained with 2D bounding boxes
generated by a pre-trained visual teacher network: Gan et
al. [52] and Rivera Valverde et al. [53] used respectively a
stereo microphone and a microphone array to estimate vehicle
locations, while Vasudevan et al. [54] used binaural sound
for semantic segmentation of 360° street views. Here, we
use a 16-element microphone array and aim to detect human
speakers, not cars. While the engine of a moving vehicle emits
a continuous source of sound, speech is intermittent and the
detected face can be actively speaking or silent. Thus, speech
activity is also considered in our approach below.

III. STUDENT-TEACHER LEARNING METHOD

The proposed learning approach is both self-supervised and
semi-supervised [55], [56]. It consists of a single-channel
audio-visual teacher network and an audio-only student net-
work as in Fig. 1. ASDL comprises classification and regres-
sion. Each frame is classified as active or silent and, when
active, the position of the speaker is regressed. The student
network is trained to perform these two subtasks concurrently.
In contrast, the teacher network first visually detects and
tracks faces in the video, then employs an AV model pre-
trained on ASD to classify the face tracks with the help of the
corresponding single-channel audio. The horizontal positions
of the center of the bounding boxes of the active faces are then
used as location pseudo-labels to train the student network,
which employs multichannel audio from a microphone array.
In terms of detection, the pseudo-labels present an essential
problem: when no speaker is detected, it is not possible to
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Fig. 2. (a) Schematic of camera (blue circles) and microphone (red dots) posi-
tions on the AVA Rig. The green square highlights the reference microphone.
(b) Photo of an AVA Rig.

ensure that the cause is the effective absence of speech or
a missed detection caused by visual occlusion. Thus, the
teacher’s negative detections are not reliable, so we label the
audio data for voice activity (VA) to supervise detection. In
the self-supervised pipeline, VA labels are provided by an
automatic voice activity detector (VAD).

Even though only the positions of the visible speakers
are used to supervise the regression subtask, at inference
the student network can take full advantage of the spatial
soundfield captured by the microphone array to generalize to
occluded speakers. To implement this method, a dataset of
AV speech data is required where the soundfield is captured
with a microphone array. We now describe details of the
dataset, teacher and student networks, and loss function used
to combine location and VA labels.

A. Multichannel AV Dataset

The AV dataset used to train and test the proposed method
is TragicTalkers [11]. It offers sequences captured with the
aid of twin Audio-Visual Array (AVA) rigs. Each AVA rig is
a light-field and sound-field sensing platform consisting of a
16-element microphone array and 11 cameras fixed on a flat
perspex baffle as in Fig. 2. As the proposed learning pipeline
requires a single video feed with the microphone array, the
availability of multiple views allows us to extend the audio
network training by selecting each camera view via a one-hot
vector. Hence, the network learns the array’s mapping to the
selected camera view. Sequences include one or two actors
at a range of approximately 3–4 m performing monologues,
conversations, and interactive scenes in which they move
and occlude each other. The dataset was captured in an
acoustically treated laboratory with an average reverberation
time of 0.3s in the mid 0.5-2 kHz frequency range. It does not
contain sequences in which the speakers talk simultaneously,
off-screen talkers, or external sources of sound other than
speech. The background noise floor is minimal (SNR≥ 30 dB).
Studying at most one active talker allows rigorous assessment
of the proposed learning method in a studio environment as a
realistic media production setting. Nevertheless, to assess the
robustness of the audio network, we also conducted experi-
ments with additive pink noise. The actors cover the entire
image FOV (2448p, [±27.5°]) distributed with 5th percentile
at −15.7° (528p), and 95th percentile at +14.1° (1851p).
They are separated by an angular distance that varies from

0°, when one occludes the other, to a maximum of 34.3°,
with a median of 16.4°. We verified that the actors’ angular
separation has negligible influence on localization accuracy,
since their speech does not overlap (Pearson correlation < 0.1).
TragicTalkers consists of 30 scenes captured with two AVA
rigs. We use the AV streams of each rig independently, i.e.,
16-channel audio is used to predict the speaker’s position in
any one of the rig’s 11 camera views. So the dataset’s 30
scenes provide 60 rig sequences, each with 11 perspectives.
TragicTalkers offers ground truth (GT) labels for VA and 2D
face bounding box. We use the GT labels to compare the
proposed learning approach with the traditional supervised
one. The dataset is partitioned into a 50-sequence development
set and a 10-sequence test set, which includes mouth position
labels for evaluation.

B. Teacher Networks

The teacher network automatically creates pseudo-labels
with the position of the speakers in the video frames. It
consists of two main components: a face tracker and an ASD
model. In this study, we evaluate two teacher networks. For
the first teacher, the face tracks (i.e., stacks of face crops)
are generated with the SeetaFaceEngine2 face detector [57]
applied to each TragicTalkers video frame. SeetaFaceEngine2
was adopted as it proved to be effective and fast: it processes
2448×2048p frames at 10+ fps on a 6-core Intel i7-9750H
CPU. The per-frame detections are temporally tracked based
on bounding-box intersection over union (IoU) across adjacent
frames, and a Gaussian smoothing is applied. We train the
publicly-available ASC model by Alcázar et al. [9] on the
AVA-ActiveSpeaker dataset [7]. Then, it is used to classify
the active speakers from the face tracks. When a speaker is
detected, the horizontal position of the bounding-box center is
used to supervise the audio student network in the regression
subtask. We briefly call this teacher network “ASC”. The
second teacher network is based on the TalkNet model by Tao
et al. [18]. They provide an end-to-end ASD demo to detect
faces and classify them with a pre-trained TalkNet model. We
call this teacher “TALKNET”. It employs S3FD [58] as face
detector and the classifier is trained on TalkSet, a dataset based
on VoxCeleb2 [20] and LRS3 [19], where the faces are ex-
tracted with S3FD too. While both classifiers work well on the
AVA-ActiveSpeaker dataset (mAP results are 86.7 for ASC,
90.8 for TalkNet), ASC does not generalize well to videos
in the wild. A matching face tracker for training and testing
would generalize better, giving the classifier a consistent facial
area, but this is hard to re-implement. In contrast, aiming for
general audio-visual ASD, Tao et al. aligned the face tracker
with TalkSet. Thus, TALKNET achieves 82% average precision
(AP) on the test set of TragicTalkers, while ASC only 59%. To
study the effects of teacher quality on the proposed student-
teacher pipeline, both weak and strong teacher networks are
assessed.

C. Student Network

The audio student network is trained under the supervision
of the teacher network and the VA labels. The network takes
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Fig. 3. Schematic representation of the audio network architecture.

spatial features extracted from the multichannel audio. The
input features have shape Chin×Tin×Fin, corresponding to
the number of channels, time bins, and frequency bins, respec-
tively. The number of input channels in the first convolutional
layer is consistent with Chin. A CRNN-based architecture
is adopted as depicted in Fig. 3. We decided to opt for an
existing backbone architecture. So, inspired by [31], we used
four convolutional blocks composed of two 3×3 convolutional
layers and an average pooling layer each. Both convolutional
layers in the block are followed by batch normalization [59]
and ReLU activation function. The average pooling layer
is applied with stride= 2 so that both time and frequency
resolutions are halved after each convolutional block, while
the number of channels is increased. At the end of the fourth
block, the resulting tensor has shape 512× Tin/16×Fin/16.
Then, frequency average pooling is applied and the tensor is
reshaped to Tin/16 × 512, as a series of 512-dimensional
feature maps, one per video frame. After that, the features
are passed through two bidirectional gated recurrent units
(biGRUs) with 256 hidden units to learn two-way correlations
over the sequences of frames. The output shape is preserved.
Finally, the tensor is fed to two fully connected (FC) layers that
reduce the feature map dimensionality to 2 output predictions
per time frame: the regression value xi and the respective
speech activity confidence Ci. The output coordinates and
confidence are normalized in the range [0, 1] by a Sigmoid
activation function. When the confidence Ci is below a thresh-
old, the i-th frame is considered silent and xi is neglected.
Between the two FC layers, an 11-dimensional one-hot vector
encoding the camera view is concatenated to each feature map.
Tin is chosen so that the output rate of Tout = Tin/16 matches
the frame rate. The concatenation is done at this stage of the
network where the feature map length approximates that of
the one-hot vector.

D. Loss Function

The loss function has two terms: a regression loss and a
confidence loss. The supervisory signal used to compute the
regression loss is generated from the positive predictions of the
teacher network, i.e., the positions of the detected speakers. As
mentioned previously, negative predictions do not guarantee
absence of speech as they can occur when the face is occluded.
The per-frame VA labels from the audio serve to disambiguate.
Hence, a sum-squared error loss is computed at each output
frame to train the student network:

L =

Tin/16∑
i=1

1i(xi − x̂i)
2 + (Ci − Ĉi)

2 (1)

where xi and x̂i are respectively the predicted and target
positions of the speaker along the horizontal axis of the i-
th video frame, normalized in the range [0, 1], while Ci and
Ĉi are the predicted and target confidences. The confidence
loss is trivially achieved using the VA annotations: Ĉi is set
to 1 when the frame is active and 0 when silent. The masking
term 1i is 1 only when VA is positive and the speaker is
detected by the teacher network. It is set to 0 otherwise. So,
when the frame is silent, or when the frame is active but
the teacher’s pseudo-label is unavailable, the network is only
penalized by the confidence loss and not by the regression
loss. The target position of the speaker, x̂i, is provided by the
teacher network’s location pseudo-labels.

IV. EXPERIMENTAL METHODOLOGY

A. Multichannel Audio

The initial experiments aim to prove the effectiveness of
multichannel audio in ASDL, as opposed to conventional
visual face tracking followed by audio-visual ASD with single-
channel audio. Multichannel audio may not deliver good
performance without adequate spatial processing or suitable
network architecture. Here, we study the network’s temporal
modeling and spatial input features, and relate these findings
to systems without multichannel audio. We first compare long
and short input frames and test the use of recurrent units. An
ablation study investigates spatial input features versus training
the CRNN with log-mel spectrograms of the 16 microphone
channels (16MICS). To examine soundfield sampling, we com-
pare with 1 and 2 channel log-mel spectrograms, i.e., (MONO)
and (STEREO). STEREO takes two microphones spaced at
±88.3 mm from the array center, consistent with the ORTF
stereo microphone technique and approximating the spacing of
human ears. MONO takes only the central microphone’s signal.
Results are compared to those by single-channel audio-visual
methods, ASC and TALKNET.

1) Temporal Input and Modeling: As in [31], the audio
input frames are extracted to have a fixed length of 2 seconds
with a 1-second overlap for training. We compare the student
CRNN architecture trained with 2-second-long input frames
with the architecture previously used in [12]. In [12], the
network processes a short input frame (167 ms) at a time
with a similar architecture to the one proposed here without
the recurrent units, i.e., convolutional layers followed by
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FC layers. We refer to it as ‘CNN-F’, as per ‘frame-wise’.
The CRNN architecture proposed in this study is also tested
without the GRUs (‘CNN’) to compare the role of longer
input frames on similar CNN-like architectures, as well as
the benefits introduced by the recurrent units (‘CRNN’).

2) Spatial Audio Input: We extracted and tested two SOTA
spatial input features from the multichannel audio signals: the
GCC-PHAT [31] and SALSA-Lite [37]. In each case, one
of the Chin channels is a spectrogram and the others are
time-difference-based spatial representations. The GCC-PHAT
between two audio channels, as in [31], is calculated at every
audio frame and represented as a matrix with time-lags on
the frequency axis to allow concatenation with log-mel spec-
trograms from the array’s channels. The maximum number
of delayed samples corresponding to ∆τmax is computed as
dmax/c · fs, where fs is the sampling frequency, c the speed
of sound, and dmax the maximum distance between the two
furthest microphones. The enable concatenation, the log-mel
spectrogram’s frequency resolution must be consistent with
the number of time-lags. So, considering delay and advance
between the signals, the number of mel-frequency bins must
be greater or equal to 2 · ∆τmax + 1 [31]. Since we only
analyze the frontal horizontal domain and the speakers are
always contained in the camera FoV, the formula can be
modified as: ∆τmax = drel/c · fs, with drel representing the
relative maximum distance between the microphones, given
by dmax · sin θ

2 , with θ being the camera horizontal FoV.
Cao et al. compute the GCC-PHAT between all possible
pairs of microphones in the array and append the log-mel
spectrogram of each channel too. Each GCC-PHAT repre-
sentation or log-mel spectrogram is a channel of the input
tensor. However, we only compute the GCC-PHAT between a
reference microphone and the remaining ones. We found that,
for a large microphone array like the one of TragicTalkers, this
approach not only produces significantly more compact inputs,
but it also achieves better performance [60]. Additionally,
since all microphones of the planar array face forwards, only
one log-mel spectrogram from a single channel is computed.
Therefore, the first type of input feature includes a total of 16
channels: one log-mel spectrogram and 15 GCC-PHATs. For
simplicity, we refer to them as GCC-PHAT features. SALSA-
Lite features [37] are a normalized version of the inter-channel
phase difference (NIPD), computed at each time-frequency bin
between a reference microphone and the remaining ones, and a
log-linear spectrogram for each channel. As per GCC-PHAT,
we only append a single log-linear spectrogram. Therefore,
the second type of input features consists of 16 channels
too. In both GCC-PHAT and SALSA-Lite, we select the first
microphone from the lower linear subarray, as highlighted in
Fig. 2, to be the reference microphone as tests conducted with
the central microphone gave poorer performance.

In the TragicTalkers dataset, the video stream has resolution
2448×2048p at 30 fps, and audio is sampled at 48 kHz, 24
bits. To align the output temporal resolution (Tout = Tin/16)
with the labels frame rate, i.e., 60 activity-regression pair
predictions for the 2-second audio input, we apply an STFT
with Hann window of size 512 samples at hop steps of
100 samples. Thus, the 2-second (96k-sample) audio chunk

is discretized into 960 temporal bins (Tin). To compute the
log-mel spectrogram used for the GCC-PHAT features, the
frequency resolution of the spectrograms is down-sampled
over 64 mel-frequency bins and the logarithm operation is
then applied. Also, the distance between the two furthest
microphones in the array, dmax, is 450 mm and the camera’s
horizontal FoV, θ, is roughly 55°. Therefore, 64 time-lags are
just enough to concatenate the GCC-PHAT ‘spectrograms’
with the single-channel log-mel spectrogram. For the log-
linear spectrogram and the NIPD features used for SALSA-
Lite, due to the limited presence of speech information at
higher frequencies and to avoid spatial aliasing, an upper cutoff
frequency of 6kHz is used. This extracts the first 64 frequency
bins to be consistent with the input shape of GCC-PHAT. The
logarithm operation is then applied.

All input features are normalized for zero mean and unit
standard deviation vectors, frequency-wisely and channel-
wisely. That is, for each input channel, two Fin-long vectors
are computed from the training set, representing respectively
the mean and the standard deviation of each frequency bin
(or time-lag bin in the GCC-PHAT). In the original SALSA
paper [36], only the spectrogram channels were normalized in
such a way, but with this microphone array better results are
achieved by normalizing all the input channels.

B. Supervision

We conducted a series of experiments to investigate the
supervision of the proposed student-teacher learning pipeline.
In particular, we compared the CRNN trained following our
self-supervised method and the CRNN trained under the full
supervision of the GT labels. As anticipated, we tested both
ASC and TALKNET to represent respectively weak and strong
teacher networks. Since for the regression subtask the student
network is penalized only when the positional pseudo-labels
are available, the main problem with a weak teacher network
primarily concerns false positive (FP) detections, i.e., when
the silent actor is incorrectly classified as active. These FP
predictions introduce noise in the set of pseudo-labels used
for training. In order to quantify the impact these noisy
labels might cause, we manually screened the predictions
of ASC to remove all FP predictions. The screened version,
ASC(S), is compared to the original ASC teacher network.
Furthermore, since the supervision is based on two separate
sets of automatically generated labels (the positional pseudo-
labels and the VA labels), we also tested hybrid versions of
manual-automatic supervision. Leveraging the GT labels of
the dataset, we combined the pseudo-labels generated by the
teacher networks with the GT VA labels. Similarly, we tested
the GT positional labels with the VA labels generated with the
VAD. As a VAD we adopted the open-source WebRTC [61]
as it is reliable and widely employed. In total, this yields 8
combinations, as summarized in Tab. I.

To better understand the different types of supervision
compared in this study, we present a rough estimate of the
number of hours required to manually annotate a dataset such
as TragicTalkers with 30 scenes (640s total) captured by two
microphone arrays and 22 cameras in total.
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TABLE I
SUPERVISORY CONDITIONS. COLUMNS REPORT THE SOURCE OF

LOCATION PSEUDO-LABELS, ROWS THE VOICE ACTIVITY LABELS (VA).
NAMING CONVENTION AS [LOCATION]-[VA] LABELS.

Face Detection and Localization
VA Supervised Screened Weak / Strong Teacher
GT (1) GT-GT (3) ASC(S)-GT (5) ASC-GT / TALKNET-GT
VAD (2) GT-VAD (4) ASC(S)-VAD (6) ASC-VAD / TALKNET-VAD

GT-GT ASC(S)-GT TEACHER-GT

1 2 3 4 5 6
GT-VAD ASC(S)-VAD TEACHER-VAD

Fig. 4. Spectrum of Supervision Conditions. From fully supervised (left) to
fully self-supervised (right), where TEACHER={ASC,TALKNET}

• Voice Activity: It requires on average about 10-15 min-
utes to annotate the onset and offset times of each speech
segment in a sequence. Since this can be completed once
and applied for both arrays, it therefore takes 5-7.5 hours
to label the entire dataset. ∼ 40:1 real-time (RT) on audio.

• False positive screening: Removing FP predictions from
the output of an ASD takes roughly 5 minutes per
camera view. Yet, single-speaker sequences (monologues)
often only require minor corrections. So, TragicTalkers’
15 two-speaker sequences take more than 27 hours of
labeling work. ∼ 7:1 RT on video.

• Bounding boxes: Even with the help of a face detector,
manually drawing the bounding boxes around the face
of the actors when the detector fails, requires 10 to 15
minutes per camera view, yielding up to 165 hours of
labeling work. ∼ 40:1 RT on video.

In addition to that, rest breaks to reduce fatigue of the labeler
have to be taken into account, especially during the bounding
box labeling task. Although this only represents a rough
estimate of the labeling times and additional factors should
be taken into account, e.g., the experience of the labeler, it
emphasizes how costly manual annotation can be. Considering
the types of supervision that we study in Tab. I, a ‘Spectrum
of Supervision Conditions’ is proposed in Fig. 4, with the
fully supervised case on the left end and the fully self-
supervised on the right end. In between are reported the hybrid
combinations, sorted from the less labor-intensive to the most
on TragicTalkers.

C. Evaluation Metrics

A 5-fold sequence-wise cross-validation approach is im-
plemented to train the audio network: each validation fold
sets aside 10 unseen sequences from the 50 sequences of
the development set. This cross-validation approach is used
to find suitable hyperparameters for the network. Once found,
the model is retrained using the entire 50-sequence training
set with these values. The network is trained for 50 epochs
using batches of 32 audio feature inputs and Adam optimizer.
The learning rate is fixed for the first 30 epochs, then reduced
by 10% each epoch. The initial learning rate determined in
the cross-validation is typically 10−4 but varies according to
the supervision condition.

We evaluate our method on the 10-sequence test set of
TragicTalkers, in which each camera view is labeled for 2D
mouth position, making 110 test sequences in combination
(44min). The ground truth mouth coordinates correspond to
the mouth keypoint extracted with OpenPose [62]. They were
manually checked to ensure that the keypoint lay within the
mouth area, which is,∼25 pixels-wide, depending on distance
(± 0.3°). A frame prediction is considered to be positive,
i.e. the network predicts the presence of speech, when the
confidence is above a threshold and a positive detection is
considered to be true when the localization error is within
a predefined tolerance. The precision and recall rates are
computed by varying the confidence threshold from 0% to
100%. Since, at inference, the confidence of the network tends
to be either very high or very low, the precision-recall curves
are built by sampling the thresholds from a Sigmoid-spaced
distribution. This provides more data points for high and low
confidence values. The popular object detection metric average
precision (AP) was then computed. The AP is determined
following the approach indicated by the Pascal VOC Challenge
[63]: (1) compute a monotonically decreasing version of the
precision-recall curve by setting the precision for the recall r
equal to the maximum precision obtained for any recall r’≥r,
and (2) compute the AP as the numerical integration of the
curve, i.e. the area under the curve (AUC).

According to human auditory spatial perception [64], the
minimum audible angle (MAA) is 2°. Therefore, a tolerance
for spatial misalignment between the prediction and the GT
speaker’s position of ±2° along the azimuth is set, which
corresponds to ±89 pixels projected onto the image plane,
based on camera-calibration data. In many AV applications,
the human brain can accommodate wider misalignments [65].
Thus, the AP is computed at ±5° tolerance (±222 pixels) too.
The F1 score is computed from the precision-recall pairs at
the optimal compromise between precision and recall rates,
yielding a summary metric of detection and localization for
comparing methods. The average distance (aD) and detection
error (Det Err %) are employed to assess performance in the
localization and detection subtasks, respectively. The aD only
takes into account the true positive (TP) detections and it
represents the average distance in pixels between the active
detections and GT locations. We also report the respective
angular localization errors by converting pixels to degrees to
facilitate the comparison with other sound localization works.
Det Err quantifies incorrect active-silent classifications, as a
percentage, with confidence threshold set at 0.5, regardless
of regression accuracy and spatial tolerance. The metrics are
computed on the overall test set but also separately for each
of the 10 test sequences across both AVA rigs. Hence, the 10
values enable statistical significance tests.

V. EXPERIMENTAL RESULTS AND DISCUSSION

First, we present the results of the temporal modeling study,
then, the ablation study switching on and off the spatial
feature extraction and reducing the number of microphones.
The results of the multichannel audio methods are compared
to the performance of the existing AV ASD. Additionally,
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TABLE II
TEMPORAL MODELING. DETECTION ERROR (DETERR) AND AVERAGE

DISTANCE (AD); AVERAGE PRECISION (AP) AND F1 SCORE AT 2° (±89P)
TOLERANCE. RESULTS WITH GCC-PHAT INPUT FEATURES AND FULLY

SUPERVISED TRAINING (GT-GT).

Method Input len DetErr aD AP@2° F1@2°
CNN-F [12] 167 ms 13% 42p, 0.95° 78% 0.850

CNN 2000 ms 4.7% 39p, 0.88° 86% 0.902
CRNN 2000 ms 3.2% 39p, 0.88° 87% 0.909

TABLE III
MODALITY POTENTIAL. INPUT ‘A’: AUDIO-ONLY; ‘AV’: AUDIO-VISUAL;
‘-S’: SINGLE CHANNEL; ‘-M’: MULTICHANNEL. FOR AV, PREDICTIONS
ARE THE DETECTED FACES’ BOUNDING BOX CENTER. FOR A, METHODS

TRAINED WITH GROUND TRUTH LABELS (GT-GT).

Method Input DetErr aD AP@2° F1@2°
MONO A-S 2.7% 210p, 4.7° 10% 0.300

STEREO A-M 2.6% 100p, 2.3° 31% 0.535
16MICS A-M 2.5% 67p, 1.5° 56% 0.710

GCC-PHAT A-M 3.2% 39p, 0.88° 87% 0.909
SALSA-LITE A-M 3.6% 40p, 0.90° 85% 0.895

ASC [9] AV-S 43% 50p, 1.1° 59% 0.676
ASC(S) AV-S 24% 23p, 0.52° 62% 0.704

TALKNET [18] AV-S 14% 35p, 0.79° 82% 0.849

to test the robustness of the audio network, we re-trained
the model corrupting the dataset with additive pink noise at
SNRs from 0 dB to 40 dB. Finally, we discuss the results
achieved under various supervision conditions. We conclude
the section discussing the limitations of the proposed approach
and proposing directions for future research.

A. Multichannel ASDL

1) Temporal Input and Modeling: For each of the three
networks tested, the training was performed with the GT-
GT labels and the GCC-PHAT input features. Results are
reported in Tab. II. CNN produces a remarkable improvement
in detection error compared to CNN-F. This can be partially
attributed to the length of the input frames and partially to
the employment of VA labels instead of the silent sequence to
generate negative samples. This improvement is reflected in an
increment of 8 percentage points in AP@2°, and about 0.05
in F1@2°. The introduction of the GRUs with longer audio
frames does not improve the aD performance (39p (0.9°) in
both cases). However, there is a benefit in the detection error
with over 1.5 percentage points improvement between CNN
and CRNN. Therefore, with the same aD but a lower detection
error, CRNN also enables greater AP and F1 score. These
results suggest that longer temporal audio horizons provide
the network with useful information to track the target speaker
over time achieving higher spatial accuracy. However, it does
not seem to improve the detection performance. When it comes
to partnering more extended frames with recurrent units,
the benefit affects the detection subtask too. This suggests
that learning the recurrent temporal dependency between the
time bins facilitates activity detection, providing appropriate
conditions to better tackle the overall ASDL task.

2) Spatial Audio Input: The GCC-PHAT and SALSA-LITE
methods extract spatial features from multichannel audio input.

Fig. 5. Audio-visual ASD and audio-only ASDL methods comparison of
precision versus recall at 2° tolerance (89 pixels). The combination of
precision and recall rates that achieves the highest F1 score is marked on
each curve.

The two middle rows of Tab. III present their results, alongside
those for the log-mel spectrograms extracted directly from
the array’s microphones, as MONO, STEREO and 16MICS.
All these audio-based methods are trained in a fully super-
vised way with the GT-GT labels combination. In the MONO
method, the detection subtask is easily accomplished with a
detection error of only 2.7%. However, the absence of spatial
cues does not allow the correct regression of the position of the
speaker. In fact, to minimize the error, the model tries to locate
the speaker in the central area of the frame. By adding multiple
channels, the spatial accuracy improves significantly. STEREO
achieves less than half the aD achieved by MONO and it
remarkably increases its F1@2°. With all 16 microphones, this
gain is further amplified: the aD is a third of the one achieved
in MONO and the F1@2° is almost 2.5 times bigger. Despite
that the employment of multiple microphones improves spatial
accuracy, STEREO and 16MICS methods are still poor in terms
of AP and F1 score when compared to GCC-PHAT or SALSA-
LITE. This suggests that the direct use of the array channels
without spatial input extraction is not particularly effective
since important directional cues encoded in the time difference
of the signals are neglected. In contrast, the employment
of input feature extraction enables the achievement of high
performances. SALSA-LITE produces an increment in F1@2°
of 0.185 points compared to 16MICS, while GCC-PHAT 0.199
points. This indicates that spatial feature extraction provides
great benefits in solving the ASDL problem. Most of the
improvement is a consequence of the remarkably higher spatial
accuracy: in terms of detection errors, the methods without
spatial feature extraction achieve slightly better results.

3) Comparison with Existing Active Speaker Detectors:
Conventional active speaker detectors, such as ASC and
TALKNET, employ the audio modality only to classify the pre-
extracted faces. The localization subtask is performed by the
visual face detector, yielding high spatial accuracy. However,
the average distance is penalized by the FP detections of the
classifier. In other words, the aD values reported in Tab. III
for ASC and TALKNET are influenced by the silent actor
being misclassified as active. In practice, this problem only
affects ASC, as in TALKNET the silent speaker is almost never
misclassified. To understand to what extent the aD of ASC is
penalized by these episodes, one can observe the aD achieved
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by ASC(S). The aD is halved to 23p (0.5°) and the detection
error is remarkably decreased too, suggesting that roughly half
of the detection error affecting ASC is caused by FP predic-
tions, while the other half by misdetections, i.e., when the face
detector fails in detecting the face of the speaker due to visual
occlusions or self-occlusions. The even lower detection error
achieved by TALKNET indicates that its face detector (S3FD
[58]) detected more active faces than SeetaFaceEngine2 [57],
used in the ASC method. In the AV methods, the horizontal
coordinate of the center of the bounding box is used as
prediction, while the ground truth used for evaluation refers to
the actual mouth position of the speaker. Therefore, the already
low aD achieved might be even slightly overestimated due to
the offset between the two representations. For example, when
the speaker is captured in profile and his/her mouth is closer
to the edge of the bounding box. The fairly high detection
error achieved by the AV active speaker detectors caused by
the visual misdetections is reflected in a gap in terms of recall
rate, as it can be appreciated from Fig. 5, especially for ASC.
At their best precision-recall pair, with 2° tolerance, TALKNET
present a recall rate of 79.7%, while ASC of 58.5% only. As
a consequence, their overall F1 scores are affected too. As
previously mentioned, the reason why ASC does not perform
so well on TragicTalkers relates to the training on the AVA-
ActiveSpeaker dataset where the faces are extracted with a
different algorithm.

In contrast, detection represents a relatively trivial task for
the multichannel audio methods that can sense and detect
speech activity even when the speaker is visually occluded.
In fact, the double-digit detection errors of the AV methods
are considerably reduced. Thus, for the multichannel audio
methods, the F1 score mainly depends on their localization
accuracy. Fig. 5 shows how the gap in recall rate generated
by TALKNET is halved with the GCC-PHAT and SALSA-
LITE methods (90.6% for GCC-PHAT and 89.4% for SALSA-
LITE). This produces an AP and F1 score higher than the
other AV systems that employ single-channel audio. The F1
score achieved by GCC-PHAT is significantly greater than
the one achieved by TALKNET (p = 0.02). The active
frames that GCC-PHAT and SALSA-LITE do not detect are
mainly caused by wide predictions, where speech activity was
correctly identified but the estimated locations were outside
the tolerance. Their aD is almost twice as big as the one
visually achieved by ASC(S). In fact, if the tolerance threshold
is increased to 5°, SALSA-LITE achieves an AP@5° of 99.4%
and an F1@5° of 0.971, while GCC-PHAT similarly yields
an AP@5° of 98.9% and an F1@5° of 0.974. So, with the
broader 5-degree tolerance, the residual error is under 3% and
predominantly attributable to the detection errors.

4) Robustness to Additive Noise: Since the controlled stu-
dio conditions of the dataset are more benign than many other
application contexts, we tested the audio network’s robustness,
corrupting the TragicTalker dataset with additive pink noise at
SNRs from 0 dB to 40 dB and re-training the model. Results
achieved with GT-GT labels are presented in Tab. IV. Note
how performance improves in clean conditions and high-SNR
cases compared to our results when training only on clean data.
This is because adding noise is a form of data augmentation

TABLE IV
ROBUSTNESS TO ADDITIVE PINK NOISE. RESULTS ACHIEVED WITH

GCC-PHAT FEATURES AND FULLY SUPERVISED TRAINING (GT-GT).

SNR DetErr aD AP@2° F1@2° F1@5°
Clean 2.6% 37p, 0.83° 89% 0.930 0.980
40 dB 2.9% 37p, 0.83° 89% 0.929 0.977
30 dB 2.8% 37p, 0.83° 88% 0.924 0.978
20 dB 3.3% 39p, 0.88° 86% 0.909 0.974
10 dB 4.0% 40p, 0.90° 83% 0.890 0.967
0 dB 6.9% 51p, 1.15° 70% 0.782 0.932

TABLE V
SUPERVISION RESULTS WITH F1 REPORTED AT 2° AND 5° TOLERANCES.

Supervision DetErr aD AP@2 F1@2 F1@5
GT-GT 3.2% 39p, 0.88° 87% 0.909 0.975

GT-VAD 7.1% 39p, 0.88° 85% 0.878 0.938
ASC(S)-GT 3.5% 42p, 0.95° 83% 0.881 0.970

ASC(S)-VAD 6.6% 43p, 0.97° 81% 0.844 0.936
ASC-GT 3.0% 110p, 2.5° 39% 0.606 0.790

ASC-VAD 7.0% 100p, 2.3° 38% 0.594 0.787
TALKNET-GT 3.6% 43p, 0.97° 85% 0.890 0.970

TALKNET-VAD 7.5% 42p, 0.95° 81% 0.854 0.935

that artificially increases the size of the dataset, suggesting
that further gains may be obtained with larger datasets and
other forms of augmentation. The network proved to be
robust with an F1@2°> 0.9 for SNR≥ 20 dB. Under heavy
noise conditions, both detection and localization accuracy are
slightly penalized. Yet, the detection error remains well below
those from the audio-visual teacher networks; the F1 score
exceeds 0.93 with the 5-degree threshold at the lowest 0 dB
SNR tested.

B. Spectrum of Supervision Conditions

The results achieved by the student network trained with
the different types of supervision are reported in Tab. V. Since
the network trained with the GCC-PHAT input features in
the previous study achieved a higher F1 score, the results
reported in the table are also obtained using the GCC-PHAT.
Nevertheless, we did not observe statistical significance of the
GCC-PHAT being better than SALSA-Lite (p = 0.08).

1) Effects of the VAD: The employment of the VAD penal-
izes detection accuracy. The student network trained using the
GT regression labels and the VAD activity labels (GT-VAD)
generates a detection error of 7.1%, compared to the 3.2%
achieved by GT-GT. This is also reflected in a decrement of
about 0.031 points in F1@2° (p < 0.01). The same trend
can be appreciated with the other teacher networks in Tab. V:
the employment of the VAD labels generates increments in
detection error of 3-4 percentage points. This behavior was
predictable since the GT VA labels in the development and
test sets are manually generated with the same labeling policy
and therefore the predictions lead to smaller detection errors.
In contrast, the VAD is less precise in detecting the onsets
and offsets of the speech segments. Nevertheless, supervising
the student network with the VAD labels does not seem to
substantially affect localization accuracy.

2) Comparison of Teacher Networks: From Tab. V, it is
clear that ASC provides poor supervision due to the noise in its
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pseudo-labels caused by the FP detections, yielding students’
aD results about 2.5 times larger than the student networks
trained with the strong teacher. This deficiency is particularly
evident also in Fig. 6, which reports the precision-recall curves
achieved with the different supervisory conditions as well as
the one from TALKNET for comparison. In fact, when it
comes to supervising the student network with ASC(S), the
aD remarkably improves and is almost comparable to the
one achieved in the fully supervised case (GT-GT). Actually,
with the SALSA-Lite input features, ASC-GT marginally
outperforms GT-GT with an F1@2° of 0.901 against the
0.895 achieved with full supervision. This is because when
the pseudo-labels do not present FP detections thanks to
manual screening, they are analogous to the regression labels
used as ground truth as they both use “clean” bounding box
coordinates. The main difference is the quantity: in training,
ASC(S) only uses the visible faces while the GT labels
also include the frames where the face is not visible. As
mentioned previously, TALKNET does not produce many FP
detections. With the GCC-PHAT features, the student network
trained under the supervision of TALKNET-GT is the one that
achieved the highest AP and F1 score at 2° and 5°, being
outperformed only by the fully supervised case. ASC-VAD
and TALKNET-VAD are the only two combinations enabling
fully self-supervised training as they do not involve manual
labeling or screening. In particular, the results achieved with
TALKNET-VAD prove that a competitive ASDL system can
be trained in a fully self-supervised fashion. Furthermore, the
student network trained with TALKNET-VAD outperformed
its own teacher with an F1 score respectively of 0.854 and
0.935 at 2° and 5°, compared to the 0.849 and 0.855 achieved
by the TALKNET method. With SALSA-Lite, the F1 score
is even higher achieving 0.860 at 2° and 0.941 at 5°. The
spatial accuracy achieved by the TALKNET method is yet more
efficient thanks to the visual modality. This is also reflected
in greater levels of precision rate in the earlier part of its
precision-recall curve corresponding to high confidence levels.

These results suggest that achieving good performance with
the proposed learning pipeline is possible, as long as a good
teacher network is adopted. In addition to a good teacher
network to provide a reliable set of pseudo-labels, even better
results with minimal manual supervision can be achieved by
labeling the audio stream for VA. In fact, the student network
trained with TALKNET-GT is the one that achieved the highest
ASDL performance with GCC-PHAT features, only the fully
supervised methods obtained better results. When a good
teacher network is not available, like in the case of ASC, a
useful strategy to maintain competitive results would be to
manually screen the FP detections of the teacher. However, in
a multi-view dataset like TragicTalkers, this process requires
a more labor-intense labeling process and does not achieve
results as good as the ones achieved with a better teacher and
manual VA annotation. Nevertheless, all the hybrid solutions
tested represent a viable alternative to traditional supervised
learning as they allow for saving a great amount of labeling
time and resources with little sacrifice in terms of performance.

Fig. 6. Comparison of precision versus recall at 89-pixel tolerance (2°) for
the different supervision methods. The curve achieved with the TALKNET
method is included for reference. The combination of precision and recall
rates that achieves the highest F1 score is marked on each curve.

C. Limitations and Future Directions

Experimenting on TragicTalkers has enabled rigorous as-
sessment of the proposed learning approach under controlled
studio conditions and with the simple single-speaker scenario,
which covers the vast majority of professionally produced
media content. Nonetheless, different scenarios may present
external environmental noises or multiple simultaneous talkers.
We partially addressed this problem by testing various levels
of additive noise. However, this still does not cover realistic in-
the-wild situations. Further experiments should be conducted
in this direction to comprehensively study the model’s ro-
bustness for these settings. Furthermore, although a similar
supervision method can in theory be applied for multiple
simultaneous speakers, additional design decisions, implemen-
tation and testing are needed. To provide full supervision, the
teacher network will need to generate pseudo-labels for each
of the active speakers in a mixture of voices, which may be
facilitated practically with close microphones or synthetically
by making artificial mixtures.

The current supervision approach is spatially constrained by
the camera FoV. From an audio perspective, this is limiting as
sound can be sensed from all directions. To provide visual
supervision that covers a larger range, a wide-angle or a 360°
camera can be employed instead. Future work will investigate
audio-visual systems able to detect and localize speakers both
within and outside the FoV.

VI. CONCLUSION

In this paper, a student-teacher learning approach is pro-
posed to tackle the ASDL task via a multichannel CRNN
audio network. The proposed learning pipeline is based on
positional pseudo-labels generated with existing audio-visual
active speaker detectors and VA labels generated with a VAD.
Experiments conducted to compare CRNN and CNN archi-
tectures suggest that recurrent units and longer input frames
provide the network with important contextual information to
better tackle the ASDL problem. An ablation study to prove
the importance of spatial input feature extraction found that it
slightly penalizes the detection accuracy but improves up to
40% the spatial accuracy. Therefore, it represents a beneficial
practice for ASDL.
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Extensive studies on the TragicTalkers dataset found that the
CRNN with multichannel audio outperforms by a wide margin
the AV methods with single-channel audio, especially in recall
rate. Furthermore, tests with additive pink noise demonstrated
the robustness of the audio network in adverse conditions.
It achieves better F1 scores than the AV ASD methods
because more reliable voice activity detection gives higher
recall rates than visual methods, which suffer from facial
occlusions. The same detection advantage explains why the
proposed student-teacher pipeline is successful at the ASDL
task: during training, the student network is tuned only to
the teacher’s active detections for the localization subtask (the
visible speakers); at inference, its focus on audio information
allows it to generalize for visually-occluded speakers. The
fully self-supervised student network achieved 0.854 F1@2°,
outperforming its own strong teacher network that achieved
0.849.

Studies with various supervisory conditions demonstrated
the effectiveness of the proposed fully self-supervised learning
pipeline, as long as a strong teacher network is employed. The
performance can be further improved with minimal manual
supervision. For example, ground truth VA labels increased
the F1@2° to 0.890. An advantage of the GT localization
labels, as opposed to those of a strong teacher network, is the
quantity: GT guarantees tracking data even when the speaker
is visually occluded. The limitations of the current approach
and directions for future research have been discussed. For
example, the proposed learning pipeline can be applied to
larger datasets in order to assess whether the gap between
fully supervised and other forms of supervision proposed
can be further reduced. We will explore an audio-visual
system for ASDL with multichannel audio to improve spatial
accuracy while preserving the high detection rates provided
by the multichannel audio, taking into account problems like
simultaneous multi-talkers and off-screen speakers.
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