
1

Self-supervised Audio Teacher-Student Transformer
for Both Clip-level and Frame-level Tasks

Xian Li, Nian Shao, and Xiaofei Li∗

Abstract— Self-supervised learning (SSL) has emerged as a
popular approach for learning audio representations. One goal
of audio self-supervised pre-training is to transfer knowledge
to downstream audio tasks, generally including clip-level and
frame-level tasks. While frame-level tasks are important for
fine-grained acoustic scene/event understanding, prior studies
primarily evaluate on clip-level downstream tasks. In order to
tackle both clip-level and frame-level tasks, this paper proposes
Audio Teacher-Student Transformer (ATST), with a clip-level
version (named ATST-Clip) and a frame-level version (named
ATST-Frame), responsible for learning clip-level and frame-level
representations, respectively. Both methods use a Transformer
encoder and a teacher-student training scheme. We have carefully
designed the view creation strategy for ATST-Clip and ATST-
Frame. Specifically, ATST-Clip uses segment-wise data augmenta-
tions, and ATST-Frame integrates frame-wise data augmentations
and masking. Experimental results show that our ATST-Frame
model obtains state-of-the-art (SOTA) performances on most of
the clip-level and frame-level downstream tasks. Especially, it
outperforms other models by a large margin on the frame-
level sound event detection task. In addition, the performance
can be further improved by combining the two models through
knowledge distillation. Our code is available online.

Index Terms—Audio self-supervised learning, audio represen-
tation learning

I. INTRODUCTION

AUDIO self-supervised learning (SSL), which learns
knowledge from a large amount of unlabeled audio

data, has emerged as a popular approach for learning audio
representations [1]–[10].

The siamese models [3]–[5], [11], [12] maximize the em-
bedding similarity of two augmented views of the same
audio clip, having shown a great promise for learning good
audio representations. Another promising technical line for
audio SSL follows the spirit of BERT (Bidirectional Encoder
Representations from Transformers) [13], using Transformer
encoder [14] and performing a predictive task for the masked
frames [6]–[10].

One goal of audio self-supervised pre-training is to transfer
knowledge to downstream audio tasks. Generally speaking,
audio tasks are defined within two different ways, i) clip-level
tasks are to classify the acoustic scene or event of an entire
audio clip, e.g. audio tagging, musical instrument recognition,
etc., and ii) frame-level tasks are to detect and recognize event-
level timestamps from an audio clip, e.g. sound event detection
(SED). Previous studies primarily evaluate their methods on
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clip-level audio tasks, leaving the performance on frame-
level audio tasks unclear. Clip-level tasks currently account
for the majority of the downstream audio tasks. Only a few
frame-level tasks have been well-defined in the field, such
as speaker diarization and sound event detection. However,
the frame-level tasks are more important for fine-grained
acoustic scene/event understanding, and they are generally
more challenging than clip-level tasks. To handle both clip-
level and frame-level tasks, there are several issues to be
considered.

In terms of the training criterion, a portion of previous
methods focus on learning global representation of an au-
dio clip by using clip-level training criteria [3], [5], [12],
while others propose learning local frame-wise or patch-
wise representations by using frame-level [6], [7] or patch-
level criteria [6], [7], [9], [10], [15], [16]. Most of the clip-
level methods allow for extracting frame-wise representations
from the intermediate output. However, since the frame-wise
representations are not explicitly trained during pre-training, it
is questionable whether a model trained by clip-level criterion
can perform well on frame-level downstream tasks.

Besides the training criterion, a high temporal resolution
for frame-level representations is necessary for frame-level
tasks. For Transformer-based methods, the temporal resolution
is determined by how the input sequence is organized, either
patch-wisely or frame-wisely. SSAST (Self-Supervised Audio
Spectrogram Transformer ) [6] and MAE-AST (Masked Au-
toencoding Audio Spectrogram Transformer) [7] have shown
that the patch-wise strategy and frame-wise strategy perform
differently for different downstream tasks. Other studies [9],
[10], [15], [16] only use the patch-wise strategy. Generally,
the frame-wise strategy has a better temporal resolution than
the patch-wise strategy, and thus may be more suitable for
frame-level downstream tasks.

Accounting for learning both clip-level and frame-level
audio representations, this paper proposes two models: ATST-
Clip and ATST-Frame, where ATST stands for Audio Teacher-
Student Transformer. They are developed based on the teacher-
student scheme of Bootstrap Your Own Latent (BYOL)
[17] and BYOL for Audio (BYOL-A) [5]. They both use
Transformer encoder and frame-wise strategy. ATST-Clip and
ATST-Frame are responsible for learning global and frame-
wise representations by using a clip-level and frame-level
training criterion, respectively. This work is a continuation
of our previous conference paper [18], in which ATST was
first proposed for clip-level representation learning, which is
renamed ATST-Clip in this paper to avoid ambiguity. This
paper proposes a new ATST-Frame model, and a combination
method of the two models based on knowledge distillation.
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In addition, the proposed models have been more thoroughly
evaluated in this paper.

ATST-Clip draws inspirations from the teacher-student
scheme of BYOL [17] and BYOL-A [5], which contains a
teacher network and a student network. Give an audio clip,
two different views are created through augmentations, e.g.
randomly cropping at time dimension. The two views are then
separately fed into the teacher network and the student net-
work. Considering the similarity of the two views, the student
network weights are updated by maximizing the embedding
similarity of the two views. The teacher network weights, on
the other hand, are updated by taking exponential moving
average (EMA) of the student network weights. ATST-Clip
proposes to replace the convolutional neural network (CNN)
encoder of BYOL-A with a Transformer encoder, which shows
a clear superiority over the CNN encoder, especially for
learning the long-term semantic information of speech. More
importantly, a new view creation strategy is proposed to fully
leverage the capability of Transformer encoder. BYOL-A uses
one short segment to create two views. Instead, we propose to
use two different long segments to create the two views, which
is more fit for Transformer, as the network can learn longer
temporal dependencies. The length of segments is carefully
studied to control the distinction and overlap of the two
segments, which is especially important for rationalizing the
difficulty of matching the representations of the two views at
latent space.

ATST-Frame extends ATST-Clip to explicitly learn frame-
wise representations by maximizing the agreement of stu-
dent’s frame-level embeddings to the teacher’s frame-level
embeddings. Creating proper views for teacher and student
branches is the key for achieving a proper difficulty for
matching the frame-level embeddings, and thus guiding the
model to learn meaningful frame-level representations. Both
teacher and student branches process the entire audio clip
to maintain the frame-to-frame correspondence between their
output sequences. To increase the matching difficulty, data
augmentation is applied to one of the teacher and student
branches. Moreover, masking is further applied to the student
branch to encourage the model to learn semantic relations
between frames by accomplishing the prediction of masked
frames. Our experiments show that data augmentation and
masking are both necessary and are a good combination
for frame-level audio pre-training within the teacher-student
framework.

Finally, as the training criterion of ATST-Frame and ATST-
Clip are totally different, they could learn complementary
features. We propose to combine ATST-Frame and ATST-Clip
at the fine-tuning stage of downstream tasks, based on cross-
model knowledge distillation, which outperforms ATST-Frame
or ATST-clip alone.

We use the large-scale AudioSet [19] for pre-training, and
evaluate the models with a variety of clip-level downstream
tasks and two frame-level downstream tasks. Downstream
tasks cover multiple audio domains: environmental sound,
speech, and music. Our results show that i) on clip-level tasks,
after fine-tuning, the proposed models outperform other state-
of-the-art (SOTA) methods for most of the tasks. Especially,

the precision on the AudioSet-2M and AudioSet-20K datasets
reach a new SOTA of 49.7% and 40.5% (without model
ensembling), respectively. ii) on the frame-level SED task, the
proposed ATST-Frame model performs particularly well, out-
performing ATST-Clip and other methods by a large margin.
We open-source our code online1 for the research community
to replicate and expedite future research.

II. RELATED WORKS

This section introduces related works on audio self-
supervised learning.

A. Siamese Models

Siamese models use a two-tower architecture, in which each
tower processes a view of the data sample and the embedding
similarity of the two views are maximized during training [11],
[20]. This idea often confronts the issue of model collapse,
e.g. the model can find an easy solution to output a constant
value for any inputs. Various training strategies are developed
to avoid model collapse. Most of these strategies are originally
developed in image SSL pre-training and then are adopted by
audio SSL pre-training. One of the strategies is contrastive
learning, which introduces negative samples and not only
pull the two views close in the latent space but also push
them far away from negative samples in the latent space,
e.g. SimCLR (Simple Framework for Contrastive Learning
of Visual Representations) [21] in image SSL and its audio
counterparts COLA (COntrastive Learning for Audio) [3],
[22]. However, the negative samples are possibly similar to
positive samples in some scenarios, which will harm the pre-
training performance. Due to this reason, some recent works
investigated to train siamese models without using negative
samples, e.g. BYOL [17] in image SSL pre-training and its
audio counterpart BYOL-A [5]. As this work is inspired by
the BYOL-style strategy, we will introduce the framework of
BYOL-A in Section III-A.

Our ATST-Clip extends BYOL-A to use Transformer en-
coder, and proposes a new view creation strategy to fit the
Transformer encoder. Our ATST-Frame further extends ATST-
Clip to explicitly learn frame-wise representations.

B. Masked Audio Modelling

Other methods follow the line of Masked Language Mod-
elling (MLM) [13]. This kind of method has been first
applied to speech self-supervised pre-training [23]–[27], and
then to audio self-supervised pre-training, e.g. SSAST [28],
Conformer-based audio SSL method [8], MAE-AST [7] and
Audio-MAE (Audio Masked Autoencoders) [9]. The idea is
to mask an arbitrary region of the input, and then perform a
prediction task on the masked region. Some of them train the
model by reconstructing the masked region [23], [26], while
others replace the reconstruction loss with a classification loss.
Wav2vec2 [24] and its follower [8], a method based on Con-
former (Convolution-augmented Transformer), solve a frame-
level contrastive problem by introducing positive and negative

1https://github.com/Audio-WestlakeU/audiossl



3

frames. SSAST [6] jointly solves a masked reconstruction and
a wave2vec-style contrastive problem. HuBERT (Hidden-Unit
BERT) [25] creates pseudo classification labels by performing
clustering on MFCC (Mel-Frequency Cepstral Coefficient)
features or output features of the model trained in the previous
iteration. BEATs (Bidirectional Encoder representation from
Audio Transformers) [10] proposes an iterative audio pre-
training framework, where an acoustic tokenizer and an audio
SSL model are iteratively optimized. From the perspective of
model architecture, some works [7], [9], [15], [29] follow the
asymmetric encoder-decoder structure of masked autoencoders
(MAE) [30], in which the encoder encodes the unmasked
region, while the decoder processes both the masked and
unmasked regions and reconstructs the masked region.

The most similar works with our ATST-Frame are data2vec
[27] and M2D (Masked Modeling Duo) [16]. They both use
a teacher-student scheme, in which the student encodes a
masked version of the training sample and the teacher provides
the training/prediction target for the student. The teacher take
as input either the unmasked version of the same training
sample (data2vec) or only the masked parts of the student input
(M2D). Besides, they both use a frame/patch-level criterion..
However, there exist several major differences: i) data augmen-
tation is applied in our ATST-Frame, but not in data2vec and
M2D. Data augmentation is critical for adjusting the prediction
difficulty; ii) data2vec constructs the training/prediction target
for the student network by taking the average of the last eight
Transformer blocks of the teacher encoder, while our ATST-
Frame uses the asymmetric structure of the BYOL [17], where
an extra predictor network is set for the student branch. iii)
M2D organizes spectrograms patch-wisely and uses a MAE
structure in the student branch, while ATST-Frame adopts a
frame-wise strategy and uses a regular Transformer encoder
architecture.

III. THE PROPOSED METHOD

Two models are proposed in this work: ATST-Clip and
ATST-Frame. ATST-Clip focuses on learning the global rep-
resentation of an audio clip, while ATST-Frame focuses on
learning frame-wise representations. Both of them use a
Transformer encoder [14] to process audio spectrograms. And
both of them are trained in a teacher-student scheme [17], in
which the teacher model is updated by an exponential moving
average (EMA) of the student model, while the student model
is updated by maximizing the similarity of its embedding to
the embedding of teacher.

We will introduce the baseline teacher-student scheme in
Section III-A, the Transformer encoder in Section III-B, and
then present ATST-Clip and ATST-Frame in Section III-C and
Section III-D, respectively. The combination of ATST-Clip and
ATST-Frame is presented in Section III-E.

A. Baseline Teacher-Student Scheme

In this work, we adopt the teacher-student scheme as our
baseline framework, which was first proposed by Bootstrap
you own latent (BYOL) [17] for image pre-training, and

adopted by BYOL-A [5] for audio pre-training. In BYOL-
A, given one augmented view of an audio clip, the student
network is trained to predict a data representation being close
to the teacher network’s representation on another augmented
view of the same audio clip. During training, the teacher
network weights are updated by taking the EMA of the student
network weights.

Formally, the student network, defined by a set of weights
θ, contains an encoder fθ, a projector gθ and a predictor qθ,
while the teacher network, defined by a set of weights ϕ,
contains only an encoder fϕ and a projector gϕ. The encoder,
a CNN in BYOL and BYOL-A, extracts representations from
the augmented views. The projectors and the predictor are
multi-layer perceptrons (MLPs) that consist of a linear layer
(with output dimension of 4096) followed by batch normal-
ization, rectified linear units (RELU), and a final linear layer
(with output dimension of 256). The output representation of
encoder is used in downstream tasks. Using projectors in pre-
training is shown to improve the representation quality [21].
It has been shown that the additional predictor in the student
network (combined with the stop-gradient operation of teacher
network) is the key factor for preventing the model from
collapsing [20]. During training, ϕ is updated by the EMA of θ
as: ϕ← mϕ+(1−m)θ, where m is a decay rate. θ is updated
as follows. Let (X,X ′) be two views created from an audio
clip. X is fed into the teacher network to obtain h = fϕ(X)
and z = gϕ(h). X′ is fed into the student network to obtain
h′ = fθ(X

′), z′ = gθ(h
′) and qθ(z

′). z and qθ(z
′) are then

L2-norm normalized to z and qθ(z
′), and the mean square

error (MSE) loss between them is computed:

Lθ = ∥z − qθ(z
′)∥22 (1)

A symmetric loss L′
θ is also calculated by feeding X to

the student network and X ′ to the teacher network. During
training, θ is updated by minimizing Ltotal

θ = Lθ + L′
θ.

In BYOL-A, the encoder is a CNN.The proposed models
will replace the CNN encoder with a Transformer encoder,
and use the same projectors and predictors as BYOL-A.

B. Audio Spectrogram Transformer Encoder

Both ATST-Clip and ATST-Frame use the same encoding
network architecture. The raw waveform is first converted to
log-mel spectrogram X ∈ RL×C , where L and C denote
the number of frames and the number of frequency bins,
respectively. Since modeling long sequences with Transformer
is computationally demanding, four consecutive frames of
X are stacked as one frame to reduce the sequence length.
The stacked frames are fed to a linear projection layer (with
output dimension of d) to obtain a new embedding sequence
E ∈ RL

4 ×d as the input sequence of Transformer encoder. The
embedding sequence is then added with a trainable absolute
lookup table positional embedding P ∈ R(L

4 )×d. Eventu-
ally, the embedding sequence is processed by a Transformer
encoder, obtaining an output embedding sequence of O ∈
R(L

4 )×d. Our Transformer encoder architecture is the same as
Vision Transformer [31], which is a Pre-LN (Layer Norm)
Transformer [32]. To represent the entire clip, ATST-Clip
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(a) ATST-Clip (b) ATST-Frame

Fig. 1: The proposed methods. (a) ATST-Clip (b) ATST-Frame. The loss Lθ is computed by feeding X to the teacher branch
and X ′ to the student branch. The symmetric loss L′

θ can be computed by swapping X and X ′ (not shown in the figure).

incorporates an extra trainable class token [CLS] ∈ R1×d,
which will be detailed in III-C.

C. ATST-Clip

The major difference between ATST-Clip and BYOL-A is
twofold. ATST-Clip uses a Transformer encoder to leverage
its powerful abilities in modeling long-term dependencies and
uses a new view creation strategy specifically fit for the
Transformer encoder.

First, given an audio clip, it is converted from the waveform
domain to the log-mel spectrogram, from which two views
are created through a set of augmentations. The two views are
then fed into the student and teacher branches respectively,
generating a clip-level representation at each branch. In the
end, the two clip-level representations are used to calculate
the training loss.

1) Creation of Views: For siamese model, the two views
should be similar with each other to be identified as the same
sample yet different enough to increase the difficulty of the
identification. BYOL-A [5] randomly crops a single 1-second
segment from the input audio and then creates two views by
applying different data augmentations to this single segment.
It is considered in BYOL-A [5] that different segments may
be too different to be identified as the same sample. The work
in [4] uses two segments to create two views, however, it uses
negative samples to mitigate the problem caused by using two
segments.

Our view creation strategy is shown in Fig. 1(a). The time
domain input audio clip is first transformed to log-mel spec-
trogram. We randomly crop two different segments from the
log-mel spectrogram. Then, two types of data augmentation

are applied to each of the segments, creating two views of
the input audio clip, i.e. (X,X ′). The augmentations we em-
ployed include Mixup [5] (a modified version of the original
Mixup [33], [34]) and Random Resize Cropping (RRC) [5]
(adapted from RRC [35] in computer vision to accommodate
audio signals).

In order to take full advantage of the Transformer’s ability
in modeling long-term dependencies, the proposed method in-
tends to use longer segments, e.g. 6-second segments randomly
cropped from 10-second training audio clips in our exper-
iments. The proposed method separately creates two views
from two different segments for the purpose of increasing the
difficulty of identifying the two views as the same sample, thus
leading the model to learn more generalized representations.
On the other hand, the two segments cannot be too far away
from each other, otherwise, the similarity between them is
completely lost. This is guaranteed by properly setting the
segment length to make the two segments have a certain
portion of overlap. Overall, the proposed strategy does not
lose the rationality of identifying two segments as the same
sample due to the overlap constraint, and meanwhile increases
the task difficulty by using two segments and thus helping to
learn more generalized presentation.

2) Encoding: The encoding procedure is illustrated in
Fig. 1(a). To obtain a representation for the entire clip, an extra
class token is used. First, a linear projection layer processes
the view, X or X ′, obtaining an embedding sequence, at the
beginning of which a trainable class token [CLS] ∈ R1×d is
inserted. The embedding sequence is then added with a train-
able absolute lookup table positional embedding sequence, and
then fed into the encoder. The class token [CLS] is widely
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used for sentence embedding in neural language processing
[13], global image embedding [36], as well as audio segment
embedding [28]. It aggregates information from the embedding
sequence at every Transformer blocks with the self-attention
mechanism. In the output embedding sequence, the class
token, denoted as O1 ∈ R1×d, is taken as the final clip
representation. O1 is then processed by the following projector
(and predictor).

3) Loss Function: The loss function is the same as the one
in the baseline scheme described in Section III-A.

D. ATST-Frame

As BYOL-A and ATST-Clip have shown powerful abilities
in learning clip-level audio representations with the teacher-
student scheme, we further adopt the teacher-student scheme
to develop ATST-Frame, which explicitly learns fine-grained
frame-wise representation. ATST-Clip creates two different
views of the audio clip, and then maximizes the agreement
between the clip-level representation of the two views. Instead,
ATST-Frame maximizes the agreement between the frame-
level representations of two views. The key is to properly
design the two views to achieve a good trade off between
the difficulty and rationality of the frame-level pretext task.

1) Creation of Views: Different from ATST-Clip which
randomly crops the audio clip, ATST-Frame processes the
entire audio clip. The reasons are i) the frame correspondence
of the two views should be preserved for measuring the frame-
level agreement; and ii) in order to take full advantage of
Transformer in modeling long-term dependencies, the views
are set to be as long as possible.

To increase the difference of the two views, and thus
increase the task difficulty, data augmentation is first applied
to one of the two views. This time, the augmentations should
preserve the frame correspondence of the two views. Two
augmentations are used: Mixup [5] and Frequency Warping
(FW). For computational efficiency, FW is implemented in
the spectrogram domain through cropping and then resizing at
the frequency axis. Specifically, the input log-mel spectrogram
X ∈ RL×C , is first cropped at the frequency axis as X1:L,1:a,
and then resized by bi-cubic interpolation at the frequency
axis as XFW ∈ RL×C , where C is the number of the mel
frequency bins, and the integer number a is uniformly sampled
from the frequency range of [C∗0.6, C]. These operations lead
to an approximate yet efficient frequency warping.

Due to the constraint of frame-to-frame correspondence for
the two views, data augmentation does not bring sufficient
task difficulty. Thence, we adopt BERT-like masking [13],
which masks/replaces a portion of the frames with a certain
trainable mask token and then performs a prediction task to
predict the masked frames. The student network takes as input
a masked version of the training sample and learns to predict
the masked frames, while the prediction target is provided
by the teacher network taking as input the unmasked version
of the training sample. To prevent the model cheating by
simply interpolating, we adopt the group masking strategy
[24] that forces N adjacent frames to be masked together.
Specifically, we set a probability of 0.65 for masking and

force five adjacent frames to be masked together as a masked
block, and the masked blocks are allowed to overlap. With
this setting, approximately 50% of the frames are masked. As
will be explained later, the pre-training loss will be computed
only on the masked frames.

Overall, combining data augmentation and masking is able
to create two proper views for the frame-wise pretext task
within the teacher-student framework. Although these tech-
niques, i.e. data augmentation, masking and teacher-student
scheme, have already been individually (or together with other
techniques) used for audio pre-training in the literature, this
work carefully integrates them in a different way from other
methods, and achieves noticeably better performance. For
example, frame-level training of other teacher-student schemes
[16], [27], [37] do not use data augmentation. And other
masking-based methods [7], [9] reconstruct the masked region.

2) Encoding: The encoding procedure is illustrated in
Fig. 1(b). The input log-mel spectrogram is first data aug-
mented with Mixup and FW for one view, then processed with
a linear projection. After the linear projection, the embedding
sequence E ∈ RL

4 ×d is randomly masked along the time
dimension, only for the student branch. Each masked frame is
substituted with a trainable vector M ∈ R1×d. Subsequently,
the embedding sequence is added with a trainable absolute
lookup table positional embedding sequence, and then fed
into the encoder. After the encoder, the unmasked frames
are thrown away, and only the masked frames are further
processed by the following projector (and predictor).

3) Loss Function: The loss function of ATST-Frame differs
from the one of baseline or ATST-Clip in the sense that the loss
of ATST-Frame is computed frame-wisely. Feeding the two
views, i.e. X and X ′, to the teacher branch and the student
branch, we obtain z ∈ RNmask×256 and qθ(z

′) ∈ RNmask×256,
respectively, where Nmask denotes the number of masked
(stacked-)frames. The MSE loss is calculated on the L2-
normalized embeddings z and qθ(z

′) as

Lθ =
1

Nmask

Nmask∑
i=1

∥zi − qθ(z
′
i)∥22. (2)

A symmetric loss L′
θ is also calculated by feeding X to

the student network and X ′ to the teacher network. During
training, θ is updated by minimizing Ltotal

θ = Lθ + L′
θ.

E. Combine ATST-Clip and ATST-Frame

ATST-Clip and ATST-Frame focus on learning global clip-
level representation and local frame-level representations, re-
spectively. Combining them may yield more comprehensive
representations. ATST-Clip is trained by a clip-level criterion,
but still can extract frame-wise representations with the en-
coder. However, these representations are only used for storing
local information from which the class token [CLS] can
aggregate information, but are not optimized specifically to fit
frame-level downstream tasks. On the other hand, ATST-Frame
can obtain a clip-level representation by applying average
pooling to the frame-wise representations. However, this type
of average information is not optimized specifically to fit clip-
level downstream tasks.
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It is possible to jointly train ATST-Clip and ATST-Frame,
e.g. add a [CLS] token to ATST-Frame and then perform
multi-task learning. Actually, ASiT [37] is trained with a
combination of three tasks, including a global task of maxi-
mizing agreement, a local task of maximizing agreement, and
a reconstruction task. However, our preliminary experiments
show that, when creating two views, it is hard to trade off the
task difficulty for both ATST-Clip and ATST-Frame. ATST-
Clip requires two different randomly cropped segments and
the two segments have only a certain portion of overlap,
while ATST-Frame asks for a frame-to-frame correspondence
between the two views. Besides, ATST-Clip and other clip-
level audio siamese methods [5], [12], [22] largely leverage
the RRC augmentation [5] to achieve a good performance,
but RRC will distort the frame-to-frame correspondence.

Therefore, we leave ATST-Clip and ATST-Frame trained
separately to maintain their own advantages and combine them
in the evaluation stage. A straightforward way is to ensemble
the two models at the inference stage, e.g. to concatenate
the outputs of the two models, but this will double the
computational cost for inference. Instead, we use knowledge
distillation [38] to combine the two models. CMKD [39] has
explored cross-model knowledge distillation in the context
of supervised audio tagging, e.g. distilling knowledge from
EfficientNet-B0 [40] to AST [28]. We follow the principle of
CMKD. We first fine-tune ATST-Clip on a downstream task,
and then use the fine-tuned ATST-Clip as a teacher to fine-
tune ATST-Frame on the same downstream task. Specifically,
ATST-Frame is fine-tuned by using two classification losses
computed with the ground-truth labels and the ATST-Clip
predictions, respectively, and the two losses are weighted with
a balance term λ = 0.5. This strategy is denoted as ATST-C2F.
Or we can reverse the fine-tuning order to have the ATST-F2C
strategy. These strategies approximately double the fine-tuning
time compared with ATST-Frame or ATST-Clip alone, but do
not increase the computational cost for inference.

F. Transferring to Downstream Task

For both ATST-Clip and ATST-Frame, after pre-training,
we discard the projector in the teacher network, and use the
teacher encoder to extract embeddings for downstream tasks.

IV. EXPERIMENTAL SETUP

We conduct extensive experiments using the large-scale Au-
dioSet [19] for pre-training and a variety of downstream tasks
for evaluation. The evaluation is performed under the protocol
of linear evaluation or fine-tuning. In linear evaluation, the
pre-trained encoder is frozen as a feature extractor, on top of
which a linear classifier is trained. Whereas in fine-tuning, the
pre-trained encoder and linear classifier are fine-tuned together.

A. Pre-training

We use AudioSet [19] for pre-training. The full AudioSet
contains 2 million audio clips captured from Youtube videos,
with a fixed clip length of 10 seconds. The AudioSet is
published with an unbalanced set with 2,042,985 clips and

#parameters #blocks #heads dimension

ATST-Clipsmall 22M 12 6 384
ATST-Clip 86M 12 12 768
ATST-Framesmall 22M 12 6 384
ATST-Frame 86M 12 12 768

TABLE I: The size of models.

a balanced set with 22,176 clips. We use the unbalanced
set of the AudioSet for pre-training. Due to the change of
YouTube video availability, the unbalanced set we use contains
1,912,024 clips (AS-1.9M).

For both ATST-Clip and ATST-Frame, a base model is
trained using AS-1.9M, which contains 12 Transformer en-
coder blocks, and 12 heads for each block. The dimension
and inner dimension are 768 and 3072, respectively. Besides,
we also trained a small model for them for accelerating the
development process and conducting ablation studies, using a
subset of 200 thousand randomly sampled audio clips (AS-
200K). The small model contains 12 Transformer encoder
blocks, and 6 heads for each block. The dimension and inner
dimension are 384 and 1536, respectively. In the following, we
use ATST-Clip and ATST-Frame to represent the base models
by default, while ATST-Clipsmall and ATST-Framesmall for
the small models.

Audio is re-sampled to 16 kHz. Audio clips are transformed
to the log-mel spectrogram domain, with a Hamming window,
a window length of 64 ms, a hop size of 10 ms, and 64
mel-frequency bins ranging from 60 Hz to 7800 Hz. The
mel-spectrogram feature is min-max normalized, where the
minimum and maximum values are calculated globally on the
pre-training dataset.

ATST-Clip: We intentionally set the length of two segments
(for creating two views) to 6 seconds, which will lead to a
segment overlap of at least 2 second, considering that the
length of audio clip is 10 seconds. The two randomly sampled
segments are augmented by Mixup and RRC with the same
configurations used in BYOL-A [5].

ATST-Frame: We use the entire audio clip (10 seconds
in AudioSet) for training. We set a probability of 0.65 for
masking, and force five adjacent frames to be masked.

Hyper-parameters for pre-training are listed in Table II. We
pre-train our models with the AdamW optimizer [41]. The
learning rate is warmed up for 10 epochs, and then annealed
to 10−6 at cosine rate [42]. Similar to DINO [36], the weight
decay of Transformer is increased from 0.04 to 0.4 at cosine
rate. The EMA decay rate increases from an initial value to 1
at cosine rate.

B. Clip-level Downstream Tasks

1) Datasets: Evaluations are carried out on a variety of
clip-level downstream tasks, which cover multiple audio do-
mains: environmental sound, speech and music.

• AS-20K for multi-label sound event classification. We use
the balanced set of AudioSet, with 527 audio classes. We
successfully downloaded 20,886 audio clips for training
and 18,886 audio clips for evaluation.
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ATST-Clipsmall ATST-Clip ATST-Framesmall ATST-Frame

Dataset AS-200K AS-1.9M AS-200K AS-1.9M

Optimizer AdamW AdamW AdamW AdamW

Batch
size 1536 1536 1024 864

Learning
rate 5e-4 2e-4 4e-4 8e-5

Warm up
(epochs) 10 10 10 10

Epochs 300 200 300 200

Initial EMA
Decay Rate 0.99 0.9995 0.997 0.9996

Initial
Weight Decay 0.04 0.04 0.04 0.04

Final
Weight Decay 0.4 0.4 0.4 0.4

Drop
path 0.1 0.1 0.1 0.1

Dropout 0 0 0 0

TABLE II: Hyper-parameters for pre-training.

• AS-2M for multi-label sound event classification. We use
the unbalanced set and balanced set (1,932,110 clips in
total) together for training, and use the 18,886 audio clips
for evaluation.

• US8K for single-label audio scene classification. We use
the Urbansound8k dataset [43] to classify audio clips (less
than 4 seconds) into 10 classes. It contains 8,732 audio
clips and has ten folds for cross-validation.

• SPCV2 for spoken command recognition. We use Speech
Command V2 [44] to recognize 35 spoken commands
for one second of audio. It contains 84,843, 9,981 and
11,005 audio clips for training, validation and evaluation
respectively.

• VOX1 for speaker identification. We use the Voxceleb1
dataset [45], with 1,251 speakers. It contains 13,8361,
6,904 and 8,251 for training, validation and evaluation,
respectively.

• NSYNTH for musical instrument classification. We use
the NSYNTH dataset [46], to recognize 11 musical
instrument family classes from 4-second audio clips.

• FSD50K for multi-label sound event classification. We
use FSD50K dataset [47], which contains 36,796, 4,170
and 10,231 audio clips for training, validation and eval-
uation, respectively.

2) Metric: We take classification accuracy (Acc) as the
performance metric for the single-label tasks, including audio
scene classification, spoken command recognition, speaker
identification and musical instrument classification, and mean
average precision (mAP) for the tasks of multi-label sound
event classification.

For datasets containing validation set, we use the validation
set for hyper-parameters tuning and model selection, and
report metric score of the selected model on evluaiton set. As
for AS-20K and AS-2M, we tune hyper-parameters and report
metric score on evaluation set. Note this is a common practice
for AudioSet fine-tuning [9], [10], [28], mainly because it is
non-trivial to sample a meaningful validation set from AuioSet
due to extreme class imbalance and label co-occurrence. For

US8K, we conduct 10-fold cross-validation, and report the
average accuracy of the 10 folds.

3) Clip-level Embedding Extraction: For clip-level down-
stream tasks, the pre-trained models need to provide a clip-
level representation. ATST-Clip is directly designed for this
purpose. Although ATST-Frame is designed for frame-wise
learning, the average of frame-level representations could
also be a reasonable clip-level representation. Therefore, we
evaluate both ATST-Clip and ATST-Frame for the clip-level
downstream tasks.

In linear evaluation experiments, we use the output of all 12
encoder blocks to construct the clip-level representation. For
ATST-Clip, the embedding for the class token and the average
of the rest of embedding sequence are first concatenated for
each block. We find that the latter still provides some extra
information besides the former. Then, the embeddings are
concatenated over blocks. For ATST-Frame, the average of the
embedding sequence for all blocks are concatenated. The em-
bedding dimensions for ATST-Clipsmall, ATST-Clip, ATST-
Framesmall and ATST-Frame are 384× 12× 2, 768× 12× 2,
384× 12 and 768× 12, respectively.

In fine-tuning experiments, we only use the output of the
last block. The embedding dimensions for ATST-Clipsmall,
ATST-Clip, ATST-Framesmall and ATST-Frame are 384 × 2,
768× 2, 384 and 768, respectively.

The long audio clips will be split into chunks without
overlap, with a chunk length of 6 seconds and 10 seconds
for ATST-Clip and ATST-Frame respectively. In pre-training,
ATST-Clip (ATST-Frame) processes audio clips with a fixed
length of 6 seconds (10 seconds), and accordingly the length of
positional embedding sequence is also 6 seconds (10 seconds).
To account for the length of positional embedding, ATST-Clip
(ATST-Frame) will also process audio clips not longer than 6
seconds (10 seconds) for downstream tasks. Note that, audio
clips that are longer than 12 seconds are first centrally cropped
with a maximum length of 12 seconds, thus there will be at
most two chunks for one clip. The chunks are independently
processed by the pre-trained models, and their outputs are
averaged to obtain the final clip representation.

4) Downstream Task Training: In linear evaluation exper-
iments, we train the linear classifier for 100 epochs with the
SGD optimizer. The learning rate is annealed to 10−6 at
cosine rate during training. The optimal initial learning rate
is searched for each task separately. Batch size is set to 1024.
Data augmentation is not used.

In fine-tuning experiments, we fine-tune all models with
the SGD optimizer. The learning rate is warmed up for 5
epochs, and then annealed to 10−6 at cosine rate [42]. The
learning rate is also scheduled by a layer-wise learning rate
schedule [48], in which the learning rate is multiplied with a
scaling factor computed with the scaling function s(i) = αn−i,
where n and i are the number of layers and the layer index,
respectively, and α is usually less than 1 and set to be 0.75 in
our experiments. The optimal learning rate is searched for each
task separately. Batch size is set to 512 for SPCV2, Vox1, AS-
20K, FSD50K, NSYNTH and 1024 for AS-2M. We trained
AS-2M for 10 epochs, SPCV2, VOX1 and NSYNTH for 50
epochs, FSD50K for 100 epochs and AS-20K for 200 epochs.



8

For SPCV2, FSD50K, NSYNTH, AS-20K and AS-2M, we
use Mixup [33], [34] and RRC for data augmentation. For
VOX1, data augmentation is not applied. For AS-2M, we use
balance sampling [40], which is a common strategy to train
AudioSet, due to its unbalanced distribution of classes. Note
that, the Mixup methods used for pre-training and downstream
tasks are different, the former only mixes the audio clips since
labels are not involved in training, while the latter mixes both
audio clips and labels.

C. Frame-level Downstream Task

1) Dataset: The evaluations of frame-level downstream
tasks are conducted on the sound event detection (SED) task.
SED is a frame-level multi-class classification task, which
requires the model to recognize the sound events as well as
their corresponding timestamps from the given audio clips.
Two datasets are used for evaluation: domestic environment
sound event detection (DESED) [49] and strongly-labeled
AudioSet [50].

• DESED dataset is provided by the Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) Chal-
lenge 2022, task 4 - Sound Event Detection in Domestic
Environment. The DESED dataset provides both labeled
and unlabeled recordings for training. Since our goal is
to evaluate the SSL methods, we only utilize the labeled
audio clips in our experiments for linear evaluation and
fine-tuning of the pre-trained models. Specifically, 1,476
clip-level labeled (weakly-labeled) real audio clips and
12,500 frame-level labeled (strongly-labeled) synthetic
audio clips are used for training and validation. As for
evaluation, the DCASE task 4 development set is used,
containing 1,168 frame-level labeled real audio clips. It
is worth mentioning that, in DCASE task 4, there are a
large amount of unlabelled data used for semi-supervised
training, which however are not used in this work.

• Strongly-labeled AudioSet is a subset of the AS-2M
dataset. It contains 102,561 and 15,958 frame-level la-
beled real audio clips for training and evaluation, re-
spectively. There are 407 audio classes in total. The
audio classes are seriously unbalanced, where the most
frequently appeared 10 event classes occupy 50.7% of the
total amount of events.

2) Metric: The evaluation on the DESED dataset is ac-
complished by the official metrics of DCASE Challenge 2022,
i.e. the polyphonic sound event detection scores (PSDS) [51].
This metric measures the intersection between truth events
and detected events. Two different sets of PSDS parameters
are used, denoted as PSDS1 and PSDS2, to emphasize the
low reaction time (accurate localization of sound event) and
the low confusion rate between classes, respectively. For both
metrics, the higher the better.

The evaluation methods used in the original work of
strongly-labeled AudioSet [50] have a coarse temporal resolu-
tion of 960 ms. We think they are not fine-grained enough to
represent the detection accuracy, considering that the length of
sound events could be as small as tens of milliseconds. In our
experiments, the two PSDSs used for the DESED task are used

for the strongly-labeled AudioSet as well. The vanilla PSDS
[51] includes an optional penalty term by the performance
variance across all classes. Such penalty term evaluates the
stability of performance across classes. However, the number
of classes of strongly-labeled AudioSet is very high (407) and
the classes are heavily unbalanced, such that all the test models
in our experiments have a high performance variance across
classes. With the penalty term, PSDS scores could be reduced
to 0 for many models, which cannot conduct fair comparison.
Therefore, we will report the scores without applying the
penalty term as well.

3) Frame-level Embedding Extraction: For this frame-level
downstream task, both ATST-Clip and ATST-Frame only use
the frame-level embedding sequence. In both linear evaluation
and fine-tuning experiments, the embedding sequence of the
last encoder block is used.

The length of all the audio clips in both DCASE and
strongly-labeled AudioSet datasets is 10 seconds, which is
exactly the same as the length of the positional embedding
adopted by ATST-Frame, therefore, ATST-Frame processes
these audio clips without splitting. For ATST-Clip, to account
for the length of positional embedding, the audio clips are
splitted into two chunks and the representations of the two
chunks are concatenated along the time dimension.

4) Downstream Task Training: On top of the frame-level
embedding, a multi-class classifier is added. For the DESED
dataset, to account for the weak labels, the frame-level detec-
tion results are pooled with a softmax attention linear classifier,
following the principle of DCASE challenge baseline method
[52]. Note that, our setup is different from the one of the
DCASE baseline, as the latter uses some extra networks
besides the pre-trained model and uses some unlabelled data.
As for the strongly-labeled AudioSet, a simple linear classifier
is cascaded behind the frame-level embeddings to generate
detection results.

In fine-tuning experiments, considering the limited data size
of the DESED dataset, we only unfreeze the last encoder
block to avoid over-fitting. The batch size is set to [128, 128]
for weakly- and strongly-labeled samples, respectively. For
the strongly-labeled AudioSet, we unfreeze the entire model,
where the batch size is set to 256. The models are trained
with the SGD optimizer for 100 epochs. The learning rate is
warmed up for 5 epochs.

V. RESULTS

A. Ablation Study

Ablation experiments are conducted using ATST-Clipsmall

and ATST-Framesmall with the linear evaluation protocol, due
to their low computational cost.

1) Ablations on ATST-Clip: We separately evaluate the
effectiveness of the Transformer encoder and the proposed
view creation strategy. Table III shows the results. The result of
BYOL-A is also given, which uses a CNN encoder and a single
1-second segment. Our models use single or two segments,
with a length of 1 second or 6 seconds. For a fair comparison,
when the segment length is set to 1 second, we split audio
clips into 1-second chunks for downstream tasks.
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Method Segments length of
segment (s)

AS-20K
mAP (%)

SPCV2
Acc (%)

VOX1
Acc (%)

NSYNTH
Acc (%)

US8K
Acc (%)

Average
Acc (%)

BYOL-A [5] single 1 - 92.2 40.1 74.1 79.1 71.4

ATST-Clipsmall

single 1 21.0 94.3 52.3 73.8 79.3 74.9
two 1 19.1 91.3 50.0 74.3 76.6 73.1

single 6 25.7 94.0 57.3 73.8 80.9 76.5
two 6 27.9 93.6 61.9 75.3 82.0 78.2

TABLE III: Ablation studies on ATST-Clipsmall. Linear evaluation results are shown. ”Average” is taken over the last four
tasks.
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Fig. 2: Acc/mAP of ATST-Clipsmall as a function of
segment length, Acc/mAP of each task is normalized into the

range of [0,1]. ”Avg” denotes averaging over all tasks.

Transformer Encoder: With the same view creation strat-
egy, i.e. creating two views from a 1-second segment, our
model (line 2 in Table III) outperforms BYOL-A, especially
for the two speech tasks (SPCV2 and VOX1). Speech involves
more long-term semantic information, and Transformer is
more suitable than CNN for learning these long-term depen-
dencies.

View Creation Strategy: As shown in Table III, when the
segment length is set to 1 second, using one single segment is
better than using two segments. This phenomenon is consistent
with the claim made in BYOL-A [5] that the two segments
may be too different to be identified as the same sample.
However, two views created from a single segment may share
too much semantic content, thus leading our model to find
an easy solution. When the segment length is increased to 6
seconds, the performance measures of AS-20K, VOX1 and
US8K are systematically increased, no matter whether using
one or two segments. This is partially due to the capability of
learning long-term dependencies of the Transformer encoder.
In addition, for the 6-second case, using two segments exhibits
superior performance over using one segment. The possible
reasons are: the two segments can be rationally identified as
the same sample as they share a small portion of overlap,
and meanwhile they are different enough to increase the task
difficulty and thus leads the model to learn a more generalized
representation.

Fig. 2 shows the normalized performance of each task as
a function of segment length, where two segments are used.
We can observe that as the segment length increases, the
performance metrics continue to improve until they reach a
maximum at 6 seconds. This further verifies our findings: i)
when Transformer encoder is used, increasing the segment
length helps to learn more information; ii) when two segments

are used, the segment length should be set to make the
segments share a proper amount of overlap, and have a proper
difficulty for matching them as the same sample.

2) Ablations on ATST-Frame: Table IV shows the ablation
results on the effectiveness of ATST-Frame components.

Data augmentation: Compared with the no augmentation
case (configuration A in Table IV), using data augmentation
(configuration B, C, D, E) brings a significant performance
improvement on all tasks. This means data augmentation is
able to properly increase the task difficulty and to encourage
the model to learn more meaningful audio representations.
Augmenting two views (for both teacher and student branches,
configuration E) leads to a large task difficulty, and achieves
better results on three out of five tasks. Only augmenting
one view (for either student or teacher branch, configuration
D) achieves slightly worse performance than augmenting two
views on AS-20K and SPCV2, but much better performance
on VOX1, thus has a better average result. This is consistent
with our observations in the ablation studies of ATST-Clip that
better performance can be achieved with a balanced difficulty
of the pre-training task.

Masking: In configuration C, both the student and teacher
branches are masked with the same time index, thus the two
branches need to predict the masked frames from unmasked
frames, and the predictions should be matched. In configura-
tion D, only the student branch is masked, while the teacher
branch sees the whole audio clip. We can see that masking
both branches performs worse than masking only the student
branch. The possible reasons are i) the teacher branch provides
more meaningful guidance for the student branch when seeing
the frames that are not visible to the student branch; ii) the
teacher encoder consistently sees unmasked input for pre-
training and downstream tasks. As for the masking strategy,
group masking that forces N adjacent frames to be masked
together performs better than random masking (Configuration
B). This is consistent with the observations in the speech pre-
training works [24], [27].

Based on the above analysis, the proposed ATST-Frame
is set up with configuration D. Unless noted, the following
experiments of ATST-Frame use configuration D by default.

The symmetrical loss: In ATST-Frame, augmentation is
applied to one of the two views. As the symmetrical loss
is used, both the teacher branch and the student branch see
the augmented view during training. We conduct experiments
by using only Lθ or L′

θ to evaluate which one of teacher
and student branches is more important to see the augmented
view. The results are shown in Table V, which shows that it is
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Downstream Tasks

Configuration Augmented
views

Mask
teacher

Mask
student

Mask
strategy

AS-20K
mAP (%)

SPCV2
Acc (%)

VOX1
Acc (%)

NSYNTH
Acc (%)

US8K
Acc (%) Average

A 0 ✓ Group 8.0 63.3 25.8 56.8 60.1 42.8
B 1 ✓ Random 18.0 85.2 43.7 69.9 76.1 58.6
C 1 ✓ ✓ Group 22.5 88.2 47.0 72.9 72.9 60.7
D 1 ✓ Group 28.1 92.3 67.0 72.5 84.0 68.8
E 2 ✓ Group 28.5 92.5 59.6 74.7 83.4 67.7

TABLE IV: Ablation studies on ATST-Framesmall. Linear evaluation results are shown.

Method Symmetrical Loss Augmented
branch

AS-20K
mAP (%)

SPCV2
Acc (%)

VOX1
Acc (%)

NSYNTH
Acc (%)

US8K
Acc (%) Average

ATST-Framesmall

True Lθ + L′
θ Teacher & Student 28.1 92.3 67.0 72.5 84.0 68.8

False L′
θ Teacher 6.4 77.8 18.0 63.0 67.1 46.7

False Lθ Student 22.5 87.2 50.2 68.7 80.1 61.7

TABLE V: Ablation studies on the symmetrical loss of ATST-Framesmall. ”Augmented branch” denotes the branch taking as
input the augmented view. Linear evaluation results are shown.

Method Strategy Frequency
warping

AS-20K
mAP (%)

SPCV2
Acc (%)

VOX1
Acc (%)

NSYNTH
Acc (%)

US8K
Acc (%) Average

ATST-Framesmall

Frame-wise True 28.1 92.3 67.0 72.5 84.0 68.8
Frame-wise False 23.5 89.4 56.9 69.0 79.7 63.7
Patch-wise True 16.3 77.8 35.9 71.6 75.2 55.4
Patch-wise False 23.3 80.8 48.6 70.2 79.5 60.5

TABLE VI: Ablation studies on comparison of frame-wise and patch-wise strategy. Linear evaluation results are shown.

Method Symmetrical Augmented
branch

AS-20K
mAP (%)

SPCV2
Acc (%)

VOX1
Acc (%)

NSYNTH
Acc (%)

US8K
Acc (%) Average

ATST-Framesmall True Teacher & Student 28.1 92.3 67.0 72.5 84.0 68.8

ATST-Frame-data2vec∗small

False None 24.1 92.0 58.4 73.0 81.4 65.8
False Student 18.6 89.3 43.7 71.5 76.0 59.8
True Teacher & Student 21.6 90.7 52.3 70 78.4 62.6

TABLE VII: Ablation studies on comparison with data2vec-style training target. ”ATST-Frame-data2vec∗small” denotes
ATST-Framesmall with data2vec-style [27] training target. ”Augmented branch” denotes the branch takes as input the

augmented view. Linear evaluation results are shown.

more important for the student branch than the teacher branch
to see the augmented view, and using the symmetrical loss
outperforms the case that only one branch sees the augmented
view.

Patch-wise strategy and frequency warping: ATST-Frame
uses frame-wise strategy for log-mel spectrogram, while other
works [6], [7] have reported that patch-wise strategy ex-
hibits better performance than frame-wise strategy on sound
event/scene classification task, as sound events/scenes have
complex frequency structure, which can be better captured
by the frequency split of patch-wise models [6]. To testify
the frame-wise strategy of our ATST-Frame model, we further
conduct experiments using patch-wise strategy in the frame-
work of ATST-Frame. Specifically, we organize the log-mel
spectrogram into patches in the size of 16 frequency bins
× 16 frames, which leads to the same number of tokens as
ATST-Frame for a 64-bin log-mel spectrogram. For patch-
wise models, frequency warping conflicts with the principle of
the patch-wise loss, as it distorts the patch correspondences.
Therefore, we conducted experiments both with or without
using frequency warping. Note that Mixup is always used. The

results are shown in VI. Without using frequency warping,
the frame-wise model noticeably performs better than the
patch-wise model on speech tasks (SPCV2 and VOX1), which
is consistent with the observations in other works [6], [7].
However, we do not observe the advantage of patch-wise
strategy on sound event/scene classification (AS-20K and
US8K), where patch-wise strategy and frame-wise strategy
are comparable. The frame-wise model significantly benefits
from frequency warping for all tasks whereas the patch-wise
model does not. Frequency warping (FW) encourages learning
FW-invariant representations, which may help to learn the
spectral pattern, even for the complex spectral structure of
sound events/scenes. Overall, within the framework of ATST-
Frame, the frame-wise strategy is suitable for both speech and
sound events/scenes, and frequency warping helps to largely
improve the performance.

Using the training target of data2vec: We apply the
training target of data2vec [27] to our ATST-Frame model
(referred to as ATST-Frame-data2vec). Specifically, the last 8
blocks of the teacher encoder are averaged to form the training
target; the projectors are removed; the predictor is replaced
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Method AS-20K
mAP (%)

SPCV2
Acc (%)

VOX1
Acc (%)

NSYNTH
Acc (%)

US8K
Acc (%)

FSD50K
mAP (%)

TRILL [53] - - 17.9 - - -
COLA [3] - 62.4 29.9 63.4 - -
BYOL-A [5] - 92.2 40.1 74.1 79.1
BYOL-A-V2 [12] - 93.1 57.6 73.1 79.7 44.8
SF NFNet-F0 [54] - 93.0 64.9 78.2 -
M2D [16] - 95.4 73.1 76.9 87.6 -

ATST-Clip (ours) 33.8 95.1 72.0 76.2 85.8 58.5
ATST-Frame (ours) 33.0 94.9 77.4 75.9 85.8 55.1

TABLE VIII: Linear evaluation results on clip-level
downstream tasks. The scores of comparison models are

quoted from their papers.

with a linear projection. Although the original data2vec does
not use data augmentation and symmetrical loss, we also test
how will data augmentation and symmetrical loss perform
when used to ATST-Frame-data2vec. The results are reported
in Table VII. It can be seen that the data2vec target performs
well, but it does not benefit from data augmentation.

B. Results on Clip-level Downstream Tasks

1) Linear Evaluation Results: Table VIII shows the linear
evaluation results on six tasks. For a fair comparison, we
compare with other methods that also use Audioset for pre-
training and have also reported the linear evaluation results
in their papers, including TRILL [53], COLA [3], BYOL-
A [5], BYOL-A-v2 [12], SF NFNET-F0 [54] and M2D [16].
The proposed ATST-Clip is developed based on BYOL-A and
BYOL-A-V2, using a Transformer encoder and a new view
creation strategy. It can be seen that ATST-Clip noticeably
outperforms BYOL-A and BYOL-A-V2 on all tasks, which
indicates that our modifications are very effective. On average,
the proposed models and the recently proposed M2D model
perform better than other models. The performance of the
proposed models and M2D are comparable, as M2D performs
better on SPCV2, NSYNTH and US8K with small advantages,
while the proposed ATST-Frame performs better on VOX1.
Among the two proposed models, ATST-Clip outperforms
ATST-Frame for all the tasks except for VOX1. ATST-Clip is
dedicated to learning clip-level representation, its embedding
is more representative for the audio clip than the one obtained
by averaging the frame-level embeddings of ATST-Frame.
However, the drawbacks of ATST-Frame are not significant.,
which means the average of its frame-level embeddings is still
an effective clip-level representation.

2) Fine-tuning Results: Linear evaluation cannot fully re-
flect the capabilities of pre-trained models, as normally the
models can be further fine-tuned with the data of downstream
tasks. Fine-tuning experiments are conducted on the tasks of
multi-label audio event classification (AS-2M, AS-20K and
FSD50K), Spoken command recognition (SPCV2), speaker
identification (VOX1) and musical instrument classification
(NSYNTH). We compare with two groups of prior methods:
supervised methods and self-supervised methods. The results
are shown in Table IX.

ATST-Frame outperforms ATST-Clip. After fine-tuning,
the performance of ATST-Frame is better than ATST-Clip
on five out of six tasks. As mentioned above, ATST-Frame

does not explicitly learn clip-level representation during pre-
training. However, fine-tuning allows the adjustment of the
pre-trained parameters to fit a specific downstream task. ATST-
Frame is pre-trained by maximizing the agreement of frame-
level embeddings, which is more fine-grained and challenging
compared with ATST-Clip. This may help ATST-Frame to
learn more sophisticated knowledge and network parameters
(such as the self-attention parameters), which happen to be a
better initial setting for fine-tuning even on clip-level down-
stream tasks.

Comparison with supervised methods. The proposed
ATST-Frame outperforms the supervised methods on AS-2M,
AS-20K and SPCV2. The proposed ATST-C2F model further
improves the performance, and outperforms the supervised
methods on all tasks. This is encouraging for the field of audio
self-supervised learning, as we no longer need to annotate
audio data for pre-training when we want to further scale
up the dataset. Compared with supervised pre-training, self-
supervised pre-training does not suffer from the problem of
inaccurate and erroneous labels.

Comparison with other self-supervised methods. Com-
pared with other self-supervised methods, the proposed ATST-
Frame achieves comparable or better performance on all tasks.
In particular, compared with the recent state-of-the-art self-
supervised method BEATsiter3+ [10], ATST-Frame achieves
the same performance on AS-2M, and better performance on
AS-20K. This indicates that ATST-Frame is more effective
with less fine-tuning data than BEATS.

Combination through knowledge distillation. ATST-
Clip and ATST-Frame learn complementary features in the
pre-training stage. Combining ATST-Clip and ATST-Frame
through knowledge distillation can further improve the per-
formance, as shown by the results of ATST-C2F in Table IX.
Even though ATST-Clip performs worse than ATST-Frame
on AS-2M and AS-20K, as a teacher, it still successfully
helps to fine-tune ATST-Frame to achieve better performance.
Performing knowledge distillation the other way around, i.e.
from ATST-Frame to ATST-Clip, does not perform well on
most of the tasks. This verifies that ATST-Frame conveys
more fine-grained and semantically complicated information
than ATST-Clip , and ATST-Frame should be used as the final
model. BEATsiter3+ [10] also performs knowledge distillation
across models at the fine-tuning stage, specifically, it uses the
fine-tuned BEATsiter2 model as a teacher to fine-tune the final
BEATsiter3 model. Thence, BEATsiter3+ can be regarded as
a fair comparison with the proposed ATST-C2F model.

C. Results on Frame-level Downstream Task - DESED
1) Comparison Methods: We compare with six SSL pre-

trained models: BYOL-A-v2 [12], SSAST [6], MAE-AST [7],
Audio-MAE [9], BEATs [10] and M2D [16]. Sound event
detection requires to perform frame-level multi-class classi-
fication. As mentioned in Section IV-C, the proposed models
can be directly used for this task by adding a linear classifier
on top of their frame-level representations, with a temporal
resolution of 40 ms per frame. The comparison models are
pre-trained either frame-wisely or patch-wisely. The frame-
wise models, e.g. SSAST and MAE-AST, can also be directly
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Method # Param Pre-training
data

AS-2M
mAP (%)

AS-20K
mAP (%)

SPCV2
Acc (%)

VOX1
Acc (%)

FSD50K
mAP (%)

NSYNTH
Acc (%)

Supervised Methods
PANN [55] 81M 43.9 27.8 - - - -
PSLA [56] 14M 44.4 31.9 - - 55.4 -
AST [28] 86M 45.9 34.7 98.1 - - -
HTS-AT [57] 31M 47.1 - 98.0 - - -
PassT [58] 86M 47.1 - - - 65.3 -
KD-AST [39] 86M 47.1 - - - 62.9 -

Self-supervised Methods
SSAST-PATCH [6] 89M AS+LS - 31.0 98.0 64.2 - -
SSAST-FRAME [28] 89M AS+LS - 29.2 98.1 80.8 - -
Conformer-Based [8] 88M 67K hours * 41.5 27.6 - - - -
MAE-AST-PATCH [7] 86M AS+LS - 30.6 97.9 - - -
MAE-AST-FRAME [7] 86M AS+LS - 23.0 98.0 63.3 - -
ASiT [37] 85M AS - 35.2 98.8 63.1 - -
data2vec [27] 94M AS - 34.5 - - - -
MaskSpec [29] 86M AS 47.1 34.7 97.6 - - -
MSM-MAE [15] † 86M AS - 36.7 98.4 95.3 - -
Audio-MAE (local) [9] 86M AS 47.3 37.0 98.3 94.8 - -
BEATsiter3 [10] 90M AS 48.0 38.3 98.3 - - -
BEATsiter3+ [10] ** 90M AS 48.6 38.9 98.1 - - -
M2D [16] 86M AS - 37.4 98.5 94.4 - -

Ours
ATST-Clip 86M AS 45.2 37.9 98.0 95.5 63.4 78.6
ATST-Frame 86M AS 48.0 39.0 98.1 97.3 61.8 79.2
ATST-C2F ** 86M AS 49.7 40.5 98.4 97.5 65.5 79.2
ATST-F2C ** 86M AS 46.8 39.0 98.1 95.5 64.6 79.8

* Self-hold dataset [8].
† Results are quoted from M2D [16].
** Perform knowledge distillation across two models at the finetuning stage.

TABLE IX: Finetuning results on clip-level downstream tasks. The scores of comparison models are quoted from their
papers. AS and LS denote AudioSet and Librispeech [59], respectively.

used for this task, with a temporal resolution of 20 ms per
frame. According to the setup of the proposed models, we also
evaluate SSAST and MAE-AST with a temporal resolution
of 40 ms per frame, by applying average pooling to the
frame-level representations. As for the patch-wise models, we
average the patch-level representations for each time interval
to obtain the interval/frame-level representations, except for
M2D, since its authors propose to concatenate instead of
average the patch-level representations [16]. Note that, the
patch-wise models have a coarser temporal resolution, i.e. 160
ms per frame.

All the pre-trained models are fine-tuned by ourselves using
the SED supervised dataset. For linear evaluation, pre-trained
models are frozen, and only the two dense layers of the linear
classifier are trained. In fine-tuning experiments, for all the
Transformer-based models, we unfreeze the last Transformer
block. For BYOL-A-v2, we unfreeze the entire model for fair
comparison such that the amount of the trainable parameters of
each model are similar. The best learning rate for each model
has been carefully searched, which is also given in Table X.

2) Results Analysis: Table X shows the results. These
results are deviated from the results reported in the DCASE
challenge, that is because of the different experimental setups
as discussed in Sec. IV-C4. The objective of this study is
to conduct fair comparison between different SSL models,
instead of pursuing the SOTA performances on this dataset. It
can be seen that, as expected, relative to linear evaluation, the
performance of all models can be improved by fine-tuning with

the SED dataset. As the fine-tuning setup is more practically
important than linear evaluation, we mainly analyze the fine-
tuning results in the following, and most of the analyses are
valid for the linear evaluation results as well.

BYOL-A-V2 does not achieve reasonable performance,
possibly due to its limited capacity for sequential processing
with a two-layer CNN architecture. For SSAST [6] and MAE-
AST [7], increasing the temporal resolution of their frame-
wise models from 20 ms to 40 ms largely improves the
performance. The possible reasons are that the frame-level
representations get more stable when averaging two frames,
and meanwhile, the 40 ms temporal resolution is still fine
enough for tracking the time variation of sound events. This
could also be because the characteristics of one event cannot
be well represented without sufficiently long frames. However,
the performances of their frame-wise models still largely lag
behind their patch-wise models. This is consistent with the
observations in [6], [7] that, the patch-wise models are more
suitable for sound events, while the frame-wise models are
more suitable for speech signals. Sound events have more
complex frequency structure, which can be better captured
by the frequency split of patch-wise models. Among the
comparison models, BEATs performs the best in terms of both
PSDS1 and PSDS2, and MAE-AST-PATCH achieves close
performance with BEATs.

The proposed ATST-Clip does not work well, as it is
trained for learning global representation, which does not
automatically lead to good frame-level representations. By
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Method τ (ms) learning rate PSDS1 PSDS2

Linear Evaluation
BYOL-A-V2-40ms [12] 40 0.01 0.024 0.181
SSAST-FRAME-20ms [6] 20 0.1 0.028 0.166
SSAST-FRAME-40ms [6] 40 0.1 0.096 0.266
SSAST-PATCH [6] 160 0.1 0.179 0.315
MAE-AST-FRAME-20ms [7] 20 0.1 0.031 0.234
MAE-AST-FRAME-40ms [7] 40 0.1 0.081 0.293
MAE-AST-PATCH [7] 160 0.1 0.225 0.442
Audio-MAE (local) [9] 160 0.1 0.218 0.401
BEATsiter3 [10] 160 0.1 0.177 0.358
M2D [16] 160 0.1 0.234 0.438

Ours
ATST-Clip 40 0.1 0.115 0.293
ATST-Frame 40 0.1 0.304 0.507

Finetuning
BYOL-A-V2-40ms [12] 40 0.01 0.030 0.219
SSAST-FRAME-20ms [6] 20 0.05 0.046 0.235
SSAST-FRAME-40ms [6] 40 0.1 0.132 0.325
SSAST-PATCH [6] 160 0.1 0.236 0.459
MAE-AST-FRAME-20ms [7] 20 0.05 0.123 0.346
MAE-AST-FRAME-40ms [7] 40 0.1 0.235 0.418
MAE-AST-PATCH [7] 160 0.05 0.281 0.573
Audio-MAE (local) [9] 160 0.1 0.254 0.509
BEATsiter3 [10] 160 0.1 0.282 0.584
M2D [16] 160 0.1 0.267 0.500

Ours
ATST-Clip 40 0.05 0.223 0.422
ATST-Frame 40 0.01 0.361 0.581
ATST-C2F 40 0.1 0.357 0.607
ATST-F2C 40 0.1 0.259 0.445

TABLE X: Results on the frame-level downstream task,
DESED. τ stands for temporal resolution.

leveraging the proposed frame-level training criterion and
thus learning better frame-level representations, ATST-Frame
largely improves the performance over ATST-Clip. Compared
with the best comparison model, i.e. BEATs, ATST-Frame
achieves much better PSDS1, and similar PSDS2. PSDS1 em-
phasizes the time localization accuracy of sound events, thence
the better PSDS1 of ATST-Frame means a better temporal
detection performance, which is possibly due to the finer
temporal resolution of ATST-Frame compared with BEATs,
i.e. 40 ms versus 160 ms. PSDS2 emphasizes the recognition
accuracy of sound events. The similar PSDS2 of ATST-Frame
and BEATs reflect the similar representation quality of them.
This is consistent with the results on the clip-level AS-2M
task, ATST-Frame also performs similarly with BEATs as
shown in Table VIII. It is important to note that, the good
performance of ATST-Frame conflicts with the observations
in [6], [7] that patch-wise models are more suitable for sound
events than frame-wise models. As discussed in the ablation
study, the success of ATST-Frame is possibly attributed to
the frequency warping operation, which helps to capture the
complex frequency structure of sound events.

Knowledge distillation is also applied to combine ATST-
Clip and ATST-Frame. The results of ATST-C2F show that,
taking ATST-Clip as a teacher for fine-tuning ATST-Frame,
PSDS2 can be further improved, while PSDS1 is slightly
decreased. This means the knowledge learned by ATST-Clip is
still complementary for improving the accuracy of frame-level
representations, but will slightly blur the time localization.

Method
Learning

rate

PSDS1 PSDS2

w/o with w/o with
var-pen var-pen var-pen var-pen

Linear Evaluation
BYOL-A-V2-40ms [12] 0.5 0.087 0.0 0.083 0.0
SSAST-PATCH [6] 0.5 0.048 0.0 0.067 0.0
MAE-AST-PATCH [7] 0.5 0.116 0.0 0.185 0.0
Audio-MAE (local) [9] 0.5 0.073 0.0 0.107 0.0
BEATsiter3 [10] 0.5 0.034 0.0 0.062 0.0
M2D [16] 0.5 0.182 0.0 0.301 0.039

Ours
ATST-Clip 0.5 0.120 0.0 0.201 0.001
ATST-Frame 0.5 0.207 0.008 0.304 0.048

Finetuning
BYOL-A-V2-40ms [12] 0.5 0.110 0.0 0.243 0.027
SSAST-PATCH [6] 0.5 0.243 0.017 0.411 0.122
MAE-AST-PATCH [7] 0.5 0.274 0.039 0.481 0.187
Audio-MAE (local) [9] 0.5 0.276 0.038 0.476 0.182
BEATsiter3 [10] 0.5 0.290 0.045 0.491 0.186
M2D [16] 0.1 0.292 0.042 0.509 0.199

Ours
ATST-Clip 0.5 0.328 0.083 0.478 0.178
ATST-Frame 0.5 0.347 0.069 0.538 0.152
ATST-C2F 0.5 0.374 0.125 0.572 0.266
ATST-F2C 0.5 0.323 0.075 0.470 0.163

TABLE XI: Results on the frame-level downstream task,
SED of the strongly-labeled AudioSet. ‘var-pen’ stands for

the performance variance penalty term.

D. Results on Frame-level Downstream Task - Strongly-
labeled AudioSet

Table XI shows the results on the strongly-labeled Au-
dioSet. According to the DESED performances, only the best-
performing model for each comparison method is evaluated.
Considering the large data size of strongly-labeled AudioSet,
we only search over 3 different learning rates for each model,
i.e. 0.05, 0.1 and 0.5. As mentioned in Sec. IV-C2, we
evaluate the models by the PSDSs with or without applying
the performance variance penalty term.

For all the models, the scores with variance penalty are
much lower than the ones without variance penalty, which
means the performance variance across classes for all models
are very large. The scores with variance penalty for linear
evaluation could be reduced to 0 for most of the models. This
reflects the data imbalance and task difficulty of the strongly-
labeled AudioSet.

After finetuning, The BYOL-A-v2 model has a large perfor-
mance gap comparing with other Transformer-based models.
With better learned frame-level representations, the proposed
ATST-Frame model has an obvious advantage over the com-
parison models and ATST-Clip, when variance penalty is not
applied. However, ATST-Clip has a better stability of perfor-
mance across classes, and thus outperforms ATST-Frame when
applying variance penalty. When combining ATST-Frame and
ATST-Clip, the performance measures are largely improved
by ATST-C2F, and the model is improved in terms of both
classification accuracy and performance stability.
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ATST-Clip ATST-Frame Best

Beehive 58.3 64.6 87.8
Beijing Opera 95.3 95.8 97.5
CREMA-D 76.0 76.7 75.2
DCASE 2016 * 93.7 95.7 92.5
ESC-50 91.2 89.0 96.1
FSD50K 59.5 55.7 64.1
Gunshot 98.8 94.3 96.7
GTZAN Genre 87.7 88.3 90.8
GTZAN Music/Speech 99.2 100.0 99.2
Libricountl 78.2 78.1 78.5
Maestro 5h * 18.9 24.4 46.9
Mridangam Stroke 97.7 97.5 97.5
Mridangam Tonic 96.7 96.9 94.1
NSynth Pitch 5h 67.8 68.6 87.8
Speech command 5h 93.1 92.6 97.6
Speech command full 95.5 95.1 97.8
Vocal Imitation 18.5 22.3 21.5
VoxLingua107 top 10 53.9 66.9 72.2

* frame-level task

TABLE XII: Results on the HEAR benchmark. ‘Best’
denotes the best result in the HEAR leaderboard. Underlined

scores denote better performance than ‘Best’.

E. Results on HEAR benchmark

We also evaluate the proposed models on the HEAR
benchmark [60], which includes 17 clip-level and 2 frame-
level tasks. We successfully downloaded 18 tasks. The Hear
benchmark trains a shallow MLP classifier on top of frozen
embeddings. We use the official hear-eval-kit 1, and our
embeddings are extracted in the same way as we did in our
linear evaluation experiments except that for frame-level tasks,
we concatenate outputs of all the blocks. Table XII shows the
results. As a baseline, we quote the best result for each task
from the HEAR leaderboard 2, denoted as ‘Best’ in the table.
It is worth noting that there are two frame-level tasks, i.e.
DCASE 2016 and Maestro 5h. On DCASE 2016, both ATST-
Clip and ATST-Frame perform better than the best baseline.
However, the best baseline performs much better than the
proposed models for Maestro 5h. Maestro 5h is a piano music
transcription task, aiming to extract pitch and onset from raw
audio. The data augmentation of RRC and frequency warping
in ATST encourage the model to learn frequency-changing-
invariant representations, which may be not suitable for pitch
learning, as pitch is sensitive to frequency changing. This
phenomenon is also observed on the clip-level pitch estimation
task, i.e. NSynth Pitch 5h. Overall, both the proposed ATST-
Clip and ATST-Frame achieve better performance than the best
baseline on five tasks. This is remarkable considering the fact
that the best baseline results quoted here for different tasks
are achieved by 14 different submissions. Moreover, some of
the best baseline results are obtained by the model especially
trained for the specific tasks, as HEAR benchmark does not
limit the pre-training methods (supervised or unsupervised)
and pre-training datasets.

1https://github.com/hearbenchmark/hear-eval-kit
2https://hearbenchmark.com/hear-leaderboard.html

VI. CONCLUSION

In this paper, based on the teacher-student scheme of BYOL,
we have proposed two effective self-supervised audio pre-
training methods, ATST-Clip and ATST-Frame, specifically
crafted to learn clip-level and frame-level representations,
respectively, enabling effective audio understanding.

The proposed methods have been extensively evaluated on
a variety of downstream tasks, including seven clip-level tasks
and two frame-level tasks, covering multiple audio domains:
environmental sound, speech and music. Both ATST-Clip and
ATST-Frame demonstrated their outstanding capabilities of
learning audio representations compared with previous state-
of-the-art methods. Furthermore, ATST-Clip offers comple-
mentary knowledge to ATST-Frame, and these knowledge can
be effectively distilled to ATST-Frame at the fine-tuning stage.
Especially, the proposed methods achieve new SOTA scores
on the AudioSet-2M and AudioSet-20K datasets, with the
precision of 49.7% and 40.5% (without model ensembling),
respectively. Furthermore, this work also provides a new
benchmark for applying pre-trained models to frame-level
downstream tasks, on two sound event detection datasets. The
frame-level downstream tasks have rarely been studied in the
field, and hopefully this work would fill this gap.

We have open-sourced our code online for the research
community to replicate and expedite future research. As the
scope of this study is limited to audio classification tasks,
future work may extend our models to audio generation tasks.
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