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Abstract

Adversarial vulnerability remains a major ob-
stacle to constructing reliable NLP systems.
When imperceptible perturbations are added
to raw input text, the performance of a deep
learning model may drop dramatically under
attacks. Recent work argues the adversarial
vulnerability of the model is caused by the non-
robust features in supervised training. Thus in
this paper, we tackle the adversarial robustness
challenge from the view of disentangled rep-
resentation learning, which is able to explic-
itly disentangle robust and non-robust features
in text. Specifically, inspired by the variation
of information (VI) in information theory, we
derive a disentangled learning objective com-
posed of mutual information to represent both
the semantic representativeness of latent em-
beddings and differentiation of robust and non-
robust features. On the basis of this, we design
a disentangled learning network to estimate
these mutual information. Experiments on text
classification and entailment tasks show that
our method significantly outperforms the rep-
resentative methods under adversarial attacks,
indicating that discarding non-robust features
is critical for improving adversarial robust-
ness.

1 Introduction

Although deep neural networks have achieved great
success in a variety of Natural Language Process-
ing (NLP) tasks, recent studies show their vulnera-
bility to malicious perturbations (Goodfellow et al.,
2015; Jia and Liang, 2017; Gao et al., 2018; Jin
et al., 2020). By adding imperceptible perturba-
tions (e.g. typos or synonym substitutions) to orig-
inal input text, attackers can generate adversarial
examples to deceive the model. Adversarial exam-
ples pervasively exist in typical NLP tasks, includ-
ing text classification (Jin et al., 2020), dependency
parsing (Zheng et al., 2020), machine translation
(Zhang et al., 2021) and many others. These mod-
els work well on clean data but are sensitive to im-

perceptible perturbations. Recent studies indicate
that they are likely to rely on superficial cues rather
than deeper, more difficult language phenomena,
and thus tend to make incomprehensible mistakes
under adversarial examples (Jia and Liang, 2017;
Branco et al., 2021).

Tremendous efforts have been made to improve
the adversarial robustness of NLP models. Among
them, the most effective strategy is adversarial train-
ing (Li and Qiu, 2021; Wang et al., 2021; Dong
et al., 2021), which minimizes the maximal ad-
versarial loss. As for the discrete nature of text,
another effective strategy is adversarial data aug-
mentation (Min et al., 2020; Zheng et al., 2020;
Ivgi and Berant, 2021), which augments the train-
ing set with adversarial examples to re-train the
model. Guided by the information of perturbation
space, these two strategies utilize textual features
as a whole to make the model learn a smooth pa-
rameter landscape, so that it is more stable and
robust to adversarial perturbations.

As adversarial examples pervasively exist, previ-
ous research has studied the underlying reason for
this (Goodfellow et al., 2015; Fawzi et al., 2016;
Schmidt et al.; Tsipras et al., 2019; Ilyas et al.,
2019). One popular argument (Ilyas et al., 2019) is
that adversarial vulnerability is caused by the non-
robust features. While classifiers strive to maxi-
mize accuracy in standard supervised training, they
tend to capture any predictive correlation in the
training data and may learn predictive yet brittle
features, leading to the occurrence of adversarial ex-
amples. These non-robust features leave space for
attackers to intentionally manipulate them and trick
the model. Therefore, discarding the non-robust
features can potentially facilitate model robustness
against adversarial attacks, and this issue has not
been explored by previous research on adversarial
robustness in text domain.

To address the above issue, we take the approach
of disentangled representation learning (DRL),



which decomposes different factors into separate
latent spaces. In addition, to measure the depen-
dency between two random variables for disentan-
glement, we take an information-theoretic perspec-
tive with the Variation of Information (VI). Our
work is particularly inspired by the work of Cheng
et al. (2020b), which takes an information-theoretic
approach to text generation and text-style transfer.
As our focus is on disentangling robust and non-
robust features for adversarial robustness, our work
is fundamentally different from the related work in
model structure and learning objective design.

In this paper, we tackle the adversarial ro-
bustness challenge and propose an information-
theoretic Disentangled Text Representation Learn-
ing (DTRL) method. Guided with the VI in in-
formation theory, our method first derives a dis-
entangled learning objective that maximizes the
mutual information between robust/non-robust fea-
tures and input data to ensure the semantic rep-
resentativeness of latent embeddings, and mean-
while minimizes the mutual information between
robust and non-robust features to achieve disentan-
glement. On this basis, we leverage adversarial data
augmentation and design a disentangled learning
network which realizes task classifier, domain clas-
sifier and discriminator to approximate the above
mutual information. Experimental results show
that our DTRL method improves model robustness
by a large margin over the comparative methods.

The contributions of our work are as follows:

* We propose a disentangled text representation
learning method, which takes an information-
theoretic perspective to explicitly disentangle
robust and non-robust features for tackling
adversarial robustness challenge.

* Our method deduces a disentangled learning
objective for effective textual feature decom-
position, and constructs a disentangled learn-
ing network to approximate the mutual infor-
mation in the derived learning objective.

* Experiments on text classification and entail-
ment tasks demonstrate the superiority of our
method against other representative methods,
suggesting eliminating non-robust features is
critical for adversarial robustness.

2 Related work

Textual Adversarial Defense To defend adver-
sarial attacks, empirical and certified methods have

been proposed. Empirical methods are dominant
which mainly include adversarial training and data
augmentation. Adversarial training (Miyato et al.,
2019; Li and Qiu, 2021; Wang et al., 2021; Dong
etal., 2021; Li et al., 2021) regularizes the model
with adversarial gradient back-propagating to the
embedding layer. Adversarial data augmentation
(Min et al., 2020; Zheng et al., 2020; Ivgi and Be-
rant, 2021) generates adversarial examples and re-
trains the model to enhance robustness. Certified
robustness (Jia et al., 2019; Huang et al., 2019; Shi
et al., 2020) minimizes an upper bound loss of the
worst-case examples to guarantee model robust-
ness. Besides, adversarial example detection (Zhou
et al., 2019; Mozes et al., 2021; Bao et al., 2021)
identifies adversarial examples and recovers the
perturbations. Unlike these previous methods, we
enhance model robustness from the view of DRL
to eliminate non-robust features.

Disentangled Representation Learning Disen-
tangled representation learning (DRL) encodes
different factors into separate latent spaces, each
with different semantic meanings. The DRL-based
methods are proposed mainly for image-related
tasks. Pan et al. (2021) propose a general dis-
entangled learning method based on information
bottleneck principle (Tishby et al., 2000). Recent
work also extends DRL to text generation tasks,
e.g. style-controlled text generation (Yi et al.,
2020; Cheng et al., 2020b). Different from the
DRL-based text generation work that uses encoder-
decoder framework to disentangle style and content
in text, our work develops the learning objective
and network structure to disentangle robust and
non-robust features for adversarial robustness.
Existing DRL-based methods for adversarial
robustness have solely applied in image domain
(Yang et al., 2021a,b; Kim et al., 2021), mainly
based on the VAE. Different from continuous small
perturbation pixels in image that are suitable for
generative models, text perturbations are discrete in
nature, which are hard to deal with using generative
models due to their overwhelming training costs.
With adversarial data augmentation, our method
uses a lightweight layer with cross-entropy loss for
effective disentangled representation learning.

3 Preliminary

The Variation of Information (VI) is a fundamental
metric in information theory that quantifies the in-
dependence between two random variables. Given



two random variables U and V, VI(U; V) is de-
fined as:

VI(U; V) = H(U) + H(V) = 2I(U; V), (1)

where H(U) and H(V') are the Shannon entropy,

and [(U; V) = Epy.0) [log p?g)ﬁi)} is the mutual
information between U and V.

The VI is a positive, symmetric metric. It obeys
the triangle inequality (Kraskov et al., 2003), that

is, for any random variables U, V' and W:

VI(U; V) + VI(U; W) > VI(V; W), (2)

Equality occurs if and only if the information of U
is totally divided into that of V' and W.

4 Problem Definition

Given a victim model f, and an original input
x € X where X is input text set, an attack method
A is applied to search perturbations to construct an
adversarial example & € X which fools the model
prediction (i.e. f,(z) # f,(Z) ). Adversarial at-
tacks can be regarded as data augmentation. For
random variables X,Y ~ pp(z,y) where Y is the
set of class labels, (z,y) is the observed value, D
is a dataset and pp is the data distribution. The
goal of adversarial robustness is to build a classifier
f(y|x) that is robust against adversarial attacks.

S Proposed Method

The overall architecture of our proposed method is
shown in Fig.1. We first apply adversarial attacks
to augment the original textual data. We then de-
sign the disentangled learning objective to separate
features into robust and non-robust ones. Finally,
we construct the disentangled learning network to
implement the learning objective.

5.1 Adversarial Data Augmentation

As adversarial examples have different patterns
other than clean data like word frequency (Mozes
et al., 2021) and fluency (Lei et al., 2022), we use
adversarial examples to guide the non-robust fea-
tures learning. To efficiently disentangle robust
and non-robust features, we employ adversarial
data augmentation to get adversarial examples for
the extention of training set.

We denote original training set as Di,q =
{z;,9;}Y,, where z is input text, y is task label
(e.g. positive or negative), r € X andy € Y. We
apply adversarial data augmentation to Dy, and

get adversarial examples & € X . We then construct
domain dataset Djomain = {x;, y} jj\il, where z’
is input text or adversarial example, ¥’ is domain
label (e.g. natural or adversarial), =’ € {X, X},

y' € Y and Y is the set of domain labels.

5.2 Disentangled Learning Objective

We propose our learning objective that disentan-
gles the robust and non-robust features, and buide
the approximation method to estimate mutual in-
formation in the derived learning objective. We use
the VI in information theory to measure the depen-
dency between latent variables for disentanglement.
In contrast to the computational alternative of gen-
erative model like variational autoencoder (VAE),
our method considers the discrete nature of text
and develops an effective VI-guided disentangled
learning technique with less computational cost.

5.2.1 Learning Objective Derivation

We start from VI(Z"; Z™) to measure the indepen-
dence between robust features Z” and non-robust
features Z". By applying the triangle inequality of
VI (Eq.(2)) to X, Z" and Z™, we have

VI(X; Z") + VI(X; Z2") > VI(Z"; Z"), (3)

where the difference between VI(X;Z") +
VI(X;Z"™) and VI(Z"; Z™) represents the degree
of disentanglement. By simplifing Eq.(3) with the
definition of VI (Eq.1), we have

VI(X;Z")+ VI(X; Z") - VI(Z";, Z")
=2H(X) +2[I(Z"; Z") - 1I(X; Z") — I(X; Z")].
“)
Then for a given dataset, H(X) is a constant pos-
itive value. By dropping H(X) and the coefficient
from Eq.(4), we have

VI(X;Z")+ VI(X; Z"™) - VI(Z"; Z") 5
>I(Z7 72 -1 X5 Z27) = (X Z™). ©)
As in Eq.(5), the robust and non-robust features
are symmetrical and interchangeable, we further
differentiate them by introducing supervised infor-
mation. Recent study shows that without inductive
biases, it is theoretically impossible to learn dis-
entangled representations (Locatello et al., 2019).
Therefore, we leverage the task label in Y and do-
main label in Y” to supervise robust and non-robust
feature learning respectively.
Specifically, encoding X into Z" to predict out-
put Y forms a Markov chain X — Z” — Y and
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Figure 1: Overview of our proposed DTRL method for adversarial robustness.

obeys the data processing inequality (DPI):
H(X) 2 I(X;2") 2 [(Z";Y), (6)

where I(-; -) is the mutual information between two
latent variables. Similarly, we have Markov chain
X — Z™ — Y’ with the DPI formulism:

H(X) > I(X; 2" >1(Z%Y). (D)

Finally, by combining Eq.(6) and Eq.(7) to
Eq.(5), we get the upper bound of our disentan-
gled learning objective:

WZ%52") -UZ%Y) - UZ%Y) =
22" — (X 27— (X 27y )

5.2.2 Mutual Information Approximation

As the mutual information in Eq.(8) is computation-
ally intractable, it is difficult to calculate it directly.
Thus we adopt the variational Bayesian method to
approximate the estimation of mutual information.
To maximize I(Z";Y) and I(Z™;Y”), we derive
their variational lower bounds'. For I[(Z";Y):

I(ZT; Y) = Ep(zT,y) logp(zr | y) - Ep(y) logp(y)
> Ep(z"",y) lOg Q(Zr ‘ y) + H(Y)7

©))

where p(2",y) is the data distribution, and ¢(2"|y)

is the variational posterior of robust features Z"

conditioned on task label in Y. Similarly, the vari-
ational lower bound for I(Z";Y"):

I(Z™Y") = Epean yy log p(2" [y) —Epy log p(y')

> Ep(z",y’) log Q(zn ’y,) + H(Y/)v
(10)

'In this work, X, Y, Y, Z", Z™ are random variables, and
x,y,%y’, 2", 2™ are instances of these random variables.

where p(2",y’) is the data distribution, and
q(2™|y’) is the variational posterior of non-robust
features Z" conditioned on domain label in Y.
We then estimate 1(Z"; Z™) with the density-
ratio-trick (Kim and Mnih, 2018; Pan et al., 2021).
By the definition of mutual information, we have

. p(z’", Z")
I(Z’I”7 Zn) = Ep(zr7zn) |:10g pi(zr)p(zn) 3 (1 1)
where M is the ratio between joint distri-
p(2")p(z™)

bution p(z", z™) and the product of the marginal
distribution p(2")p(z™). We further train a discrim-
inator D to estimate whether it is sampled from
p(2", 2") or p(z")p(2"), and minimize I[(Z"; Z")
in an adversarial training manner:

min max|[E,.ry,.ny log D(2", 2")

r oy (2
+ Eprzny log(1 = D(2", 2™))].

5.3 Disentangled Learning Network

Based on the above disentangled learning objec-
tive, we propose the disentangled learning network
consisting of four components. Text encoder first
converts text to vector representation. The other
three components then estimate the mutual infor-
mation in the disentangled learning objective. The
robust features are captured by task classifier, while
the non-robust ones are captured by domain clas-
sifier. Discriminator estimates and minimizes the
mutual information between robust and non-robust
features for disentanglement.

5.3.1 Text Encoder

Given examples (,y;) € Dyasr and (25, y}) €
D jomain, We use large-scale pre-trained model to
encode input texts:

Zi = Etext (.TZ), Zj = Etext (x9)7 (13)



Algorithm 1 Disentangled representation learning

Require: Task data Dy,g € {z,y}, domain data
Dgom € {2/,vy'}, parameters 6 of encoders
and classify layers {Fiext, Er, Cr, En, Cp},
parameters ¢ of discriminator D

while not converge do

1:

2:  Sample batch data {x;, y; }ic p from Diaqx
30 2l = Ep(Erext(xi))

4: ['task = % ZzB;l ﬁCE(Cr(Z;)u yz)

5. Sample batch data {2, y’} je 5 from Daom
6: Z; = ET(Etext (JZ‘;)), Z? = En(Etext (.T;))
7 Laom = % Yoiy Ler(Cn(2D), 1))

8 Lo="Liaskt Laom—F Y1 logD([z]; 27])
9:  Update 6 <— Vo Ly
10:  Resampling on batch axis to indices k € B
n: Ly=g ZjB:I
12: —log(1 — D([2]; 2}])) —logD([z; ;1)

13:  Update ¢ <— V4L
14: end while

where Fieyxt () is the pre-trained model (e.g. BERT),
and z; and z; are vector representations. We as-
sume that z can be disentangled into robust features
z" and non-robust features 2.

5.3.2 Task Classifier to Estimate /(Z";Y")

Mutual information /(Z";Y") is used to measure
the dependency between robust features Z” and
task label Y. We use I(Z";Y") to guide encoder
E,. to learn robust features:

zi = Er(2i), 25 = Er(z5), (14)

where z; and 27 are the corresponding robust fea-
tures, and F),. captures the robust features Z” by
learning to predict the class label in Y:

Liask = Lcr(Cr(2]), Yi), (15)

where C, is a task classification layer and Lcg is
cross-entropy loss. F, and C, are implemented
with multi-layer perceptron (MLP).

5.3.3 Domain Classifier to Estimate I(Z";Y")

Encoder E,, captures the non-robust features Z"
by learning to predict the domain label in Y”:

2 = E, (%)),

o 09
Ldomain = ECE(Cn(Zj )s yj)a

where z;? are non-robust features and (), is domain
classification layer. F,, and C,, are implemented
with MLP.

5.3.4 Discriminator to Estimate I(Z"; Z")

To disentangle robust and non-robust features, we
use a discriminator D to estimate the I(Z"; Z™):

Laisen = —log(1— D([27; 271)) — logD([#f; 271),

a7
where [-;-] is concatenation operation, (27, z})
is sampled from the joint distribution p(z", 2"),
and (zp,2;) is sampled from the product of
marginal distribution p(z")p(z") by shuffling sam-
ples aligned with the batch axis (Belghazi et al.,
2018). D is implemented with MLP.

5.4 Optimization

Our disentangled learning network is opti-
mized by adversarial training in an end-to-end
manner. We use 0 for the parameters of
{Etext, Er, Cy, By, Cy} and ¢ for the parameters
of discriminator D). The overall loss is:
Inein(ﬁtask + Liomain + mgx Edisen)- (18)
We use the reparameterization trick (Kingma
and Welling, 2014) to approximate the gradients of
FE, and F,,. During the training process, # and ¢
are updated alternately (see Algorithm 1 for more
details). We pre-train two classifiers and discrim-
inator for a few iterations before the adversarial
training stage to ensure their initial learning ability.

6 Experiments

In this section, we first evaluate the effectiveness
of our method for adversarial robustness. We then
give a detailed analysis on model performance.

6.1 Datasets and Tasks

We choose two typical tasks for evaluating adver-
sarial defense methods, text classification and tex-
tual entailment. We conduct experiments on three
benchmark datasets. Movie Reviews (MR) (Pang
and Lee, 2005) and SST-2 (Socher et al., 2013)
are sentiment classification datasets, with each sen-
tence labeled into {positive, negative}. Stanford
Natural Language Inference (SNLI) is a textual en-
tailment dataset (Bowman et al., 2015), with each
pair of sentences labeled into {entailment, neutral,
contrast}. The statistics are given in Tablel.

6.2 Victim Model and Attack Methods

Following the convention of evaluating adversarial
robustness, we take BERT (Devlin et al., 2019) as
the victim model which is fine-tuned on each task



Dataset Train  Test Classes Avg. Length
MR 9K 1067 2 20
SST-2 67K 872 2 8
SNLI 550K 10K 3 11

Table 1: Statistics of three datasets.

with the whole training set. We use two recent
representative attack methods.

Deepwordbug (Gao et al., 2018) is a character-
level attack. The perturbation space is character
insertion/deletion/swap/substitution and restricted
with edit distance to maintain the original meaning.

Textfooler (Jin et al., 2020) is a word-level at-
tack. The perturbation space is synonym substi-
tutions. The words close to the original word in
counter-fitted word embedding are considered a
synonym set. Substitutions are checked with part-
of-speech and semantic similarity.

Following the practice of prior work (Alzantot
et al., 2018; Jin et al., 2020) in evaluating adver-
sarial robustness, we use the same 1,000 randomly
selected examples from the test set for MR and
SNLI, and the whole test set for SST-2. Adversar-
ial data augmentation is applied to the training sets
with the above two attack methods. For all attack
methods, we use the toolkit TextAttack? (Morris
et al., 2020) with the default setting (e.g. query
limit, similarity constraint and synonym set).

6.3 Comparative Methods

We compare our proposed DTRL with four ad-
vanced adversarial training and data augmentation
methods, a general DRL method and an improved
BERT fine-tuning method. For fair comparison, all
the methods use BERT as text encoder.

VIBERT (Mahabadi et al., 2021) is a informa-
tion theoretic method to implement information
bottleneck principle that functions as suppress ir-
relevant features for improved BERT fine-tuning.

ADA is the standard adversarial data augmenta-
tion method that trains the model using the mixture
of normal and adversarial data.

ASCC (Dong et al., 2021) is an adversarial
sparse convex combination method that estimates
the word substitution attack space with convex hull
and uses it as a regularization term. TA-VAT (Li
and Qiu, 2021) is a token-aware virtual adversarial
training method that uses a token-level normaliza-
tion ball to constrain the perturbation. InfoBERT
(Wang et al., 2021) is a adversarial training method

2h'ctps ://github.com/QData/TextAttack

with BERT fine-tuning using two regularizers. In-
formation bottleneck regularizer suppresses noise
features and anchored feature regularizer increases
the dependence between local and global features.

DisenIB (Pan et al., 2021) is a supervised dis-
entangled learning method that implements infor-
mation bottleneck principle. DisenIB uses CNN to
reconstruct input images. Transferring to text do-
main, we replace CNN with an RNN decoder and
change the reconstruction loss to language model-
ing loss for self-reconstruction.

6.4 Implementation Details

For all comparative methods, bert-base-uncased
(Devlin et al., 2019) is used as text encoder. We
use the last hidden layer output of token [CLS] as
sentence embedding. We run our experiments on
one Tesla V100 GPU with 32 GB memory. De-
tails of hyper-parameters are provided in Appendix
A. After parameter searching, we report the best
results of all methods. Our codes, trained mod-
els and augmented data are available at https:
//anonymous . 4open.science/r/DTRL.

6.5 Experimental Results

In our experiments, we first report the main experi-
mental results of our method and the comparative
methods. We then illustrate the latent space to vi-
sualize the quality of disentanglement. We also
evaluate the transferability of robustness and sensi-
tivity of mutual information estimation.

6.5.1 Results on Model Robustness

Table 2 reports the comparative results of differ-
ent methods on the accuracies of clean data and
under attacks. For clean data, the performances
of our DTRL are comparable to those of the orig-
inal BERT. One possible reason for this is that
our disentangled learning objective can restrain the
model from relying on spurious cues, and thus fa-
cilitate the exploration of more difficult and robust
language phenomena. Under attacks, our DTRL
achieves the highest accuracy values and outper-
forms all other methods by a large margin.
Comparing the results of ADA and DTRL, it
shows the advantages of disentangled learning, as
both methods need adversarial data augmentation
at the training stage. Under attacks, DTRL in-
creases model robustness by a large margin com-
pared to ADA. The results indicate that DTRL is
more effective to leverage adversarial examples to
improve robustness. We also report empirical re-
sults of robustness transferability in Section 6.5.3.
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Datasets  Score BERT VIBERT ADA ASCC TA-VAT InfoBERT DisenIB DTRL

Clean 86.5 88.0 82.8 84.9 89.4 88.4 85.0 87.0

MR Deepwordbug 15.3 13.6 16.6 16.0 19.9 179 20.9 35.0
Textfooler 44 5.0 7.1 4.0 7.2 6.1 8.5 19.3

Clean 924 92.7 93.5 88.0 92.8 93.0 90.2 92.2

SST-2 Deepwordbug 17.7 19.8 24.4 23.2 20.5 19.2 29.8 40.8
Textfooler 4.4 5.6 8.3 5.3 7.8 9.9 8.7 17.8

Clean 89.1 89.1 89.6 82.7 88.7 90.2 86.7 89.7

SNLI  Deepwordbug 6.6 8.8 17.0 124 12.9 7.9 13.9 24.1
Textfooler 1.7 2.2 5.1 3.9 3.6 2.9 7.3 14.6

Table 2: Robustness comparison of different methods. All methods are built on BERT, with the best performing
scores marked in bold. Clean refers to the accuracy of clean data, and Deepwordbug and Textfooler refer to the
accuracies under corresponding attacks.
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Figure 2: Latent space visualization with t-SNE. Left figure illustrates BERT embeddings, and middle and right

figures for robust/non-robust features. Domain labels are marked with colors and task labels with dot and cross.

Compared with information bottleneck (IB)
guided methods VIBERT and InfoBERT, we can
see that InfoBERT achieves better accuracy val-
ues on clean data, while DTRL significantly im-
proves the model robustness under attacks. The IB
principle learns compressed representations which
removing irrelevant features, leading to better per-
formances on clean data. Contrastly, our DTRL
explicitly disentangles robust and non-robust fea-
tures and achieves better results under attacks than
IB guided methods. We further visualize the disen-
tangled latent embeddings in Section 6.5.2.

The DRL-based DisenIB and our DTRL both
achieve better results for adversarial robustness
than those of other methods. DisenIB uses the
original examples to learn irrelevant features with
reconstruction loss while our DTRL directly learns
non-robust features with adversarial data augmen-
tation. DTRL outperforms DisenIB in adversarial
robustness, indicating that adversarial examples
contains more non-robust features than the original
examples do. Also, the loss of text decoder in Dis-
enlB behaves quite differently than classification
layer, resulting in the difficulty of balancing task
loss and disentanglement loss.

In summary, the above results verify the effec-
tiveness of our method. Due to space limit, the
results of ablation study are given in Appendix C.

6.5.2 Visualization of Latent Space

To visulize the latent space, we first randomly sam-
ple 300 examples from the test set of MR, then
perform attacks against BERT and our DTRL to
get adversarial examples respectively. We com-
press the representations of BERT embedding and
DTRL robust and non-robust features into 2D by
t-SNE (van der Maaten and Hinton, 2008).

Figure 2 visualizes the disentangled embeddings
in our model. The left figure shows the last layer
hidden state of BERT. The middle and right fig-
ures show the robust and non-robust features re-
spectively. The domain of examples is colored in
blue (natural example), red (Textfooler) and orange
(Deepwordbug). The truth label of examples is
marked with dot and cross. From the right figure, it
can be seen that initially, adversarial examples are
located between positive and negative examples.

We also notice different preferences between ro-
bust and non-robust features. From middle figure
of robust features, examples are distinct with class



labels and grouped with domain (i.e. natural or ad-
versarial). While in the left figure of non-robust fea-
tures, examples are better grouped by colors which
stand for the domain of examples. This indicates
non-robust features are mainly guided by domain
labels, while robust features mainly focus on task
labels. To some degree, robust and non-robust fea-
ture clustering tends to overlap, and better mutual
information estimation can potential facilitate the
improvement of robustness.

6.5.3 Transferability of Robustness

Datasets Model textbugger iga pso pwws
MR BERT 24.4 86 58 9.3
DTRL 26.6 275 7.7 246
SST-2 BERT 28.2 121 79 12.3
DTRL 30.0 139 97 203
SNLI BERT 2.5 0.8 6.3 1.3
DTRL 7.8 55 79 6.2

Table 3: Accuracy of BERT and DTRL under attacks.

To explore the robustness transferability of our
DTRL, we evaluate model robustness with four ex-
tra attacks and report model accuracy under attack
in Table 3. We select attack methods with different
perturbation spaces: iga’ uses counter-fitted word
embedding to search synonym substitutions, while
pso (Zang et al., 2020) and pwws (Ren et al., 2019)
use HowNet and WordNet respectively. textbugger
(Li et al., 2019) consists of character-level attack
and word substitution attack.

Compared to BERT, DTRL consistently im-
proves model robustness under four attacks. This
indicates that disentangled robust features can
improve robustness across different perturbation
spaces. Although this empirical finding does not
guarantee the robustness improvement under other
attack methods, it sheds light on future research to
enhance model robustness intrinsically.

6.5.4 Effect of Mutual Information
Estimation

We further investigate the sensitivity of mutual in-

formation (MI) estimation, as its estimation is the

key to disentanglement.

Batch Size We estimate MI using the density-
ratio-trick (Kim and Mnih, 2018; Pan et al., 2021)
which shuffles the samples along the batch axis.

*Improved genetic algorithm based word substitution
method from Wang et al. (2019)
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Figure 3: Robustness results of MR under Deepword-
bug attack. Aua% is accuracy under attack and #Step
is training step.
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Figure 4: Sensitivity of dimension. Acc% is the accu-
racy of clean data. Aua% is the accuracy under attack.

Thus we examine the effect of batch size. Figure 3
is the accuracy of DTRL under deepwordbug attack
on MR dataset. We can observe that small batch
size makes the robustness low and unstable, while
large batch leads to consistently better robustness.

Hidden Dimension Previous work show that es-
timating MI is hard, especially when the dimension
of the latent embedding is large (Belghazi et al.,
2018; Poole et al., 2019; Cheng et al., 2020a). On
the other hand, a large hidden dimension can im-
prove the representative ability of model. We exam-
ine this trade-off by altering the hidden dimension
of robust and non-robust embedding layers. Figure
4 shows the results of the accuracies of clean data
and under attack. We observe that a larger hidden
dimension can increase model accuracy of clean
data. On the contrary, when the dimension is too
large, it will degrade model robustness.

7 Conclusion

In this paper, we propose the disentangled text rep-
resentation learning method DTRL for adversarial
robustness guided with information theory. Our
method derives the disentangled learning objective
and constructs the disentangled learning network



which learns the disentangled representations.

Limitations

The disentangled learning objective in our method
is derived from the VI with several approxima-
tions, which makes it a loose bound, and conse-
quently its mutual information estimation lacks
a tight bound either. Another limitation in our
method is that the adversarial data augmentation
we use for non-robust feature learning is a rela-
tively time-consuming offline method compared to
self-reconstruction, albeit it is more effective than
self-reconstruction as shown in the comparative re-
sults of Table 2 between our DTRL and DisenlB
method.

Ethical Considerations

Our research studies disentangled text representa-
tion learning to enhance model robustness under ad-
versarial attacks. The potential risk is that the way
we disentangle non-robust features may reversely
inform the design of adversarial attack methods
to increase the vulnerabilities of machine learning
models.
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A Additional Implementation Details

Baseline Implementation The BERT baseline
has 110M parameters with 12 layer transformers
and hidden size of 768. For methods TA-VAT,
ASCC and InfoBERT, we use the implementation
of textdefender # (Li et al., 2021). For VIBERT
method, we use the implementation of Mahabadi
et al. (2021). . We implement DisenIB based on
Pan et al. (2021). ® For all methods in experiment,
the training epoch is 10, 10 and 5 for MR, SST-
2 and SNLI respectively. For VIB, we consider
B of {107°,107%,1073,1072}. For ASCC, we
consider weight of regularization « of {10, 3,2, 1}
and weight of of KL distance of {1,4,5}. For
DisenlB, we consider the weight of estimation
of {0.5,1,1.5,2.0,2.5} and the weight of recon-
struction of {0.5,1,1.5,2.0,2.5}. We consider
batch size of {16, 32,64, 96} and learning rate of
{1e=® 1e7* 5¢7°}. We use early stopping and
select the best accuracy model on test set.

Hyper-Parameters We use the same setting in
different datasets. For DTRL, the architecture pa-
rameters of E, and E,, are the same. Both are 3
layer MLP and shapes are:[768, 768], [768,384],
[384, 32]. C). and C,, are one layer MLP shape as
[32, #label type]. D take the concatenate of 2" and
2™ as input, output the mutual information between
them. D is a 3 layer MLP and shapes are: [64,
128], [128, 256], [256,1]. For the architecture of
compared methods, we basically use the default set-
ting of their implementation. Details can be found
in our code.

Table 6 lists the hyperparameter configurations
for best-performing DTRL model on three datasets.

Visualization Parameters We visualize hidden
embeddings using t-SNE. For the hyper-parameters
of t-SNE, we consider the iteration of {300, 500,
1000, 2000, 3000, 5000, 6000} and perplexity of
{10, 20, 30, 50, 100, 150, 200, 250, 300}. We draw
the cherry picking figures in Fig.6.5.2.

B Adversarial Data Augmentation

Victim Model is a well trained model as the at-
tack target to generate adversarial examples. For
MR dataset, we finetune BERT on MR training set
ourselves. For SST-2 and SNLI dataset, we use the

4https://github.com/RockyLzy/TextDefender

5https://github.com/rabeehk/vibert

https://github.com/PanZiqiAl/
disentangled-information-bottleneck

bert-base-uncased-snli and bert-base-uncased-sst2
provided by TextAttack Model Zoo .

Dataset We use three English and balanced
datasets: MR, SST-2 and SNLI. We use the MR
dataset provided by TextFooler ® which used 90%
of data as training set and 10% as the test set. We
use the GLUE version of SS7-2 dataset °. We use
snli 1.0 provided by Stanford Natural Language
Processing Group !°. We augment adversarial ex-
amples using the training set of these datasets. We
use the full training sets of MR and SST-2. Due to
the time limitation, we use half of the training sets
of SNLL

Attack Methods We use the implementation of
TextAttack with the default setting. We notice that
different work may adjust the constraint parameters
of attack methods in different ways. For consistent
comparison, we stick to the default parameter set-
ting in this paper.

Adversarial data augmentation is time-
consuming, so we release all augmented data used
in experiments for ease of replication. The statistic
of augmented data is listed in Table 4.

Deepwordbug Textfooler
Datasets #A.E. Avg. PW.% #A.E. Avg. PW.%
MR 7878 19.37 9065 19.37
SST-2 51501 34.54 59072 31.89
SNLI 248246 20.21 257282 7.66

Table 4: Statistics of augmented data of MR, SST-2
and SNLI datasets. Deepwordbug and Textfooler are
the attack methods used for augmentation respectively.
#A.E. represents the number of adversarial examples
and Avg P.W. % represents average word perturbation
rate.

Text Encoder Comparison Table 5 shows the
performance of different encoder. Most of the mod-
els are provided by TextAttack Model Zoo. Specifi-
cally, there are roberta-base-mr, roberta-base-sst2,
distilbert-base-uncased-mr, distilbert-base-cased-
sst2, distilbert-base-cased-snli, albert-base-v2-mr,
albert-base-v2-sst2, albert-base-v2-snli. Lastly, we
finetune roberta-base on snli with batch size 64,
learning rate 2e-5 for 3 epoch.

"https://textattack.readthedocs.io/en/latest/
3recipes/models.html

8https://github.com/jind11/TextFooler

9https://huggingface.co/datasets/glue/viewer/
sst2

10https://nlp.stanford.edu/projects/snli/
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MR SST-2 SNLI
Encoder
Clean Deepwordbug Textfooler Clean Deepwordbug Textfooler Clean Deepwordbug Textfooler
BERT 86.5 15.3 4.4 92.4 17.7 4.4 89.1 6.6 1.7
RoBERTa 95.6 18.9 52 94.0 17.0 4.7 91.2 2.9 34
DistilBERT  86.4 171 39 90.0 14.2 2.7 87.4 1.5 1.5
ALBERT 89.7 15.0 34 92.6 13.6 39 89.1 1.0 1.3

Table 5: Performance comparison of different methods on MR, SST-2 and SNLI. Clean stands for the accuracy of
clean data, and Deepwordbug and Textfooler refer to the accuracy under corresponding attacks.

Hyperparameters MR SST-2 SNLI
Layers of encoder E,. 3 3 3

Layers of encoder F,, 3 3 3
Dimension of encoder £,  768,384,32 768,384,24 768,384,32
Dimension of encoder F,,  768,384,32 768,384,24 768,384,32
Layers of C'. 1 1 1

Layers of C), 1 1 1
Dimension of C. 32 24 32
Dimension of C,, 32 24 32

Layers of D 3 3 3
Dimension of D 128,256,1 128,256,1 128,256,1
Batch size 64 64 64
Warmup steps 300 200 2000

Total training steps 600 400 3000
Learning rate Se-5 Se-5 Se-5
Optimizer of D Adam Adam Adam
Optimizer of others AdamW AdamW AdamW

Table 6: Hyperparameters for the best-performing DTRL model on dataset MR, SST-2 and SNLI.

In terms of performance on clean data, ROBERTa
outperforms BERT, while DistilBERT and AL-
BERT are close to BERT. In terms of accuracy un-
der attacks, the performances of the four encoders
are close to each other. Thus we choose BERT as
text encoder in our experiments for simplification
(note that VIBERT, ASCC, TA-VAT and InfoBERT
are original built on BERT in their published pa-

pers).
C Ablation Study

We conduct an ablation study to test the design
of our DTRL. Our DTRL is an integrated method.
Without adversarial data augmentation (ADA), do-
main classifier (DC) and discriminator (D), DTRL
degenerates to BERT fine-tuning. Without disen-
tangled learning domain classifier (DC) and dis-
criminator (D), our DTRL degenerates to ADA. Re-
placing domain classifier with self-reconstruction
decoder (AE), DTRL is similar to DisenIB. We bor-
row the results from Table 2 and report the ablation
results in Table 7. Without disentangled learning

(-DC, -D) and using self-reconstruction for disen-
tanglement learning (-D, +AE), the model perfor-
mance for adversarial robustness is poor, and our
full model using adversarial examples for disen-
tangled representation learning benefits adversarial
robustness the most.

Model Clean DWB TF
DTRL (full model) 92.2 40.8 17.8
-ADA, -D, +AE (DisenlB) 90.2 29.8 8.7
-D, -DC (ADA) 93.5 24.4 8.3
-ADA, -D, -DC  (BERT) 92.4 17.7 4.4

Table 7: Ablation study on SST-2 dataset. Clean, DWB
and TF stand for the accuracies of clean data, under
Deepwordbug and Textfooler attacks respectively.

D Case Analysis

To investigate whether our method helps the model
to rely on deeper language phenomena for adversar-
ial robustness, we visualize some examples where
BERT is fooled under the attack while our method



is robust. Figure 5 shows three examples selected
from SST-2 dataset and the corresponding adversar-
ial examples under TextFooler attack. We visualize
the contribution of each token using a layer-wise
relevance propagation based method !!, which inte-
grates relevancy and gradient information through
attention graph in Transformer. The darker the
color, the greater contribution the word has to the
prediction result.

We observe that BERT fine-tuning tends to rely
on the most important tokens rather than the lin-
guistic meaning of the sentence to make prediction.
For instance, in figure 5a, the prediction result of
BERT mostly relies on the word hopeless, and thus
fails to make correct prediction when it is replaced.
In contrast, in our method, most tokens contribute
to the prediction, making it more robust to single
word replacement.

E License

The attack toolkit TextAttack uses MIT License.
The BERT is provided by huggingface transform-
ers which use Apache License 2.0.

Mhttps://github.com/hila-chefer/
Transformer-Explainability
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Legend: M Negative [0 Neutral H Positive

True Predicted Example Predict
Word Importance
Label Label Type Model
0 0 EroTE] BERT [CLS] the most -##Iy mono ##ton ##tous film of the year , noteworthy only for the gi
atural

(1.00) ##mm ##ick of being filmed as a single unbroken 87 - minute take . [SEP]

0 [CLS] the most hopeless ##ly mono ##ton ##ous film of the year , noteworthy only for the gi
0 Natural Ours . — ¥ :

(1.00) ##mm ##ick of being filmed as a single _87 - minute take . [SEP]

1 CLS] -most lethal ##ly fan ##fare film of the year, noteworthy only for the gi ##mm
0 Adversarial BERT t i ! e y i y. . &

(0.70) ##ick of being filmed as a single unbroken 87 - minute take . [SEP]

0 CLS] the most -##I fan ##fare film of the year , noteworthy only for the gi ##mm
0 Adversarial Ours t = ! . A - y. — g

(1.00) #t#tick of being filmed as a single unbroken 87 - minute take . [SEP]

(a) Input text: the most hopelessly monotonous film of the year , noteworthy only for the gimmick of being filmed as a single
unbroken 87-minute take .

Legend: B Negative [J Neutral B Positive

True Predicted Example Predict
Word Importance
Label Label Type Model
0 0 Natural BERT [CLS] the film is based on truth and yet there is something about it that féeis icompletel,
atural

(0.99) as if the real story starts just around the corner . [SEP]

0 CLS] the film is based on truth and yet there is something about it that feels _
0 Natural Ours t . ! . 4 a

(1.00) as if the real story starts just around the corner . [SEP]

1 . [CLS] the film is based on truth and -there is something about it that recognizes
0 Adversarial BERT . . T r—

(0.76) incomplete , as if the real stories initiate just around the corner . [SEP]

0 A [CLS] the film is based on truth and yet there is something about it that recognizes
0 Adversarial Ours A . TEe—

(1.00) fCOmpIEtal, as if the real stories initiate just around the corner . [SEP]

(b) Input text: the film is based on truth and yet there is something about it that feels incomplete , as if the real story starts just
around the corner .

Legend: @ Negative [0 Neutral B Positive

True Predicted Example Predict
Word Importance

Label Label Type Model

0 [CLS]it"s a bit _that it only manages to be decent instead of dead brilliant
0 Natural BERT

(1.00) . [SEP]

0 CLS]it's a bit disappointin -it onl -to be decent instead of dead brilliant
0 Natural Ours [CLs) - - y

(1.00) . [SEP]

1 . [CLS]it's a tad regret ##table that it only management to word ##en com ##men
0 Adversarial BERT

(0.57) ##dableleven of dead Biilliand. [SEP]

0 . [CLS]it's a tad regret ##table -it _o -##en com ##men
0 Adversarial Ours -

(1.00) ##dable even of dead|orilliant . [SEP]

(c) Input text: it ’s a bit disappointing that it only manages to be decent instead of dead brilliant .

Figure 5: Case study examples. Each input text is tokenized and appended with special tokens, and ## is the
tokenization mark used in BERT tokenizer. The darker the color, the more important the word is.



