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Abstract—Automatic Speaker Verification (ASV) technology
has become commonplace in virtual assistants. However, its
performance suffers when there is a mismatch between the train
and test domains. Mixed bandwidth training, i.e., pooling training
data from both domains, is a preferred choice for developing a
universal model that works for both narrowband and wideband
domains. We propose complementing this technique by perform-
ing neural upsampling of narrowband signals, also known as
bandwidth extension. Our main goal is to discover and analyze
high-performing time-domain Generative Adversarial Network
(GAN) based models to improve our downstream state-of-the-art
ASV system. We choose GANs since they (1) are powerful for
learning conditional distribution and (2) allow flexible plug-in
usage as a pre-processor during the training of downstream task
(ASV) with data augmentation. Prior works mainly focus on
feature-domain bandwidth extension and limited experimental
setups. We address these limitations by 1) using time-domain
extension models, 2) reporting results on three real test sets, 2)
extending training data, and 3) devising new test-time schemes.
We compare supervised (conditional GAN) and unsupervised
GANs (CycleGAN) and demonstrate average relative improve-
ment in Equal Error Rate of 8.6% and 7.7%, respectively.
For further analysis, we study changes in spectrogram visual
quality, audio perceptual quality, t-SNE embeddings, and ASV
score distributions. We show that our bandwidth extension leads
to phenomena such as a shift of telephone (test) embeddings
towards wideband (train) signals, a negative correlation of
perceptual quality with downstream performance, and condition-
independent score calibration.

Index Terms—bandwidth extension, speaker verification, con-
ditional GAN, CycleGAN, perceptual quality, score distribution

I. INTRODUCTION

SPEECH technologies such as voice assistants have prolif-
erated recently, thanks to the advancements made in deep

learning [1]–[3]. Usually they are designed for a particular
acoustic environment, which causes a mismatch between the
train and test data in terms of channel, acoustic domain,
sampling frequency, and Signal-to-Noise Ratio (SNR) [4].
There is also a degradation in performance of downstream
tasks like Automatic Speech Recognition (ASR) [5] and Au-
tomatic Speaker Verification (ASV) [6]–[8]. It is challenging
to develop a universal model invariant to the choice of testing
domains like narrowband telephone speech, far-field speech,
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and children’s speech in the wild [4]. Common techniques
to promote domain invariance include Domain Adversarial
Training (DAT) [9], mixed-bandwidth training [10], multi-task
learning [11], [12], feeding auxiliary information [13], and pre-
processing solutions like speech enhancement [7], bandwidth
extension [12], [14]. In this paper, we focus on Bandwidth
Extension (BWE) for the downstream task of telephony ASV,
where the goal is to determine whether speakers in two given
recordings are identical or not – primarily in telephone test
sets. Typically, ASV is trained on mixed bandwidth data i.e.
Narrowband (NB) telephone and Wideband (WB) microphone
which are bandlimited to 4 KHz and 8 KHz, respectively.
We focus on bandwidth mismatch through neural upsampling,
also known as bandwidth extension/expansion, audio super-
resolution, or simply extension. It refers to increasing the
bandwidth, i.e., the highest frequency information available)
in NB signals to match with the bandwidth of WB signals.
Equivalently, it amounts to estimating the missing upperband
(UB) frequency region (also known as High Frequency Energy
(HFE)) from the lowerband (LB) region. The factor by which
the bandwidth increases is called upsampling ratio (UPR) [15].

Active research in BWE has improved the quality of
extended signals over the years. Modeling domain choices
include time and frequency, where the latter is more prevalent
in the past. A combination of the two approaches is also
prevalent. In the time-domain approach, BWE is performed
directly on temporal samples. In the frequency-domain ap-
proach, we predict only the Short-Time Fourier Transform
(STFT) magnitude of the speech signal, while we re-use the
old phase (only for the lower band).

BWE literature is also categorized based on the usage of
generative modeling. For the evaluation of extended signals,
human listening studies [16] and distortion metrics such as
Log-Spectral Distance (LSD) [17] are used. Arguably, percep-
tual and intelligibility metrics of speech enhancement metrics
like Perceptual Evaluation of Speech Quality (PESQ) [18],
Short-Time Objective Intelligibility (STOI) [19] can be used
as well. BWE can also improve speech-in-noise perception,
source localization, speech intelligibility, gender identification,
and phoneme identification [20]–[22]. Most prior works study
BWE independently, but we can also pursue it with other
tasks: 1) joint learning of BWE with other tasks to obtain
a better BWE model or 2) learning BWE to use it as a
pre-processor for improving downstream tasks. The second
direction concerns downstream performance explicitly. We
referred to this approach as task-specific enhancement [7], [8].

State-of-the-art speaker verification systems use x-
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vector [23] as front-end for embedding extraction and
Probabilistic Linear Discriminant Analysis (PLDA) [24]
as back-end for scoring and evaluation [6]. We choose a
robust experimental setup (Sec. V) where we train ASV with
narrowband as well as wideband data as per mixed bandwidth
training protocol [14]. We use data augmentation by adding
noise and reverberation during training. To train ASV with
bandwidth expanded samples and data augmentation, we
design time-domain BWE systems since augmentation allows
flexible plug-in usage. We wish to analyze the effect of BWE
via 1) ASV scores, 2) speaker embedding, and 3) perceptual
quality. Typically, we measure the benefit of extension on
downstream tasks via improvement averaged across test
condition types. When test condition information is available,
fine-grained analysis is also possible. Furthermore, changes
in target/non-target ASV trial score distribution can reveal
interesting properties of extension. We can also study the
shift of speaker embeddings of the test set w.r.t. train set to
reveal the domain adaptation capability of extension. The
extension can also modify the perceptual quality of speech,
and we study its correlation with downstream performance
using supervised and unsupervised GANs. We provide the
first comprehensive work that:

1) Discusses in-depth how to design a strong time-domain
GAN-based bandwidth extension system for ASV.

2) Provides fair comparison of supervised (deep regres-
sion, CGAN) and unsupervised (CycleGAN) methods
on three real test sets.

3) Comprehensively evaluates of BWE system by extend-
ing training data of ASV (PLDA and x-vector).

4) Analyzes in detail analysis via per-trial type reporting,
spectrogram visualization, automated perceptual quality
assessment, and embedding visualization for extended
signals – for both supervised and unsupervised methods.

II. PRIOR WORK

Traditional approaches to bandwidth extension included
source-filter model [25], Gaussian Mixture Model
(GMM) [26], Linear Predictive Coding (LPC) [27], and
Hidden Markov Model (HMM) [28]. Advances in deep
learning improved the modeling power significantly. Deep
regression [29] (mapping) became one of the earliest
successful techniques for BWE and speech enhancement.
Prior works have explored various modeling domains,
architecture, objective function, and paradigm. Time-domain
models offer maximum flexibility. However, they have only
recently become as performing as their frequency-domain
counterpart. [30] develops BWE in time-domain using a
simple l2 (Mean Squared Error (MSE)) regression loss.
[31] is a critical relevant work where authors used Deep
Feature Loss (DFL) in addition to time and frequency
domain losses. Some studies utilize re-use of the initial
phase in the frequency-domain network such that output is
temporal [32], [33]. Typically, the choice of modeling domain
and architecture are interdependent. For time-domain systems,
mechanisms like 1-D CNNs are popular. In [34], authors
trained time-domain system using Temporal Feature-wise
Linear Modulation (TFiLM) mechanism and deep feature

loss [7], [8], [35]–[37], whose performance is further boosted
by self-supervised pre-training and data augmentation.
Although we do not pursue pre-training, we employ data
augmentation in PLDA and x-vector networks to use more
robust and realistic baselines.

GANs are a popular choice of generative model for BWE.
Supervised Generative Adversarial Network (GAN) in form
of Conditional GAN (CGAN) was used in [38]. The main
limitations were the lack of downstream task evaluation and
the limited exploration of GAN parameters, which we address
in our work. A proof-of-concept for using unsupervised GAN
called CycleGAN (cycle-consistent GAN) exists in [39]. Au-
thors report improvement for the downstream task of ASR
by learning upper-band spectral coefficients, although the
improvement is minimal, and the modeling is not in the
time domain. We address these limitations too. Using the
discriminator model for adversarial learning is called feature-
matching loss. We also experiment using an external model
and term the loss Auxiliary Feature Matching (AFM) loss.

BWE can be pursued together with other tasks as well.
[11] employs a multi-task framework of BWE with denoising.
Another relevant work for extending historical recordings is
[40]. We do not pursue multi-task learning. However, in
[12], we extend our work to joint learning with domain
adaptation. BWE can help improve downstream tasks like
speaker recognition and speech recognition. In [41], authors
used BWE as a pre-processing step for narrowband data
for mixed-bandwidth training of a robust wideband speaker
embedding network. Another type of mixed-bandwidth train-
ing [10] is where narrowband and wideband speaker identities
are classified separately while using the same feature extractor
backbone. Previous works have shown that BWE of training
data improves ASV [14], [23], [42]. In ASR, BWE is shown
to improve performance in terms of Word Error Rate [16].

Log-Spectral Distortion (LSD) [42] is commonly used to
measure distortion in BWE outputs in the frequency do-
main. We wish to use other metrics like simple time-domain
Mean Squared Error (MSE) and, more importantly, speech
enhancement metrics. For the output spectrogram quality, prior
works [29], [43], [44] revealed 1) predicted upper band does
not have enough energy and appears extended trivially from
lower band voiced frames, 2) discontinuity at the intersection
of the lower band and upper band. In our work, we inves-
tigate if GANs can rectify these. In [37], authors showed
that, through t-distributed Stochastic Neighbour Embedding
(t-SNE) analysis, (speaker) embeddings of source speech can
shift towards target in domain adaptation application. We are
interested in such an analysis for BWE. To our knowledge,
ASV score analysis is not done in the past.

III. BANDWIDTH EXTENSION MODELS

This section describes the three models we use for band-
width extension: deep regression, conditional GAN, and Cy-
cleGAN, along with their objective function and architectures.

A. Deep regression
Also known as mapping approach [29], this involves train-

ing a feedforward network to directly predict the desired
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output via regression loss. This technique requires paired data.
The input would be narrowband data, and the target would be
the corresponding (paired) wideband audio.

B. Conditional GAN

GANs [45] are effective in sampling from the true data
distribution. Conditional GANs [46] are supervised variant of
GAN which learns to sample from conditional distribution and,
thus, can map samples from domain A to B. The generator
GA→B learns this mapping while discriminator DB learns to
distinguish between fake (generated) and real via

max
GA→B

min
DB

LCGAN , where (1)

LCGAN = Ladv + λsupLsup. (2)

Here, Ladv is the adversarial loss, and (a, b are (paired) sam-
ples from the distribution of A and B domains, respectively.
The supervised loss Lsup using Lp norm is given by

Lsup = Ea∼pA,b∼pB
[‖b− GA→B(a)‖p]. (3)

C. CycleGAN

Cycle-consistent GAN is an unsupervised GAN that learns
mappings between two domains [47]. In addition to two
adversarial losses, it has cycle loss Lcyc and identity loss Lid,
weighted by hyper-parameters λcyc and λid respectively. The
role of cycle loss is to enforce semantic consistency during
translation/mapping, while identity loss serves as a regularizer.
Let GA→B , GB→A denote the generators and DA, DB denote
the discriminators. We optimize

max
GA→B ,GB→A

min
DA,DB

Lcyc-GAN , where (4)

Lcyc-GAN = Ladv,A→B + Ladv,B→A + λcycLcyc + λidLid. (5)

Adversarial losses Ladv,A→B and Ladv,B→A are defined in
Sec. III-G. Cycle and identity losses are

Lcyc = Ea∼pA,b∼pB
[‖a− GB→A(GA→B(a))‖1]

+ Ea∼pA,b∼pB
[‖b− GA→B(GB→A(b))‖1], (6)

Lid = Ea∼pA
[‖a− GB→A(a)‖1]

+ Eb∼pB
[‖b− GA→B(b)‖1]. (7)

Since there is no direct supervision loss in CycleGAN, it does
not require paired samples from two domains for training and,
hence, offers more flexibility in usage compared with CGAN,
although at the cost of increased complexity. (a,b) represents
unpaired data. There does not necessarily exist any relation
between a and b. However, we can use paired data instead
and term it paired CycleGAN.

D. Generator architecture

Conv-TasNet [48]: We use off-the-shelf Conv-TasNet for
the feedforward model for deep regression and the generator
for GANs. It is a time-domain model that has been used for
other tasks like speech enhancement [49], [50] and source
separation [48]. It consists of encoder, separator, and de-
coder. The encoder is simply a 1-D Convolutional Neural

Network (CNN) layer. The separator, through multiple 1-D
CNN layers, computes a mask for separation used by decoder
stage to produce output. We make minor modifications in the
architecture 1. The number of stacks of CNNs in separator is
one, the number of layers per stack is eight, and the number of
output channels of decoder is one. To capture finer details in
high sampling rate signals, we choose the number of channels
in encoder as 128, the kernel size as 16, and the stride as 8. The
number of input and output channels in the separator are 128
and 1024, respectively, and dilation increases exponentially
with a factor of 2. The receptive field is 32 ms and the total
parameters are only 1.6 M making the deployment lightweight.

E. Discriminator architectures

Parallel WaveGAN (PWG) [51]: This is a 1-D deep CNN
with ten CNN layers with a kernel size of 3, channels as 80,
activation as LeakyReLU (slope=-0.2), and linearly increasing
dilation from the second layer to the ninth layer (from dilation
value of one to eight). It contains only 0.16M parameters.

MelGAN [52]: This model is similar to PWG, and
works well with a variety of adversarial losses. There
are seven CNN layers and the corresponding channels
are {16,64,256,1024,1024,1024,1} and kernel sizes are
{15,41,41,41,41,5,3}. The number of parameters is 5.6M, thus
significantly bigger than PWG. We also use a multi-scale
version of MelGAN, which uses three such discriminators.
Here, scale refers to the downsampling factor used for the
input to the model. We use the same scale value of four for
all sub-discriminators.

HiFiGAN [53]: We use its multi-scale and multi-period
versions. Period parameter signifies splitting signal (with
length equal to period) and concatenating the parts along a new
axis. The multi-period model consists of four discriminators.
Each consists of six 1-D CNN layers with kernel size as
5, stride as 3, output channels as {4, 16, 64, 256, 1024,
1}, and LeakyReLU activation (slope=-0.1). The number of
parameters is 7M. The multi-scale model consists of three
discriminators each containing eight CNN layers with kernel
size as {15, 41, 41, 41, 41, 41, 5, 3}, stride as {1, 2, 2, 4, 4,
1, 1, 1}, output channels as {16, 16, 32, 64, 128, 256, 512,
1}, and LeakyReLU activation (slope=-0.1). The multi-scale
multi-period model uses both models simultaneously with total
2.3M parameters.

StyleMelGAN [54]: This consists of differentiable Pseudo
Quadrature Mirror Filter bank (PQMF) analysis as pre-
processing for input to four sub-models, each analyzing a
different signal subband. Each sub-model is a MelGAN dis-
criminator. The number of parameters is 5.9M.

F. Supervision losses

For the supervision loss in CGAN and identity and cycle
loss in CycleGAN, we use the following loss functions: simple
MSE (l2) and MAE (l1) losses.

Multi-Resolution Short-Time Fourier Transform [51]:
MRSTFT loss simply compares two signals x and x′ in
frequency domain by using M = 3 STFT with corresponding

1https://github.com/naplab/Conv-TasNet

https://github.com/naplab/Conv-TasNet


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, SEPTEMBER 2022 4

Fig. 1. Spectrograms for four random samples (one per row) from SRE21 test set after extension by deep regression, CGAN, and CycleGAN in columns 1,
2, and 3, respectively. The last column contains the ground truth wideband spectrogram. It is unavailable for the last two samples since they are originally
narrowband signals unlike the other two samples. Note that GAN (especially CycleGAN) produces the best (natural-looking) outcomes.

FFT sizes (N) as {1024, 2048, 512}, hop sizes as {120, 240,
50}, window length as {600, 1200, 240}, and Hann window:

Lsup = Ex,x′ [

M∑
m=1

L(m)
sup (x,x′)] , (8)

L(m)
sup (x,x′) = L(m)

sc (x,x′) + L(m)
mag (x,x

′), (9)

L(m)
sc (x, x̂) =

‖|STFT(m)(x)| − | STFT(m)(x̂)|‖F
‖|STFT(m)(x)|‖F

, (10)

L(m)
mag (x, x̂) =

1

N
‖ log |STFT(m)(x)|

− log |STFT(m)(x̂)|‖1. (11)

Here, || · || is Frobenius norm. Besides vocoding task, this loss
is helpful for defense against adversarial attacks as well [50].

Feature Matching [52] and Auxiliary Feature Matching:
FM loss measures differences in activations produced by
inputs x and x′ in the hidden space of the discriminator i.e.

LFM =

L∑
i=1

||Dli(x)−Dli(x
′)||1. (12)

Here, Dli is the output of layer i. In auxiliary FM, an external
model A replaces D, which is pre-trained on a relevant task,

in our case, speaker classification. Thus, AFM loss becomes
identical to deep feature loss [55].

G. GAN adversarial losses

Non-saturating loss [45]: The binary cross-entropy (log
loss) based minimax objective for GAN is

min
GA→B

max
DB

Ea,b∼pA,B
[log (D(b)) + log (1−D(G(a))]. (13)

Authors discuss that it is easy for the discriminator to
distinguish between real and fake during the beginning of
training, which leads to saturation of the second term. Hence,
they proposed to maximize log(D(G(a)) for generator loss
instead, which provides better gradients for the learning of
the generator.

Least Squares GAN [56]: Here, the authors addressed the
vanishing gradient problem of regular GANs, which use sig-
moid activation and log loss. They proposed using regression
loss for classification tasks and showed that this improves
training stability. The formulation is

min
GA→B

max
DB

Ea,b∼pA,B
[(D(b))2 + (1−D(G(a))2]. (14)

Hinge loss [57]: The authors here take a geometric view of
adversarial learning. Via hinge loss, they analyze generator and
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discriminator updates as learning a hyperplane to maximize the
Support Vector Machine (SVM) margin

max
DB

Eb∼pB
[min (0,−1 +D(b))]+ (15)

Ea∼pA
[min (0,−1−D(G(a)))],
min
GA→B

−Ea∼pA
[D(G(a))]. (16)

Wasserstein loss (WGAN) [58]: This addresses the weak-
nesses of the original GAN in three respects: mode collapse,
vanishing gradient, and hard-to-achieve Nash equilibrium. By
formulating based on Wasserstein loss (Earth Mover distance)
instead of the usual Kullback-Leibler (KL) divergence and
Jensen-Shannon (JS) divergence, we appropriately handle sup-
port mismatch between distributions. The formulation is

min
GA→B

max
DB

Ea,b∼pA,B
[D(b)−D(G(a)))]. (17)

We employ Wasserstein GAN-Gradient Penalty (WGAN-
GP) [59] where the critic (discriminator) gradient magnitudes
are further Lipshitz-constrained to an upper value (of 0.001).

Dual Contrastive Loss [60]: Improving upon the previous
GANs, here, the adversarial loss intertwines real and fake
samples via the following contrastive formulation:

min
GA→B

max
DB

Eb∼pB
[log(1 +

∑
a∼pA

exp(D(G(a))−D(b)))]

+ Ea∼pA
[log(1 +

∑
b∼pB

exp(D(G(a))−D(b)))]. (18)

Fig. 2. Three locations for deploying BWE. Two in training – before x-vector
network and PLDA respectively. One in inference – before x-vector network.
Corresponding results are in Table. V.

IV. PROPOSED EVALUATION SCHEMES

In this section, we describe the methodology for the de-
sign, deployment, and evaluation of our bandwidth extension
systems. First, we describe our downstream task: Automatic
Speaker Verification. Second, we explain our greedy approach
for discovering high-performing generative models. We also
discuss the possibilities of its deployment during the training
and inference of the downstream task. Finally, we analyze
the effect of extension on ASV scores, perceptual quality of
signals, and speaker embeddings.

A. Automatic Speaker Verification

The goal of ASV is to determine if two recordings contain
the same dominant speaker. One instance of such determina-
tion – using enroll and test utterance – is called a trial. Trials

in which speakers are same are called target trials, while for
different speakers, they are called non-target trials. In state-
of-the-art ASV systems, there is a x-vector (speaker classifi-
cation) network [23] based front-end and Probabilistic Linear
Discriminant Analysis [6] based back-end. The former extracts
speaker embeddings while the latter computes log-likelihood
scores to test the binary hypothesis of ASV. Common reporting
metrics are Equal Error Rate (EER) (in %) and minimum
Decision Cost Function (DCF). EER occurs at the decision
threshold where the False Alarm (FA) and False Reject (FR)
errors are equal. Decision cost function is defined as

C = (1− ptar)× CFA × PFA + ptar × CFR × PFR. (19)

ptar is the prior probability for target speaker while CFA and
CFR (set to 1 in our case) are the pre-defined costs for the two
types of error. The minimum value achieved by varying the
decision threshold is called minDCF.

B. Designing time-domain GAN for bandwidth extension

Our primary choice for BWE model is GANs. Since the
design space of GANs can be too broad, we propose limiting
the search scope. We explore only three aspects of GAN:
discriminator architecture, supervision loss function, and ad-
versarial loss function (Sec. III-E - Sec. III-G). Another reason
for this exploration is that GAN performance is susceptible to
design choice. It is critical to discover a robust model suitable
for further analysis. We fix the generator architecture and other
training hyper-parameters for all models. To compare models,
we note their performance on three ASV test sets. Finally, to
obtain the best GAN, we use a greedy approach by combining
best discovered discriminator architecture, supervision loss
function, and adversarial loss function.

C. Comparison of supervised and unsupervised GANs

For fairness, we compare GAN models with simple deep
regression and no extension baselines. Also, since there is an
identity loss in CycleGAN, we propose to explore introducing
such terms in deep regression and CGAN too. Per Sec. III-C,
CycleGAN uses unpaired training data, but we have access
to paired data due to data creation by simulation (Sec. V-A).
Hence, to test if CycleGAN can leverage paired data unknow-
ingly, we also train a CycleGAN model with paired data (See
paired CycleGAN in Sec. III-C). Fig. 2 illustrates how a trained
BWE model can be utilized during the training and testing
phases of downstream task. During training, x-vector and
PLDA can independently utilize BWE pre-processing. During
inference, input test signals can be extended before feeding
to the trained ASV pipeline. We apply BWE during testing
blindly, i.e., extend wideband signals too which ideally need
not be extended. Such signals are only present partially in one
test set and ideally do not require an extension. Nevertheless,
we extend them, expecting our models to simulate identity
operation. In contrast with this blind approach, we experiment
not processing such signals as well. In addition, we experiment
with the Low-Frequency Replacement (LFR) technique, where
the lower band of predicted signal is replaced by the lower
band of the original signal.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, SEPTEMBER 2022 6

TABLE I
DIFFERENT CHOICE OF DISCRIMINATOR ARCHITECTURE IN CONDITIONAL

GAN. MS AND MP STANDS FOR MULTI-SCALE AND MULTI-PERIOD.
MODELS DENOTED BY * IN TABLE I-III ARE IDENTICAL.

Disc. arch. SRE16-YUE-eval40 SRE-CTS-superset-dev SRE21-audio-eval
No BWE 7.46 / 0.382 5.42 / 0.217 18.52 / 0.662
PWG (*) 7.88 / 0.413 5.21 / 0.210 18.03 / 0.656
MelGAN 7.73 / 0.404 5.25 / 0.211 16.99 / 0.640
MelGAN-MS 7.84 / 0.406 5.18 / 0.210 16.67 / 0.636
HiFiGAN-MP 7.66 / 0.399 5.10 / 0.208 16.43 / 0.640
HiFiGAN-MS 7.81 / 0.408 5.11 / 0.210 17.16 / 0.643
HiFiGAN-MSMP 7.92 / 0.406 5.12 / 0.207 16.83 / 0.639
StyleMelGAN 7.09 / 0.389 4.85 / 0.204 18.91 / 0.678

TABLE II
DIFFERENT CHOICE OF SUPERVISION LOSS IN CONDITIONAL GAN

Sup. loss SRE16-YUE-eval40 SRE-CTS-superset-dev SRE21-audio-eval
No BWE 7.46 / 0.382 5.42 / 0.217 18.52 / 0.662
MAE (*) 7.88 / 0.413 5.21 / 0.210 18.03 / 0.656
MSE 6.95 / 0.370 4.91 / 0.205 16.64 / 0.646
MRSTFT 7.10 / 0.387 4.97 / 0.203 17.43 / 0.652
FM 7.86 / 0.405 5.24 / 0.211 17.50 / 0.645
AFM 6.89 / 0.382 5.38 / 0.220 18.40 / 0.690

D. Per-condition score analysis

We are also interested in analyzing per-condition results
since auxiliary condition information is available for our two
test sets. In the context of BWE, two types of speech are
of utmost interest: CTS (conversational telephone narrowband
speech) and AFV (Audio from Video wideband speech in
the wild). Therefore, we focus on three trial types: CTS-
CTS, CTS-AFV, and AFV-AFV. We also study trials based
on language, gender, and recording device. However, averaged
scores do not convey all information about distribution shifts
in verification scores. We propose to study this in two ways.
One, plot score histograms of CTS-AFV trials before and after
BWE. Two, plot CTS-CTS, CTS-AFV, and AFV-AFV scores
and examine if BWE brings them closer.

E. Perceptual quality and speaker embedding analysis

To further analyze our BWE systems, we explore the effects
of extension on perceptual quality and speaker embeddings of
signals. In the absence of explicit perceptual quality objectives
in training, it is paramount to explore if there is a correlation
between the downstream performance and the output speech
quality. For perceptual and intelligibility evaluation, we mainly
choose full reference automated measures like PESQ [18]
and Extended STOI (ESTOI) [61] respectively. PESQ is a
psychoacoustics-based measure to estimate the quality of
speech affected by perceptual distortions while adjusting for
time lags and loudness mismatch. ESTOI improves upon STOI
in measuring intelligibility in the distorted speech by con-
sidering correlations between frequency bands. By doing this

TABLE III
DIFFERENT CHOICE OF ADVERSARIAL LOSS IN CONDITIONAL GAN

Disc. loss SRE16-YUE-eval40 SRE-CTS-superset-dev SRE21-audio-eval
No BWE 7.46 / 0.382 5.42 / 0.217 18.52 / 0.662
LSGAN (*) 7.88 / 0.413 5.21 / 0.210 18.03 / 0.656
Non-saturating 7.11 / 0.382 4.85 / 0.202 17.29 / 0.652
Hinge 7.45 / 0.399 5.21 / 0.211 17.64 / 0.652
Wasserstein 7.44 / 0.387 5.06 / 0.205 17.44 / 0.651
DCL 7.20 / 0.388 5.18 / 0.210 17.71 / 0.661

analysis for deep regression, CGAN, and CycleGAN models,
we can also quantify the effect of using paired training data
and generative modeling. To analyze embeddings, we propose
to utilize t-SNE [62], a popular non-linear dimension reduction
and visualization technique. Our previous work [37] showed
that the effect of domain adaptation via generative models is
apparent as a shift in the t-SNE plot. Thus, we propose to
visualize narrowband train and test data embeddings before
and after extension. We also propose visualizing how CTS and
AFV audio from the same speaker cluster before and after the
extension.

V. EXPERIMENTAL SETUP

A. Data Description
All signals in our experiments follow the sampling fre-

quency of 16000 samples per second and amplitude nor-
malized to [-1,1]. We know that the maximum frequency
information (fmax) in a signal depends on its original sam-
pling frequency (fs) and equals to fs/2. We refer to signals
with fmax of 4KHz and 8KHz as narrowband and wideband,
respectively. A wideband signal, thus, must have a sampling
frequency of at least 16KHz as per the Nyquist theorem. As
baseline, we resample the narrowband signals in train and test
sets from their original sampling frequency of 8KHz to 16KHz
using linear upsampling.

We have three types of data available during training: nar-
row, wide, and wide down. narrow data refers to narrowband
telephone corpus from SRE Superset [63] and SRE16 eval
data [64], [65] which includes Tagalog and Cantonese (YUE)
languages. wide data refers to wideband VoxCeleb [66] –
also called as microphone data. VoxCeleb (1&2 combined)
contains 2700+ hrs of audio from 7365 speakers in the wild.
wide down data refers to narrowband VoxCeleb, created by
downsampling and subsequent linear upsampling of wide data,
making wide down a narrowband dataset as well. We evaluate
ASV on three test sets. (1) SRE16-YUE-eval40 [64], [65]
(40% speakers (40) from evaluation set of SRE16 Cantonese).
(2) SRE-CTS-superset-dev [67]. This contains 99 speakers
from CMN (Mandarin) and YUE (Cantonese) languages. It is
balanced between genders and contains 22M trials. (3) SRE21-
audio-eval [68] (SRE21 eval set). It contains 6M trials and
various languages, channels, devices, et cetera. This test set,
contrary to others, also consists of wideband AFV signals.

B. Bandwidth Extension training
For training bandwidth extension models, we use only

wide down and wide data. As explained in Sec. III, supervised
models (deep regression, CGAN) use paired samples while for
unsupervised models (CycleGAN), we use unpaired samples.
We also found that silence regions are critical for BWE
training, hence we preserve them in training samples of BWE.

1) Deep regression training: We train Conv-TasNet with 4 s
audio segments with wide down input and corresponding wide
target. Batch size is 128, number of epochs are 70 (defined as
100 h of speech), optimizer is Adam [69] with betas=(0.9,
0.999), and objective function is temporal MAE loss. The
learning rate of 0.0005 decreases by half when validation loss
does not decrease by at least 1% for three epochs.
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TABLE IV
COMPARISON OF DEEP REGRESSION, CGAN, AND CYCLEGAN

BWE system Training data paired/unpaired λid SRE16-YUE-eval40 SRE-CTS-superset-dev SRE21-audio-eval
- - - 7.46 / 0.382 5.42 / 0.217 18.52 / 0.662
Mapping paired 0 7.28 / 0.395 4.99 / 0.211 16.72 / 0.642
Mapping paired 0.5 7.60 / 0.388 5.21 / 0.210 18.34 / 0.664
CGAN paired 0 7.07 / 0.378 5.05 / 0.207 15.99 / 0.630
CGAN paired 0.1 7.22 / 0.378 5.04 / 0.206 15.95 / 0.629
CycleGAN unpaired 10 6.86 / 0.371 4.97 / 0.205 17.27 / 0.656
CycleGAN unsupervised paired 10 7.10 / 0.377 4.96 / 0.204 19.49 / 0.674
CycleGAN supervised paired 10 7.71 / 0.400 5.27 / 0.211 18.69 / 0.667

2) CGAN training: Here, we train using Alternating Gra-
dient Descent (AGD) [45]. One training step consists of
one update of discriminator (given fixed generator) and two
updates of generator (given fixed discriminator). Due to the
sensitivity of GAN training with Conv-TasNet architecture,
lower precision training is disabled. λsup = 0.1. Learning
rates for generator and discriminator are 0.0002 and 0.0001,
respectively, which decrease linearly with every training step
until a minimum value of 1e-07. The sequence length for
training is 3 s, the batch size is 16, the number of epochs is 15
(defined as 50 h of speech), and Adam betas are (0.5,0.999).

3) CycleGAN training: Here, the maximum value of learn-
ing rates for the generator and discriminator are 0.0004 and
0.0002, respectively, and the minimum value is 1e-08. For
the first two epochs, the learning rate linearly increases from
minimum to maximum value. The learning rate is constant
at the maximum values for the subsequent three epochs. The
learning rate decreases to a minimum value following a cosine
function for the final ten epochs. The batch size is 8, and all
other training details are identical to CGAN.

C. Baseline speaker verification system

This work follows our submission to the fixed-condition
NIST Speaker Recognition Challenge (SRE) 2021 chal-
lenge [63] 2. The x-vector model used is Light-ResNet [70]
with speaker embedding dimension of 256. Loss function is
Additive Angular Margin (AAM) loss with margin m = 0.3.
Input features are 80-D Log-Mel FilterBank (LMFB), created
on-the-fly. For baseline, training uses wide, wide down, and
unmodifiednarrow (except for linear upsampling of narrow-
band data to 16 kHz). Noise and reverberation augmentation
is done on-the-fly using MUSAN [71] and Aachen Impulse
Response (AIR) Database corpus 3. After 200-D Linear Dis-
criminant Analysis (LDA) pre-processing on 256-D embed-
dings, 150-D PLDA is used. We remove silence frames from
the x-vector and PLDA training using a simple energy-based
voice activity detector.

VI. RESULTS

A. Designing Conditional GAN based Bandwidth Extension

Here, we present the results for exploring discriminator
architecture, supervision loss, and adversarial loss for CGAN
in Tables I, II, and III respectively. Results are in the format

2https://github.com/hyperion-ml/hyperion/tree/master/egs/sre21-av-a
3http://www.openslr.org/resources/28

EER/minDCF, and we discuss in detail such exploration for
CGAN only. In Table I, the first row has results without BWE.
In other rows, we expand real narrowband data (narrow) of
PLDA and test set using blind extension strategy (Sec. IV-C).
The x-vector is trained a priori on unmodified wideband and
narrowband data and used as is. Row 2 (marked as *) is
the model identical to row 2 of the other two tables. We
see that multi-period (MP) and multi-scale (MS) versions of
discriminator architecture bring significant benefits in SRE21-
audio-eval, partly due to more parameters. StyleMelGAN
performs best except on SRE21-audio-eval.

Consider Table II. Note that no choice of supervision loss
function gives the best results on all test sets. Also, we found
that the combination of several losses is ineffective. Several
loss functions improve w.r.t. no extension baseline. MSE
loss gives the best performance overall. MAE is worse than
MSE. However, it was the preferred choice in our previous
works [12], [37]. AFM loss gives the best performance on
SRE16-YUE-eval40, but this comes with the cost of increased
computation due to the usage of the auxiliary model. We use
the outputs of five ResNet blocks of our x-vector network for
computing AFM loss.

Now consider Table III. Here, surprisingly, the best perfor-
mance is achieved by the simplest loss, i.e., non-saturating loss
(from original GAN work [45]) – contrary to our preferred
choice of LSGAN loss in previous works [37]. Wasserstein
loss also gives promising results at the cost of tuning an
additional hyper-parameter of gradient clipping factor.

Finally, we train a CGAN with the best attributes from
the above experiments, i.e., with MSE supervision loss, non-
saturating adversarial loss, and StyleMelGAN discriminator
architecture. We perform similar exploration experiments for
CycleGAN and find the best attributes to be MAE supervision
(i.e., cycle & identity) loss, LSGAN adversarial loss, and
HiFiGANMultiPeriod discriminator architecture. This individ-
ual in-depth exploration of CGAN and CycleGAN allows
us to compare them fairly. Note that SRE21-audio-eval has
significantly worse results than the other two test sets because
it is a highly mismatched dataset (w.r.t. language, channel,
et cetera). A much stronger recognition system is needed to
achieve better performance [67], [72].

B. Comparison of supervised and unsupervised BWE
In Table IV, we compare deep regression, CGAN, and

CycleGAN. Our first observation is that the most straight-
forward scheme, i.e., deep regression, brings significant im-
provements in all test sets, particularly in EER. However,

https://github.com/hyperion-ml/hyperion/tree/master/egs/sre21-av-a
http://www.openslr.org/resources/28


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, SEPTEMBER 2022 8

TABLE V
BANDWIDTH EXTENSION OF X-VECTOR AND PLDA TRAINING DATA. TEST SET IS EXTENDED PER BLIND STRATEGY. FOR X-VECTOR TRAINING, HERE
“ORIGINAL DATA” IS {wide, wide down, narrow}, WHILE “EXTENDED DATA” IS {wide, M (wide down), M (narrow)}. M(·) IS THE EXTENSION MODEL.

PLDA data PLDA data extended SRE16-YUE-eval40 SRE-CTS-superset-dev SRE21-audio-eval
x-vector trained and fine-tuned on original data
wide, wide down, narrow - 6.83 / 0.359 4.71 / 0.202 15.93 / 0.623
wide, wide down, narrow narrow 6.39 / 0.352 4.91 / 0.204 14.82 / 0.599
wide, narrow narrow 5.27 / 0.307 4.01 / 0.174 14.33 / 0.591
x-vector trained on original data and fine-tuned on extended data
wide, wide down, narrow - 6.88 / 0.372 5.33 / 0.215 15.31 / 0.614
wide, wide down, narrow narrow 6.83 / 0.373 5.17 / 0.210 15.59 / 0.615
wide, narrow narrow 5.43 / 0.315 4.11 / 0.175 14.88 / 0.597
x-vector trained and fine-tuned on extended data
wide, wide down, narrow - 7.64 / 0.436 5.53 / 0.220 16.32 / 0.650
wide, wide down, narrow narrow 7.20 / 0.413 5.35 / 0.219 16.46 / 0.644
wide, narrow narrow 5.67 / 0.363 4.16 / 0.187 15.29 / 0.616

its performance on SRE16-YUE-eval40 is lacking. Adding
identity loss makes it significantly worse. We train CGAN
with the best attributes discovered in the previous section. It
gives a strong performance, but the utility of identity loss is
inconclusive here. CycleGAN gives the best results on two
test sets, as shown in the boldface. Identity loss is crucial for
CycleGAN training, so we do not experiment with removing it.
“CycleGAN unsupervised paired” refers to vanilla CycleGAN
but trained with paired data. This model cannot leverage
pairing information inherently showing that paired data is
detrimental to CycleGAN. “CycleGAN supervised paired”
is the CycleGAN model where two supervision losses for
both directions are added to the formulation since we know
the expected output (from paired data). This model is thus
comparable to using two tied CGANs and turns out to be
better than “CycleGAN unsupervised paired” but on only
SRE21-audio-eval. Our best models are vanilla CGAN and
CycleGAN, which we use for further analysis. We encourage
the reader to listen to a few samples 4. We also visually
compare the three BWE techniques in Fig. 1. We specifically
highlight the quality of CycleGAN prediction here.

C. Effect of extending x-vector and PLDA training data

In Table V, we investigate the effect of extending training
data of PLDA and x-vector. The results are divided into three
parts. Complete results are in Appendix A but we discuss a
subset of results here. In the first part, the x-vector is trained
(on 4 s chunks) and fine-tuned (on 10-60 s chunks) on original
unextended data i.e. wide, wide down, and narrow. The first
column lists the data used for PLDA training, while the second
column denotes which one of them is extended. We use CGAN
for extension here. The results here are better than Table IV
since the x-vector is fine-tuned on long recordings which
significantly improves ASV performance [6]. We observe that
removing synthetic data (wide down) from PLDA training
and not extending wide data is a better choice (see also
Appendix A). In the second part, the x-vector is trained
on original data but during fine-tuning, narrowband data i.e.
wide down and narrow are extended. The observations here
are similar to the previous part but with slight degradation.
In the third part, the x-vector is trained and fine-tuned on

4https://github.com/saurabh-kataria/BWE-samples

wideband (wide) and extended narrowband data. We observe
even more degradations here. We finally report extending x-
vector data as inconclusive. In future work, we can use larger
x-vector networks like the ones used in [67].

D. SRE21 results per trial condition

In Table VI, we note the absolute and relative improvement
in EER on SRE21-audio-eval. We only report CGAN results
here since we found similar observations for CycleGAN.
The overall improvement averaged across all conditions is
significant (-13.67%). Mismatched condition CTS-AFV gives
only -2.7 % relative improvement. CTS-CTS performance
(-0.5 %) is unaffected as intended. AFV-AFV is matched
trial but is adversely affected by the extension. We address
this issue in next section (Sec. VI-E). Most of the gains
come from trials other than CTS-CTS, CTS-AFV, and AFV-
AFV. We liken this more generic benefit to calibration, that
is, extension is shifting scores in order to make speaker
verification robust to different acoustic environments. Finally,
we note that improvement is highest when test language is
matched with train (ENG-ENG).

TABLE VI
EER IMPROVEMENT BY TRIAL CONDITION.

Condition No BWE CGAN % change
Overall 18.52 15.99 -13.67%
CTS-CTS 8.85 8.81 -0.5%
CTS-AFV 16.69 16.24 -2.7%
AFV-AFV 2.89 3.49 +20.8%
ENG-ENG 17.98 14.02 -22.0%
ENG-YUE 18.83 15.93 -15.4%
YUE-YUE 19.38 16.76 -13.5%
Same device 4.90 5.24 +6.9%
Different device 25.53 22.11 -13.4%

TABLE VII
COMPARING DIFFERENT TEST-TIME BWE SCHEMES.

Condition No BWE expand all expand narrow LFR expand narrow
+ LFR

Overall 18.52 15.99 17.29 17.29 17.90
CTS-CTS 8.85 8.81 8.76 8.75 8.89
CTS-AFV 16.69 16.24 16.80 16.78 17.03
AFV-AFV 2.89 3.49 3.03 2.97 3.00
ENG-ENG 17.98 14.02 15.67 15.71 16.77

https://github.com/saurabh-kataria/BWE-samples
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(a) CGAN extension (b) CycleGAN extension

Fig. 3. t-SNE visualization of embeddings of wideband training data and narrowband test data (with and without extension). “train” refers to wideband
VoxCeleb. “test” refers to narrowband SRE21 test set. “test (extended)” refers to SRE21 test set extended by CGAN or CycleGAN. We observe that
CycleGAN causes a shift in distribution. For CGAN, there is no shift, as noted from the perfect overlap of orange and green dots.

Fig. 4. t-SNE visualization of CTS and AFV recordings of 10 speakers before
and after BWE. The four types of signals come closer by extension, as denoted
by black arrows—dotted ellipse highlight a few cases where CTS and AFV
signals come close after extension.

E. Different test-time extension schemes

In Table VII, we report results for various test-time ex-
tension schemes on SRE21-audio-eval. Here, we again report
results for only CGAN since we found similar observations
for CycleGAN. Blind extension test scheme, denoted by ex-
pand all in column 3, extends narrow as well as wideband test
signals, which is undesirable. Expand narrow extends only
narrowband signals and improves AFV-AFV performance. It
hurts other conditions and overall performance because DNN
induces a mismatch between extended and unextended signals.
Low-Frequency Replacement strategy (LFR), which does not
modify lower band frequency information, does not improve
overall but gives good AFV-AFV performance. In the last row,
a combination of expand narrow and LFR also does not prove
beneficial. Thus, devised schemes have worse performance
than baseline. They are significantly worse in conditions other
than CTS-CTS, CTS-AFV, and AFV-AFV. We report one such
condition: ENG-ENG.

F. Effect of extension on speaker embeddings

In Fig. 3, we plot t-SNE embeddings of x-vector repre-
sentations of training and test data. The black dotted curves

separate the male and female embeddings. The model for
extension used in the two figures is CGAN and CycleGAN,
respectively. Blue markers denote wideband training data (i.e.,
VoxCeleb or wide). Orange markers denote test set samples
from SRE21-audio-eval, while green markers denote their
extended counterpart. We observe the following. First, there
is a clear separation w.r.t. gender in both plots. Second, in the
case of CGAN, the extension does not achieve the noticeable
shift in t-SNE space, while for CycleGAN, it is pronounced.
Third, for the female gender, the shift in embeddings is
higher, which we did not observe in the other test set: SRE-
CTS-superset-dev. This experiment reveals the difference in
the extension behavior of both models. This shift caused by
CycleGAN is akin to domain adaptation effect [37]. In Fig. 4,
we plot the t-SNE of CTS and AFV embeddings before and
after CGAN extension. We use ten speakers for this analysis
and can see the four types of signals cluster per speaker.
Extension brings all types of signals ({CTS, AFV} x {before
extension, after extension}) closer, as denoted by black arrows.
Dotted ellipses highlight a few cases where CTS and AFV
signals come significantly closer after extension.

G. Effect of extension on verification score distribution

In Fig. 5, we plot the distributions for target and non-target
trials before and after CGAN extension of SRE21-audio-eval.
Blue colors (denoting after extension) dominate the bars in
the histogram’s middle. For both target and non-target trials,
extension brings scores closer to the mean. This observation
holds for other trial conditions too. We interpret this as a
calibration-like effect. Similar to motivation for Fig. 4, in
Fig. 6, we demonstrate through histograms that extension
brings scores of CTS-CTS, CTS-AFV, and AFV-AFV closer.
We can see a significant decrease in the difference between
the mean of the three curves.

H. Perceptual quality and relation to downstream metric

A previous work [73] showed that the perceptual quality
of DNN outputs (in our case, extended signals) does not nec-
essarily correlate with the performance of downstream tasks.
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(a) Target trials (b) Non-target trials

Fig. 5. CTS-AFV score distribution before and after CGAN extension for the SRE21 test set. CTS and AFV signals are both extended. Gray denotes the
overlap of orange and blue colors. Blue dominating in the middle suggests extension shifts scores towards the mean.

(a) Before extension (b) After extension

Fig. 6. Score distribution of CTS-CTS, CTS-AFV, and AFV-AFV trials before and after CGAN extension. BWE brings the peaks of all curves closer.

We investigate this on our experimental setup in Table VIII.
We use PESQ, ESTOI, LSD, and MSE metrics to measure
signal distortion. We also devise deep feature MSE, which
measures the MSE error (w.r.t. ground truth) measured using
activations of signals in an auxiliary network (x-vector, in our
case). In addition to the above measures, we note the relative
improvements in EER and minDCF (averaged across our three
test sets). We first note that unextended signals have the highest
perceptual quality and all extension methods give a low PESQ
value since we do not optimize for it. Since all extension
systems use a form of supervision loss, we do not notice sig-
nificant degradation in ESTOI, LSD, and time-domain MSE.
Deep regression expectedly gives the best results on these
metrics. Also, note that deep feature MSE is constant across all
methods, i.e., speaker information is not lost. It is also evident
from good ASV performance with all methods. CGAN gives
the best average relative improvement in EER and minDCF.
Deep regression gives competitive results but fails to improve
minDCF. CycleGAN gives the worst perceptual quality but
excellent ASV performance and spectrograms (Fig. 1).

VII. CONCLUSIONS AND FUTURE WORK

In this work, we comprehensively evaluate bandwidth exten-
sion of narrowband data for the downstream task of telephony

speaker verification. Our ASV system is based on the state-
of-the-art pipeline: x-vector front-end, PLDA back-end, data
augmentation, and mixed bandwidth training data. We focused
on time-domain BWE models due to their flexible usage
during the training and inference of ASV. We discover high-
performing supervised and unsupervised GANs like condi-
tional GAN and CycleGAN respectively. We first extensively
tune conditional GAN to (1) demonstrate the sensitivity of
GAN performance to design and (2) derive the best model
suitable for fair comparison and further analysis. With this
tuning, we discover vastly different designs for CGAN and
CycleGAN. Comparing these best models on three real test
sets, we find the deep regression baseline to be strong.
Unsupervised CycleGAN performs on par with supervised
CGAN and even surpasses performance on a few metrics.
These results are however obtained via extension of test set
and the real narrowband (narrow) portion of PLDA training
set. Therefore, we explore extending x-vector training data as
well. Our results indicate, in contrast to back-end, the neural
network-based front-end can benefit from synthetic narrow-
band data. Further analysis into per-condition results indicate
that most benefits come from trials other than CTS-CTS, CTS-
AFV, and AFV-AFV. This observation followed by shifts seen
in score histogram reveals a generic calibration-like effect
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TABLE VIII
RELATION BETWEEN PERCEPTUAL QUALITY AND DOWNSTREAM PERFORMANCE. METRICS DENOTED BY ↑ (↓) ARE HIGHER (LOWER) THE BETTER.

BWE system PESQ (↑) ESTOI (↑) LSD (↓) time-domain MSE (↓) deep feature MSE (↓) EER (↓) ∆ EER (↓) minDCF (↓) ∆ minDCF (↓)
No BWE 3.846 0.989 1.102 3.233 913.410 10.47 0% 0.420 0%
Deep regression 3.659 0.993 0.471 1.042 913.414 9.66 -6.69% 0.416 -0.79%
CGAN 3.514 0.985 0.790 1.248 913.363 9.37 -8.57% 0.405 -3.50%
CycleGAN 2.055 0.977 1.301 3.816 913.408 9.70 -7.70% 0.410 -3.11%

caused by bandwidth extension. This phenomenon can be
further studied in future with more types of trials and stronger
x-vector systems. Our primary choice of test-time scheme is
blind extension, where we do not detect wideband signals.
Since SRE21-audio-eval has some wideband signals, we tested
two schemes: skipping extension of wideband test signals
(expand narrow) and not modifying lowerband information
(Lower Frequency Replacement). We find that it is beneficial
to extend wideband signals as well since (1) it avoids mismatch
w.r.t. extended signals and (2) GANs can approximate identity
operation. We also performed a perceptual quality analysis
with PESQ, ESTOI, and LSD measures. We do not observe a
positive correlation with downstream performance. We spec-
ulate this is due to the absence of perception-improving loss
terms. However, we visually find GANs to predict upperband
information in spectrograms.

One limitation of our work is the degradation in AFV-AFV
trial when using the blind extension scheme. This may be
handled via a better identity loss or introducing ASV metrics
in BWE training. We can also investigate deep feature loss [36]
and/or self-supervised models to improve perceptual quality as
well as downstream performance. Finally, we encourage the
reader to refer to [67], [74] where we report results on stronger
baselines, system fusion, and multi-modal setups. We extend
our work to joint learning with domain adaptation in [12].
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[37] S. Kataria, J. Villalba, P. Żelasko, L. Moro-Velázquez, and N. De-
hak, “Deep feature cyclegans: Speaker identity preserving non-parallel
microphone-telephone domain adaptation for speaker verification,” arXiv
preprint arXiv:2104.01433, 2021.

[38] J. Su, Y. Wang, A. Finkelstein, and Z. Jin, “Bandwidth extension is
all you need,” in ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp.
696–700.

[39] D. Haws and X. Cui, “Cyclegan bandwidth extension acoustic mod-
eling for automatic speech recognition,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 6780–6784.
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APPENDIX A
DETAILED RESULTS FOR DIFFERENT X-VECTOR MODELS

Here, we detail the results of Table V. The results are for
three x-vector models. All models are trained with smaller
chunks (4 s) and then fine-tuned on long recordings (10-60 s),
per standard verification training procedure. However, there
is a difference in the their training data. In the first model
(Table IX), x-vector is trained and fine-tuned on original un-
extended training data (i.e. wide, wide down, and narrow). In
the second model (Table X), x-vector is trained on unextended
data like previous model but is fine-tuned on extended data (i.e.
original wide, extended wide down, and extended narrow).

We use CGAN extension here. In the third model (Table XI),
x-vector is trained on fine-tuned on extended data (i.e. original

wide, extended wide down, and extended narrow). In contrast
to Table V, we here provide results when test set is not
extended as well (upper half of three tables). We make several
observations: 1) extending test set is crucial, 2) synthetic
narrowband data is harmful for PLDA, and 3) extending
wideband data is harmful for PLDA. We find that the first
model brings best performance – eliminating the possible need
for training x-vector on extended data. In other words, baseline
x-vector network need not require re-training. However, this
needs further investigation on larger x-vector architectures like
in [67].

TABLE IX
RESULTS WHEN X-VECTOR IS TRAINED AND FINE-TUNED (ON LONG RECORDINGS) ON UNEXTENDED TRAINING DATA.

PLDA data PLDA data extended Test data extended SRE16-YUE-eval40 SRE-CTS-superset-dev SRE21-audio-eval
wide, wide down, narrow - 7 7.12 / 0.376 5.36 / 0.216 17.12 / 0.644
wide, wide down, narrow wide, wide down, narrow 7 7.90 / 0.439 6.27 / 0.227 17.24 / 0.656
wide, wide down, narrow wide down, narrow 7 7.72 / 0.421 5.79 / 0.220 16.87 / 0.642
wide, wide down, narrow narrow 7 7.90 / 0.409 5.50 / 0.217 15.28 / 0.613
wide, narrow wide, narrow 7 6.64 / 0.387 5.08 / 0.199 16.40 / 0.641
wide, narrow narrow 7 6.55 / 0.372 4.54 / 0.189 15.22 / 0.621
wide, wide down, narrow - 3 6.83 / 0.359 4.71 / 0.202 15.93 / 0.623
wide, wide down, narrow wide, wide down, narrow 3 6.57 / 0.370 5.02 / 0.207 15.71 / 0.617
wide, wide down, narrow wide down, narrow 3 6.45 / 0.357 4.91 / 0.205 14.98 / 0.605
wide, wide down, narrow narrow 3 6.39 / 0.352 4.91 / 0.204 14.82 / 0.599
wide, narrow wide, narrow 3 5.43 / 0.317 4.05 / 0.179 15.90 / 0.615
wide, narrow narrow 3 5.27 / 0.307 4.01 / 0.174 14.33 / 0.591

TABLE X
RESULTS WHEN X-VECTOR IS TRAINED ON UNEXTENDED DATA BUT FINE-TUNED (ON LONG RECORDINGS) ON EXTENDED TRAINING DATA.

PLDA data PLDA data extended Test data extended SRE16-YUE-eval40 SRE-CTS-superset-dev SRE21-audio-eval
wide, wide down, narrow - 7 6.88 / 0.366 5.42 / 0.219 17.56 / 0.650
wide, wide down, narrow wide, wide down, narrow 7 7.57 / 0.402 5.41 / 0.218 18.72 / 0.671
wide, wide down, narrow wide down, narrow 7 7.39 / 0.391 5.33 / 0.218 18.30 / 0.657
wide, wide down, narrow narrow 7 7.39 / 0.387 5.33 / 0.217 17.82 / 0.652
wide, narrow wide, narrow 7 6.33 / 0.354 4.41 / 0.191 17.71 / 0.657
wide, narrow narrow 7 6.07 / 0.336 4.33 / 0.186 18.67 / 0.654
wide, wide down, narrow - 3 6.88 / 0.372 5.33 / 0.215 15.31 / 0.614
wide, wide down, narrow wide, wide down, narrow 3 7.05 / 0.382 5.25 / 0.210 16.26 / 0.625
wide, wide down, narrow wide down, narrow 3 6.82 / 0.375 5.19 / 0.210 15.65 / 0.616
wide, wide down, narrow narrow 3 6.83 / 0.373 5.17 / 0.210 15.59 / 0.615
wide, narrow wide, narrow 3 5.50 / 0.327 4.19 / 0.181 15.66 / 0.611
wide, narrow narrow 3 5.43 / 0.315 4.11 / 0.175 14.88 / 0.597

TABLE XI
RESULTS WHEN X-VECTOR IS TRAINED AND FINE-TUNED (ON LONG RECORDINGS) ON EXTENDED TRAINING DATA.

PLDA data PLDA data extended Test data extended SRE16-YUE-eval40 SRE-CTS-superset-dev SRE21-audio-eval
wide, wide down, narrow - 7 7.45 / 0.410 5.59 / 0.226 18.06 / 0.675
wide, wide down, narrow wide, wide down, narrow 7 8.01 / 0.419 5.64 / 0.237 20.42 / 0.699
wide, wide down, narrow wide down, narrow 7 7.67 / 0.414 5.60 / 0.231 19.40 / 0.684
wide, wide down, narrow narrow 7 7.55 / 0.410 5.92 / 0.238 17.25 / 0.657
wide, narrow wide, narrow 7 6.54 / 0.373 4.67 / 0.211 20.49 / 0.708
wide, narrow narrow 7 6.25 / 0.371 4.42 / 0.200 21.81 / 0.697
wide, wide down, narrow - 3 7.64 / 0.436 5.53 / 0.220 16.32 / 0.650
wide, wide down, narrow wide, wide down, narrow 3 7.40 / 0.425 5.35 / 0.220 16.49 / 0.643
wide, wide down, narrow wide down, narrow 3 7.26 / 0.419 5.31 / 0.218 16.28 / 0.642
wide, wide down, narrow narrow 3 7.20 / 0.413 5.35 / 0.219 16.46 / 0.644
wide, narrow wide, narrow 3 5.86 / 0.367 4.23 / 0.188 15.87 / 0.628
wide, narrow narrow 3 5.67 / 0.363 4.16 / 0.187 15.29 / 0.616
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