N

N

Self-Supervised Learning of Multi-level Audio
Representations for Music Segmentation

Morgan Buisson, Brian Mcfee, Slim Essid, Hélene Crayencour

» To cite this version:

Morgan Buisson, Brian Mcfee, Slim Essid, Hélene Crayencour. Self-Supervised Learning of Multi-
level Audio Representations for Music Segmentation. IEEE/ACM Transactions on Audio, Speech and
Language Processing, 2024, pp.1-13. 10.1109/TASLP.2024.3379894 . hal-04485065

HAL Id: hal-04485065
https://hal.science/hal-04485065

Submitted on 1 Mar 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04485065
https://hal.archives-ouvertes.fr

Self-Supervised Learning of Multi-level Audio
Representations for Music Segmentation

Morgan Buisson, Brian McFee, Slim Essid, Hélene C. Crayencour

Abstract—The task of music structure analysis refers to au-
tomatically identifying the location and the nature of musical
sections within a song. In the supervised scenario, structural
annotations generally result from exhaustive data collection
processes, which represents one of the main challenges of this
task. Moreover, both the subjectivity of music structure and
the hierarchical characteristics it exhibits make the obtained
structural annotations not fully reliable, in the sense that they
do not convey a ‘“universal ground-truth” unlike other tasks
in music information retrieval. On the other hand, the quickly
growing quantity of available music data has enabled weakly
supervised and self-supervised approaches to achieve impressive
results on a wide range of music-related problems. In this work,
a self-supervised learning method is proposed to learn robust
multi-level music representations prior to structural segmentation
using contrastive learning. To this end, sets of frames sampled at
different levels of detail are used to train a deep neural network
in a disentangled manner. The proposed method is evaluated on
both flat and multi-level segmentation. We show that each distinct
sub-region of the output embeddings can efficiently account
for structural similarity at their own targeted level of detail,
which ultimately improves performance of downstream flat and
multi-level segmentation. Finally, complementary experiments
are carried out to study how the obtained representations can be
further adapted to specific datasets using a supervised fine-tuning
objective in order to facilitate structure retrieval in domains
where human annotations remain scarce.

Index Terms—Music structure analysis, structural segmenta-
tion, representation learning.

I. INTRODUCTION

TRUCTURE plays a central role in music and the way

it is perceived by human listeners. However, automati-
cally discovering the structure of a music piece remains a
challenging task in the field of music information retrieval.
The highly complex and multi-dimensional organization of
music lies in the numerous interactions occurring between its
different composing elements at various temporal scales. The
problem of audio-based music structure analysis consists in
predicting, for an audio track, the location between different
musical segments. Then, these same segments are attributed
labels based on some similarity criteria [1].

A major challenge in the task of automatic music structure
analysis is related to the evaluation process. Because struc-
tural annotations are provided by human listeners, potential
disagreements among them about how a particular music piece
is organized [2, 3] might appear. Various musical charac-
teristics such as rhythm, harmony or melody can influence
the perception of structure, and this, at different points in
time. Meanwhile, it has been observed that human listeners
tend to isolate some of these features from the audio while

providing structural annotations, thus resulting in different
ground-truth for the same music piece [4]. Because of this
inherent ambiguity in the annotation process, the task of audio-
based music structure analysis remains an ill-posed problem.

Musical structures also exhibit a hierarchical organization,
as short-term musical events can be recursively integrated into
bigger segments, where the common level of segmentation
attended by human listeners, often called the functional level,
contains segments that carry a certain role within the music
piece (intro, chorus, verse,...). Most segmentation algorithms
explicitly target this very level of detail, as it is also the most
represented in existing datasets for music structure analysis.
However, a considerable amount of information might be lost
by discarding more refined levels of structure such as phrases,
bars or beats. Additionally, practical applications such as intra-
track navigation [5], music similarity [6], automatic music
composition [7] or cover detection [8] could benefit from these
various levels of detail at which a track can be decomposed.
The multi-level aspect of structure also greatly impacts the
final evaluation of segmentation algorithms. Using annotations
proceeding from different data sources might become unreli-
able, in cases where predictions and annotations do not lie
at the same level of detail for a given music piece. Recent
work has shed light on this problem [1] and new evaluation
metrics have been proposed to limit this temporal mismatch
between predictions and reference annotations [9]. However,
very few works have so far directly addressed the problem of
multi-level music segmentation [10, 11, 12], leaving plenty of
room for new methods to decompose music pieces at different
levels of granularity.

This work proposes a self-supervised contrastive learning-
based approach to build robust audio representations prior
to structural segmentation. A deep neural network is trained
on audio feature patches to learn an embedding space in
which frames belonging to the same musical section are
close to one-another, thus facilitating the structure discovery
performed by any segmentation algorithm applied on top of the
output representations. The proposed method aims at encom-
passing the multi-level organization of structure by building
disentangled representations, where each sub-region of the
obtained embeddings targets its own specific level of detail,
thus providing various views of the same piece, differing by
the temporal scales at which they operate. Aligned with our
previous findings [13], we show that such an approach can
be beneficial both for single-level and multi-level music seg-
mentation tasks, this time using only two representation levels.
The evaluation is performed on three substantial datasets for
music structure with different genres and annotation styles.



We additionally study a simple method to further optimized
the learned representations on a small portion of annotated
data. Results suggest that features learned at the pre-training
stage are rather general and can be easily biased even on
homogeneous music genres and annotation styles during fine-
tuning. Thus, highlighting the advantage of relying on self-
supervised methods in the first place.

The remainder of this paper is organized as follows. Section
II discusses relevant previous work in music structure analysis.
More particularly, a focus is put on the multi-level version
of the task and existing methods for learning audio repre-
sentations prior to music segmentation. Section III describes
the proposed approach and discusses its technical aspects.
Section IV introduces the experimental setting in which the
proposed method is assessed, Section V compiles and analyses
the results obtained and Section VI details the additional fine-
tuning experiment.

II. RELATED WORK

Up to recently, numerous music structure analysis methods
would generally follow a three-step process. First, features
are extracted from the input track, then, a boundary detection
algorithm is applied to retrieve transitions between musical
segments. Finally, these segments are grouped together given
certain similarity criteria to obtain musical sections. The
method proposed in this work aims at improving the very
first stage of this pipeline, that is, the feature extraction stage.
This section gives an overview of previous work addressing
music structure analysis. Specifically, an emphasis is put on
the feature extraction step of the task, along with its multi-level
reformulation.

A. Multi-level segmentation

A single-level or flat structural analysis comprises a set
of non-overlapping time intervals, each assigned a specific
label. The concatenation of these segments covers the entire
audio track. While music simultaneously operates at different
timescales (bars, beats or onsets), very few approaches have
explored the task of jointly segmenting music at these different
temporal levels. The goal of multi-level segmentation is to
predict a set of segmentations, grouped into a structure called
hierarchy where the very first segmentation spans the entire
duration of the audio track and the subsequent ones provide
an increasing amount of detail (see the illustration in Figure 1).
McFee and Ellis [10] regard the problem of music structure
with graphs and apply spectral clustering to decompose an
enhanced self-similarity matrix employing a combination of
hand-crafted features. Besides requiring no annotations, this
method also produces segmentations at different temporal
levels by considering or discarding principal components of
the Laplacian matrix. To better approximate the optimal graph
representing the song structure, Tralie and McFee [11] com-
bine different features, including harmonic embeddings, using
similarity network fusion before spectral clustering. Salamon
et al. [12] further extend this method by integrating two
types of deep embeddings along with Constant Q transform
(CQT) features. They capture local timbral patterns with

few shot-learning and long-term similarities with disentangled
deep metric learning [14]. The method proposed here shares
the same objective of improving multi-level segmentation
by enriching the input audio representation. However, the
one proposed here is directly optimized so as to improve
downstream multi-level segmentation.

Level

Coarse to refined

Time
Fig. 1: Schematic view of a multi-level segmentation. Colours

represent frame cluster assignment (level-wise) across a 6-level
hierarchy.

B. Learning audio representations for music segmentation

The task of structural music segmentation is usually posed
as a distance-based problem, where numerous methods rely
on the analysis of self-similarity matrices to retrieve homoge-
neous regions inside a music track. Therefore, coming up with
representations simultaneously maximizing the inter-section
variance and minimizing intra-section variance is appealing to
improve downstream segmentation. Contrastive learning has
recently appeared as a method that is well-suited to finding
such representations, given that the training process directly
aims at optimizing such a constraint in the latent space. When
structural annotations are available, finding such representa-
tions can be modeled as a supervised learning problem, where
the selection of relevant sets of frames used for training is done
using section labels. Wang et al. [15] adopt such an approach,
along with a multi-similarity loss [16]. Despite allowing them
to learn effective structure features, this method is only trained
and evaluated on relatively homogeneous datasets, mostly
comprising pop and rock music tracks.

In the context of self-supervised learning, finding appropri-
ate sets of frames during training requires to use specifically
designed heuristics. The work by McCallum [17] proposes
such a method to learn deep features using a triplet-based
approach. It relies on the assumption that frames temporally
close to each other are more likely to belong to the same
musical section than those separated by a certain amount of
time. The method proposed in this work can be viewed as
a multi-level extension of that of McCallum [17], where the
representations learned are optimized for various levels of
structural segmentation.

III. METHOD

Our method aims at building audio representations which
facilitate the decomposition of a song at different levels. These
should provide strong discriminative capabilities for time
frames belonging to different musical sections and separated
by a large amount of time. Conversely, they should be more
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Fig. 2: Initial triplet sampling method at an arbitrary level /¢
of granularity.

homogeneous for frames belonging to the same section and
happening within a short time interval. As section lengths
might vary from one annotator to another due to the ambiguity
of the task [1], the aforementioned constraint is imposed at
different temporal scales. Additionally, most datasets for music
structure analysis come with only one level of annotations,
which motivates us to learn such representations in a self-
supervised fashion, taking advantage of large quantities of
unlabelled data. A deep neural network is trained to output
embeddings which are divided into multiple sub-regions. Each
of them is optimized independently using specific sets of
frames efficiently sampled to encode the temporal structure
of the song at different levels. We propose two different
training objectives: the first one is a triplet loss, which directly
extends previous work on single-level segmentation [17] to the
multi-level case. The second one, similar to the contrastive
loss, is a generalization of the former to handle various
positive and negative examples for a given point. The input
to the network corresponds to audio feature patches which are
beat-synchronized: they are centered around the locations of
detected beats. This discretization of time drastically reduces
the total number of frames while providing relevant prior
information about section boundaries (as these usually occur
at beat or downbeat positions [1]). From now on, input feature
patches are sampled among detected beat positions only.
Therefore, a track ¢ corresponds to a sequence of beat indices
{ix}_, where N is the number of beats in t. We denote by
x, the feature patch centered around beat 7.

A. Triplet loss

The triplet loss has been used in various music applications
of deep metric learning, including music similarity [18, 14],
cover song identification [19] or tag-based retrieval [20].
Previous work [17] has shown that the triplet loss can also
be used in the context of music structure analysis. It requires
beforehand to find triplets of audio feature patches (z4, 2, Zn)
where z, is the anchor, z,, is a positive example from the same
musical section and z,, the negative example sampled from a
different one. For a given triplet 7 = (24, T, Zy), the triplet
loss is expressed as:

L(T) = [d(favfp)_d(favfﬂ)+a]+ ) (1)

where d(z,y) is a pre-defined distance metric (usually the
Euclidean distance), [.]+ denotes the Hinge loss, « the margin

parameter and f, is the projection of z into the embedding
space by a deep neural network fy.

B. Constrastive loss

We propose a further generalization of the approach by
McCallum [17] by introducing another training objective.
Here, the mutual similarity (i.e. distance) between an anchor
and its positive example is not only compared with a single
negative example, but a set of negative ones. Formally, for an
anchor point 1,, its positive example 7,, and a set of negative
examples N (i,), we can write the pairwise loss as:

exp(fa - fp/T)

exp(fa - fp/T) + > exp(fa- fu/T)
neEN (iq) (2)

where 7 € [0,1] is a temperature parameter, - denotes the
scalar product between ¢-2 normalized embeddings, and f,, f,
and f;, are the projections of the anchor, positive and negative
input patches in the embedding space by the neural network
fo. This loss, also known as the N-pair loss [21], is averaged
across multiple positive examples P(i,) of the same anchor,
giving the sample-wise loss term defined as:
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The final loss for a given track is finally obtained by summing
over the whole set A(t) of anchors selected for track ¢:

rac 1 sample /
Lo = o 2 M) @
ia €A(L)

A possible interpretation of this training objective is, for a
given point, to classify its positive example among a set
of distractors (negative examples). In our case, this comes
down to recognizing the frames that are located within a pre-
determined temporal neighborhood around the anchor. Unlike
the conventional contrastive loss where positive examples
correspond to augmented views of the anchor, positives here
are simply given by neighboring frames, thus, we use intra-
section variations as an implicit data augmentation process.
Additionally in the original contrastive framework, negatives
correspond to all remaining data points contained in the batch,
potentially containing other samples with the same label as
the anchor. In our case, we design a sampling strategy where
positive and negatives sets are meant to be mutually exclusive.

C. Single-level sampling

For an arbitrary granularity level of segmentation (a given
row in Figure 1), positive and negative sets of beat indices are
sampled within respective time intervals I, and I,,. Intuitively,
these intervals rule how “close” or “far away” from the
anchor the positive and negative examples will be selected.
More specifically, for a given anchor index i,, positive and
negative examples respectively located at beat indices %, and
i, are uniformly sampled from the interval I, defined by
Op,min and Op mae and I, specified by 6, min and 0 maa:
ip ~ U(Ip) and i, ~ U(I,). An example for an arbitrary



level is shown in Figure 2. The original work from McCallum
[17] targets only one segmentation level, usually referred to as
the “functional” level (or coarse). The author experimentally
found the parameters 6, min = 1, 0pmaz = 16, dpmin = 1
and 6,, ymae = 96 to yield good results. This method is used as
a baseline (denoted as Flat) and the original sampling values
suggested above are retained in the remainder of this work.

D. Multi-level extension

The sampling method proposed in this work can be viewed
as the multi-level extension of that of McCallum [17]. We de-
fine a hierarchy H of L representation levels £ € {0;...; L —
1} we wish to obtain. For each single level ¢, sets of beat
indices are sampled, this time using level-specific parameters
6% = {65 nin» O maz> O min» On.maz }- In order for the learned
hierarchy levels to remain consistent with one another, mono-
tonicity is encouraged by further modifying the initial triplet
mining technique. In addition to the time constraint imposed
on frames of the same level, their probability of being sampled
is restricted from one level in the hierarchy to the next. A more
detailed description of the sampling process is given below,
according to the loss function employed.
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Fig. 3: Modified triplet sampling, moving downwards in the
hierarchy.

1) Multi-level triplet loss: For a randomly sampled anchor
index at level £ = 0, a complete triplet (¢,i), i) is built
only using time proximity (i.e. 6° parameters). Then for each
level ¢ € {1;...;L — 1}, the positive example is sampled
closer and closer to the same anchor (i.e. (Sﬁ,min and 07 ..
decrease), whereas the negative is obtained by selecting the
positive example from level ¢ — 1. This way, going deeper
into the hierarchy enforces the representations to get more
refined and detect short-term musical patterns. Turning the
positive example at a given level into the negative one at the
subsequent level while keeping the anchor point unchanged
further encourages the model to learn more level-specific
features. The modified sampling method is summarized in
Figure 3. At the very first level ¢ = 0, the positive and negative
examples are uniformly sampled from the intervals IS and I
respectively (similar to the single-level case). Then, for each
level ¢ € {1;...; L — 1}, the negative example is transferred
from the current to the next level, and the positive example is
uniformly sampled from the interval I.

2) Multi-level contrastive loss: In the case of the multi-
level contrastive loss, the sampling process essentially remains
the same as in the triplet case, with a few minor differences.
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Fig. 4: Multi-level sampling for contrastive loss, moving
downwards in the hierarchy.

For a given track ¢, a number N, of anchor points are
uniformly sampled across the whole track, yielding the anchor
set A(t). Then, for each anchor point i, € A(t) at level £ =0,
the sets of positive P(i,)" and negative frames N(i,)° are
obtained by sampling uniformly N, and N, points from the
intervals I7) and I). Then, for each level £ € {1;...;L — 1},
the current negative sampling interval is the same as the
positive one from level /—1: I/, = I/~! and the new positive
sampling interval Iﬁ is shifted closer to the anchor, according
to the corresponding ¢* parameters. In other words, the triplet
sampling approach directly transfers positive indices from the
current level to the next, while the contrastive one transfers
the whole positive sampling interval (see Figure 4).

E. Disentangling hierarchy levels

During training, the model is shown frames sampled at dif-
ferent hierarchy levels and should optimize the corresponding
sub-regions of the output embeddings. We adapt the method
introduced by Veit et al. [22], called conditional similarity
networks. This method has already proven to be efficient in
the context of multi-dimensional music similarity learning
[14], where a joint model learns compact representations
of music audio signals complying with different similarity
criteria, namely genre, mood, instrumentation and tempo. We
propose to extend it to the hierarchical case: to model the
different temporal distances, a set of L masking functions
me € {0,1}¢ are applied to the embedding space of size
d. Each mask can be interpreted as an element-wise gating
function selecting the relevant dimensions of the embedding
corresponding to a particular level of the hierarchy.

1) Triplet loss: For a given triplet (x4, xp, z,) at level £,
the training objective becomes:

[’triplet('xaaxpamnaé) = [Dé(xayxp)_Dl(xavxn)_Faf]-‘rv (5)

where
Dy(zi, ;) = [lme o [fu, — fo,]ll5 (6)

where o is the Hadamard product, [.]; denotes the Hinge loss,
« the margin parameter and f, is the projection of x into
the embedding space by the convolutional neural network.
An example is illustrated in Figure 5, where L = 2 and
¢ = 0. Since going deeper into the hierarchy results in
triplets of frames getting temporally closer to each other, it is
unnecessary for the model to separate samples by the same
distance margin at all levels. Therefore, margin values are
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Fig. 5: Training pipeline for £ = 0 and L = 2 embedding
levels. At each iteration, the current hierarchy level defines
the set of triplets used for training according to 6* parameters.
The mask here conserves the sub-region corresponding to level
¢=0.

set such that for each level ¢ € {0;...;L — 2}, we have
Qyp > Qpgq.

2) Contrastive loss: For a given anchor point i,, a positive
example 7,, and a set of negative examples N (i,,), the pairwise
contrastive loss becomes:

exp(fa - f5/7)

1
8 exp(FE- L) + > exnlfi- i/
ne lq
(N

where f{ = my o f; corresponds to the masked projection of
sample ¢ at level ¢. The overall training pipeline is similar to
the triplet case, depicted in Figure 5, with the difference that
several positives and negatives are used for a given anchor
point.

LP (g, iy, 0) =

IV. EXPERIMENTS

The experiments carried out in this work are four-folded.
First, we consider the problem of single and multi-level
boundary detection and section grouping. The next experiment
consists in assessing how well the learnt representations adapt
to a particular level of annotations. To do so, these are fine-
tuned on a held-out training set, after which downstream
segmentation is performed. Finally, we provide a qualitative
analysis of these representations and illustrate through differ-
ent examples how each element of our method impacts them.

A. Datasets

Since this work falls under the scope of self-supervised
learning, a non annotated external audio collection is used for
training. It is composed of 40,000 tracks, spanning various
musical genres such as rock, popular, rap, jazz, electronic
or classical. These were retrieved from publicly available
playlists and the audio obtained from YOUTUBE. Care has
been taken to discard any track from this external collection
also present in one of the following testing datasets.

SALAMI: the Structural Annotations for Large Amounts
of Music Information (SALAMI) [23] is the most substantial

dataset for music structure analysis. It contains 1,359 tracks
ranging from classical, jazz, popular to world and live music.
Each track is provided with two levels of structural anno-
tations. The first one denoted as coarse level, refers to the
functional segmentation level (verse, chorus ...). The second
one, lower level, provides a more fine-grained segmentation
of the track closer to the motif scale. For evaluation, we use
a subset of 884 songs labelled by two different annotators.
Therefore, for each track, we end up with a total of 4 segmen-
tation ground-truths (2 annotators x 2 levels of granularity). In
the rest of this work, this subset is referred to as SALAMI .
The remaining tracks of the dataset are used for validation and
denoted as SALAMI,,;.

JSD: the Jazz Structure Dataset [24] gathers 340 jazz
recordings that were manually annotated by 3 semi-
professional musicians with a background in jazz music. A
key advantage of this dataset resides in the consistency of its
annotations. These were built assuming that jazz recordings
usually follow a fixed schema that includes the introduction of
the main melody (theme), followed by alternating solos from
the different musicians and a final return towards the main
theme at the end of the track. Additionnally, each music piece
is provided with two-level annotations: the chorus level (a full
cycle of the harmonic schema) and a solo level, consisting of
one or more choruses. We managed to retrieve the right audio
version for 300 tracks out of the 340 composing the dataset
and use this subset for evaluation.

Harmonix: the Harmonix dataset [25] is composed of 912
annotated tracks covering various genres of western popular
music such as pop, electronic, hip-hop, rock, country and
metal. The audio files were retrieved from YOUTUBE and
structural annotations were manually adjusted.

B. Evaluation metrics

Common evaluation metrics for automatic structure analysis
are employed throughout our experiments. In the case where
the test dataset has more than one annotator, the best score
across annotators is kept, as the goal of the evaluation process
is to measure how close to human-truth the predicted seg-
mentations are. Besides reporting the average score obtained
per metric across tracks and its standard deviation, the statis-
tical significance of the results against the flat representation
baselines is assessed using a Wilcoxon signed-ranks test with
p < 0.05. More precisely, the performance of each model
variant is individually compared to that of the single level
embeddings (Flat) in a track-wise manner.

1) Homogeneity: The notion of homogeneity plays a crucial
role in the quality of the representations learned. Ideally,
these should be very homogeneous inside annotated musical
sections and highly heterogeneous across musical sections. To
evaluate this aspect, we introduce a metric which compares
the embeddings variance within and across annotated sections.
This quantity is independent from downstream segmentation
performance and therefore, provides a direct way to qualita-
tively evaluate the representations learned. Let us denote the
embeddings matrix by Z of shape d x T" where d and T refer



to the embeddings’ features and time dimensions respectively.
The total features variance Vi, across the track is defined as:

Viotal = tr(cov(Z)) x T )

For each musical section (or segment) i, the intra-section
variance of features V; using the sub-patch Z; of Z corre-
sponding to the 7; concatenated frames belonging to section
(or segment) ¢ is calculated as:

Vi = tr(eov(Z;)) x T; )

The overall statistics S is given by the following ratio:
Vi
S =
; Vlotal

where i € {0,...,N} with N being the number of seg-
ments (or sections) in the track considered. The metric S
helps understanding how the learned representations vary with
respect to the annotations. The lower the value of S, the
more aligned the learned representations are with the annotated
section boundaries and labels. We calculate this metric with
and without section labels, thus yielding two homogeneity
metrics Sg; and S operating at the segment and section
levels respectively.

2) Boundary detection: For boundary detection, we report
the F-measure! of the trimmed? boundary detection hit-rate
with a 0.5 and 3-second tolerance windows (HR.5F, HR3F
respectively) on the original annotations.

3) Structural grouping: We report the F-measure of
pairwise-frame clustering [27] (PFC), which gives another
view on flat segmentation performance in terms of frame-
wise section assignment. Additionally, the V-measure (V) [28]
is also calculated, in order to indicate from a probabilistic
perspective the amount of information shared between pre-
dicted label distributions and their corresponding reference
annotations.

(10)

4) Multi-level segmentation: The evaluation on multi-level
segmentation is carried out using the L-measure [9]. This
metric allows for comparing hierarchies of segmentations
operating at different scales. First, the reference hierarchy
HT is decomposed into a finite number of time instants (i.e.
frames). Then, the set A(H) of all triplets of frames (4, j, k)
is retrieved such that ¢ and j receive the same label deeper
in the hierarchy than ¢ and k. The same process is repeated
with the same set of time instants for the estimated hierarchy
HE to obtain A(HF). Finally, the L-precision, L-recall and
L-measure are derived by comparing A(H%) against A(HF).
As noted in previous work [11, 12], hierarchies estimated
with greater depth than reference annotations can make the
L-precision metric uninformative. Therefore, our evaluation
focuses on the L-recall, indicating how much of the reference
hierarchy is retrieved in the estimated one.

TAll evaluations are done using the mir_eval package [26].

2The first and last boundaries are discarded during evaluation, as they
correspond to the beginning and the end of the track and therefore, do not
provide any information regarding the system’s performance.

C. Input features

All tracks are resampled at 22.05 kHz. As input to our
deep neural network, we use log-scaled Mel-spectrograms with
a window and hop size of 1024 and 256 respectively. We
compute 64 Mel-bands per frame. The TorchAudio library is
used for feature calculation [29]. As in previous work [12],
beats are estimated for all tracks using the algorithm from
Korzeniowski et al. [30] implemented in the madmom package
[31]. It has been observed that in most cases, the beat tracker
returns half the actual number of beats. Therefore, the number
of detected beat locations is artificially doubled by linear
interpolation. Patches of 128 frames (~ 1.48s) centered at
each detected beat location are fed as input to the network.

D. Network architecture

The architecture of the encoder fy follows recent work in
automatic music tagging [32], it consists of a CNN front-
end and a transformer module. The front-end comprises
three residual units with max-pooling and ELU activation to
aggregate local spectro-temporal information from the input
patch. The resulting low-dimensional feature map is denoted
as S =[S, 51,...,97_1] € REXFXT where C, F and T
refer to channel, frequency and time dimensions respectively.
It is reshaped so as to obtain one single vector per time-step,
S; € REY*F i € {0,...,T — 1}. The patch-wise sequence
of 1D vectors (corresponding to approximately 46 ms each)
is then processed by the transformer back-end, consisting of
two transformer encoder layers with 8 attention heads each.
After average pooling over the time dimension, the embedding
vector of the input patch is finally obtained after applying a
linear projection and ¢s-normalization, resulting in a vector of
size d = 128. The model contains 1.1M parameters and is
implemented with Pytorch 2.0 [33]. The SGD optimizer with
10~* weight decay is used with 0.9 momentum. The model is
trained for a maximum of 50 epochs and we use early stopping
if the training loss has no decreased for 10 consecutive epochs.

E. Masks design

The output embeddings are divided into L. = 2 distinct
hierarchy levels, as the goal is to target both coarse and refined
segmentations (similar to the annotation levels of the SALAMI
dataset). In previous work, it was found beneficial to learn the
masks during training to promote information sharing across
similarity dimensions [22]. Here, we use disjoint masks with
a constant value either equal to 0 or 1. The intuition is that
the first half of the output embeddings should be used to
discriminate coarse musical segments, and by adding more
information (i.e. expanding the mask), finer-grained details are
included and allow for discriminating between time-frames at
smaller time scales. For the triplet loss, the margin parameters
are set to ag = 0.1 and a3 = 0.05 for the upper and lower
representation levels respectively. For the contrastive loss, we
use a unique temperature parameter 7 = 0.25 across levels.

F. Batch sampling scheme

1) Triplet model: During training, mini-batches of size 256
are composed of 8 anchor points uniformly sampled from 4



different songs, and from which 8 triplets are derived (4 for
each representation level). To choose good sampling parame-
ters, we use both annotation levels of SALAMI,,; and measure
the amount of true positive and true negative examples while
varying 0p.min and Op maz USing upper annotations. It was
found that setting dp min = 16 and dp mes = 32 provided a
good balance between the true positives rate at level £ = 0
and the true negatives rate at level £ = 1. Positive examples at
level ¢ = 1 are sampled using 0p min = 1 and dp maz = 16,
that is, at most 4 bars away from the anchor (in a 4/4 time
signature).

2) Contrastive model: In the contrastive case, a batch
comprises all the frames contained in a single song. The loss
is computed over N, = 16 anchors per track. The number
of positives and negatives per anchor are set to N, = 16
and N,, = 32 respectively. These values were found by trial
and error and could be further tuned for better performance.
However, we found that these already provide a good trade-
off between the diversity of patches the model is exposed to
during training, and the potential conflicts in positives at each
hierarchy level. The positive and negative sampling intervals
If and I use the same §° parameters than for the triplet case.

G. Downstream segmentation

For all experiments, the embeddings returned by each
model are fed as input to spectral clustering [10]. The main
motivation for such choice resides in the fact that this algo-
rithm jointly performs both boundary detection and structural
grouping at multiple levels in an self-supervised manner.
This allows one to compare the influence of each of the
tested representations into a single unified framework. The
original algorithm takes two distinct beat-synchronized audio
features as input (MFCC and CQT), we denote this version
by LSD (Laplacian Structural Decomposition) and consider it
as one of our baselines. When feeding deep representations
to this algorithm, we simply replace both input features by
the whole embedding matrix multiplied by its corresponding
mask. Finally, because this algorithm outputs multiple levels of
segmentation, only the one maximizing the considered metric
is reported (HR.SF and HR3F for boundary detection, PFC
and V-measure for structural grouping).

V. RESULTS

In this section, we provide results of the experiments
performed with each model on the three datasets presented
in Section IV-A. For clarity, we list here the abbreviations
used in the following tables:

o LSD: stands for Laplacian Structural Decomposition [10],

which corresponds to our first baseline.

o DEF: corresponds to the work by Salamon ez al. [12]
where segmentation with spectral clustering is improved
using pre-trained audio embeddings.

o Flat: refers to representations learned with only one level,
with a similar sampling strategy than that of McCallum
[17], considered as a third baseline.

e M-level: denotes the multi-level representations proposed
in this work. Because they contain two distinct sub-levels,

M-level oarse, M-level ofinea, M-level, o and M-level* re-
spectively correspond to taking the upper embedding
level, the lower embedding level, the whole embedding
matrix (both levels together) and the best level between
both.

o Flat/M-level  ipjer/consr.: indicates whether the network was
trained using the triplet or the contrastive loss.

A. Qualitative analysis

As a first evaluation step, we study the variability of the
learned multi-level representations using the S metric defined
in Section IV-B1. In Figure 6, we give the value of S across the
three test datasets used in this work. The values are calculated
at the segment level (Ss.y) and at the section level (Sgec)
after the model is trained on two representations levels using
the contrastive loss. We observe that for each dataset, the
variability within musical sections and segments is consistently
lower for the upper representation level. This result was to be
expected, as this embedding level is trained to group frames
of temporally wider neighborhoods than its lower counterpart.

Dataset = SALAM |¢est Dataset = JSD

Dataset = Harmonix

0.3
0.2 I upper
0.1 0 lower
0
Ssec Sseg Ssec Sseg Ssec Sseg

Fig. 6: Average S metric across tracks from SALAMIy,
Harmonix and JSD datasets. Ss.. and Ss., stand for section
and segment level respectively. Upper and lower denote the
different embedding levels learned.

For SALAMI,y, and Harmonix, the variability within seg-
ments is smaller than within sections, indicating that the
representations learned tend to vary more across occurrences
of a same musical section, possibly due to musical variations
between them, or an implicit temporal continuity encoded in
the embeddings (the training objective only compares frames
relatively close in time). However we observe the inverse
phenomenon for the JSD dataset, probably due to the low
number of section repetitions at this particular annotation
level (solo) or the dependency of musical sections with the
instrumentation, which turns out to be well captured by the
network during training.

We give an example illustrating the proposed multi-level
representations in Figure 7 where self-similarity matrices of
a track are plotted. On the left-hand side, the self-similarity
matrix was obtained using the upper representation level,
supposedly the most adapted to a coarse segmentation. One
can clearly see the prominent block-like structures indicat-
ing regions of high homogeneity. These same blocks also
align well with the reference structural annotations, where
the transition from one block to the next corresponds to
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Fig. 7: Example of self-similarity matrices obtained for Thirty
Seconds To Mars - The Kill obtained for upper (left) and lower
(right) representation levels. Red dotted lines denote section
boundary locations.

boundaries between musical segments. Similarly on the right-
hand side, we plotted the same matrix this time using the
lower representation level. Despite still having clear block
structures, the overall similarity within those is generally lower
than for the upper level, allowing for the appearance of shorter
homogeneous sequences within these blocks, which are not as
visible at the upper representation level. Therefore, combining
both representation levels could allow to differentiate frames
at a small and larger temporal scales simultaneously. Thus, the
overall graph of the song is given a hierarchical organization
that can be leveraged by spectral clustering during downstream
segmentation.

B. Flat segmentation

1) Boundary detection: Results for boundary detection on
SALAMI.s and JSD are reported in Table I and II. We first ob-
serve that in both cases, replacing hand-crafted features by the
representations learned improves the performance of spectral
clustering, regardless of the model version considered. From
a general perspective, the contrastive loss seems to perform
better than the triplet configuration for both representation and
annotation levels. As the contrastive loss simultaneously com-
pares various positive and negatives, more general features can
be learned during training, thus reducing noise in the resulting
self-similarity matrix used for spectral clustering. Learning
representations in a multi-level fashion also positively impacts
results at a tolerance window of 0.5s, which suggests that there
is an advantage of targeting both representation levels with the
same backbone network, as these two tasks might benefit from
each other.

Concerning the performance on SALAMI reported in Table
I, most embedding configurations outperform the DEF baseline
[12] for both tolerance windows of 0.5 and 3 seconds. For
the triplet case, the performance between upper and lower
representation levels is somewhat equivalent on both annota-
tion levels (see lines M-levelcoarse, tripiers M-level,ofined, iripler and
M-level, o, iripier) indicating that both representation levels
are not disentangled enough to learn level-specific features.
On the other hand, the contrastive loss seems to provide a
better level disentanglement, where the upper representation
level better matches the upper annotations and conversely, the

lower one seems more efficient on more fine-grained boundary
annotations (see lines M-level oarse, contr.» M-level epned, conr. and
M-levelynore, conn:)- It is also interesting to see that using
only the lower representation level generally leads to poorer
performance than when combined with the upper one (see lines
M-level,opned, conr. and M-level,pope, conrr). This might imply that
features learned at the lower level are complementary to those
learned at the upper one, and that there exists a hierarchical
relationship between them.

SALAMI upper SALAMI lower

HR.5F HR3F HR.5F HR3F

DEF [12] .338 .564 - -

LSD [10] 341+.a7 .596+.18 .284+.14 .626+.16
Flatyyipie; [17] .378+.16 .680+.17 .353+.13 718+.12
M-level oarse, triplet .376+.16 .684+.17 312+.13 .656+.14
M-levelyofined, wripler -376+£.17  .684+.17 .3104.13 .6604+.14
M-levelyole, tripler .378+.16 .685+.17 .3104.13 .661+.14
M-level* ipier 420 +.16  .706+.17 383 +.12  .737+.12
Flatcon. [17] 372415 .695+.16 .334+.12 727+.13
M-levelcoarse, contr 398 +.16 701+.17 353 +.12 724+.12
M-levelyofined, conr. 380 .16  .690+.17 347 +.12 .730+.12
M-level,pole, contr 395 +.16 .698+.17 355 +.13  .726+.12
M-level* conr. 450 +.16 738 +.16 394 +.12 751 +.12

TABLE I: Flat segmentation results on SALAMI.y. Results
in bold denote statistically significant improvement over Flat
representations.

Boundary detection results on JSD given in Table II show
that this dataset is much more challenging than SALAMI for
any configuration of our system, as can be seen by the severe
performance drops on all metrics. However, our results are still
on-par with the baselines experimented in the original paper
[24]. We can also observe that multi-level representations
tend to outperform the single-level ones on a majority of
boundary detection metrics (see rows M-level and Flat). More
precisely, the upper representation level seems to be more
adapted to these annotations (see rows M-level ,qse and M-
level,ofineqFlat). Given that the average segment duration in
the JSD dataset is around 35 seconds, segment should have an
approximate duration of 60 beats (at a typical tempo of 120
bpm). Therefore, positives sampled at the upper representation
level approximately span half of their current segment, thus
improving the homogeneity of representations at this level. To
summarize, the proposed multi-level representations perform
as well as their single-level equivalent for boundary detection
at a 3s scale, and generally improve results for smaller
temporal scales (0.5s).

2) Structural grouping: Results for structural grouping on
SALAMI (Table III) and JSD (Table IV) follow the same
trends. First, there is no significant difference between using
one or two representation levels, either for training or inference
(similar results between Flat and Multi-level) on SALAMI.
On JSD, we can observe that using multiple representation
levels can actually hurt performance (see Flat and Multi-level
rows). One explanation is that adding embedding levels might
make the representations too sensitive for the scale of the
solo and chorus sections of JSD. It has been shown that the
pairwise frame clustering metric can be highly sensitive to



JSD solo JSD chorus JSD solo JSD chorus
HR.5F HR3F HR.5F HR3F PFC v PFC A%
LSD [10] .126+.09 .289+.14 .145+.09 .343+.13 LSD [10] 488+.11 A457+.12 .382+.12 496+.12
Flatyyipie; [17] .266+.16 537+.21 .243+.15 .495+.18 Flatyyipie; [17] 732+.12 .708+.13 BTT+.14 .680+.11
M-level parse, tripiet 267+.17 549 +.21 .245+.15 .502+.18 M-level parse, triplet 731+.12 .708+.13 .580+.14 .684+.10
M-levelyefined, ripler  -249+.15 5424 .21 .226+.13 498+.17 M-levelyefined, ripter -731%£.12 .706+.13 .575+.13 .677+.10
M-level,yhole, tripler 272417 548 +.21 247414 .502+.18 M-levelyole, tripler 734412 710413 .5794+.13 .682+.10
M-level* iipjes 308 +.16  .576 +£.21 283 +.14  .526 +.17 M-level* ipje 749 £.11 724 £.12 594 £.14 .695 +.10
Flatconr. [17] .253+.16 572420 .2344.13 540417 Flatcony. [17] 749411 736412 .6254+.13 .7264.09
M-levelcoarse, contr: 279 +.18 581 £.21 250 +£.15  .528+.18 M-levelcoarse, contr 751412 733412 .6064.14 .7064+.10
M-levelyefined, conr. .270+.16 569+.21  .245 +.14 529417 M-levelyefined, conr. 740412 723413 .593+.14 .697+.10
M-levelypole, contr 280 +.18 581 +.21 255 +.14  .533+.18 M-levelypole, contr 751+.12 .733+.12 .603+.14 .703+.10
M-level* contr 345 +.18  .628 +.21 307 +.15 569 +.18 M-level* conty: J71 +.11 751 £.12 .620+.14 718+.11

TABLE II: Flat segmentation results on JSD. Results in
bold denote statistically significant improvement over Flat
representations.

precise boundary locations [34], which might explain how
this metric varies between annotation levels (see columns
upper/lower, solo/chorus). The V-measures obtained however,
are more consistent and indicate that the frame assignment
returned by spectral clustering is generally better for JSD
than SALAMI. While we hypothesize that harmony-related
information is encoded into the representations, this result
leads us to think that they are also strongly dependent to timbre
variations, which would align well with the succeeding solo
sections from the JSD dataset.

SALAMI upper SALAMI lower

PFC v PFC \Y%
LSD [10] 782+.14 .626+.17 .664+.16 .645+.13
Flatyipe [17] .786+.14 .639+.17 .658+.16 .658+.14
M-level parse, triplet 784414 .643+.17 .657+.16 .6444.15
M—levelreﬁ,,ed_ triplet 783+.14 .642+.17 .658+.16 .644+.15
M-levelyypole, ripier .785+.14 .643+.17 .657+.16 .646+.15
M-level* ipes 797 £.14 661 £.17 671 £.16 669 +.14
Flatcons: [17] .786+.13 .647+.17 .662+.15 .664+.14
M-levelcoarse, contr: 7884.14 .6494.17 .664+.16 .6664.14
M-level,ofined, contr: .788+.13 .648+.17 .664+.15 .664+.14
M-level,ypole, contr: 791+.13 .651+.17 667+.15 .668+.14
M-level* cony: 810 +.13 677 .17 .684 +.15  .682 +.14

TABLE III: Section grouping results on SALAMI .. Results
in bold denote statistically significant improvement over Flat
representations.

As for SALAMI, we notice slight improvements when
both representation levels are used jointly (M-level, ;. TOWS),
probably due to the multi-level learning procedure. Employ-
ing the contrastive loss generally results in higher structural
grouping performance (see rows M-level, ip.; and M-level o),
confirming our hypothesis that comparing more frames at once
during training may lead to less noisy features.

C. Multi-level segmentation

The evaluation of the learned representations on multi-level
segmentation is summarized in Table V for SALAMI and
Table VI. Here we can clearly see that training a model on
more than one representation level brings improvements in

TABLE IV: Section grouping results on JSD. Results in
bold denote statistically significant improvement over Flat
representations.

terms of L-recall in most cases (see rows Flat and M-level).
This indicates that both high and low-level structures contained
in annotations are well captured by the predicted hierarchies.

For SALAMI, all the configurations of the proposed method
outperform the DEF baseline [12] by a large margin. Im-
provements over single-level representations are only achieved
in the contrastive loss case, where the most refined rep-
resentation level includes more than 75% of the annotated
hierarchies. Conversely on JSD, the best representations are
those that include the coarse level (M-level ourse, cons: and M-
levelyote. consr:)- This aligns with the previous results on struc-
tural grouping, suggesting that using the lower representation
level only might be too specific for the hierarchies annotated
in this dataset.

Method | L-precision L-recall L-measure
Inter-annot \ 0.664 0.664 0.654

DEF [12] 435 673 .500

LSD [10] .450+.13 .689+.14 .534+.14
Flatyipie: [17] 4494 .12 740412 .5494.13
M-level oarse, ripier 449+ .13 .738+.13 .548+.13
M-levelefined, tripiet 448+.13 741412 .548+.13
M-level,pote, triplet 449+ .13 741412 .5494.13
M-level* ipjer 457413 758 +£.12 559 +.13
Flatcony [17)] 451+.12 745+.12 .553+.12
M-levelcoarse, contr: 449+ .13 751+.12 .5524+.13
M-levelyefined, conr. 451+.12 755 +.12 .555+.13
M-levelypole, contr: .452+.13 754 +.12 .555+.13
M-level* copsr. 465 +.13 J75 +.12 571 +.13

TABLE V: Multi-level segmentation results on SALAMI..
Inter-annot corresponds to the inter-annotator agreement. Re-
sults in bold denote statistically significant improvement over
Flat representations.

D. Comparison to supervised baselines

In this section, we provide an additional performance
comparison of our approach against recent fully supervised
baselines for music structure analysis. The first one is the work
from Wang et al. [15] which uses supervised metric learning to
learn audio representations and spectral clustering to perform



Method | L-precision L-recall L-measure
LSD [10] | .310+.08 .635+.14  .412+.10
Flatyyipie; [17] .3764.08 .829+.10 .513+.08
M-level oarse, triplet .380+.08 841 +.10 .519+.08
M—level,.eﬁ,m], triplet .375+.08 .837+.10 .514+.08
M-levelypole, rripier 377+.08 840 +.10 .516+.08
M-level* ipjer .381+.08 851 +.09 .522+.08
Flatcons: [17] .391+.08 .849+.09 .531+.08
M-levelcoarse, contr. .381+.08 .857 +.09 .523+.08
M-level,ofined, contr 377+.08 .849+.09 .518+.08
M-level,pole, contr .378+.08 857 +.09 .521+.08
M-level* consr .385+.08 870 +.08 .530+.08

TABLE VI: Multi-level segmentation results on JSD. Results
in bold denote statistically significant improvement over Flat
representations.

boundary detection and structural grouping. This baseline is
denoted as Harmonic CNN, derived from the backbone archi-
tecture employed in their work. Comparison against this work
is the most straightforward among all the listed baselines, as it
is essentially the same music segmentation pipeline as the one
followed in our method, with the difference that their network
was trained in a fully supervised fashion. The second baseline,
denoted as SpecTNT is from subsequent work by Wang et al.
[35] where a transformer-based architecture is employed to
jointly predict the boundary probability of each time frame,
along with the label of the musical section it belongs to.
Finally we also report a recent method by Kim er al. [36]
(All in One) which applies a temporal convolutional network
on demixed audio sources to simultaneously predict beats,
downbeats, section boundaries and section labels. Results for
the former two were obtained via 4-fold cross-validation on
Harmonix, while results for the latter are obtained from 8-
fold cross-validation. In Table VII, the performance on flat
segmentation is reported on the original label taxonomy of
the dataset. For multi-level segmentation evaluation in Table
VIII, we apply hierarchy expansion beforehand [37] by using
the label pre-processing step proposed in [35] as the coarsest
annotation level.

Method ‘ F5 F3 PFC St
Harmonic CNN [15] | .497 .738 .684 .743
SpecTNT [35] .558 - 712 724
All in One [36] .660 - 738  .769
LSD [10] ‘ 1401 .648 .666 .630
Flatyipier [17] 461 786 755 742
M-levelsoarse, iripler 461 799 760 .745
M-levelyofined, iriplet 461 797 762 746
M-levelypope, tripiet 470 802 .762  .750
M-level* iipjer 520 816 775 755
Flatcons. [17] 456 .801 .753  .741
M-levelcoarse, contr 487 804 .763 .750
M-level,yfined, cont 468 803 .773 .753
M-level,ypole, contr 485 808 770 754
M-level* conp: 548 834 794 773

TABLE VII: Comparison with supervised baselines on Har-
monix dataset, flat segmentation and section grouping. Results
in bold denote statistically significant improvement over Flat
representations.

Flat segmentation results on the Harmonix dataset are
given in Table VII. The contrastive loss yields better audio
representations than the triplet one (see lines M-level,;,.; and
M-level,,n,.). When compared against the supervised baselines
listed at the top of the table, we observe that our approach
outperforms its fully supervised equivalent from the work by
Wang et al. [15] for boundary detection at a 3s tolerance win-
dow and both structural grouping metrics. At a 0.5s tolerance
window, the configuration M-level ourse, cons: Of our system is
only 1% below the performance of this baseline. However,
our system largely falls behind the two remaining methods
for this same tolerance window. The training objective of our
approach is not dependent on the segmentation performance
as in a supervised setting. Therefore, it is impossible for
the network to learn fine-grained structural elements near
segment boundaries or acquire any information about section
labels assignment, which could indirectly inform the boundary
detection task.

Yet, our approach seems to perform well at structural
grouping. Because it can leverage large quantities of music
data, we hypothesize that more robust structural features are
learned by the network, which improves the clustering step
during downstream segmentation. Additionally, the label pre-
processing proposed in [35] was meant to reduce the number
of possible section labels. Despite reducing some ambiguities
in the annotation process (merging “chorus” and ‘“refrain”
sections), it may still regroup musical segments having differ-
ent functions within a given track (for example “break” and
“impro” are grouped into the “instrumental” category), which
could make the section grouping task harder to solve for the
model or wrongly penalize label predictions in some cases.
As an example, Figure 8 shows the reference annotations for
a particular track of the Harmonix dataset (left-hand side).
Here, the “prechorus” section is highly similar to the following
“chorus” section, as can be seen by brighter values in the
self-similarity matrix returned by the proposed model. In
this context, attributing the label “verse” to the former, as
suggested in [35], would likely push the model to learn an
irrelevant label assignment. It is also to be reminded that
the clustering results reported in Table VII are obtained by
selecting the segmentation prediction level that maximizes the
considered metric. Consequently, the proposed system has a
higher chance of predicting a label assignment that fits best
with the annotated test data among all the predicted levels
returned by spectral clustering. This is a major advantage
compared to the former two baselines previously introduced,
which only formulate one single level of segmentation. All
in all, despite not reaching the performance of supervised
approaches for boundary detection, our approach can still
provide a strong initialization for subsequent systems that
would directly optimize segmentation results.

Finally, we conducted a result analysis of the proposed seg-
mentation method. By looking more closely at failure cases,
we noticed that most errors made are related to the third aspect
of music structure, which has not been considered in this work:
the regularity of musical sections. In our scenario, the training
objective employed to learn audio representations is mainly
motivated by the homogeneity principle: neighbouring frames
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Fig. 8: Example of the self-similarity matrix obtained for Jay
Sean - Down along with the reference structural annotations
(left) and the best predictions from the proposed method
(right). Red dotted lines denote section boundary locations.

in time are likely to belong to the same musical segment,
and should therefore be close in the embedding space. By
applying this heuristic across each training track, the network
manages to pick repeating segments. However, there is no
explicit constraint formulated with respect to the length of
these segments. Similarly, the k-means step performed by
spectral clustering does not incorporate any knowledge about
section durations either. Figure 8 illustrates a typical failure
case where predicted segments (right-hand side) tend to have
irregular durations (see predicted segments labelled as 1 and
4 for example). These durations usually differ by a handful of
beats from the annotations, so their influence on segmentation
performance for larger tolerance windows (3 seconds for
example) is relatively low. However, they have a greater impact
at more fine-grained resolutions (0.5 second for example),
which can partially explain the important performance drop
across both tolerance windows of our system.

Method | L-precision L-recall L-measure
DEF [12] 432 .810 .560

LSD [10] .383+.09 .730+.13 .499+.10
Flatyipie; [17] 4254.08 .829+.10 .5594.09
M-level parse, tripiet .426+.08 .832+.10 .560+.09
M-levelyefined, triplet 427+.08 .834+.10 .562+.09
M-level,ypole, tripler 4264.08 .833+.10 .561+.09
M-level* yipier 434 +.08 850 .09 571 +.09
Flatcony: [17] 422408 .831+.10 .5564.09
M-level oarse, contr. 424+ .08 .836+.10 .560+.09
M-levelyefined, conr. 433 +.08 851 +.10 571 +.09
M-levelypole, contr 428+.08 845 +.10 565 +.09
M-level* contr 442 +.08 .868 +.09 582 +.09

TABLE VIII: Multi-level segmentation results on Harmonix.
Results in bold denote statistically significant improvement
over Flat representations.

VI. FINE-TUNING

As a last experiment, we explore a simple fine-tuning strat-
egy of the pre-trained multi-level model using a small quantity
of annotated data, which relates to a practical scenario in
which a user might want to perform structural segmentation on
a set of tracks at a specific level of detail, of which only a small

fraction was annotated accordingly. The encoder is pre-trained
using the contrastive loss and L = 2 embedding levels. For
fine-tuning, we use a set of tracks from the SALAMI dataset
labelled as “Popular” (corresponding to 274 tracks) as training
set and 100 randomly chosen remaining tracks of SALAMI,
denoted as SALAMI,, for validation. Training is monitored
by the average boundary detection score (%HR3F+%HR.5F)
on SALAMI,,;. We use the Adam optimizer with 10~ weight
decay, the initial learning rate is set to 1 x 10~% for the last
linear layer and 1 x 107> for the rest of the encoder. It is
multiplied by 0.8 if no segmentation improvement is observed
for 10 consecutive epochs.

The training objective used, similar to that of Peeters et al.
[38], measures how much a predicted self-similarity matrix
deviates from an ideal affinity matrix, obtained for each track
using its structural annotations. This allows for refining the
existing representations by forcing them to be similar or
dissimilar if they belong to the same section or not and this, for
any arbitrary number of musical sections. We define as mini-
batches all the frames comprised in a single song. Given a mini
batch Z = {X;}}V_, with N being the number of frames in a
track (i.e. beats), the predicted self-similarity Y € [0, 1]V*N
is such that:

. 1 2
Y(i,) = 1- 117 - Zl}, (an
where 4,7 = 1...N. Let Y* € {0, 1}"*¥ be the correspond-
ing ideal affinity matrix obtained from structural annotations,
the training objective is expressed as:
LYY = Y - VIR, (12
where ||A]|% is the squared Frobenius norm. For conciseness,
the evaluation is performed only on Harmonix for boundary
detection and structural grouping and the results are reported
in Table IX.

Level | HR.SF HR3F PFC v

Init. 485+ .17  .808+.12 .T70+.11 .754=£.10
upper | 479+ .17 817 £.12 769+ .11 .757£.10
lower | 487+ .17 813+ .12 .765+.11 .752+.10

TABLE IX: Boundary detection and structural grouping results
on Harmonix after fine-tuning on SALAMI popular subset
(using upper and lower annotations). Results in bold denote
improvement over pre-trained representations (Init.).

Results in Table IX show that the simple supervised training
objective is not well adapted to the task, where only slight
improvements are made when fine-tuning on upper annota-
tions. We have identified several possible explanations for
this. First, it is unclear how to predict what the network has
learned during its pre-training phase. Therefore, the training
objective from Equation (12) might yield very high values
when the reference annotations used to build the ground-truth
self-similarity matrix does not align with the representations.
For example, frames from multiple occurrences of a given
section could be grouped together in the embedding space,
but receive a different label in the annotations (in case of



refined annotations for example). This would force the net-
work to separate them and therefore lose potentially valuable
information on what they had in common. Additionally, the
network used does not include any positional information
about frames. However in structure, timing information is
crucial, as the absolute and relative positions between frames
within a track provide strong cues on whether they should be
grouped or separated. Finally, one could also change the fine-
tuning paradigm, so as to predict frame-wise boundary and
section labels probabilities such as in the supervised baselines
listed above.

VII. CONCLUSION

In this work a method to build multi-level audio represen-
tations for the task of hierarchical music structure analysis
has been proposed. By combining a sampling approach at dif-
ferent temporal scales and a disentangled contrastive learning
approach, multi-level representations for music segmentation
can be optimized without explicit supervision from structural
annotations.

The resulting embedding space provides distinct views of
the input music signal, and is shown to encode frame simi-
larity at various levels of detail. The experimental validation
performed on three substantial datasets for music structure
analysis show that the proposed audio representations improve
both single-level and multi-level segmentation predictions after
spectral clustering and can in some cases perform in a com-
parable range than that of fully supervised methods. Further
improvements are systematically achieved by selecting the
optimal representation level of each segmented track, which
further illustrates the advantage of relying on different notions
of similarity for music segmentation and incorporating them
into the feature extraction stage.

Because this method is self-supervised, it can leverage
large quantities of unlabeled data and reduce the effect of
bias induced by specific annotation styles or music genres. It
could also be further improved by more musically inspired
downstream segmentation algorithms. Future work includes
the exploration of such methods, in particular, the inclusion
of timing as prior information to further enhance the decom-
position of musical signals at different levels of detail.
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