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On décrit des architectures systoliques pour deux méthodes de reconnaissance
de mots connectés. La premiére méthode est fondée sur 1l'algorithme de compa-
raison dynamique qui est appliqué directement sur les données acoustiques.

La seconde méthode est un algorithme de comparaison probabiliste qui nécessite
que la phrase d'entrée ait été prétraitée par un analyseur phonétique. On

" montre que ces deux méthodes peuvent &tre mises en oeuvre sur des architectures

systoliques a une ou deux dimensions. Les avantages de chaque mise en oeuvre
sont discutés. On décrit en outre l'architecture d'un circuit programmable
de 12 000 transistors, réalisé en technologie NMOS, qui peut &tre utilisé
comme processeur élémentaire pour chacune de ces mises en oeuvre.

Systolic arrays for two connected speech recognition methods are presented.
The first method is based on the dynamic time warping algorithm which is
applied directly on acoustic feature patterns. The second method is the
probabilistic matching algorithm which requires that the input sentence be:

preprocessed by a phonetic analyser. It is shown that both methods-may be

implemented on either a two-dimensional or a linear systolic array. Advantages
of each of these implementations are discussed. The architecture of a 12 000
transistors programmable NMOS prototype IC which can be used as the basic
processor of these systolic arrays is presented.
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ABSTRACT

‘Systolic arrays for two_connected speech recognition methods are presented. The first
method is based on the dynamic time warping algorithm which is applied directly on acous-
tic feature patterns. The second method is the probabilistic matching algorithm which
requires that the input sentence be preprocessed by a phonetic analyzer. It is shown that
both methods may be implemented on either a two-dimensional or a linear systolic array.
Advantages of each of these implementations are discussed. The architecture of a 12000
transistors programmable NMOS prototype IC which can be used as the besic processor of
these systolic arrays is presented.
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SYSTOLIC ARCHITECTURES FOR CONNECTED SPEECH RECOGNITION

Francois CHAROT
Patrice FRISON
Patrice QUINTON

IRISA, Campus de Beaulieu,
35042 RENNES-CEDEX
FRANCE

‘1. INTRODUCTION. .

Speech recognition is a computationally intensive task which can be handled on con-
ventional architectures only for small vocabularies. The use of pipeline and paré.llel architec-
tures organizations increases the speed of the algorithm of one order of magnitude, thus
making realistic recognition of much larger vocabularies and broadening the range of appli-
cation of vocal input.

Over the past few years, numerous attempts to map speech recognition algorithms on
parallel architectures or to design dedicated parallel architectures supporting speech tasks
have been reported [1] Advances in VLSI have shown to be a determinant factor in this’
evolution as VLSI makes it feasible to implement complex parallel architectures on a few
integrated circuits. Among the various parallel organizations that have been considered for
that purpose, systolic array is a particularly appealing structure. A systolic array [2] is a
special-purpose architecture made out of simple processing elements organized as a regular
network. Processors are locally connected, operate synchronously, and data circulate
throughout the network in a pipeline fashion. The regular structure and operation of sys-
tolic arrays are particularly well suited for VLSI implemehtation hardware, since the design

" time can be dramatically reduced by using several instances of the same cell, and the local
communications help solving the problem of long wires.

Systolic arrays for speech recognition have been described recently. Weste, Burr and
Ackland [3] present an orthogonal array of processors (40 X 40) that can support the
dynamic time warping algorithm. The performances of this array permit real time isolated
word recognition of a 20,000 word vocabulary. They also describe the VLSI impleméntatioh
of the basic processor of this array. Yoder and Siegel [4] present various systolic schemes for
dynamic time warping, including the use of a linear array. More recently, Feldman et al.
[5] consider a wafer scale implementation of a two-dimensional systolic array for connected

speech recognition.
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Fig. 1: Block diagram of a Connected Speech Recognition system:
A) using Dynamic Time Warping
B) using Probabilistic Matching



This paper is based on an effort undertaken since the end of 1980 at IRISA to explore
the potential of systolic architectures for connected speech recognition [(H9] The algorithm
that was originally considered in [6] is a probabilistic matching algorithm based on Bahl and
Jelinek linguistic decoder [10] The main difference with the dynamic time warping
approach is that the speech signal must be preprocessed before applying the recognition, in
order to recognize the phonemes in the speech. It turns out that both dynamic time warp-
ing and probabilistic matching algorithms have the same structure and may thus be imple-
mented on the same kind of systolic array. Qur purpose in this paper is to present and dis-
cuss various systolic implementations for both methods. Section 2 presents the generai
organization of a connected speech recognition system and describes the dynamic time warp-
ing algorithm -and the probabilistic matching. Section 3 shows how these algorithms may be
implemented on a two-dimensional systolic array. Section 4 considers algorithms for a linear
systolic array. In section S, we describe the API89 chip, which is a prototype programmable
chip that can be used as a basic processor for the various systolic organizations presented.
Finally, section 6 compares the various solutions proposed.

2. SPEECH RECOGNITION ALGORITHMS

Fig. 1 presents together the block-diagram of two connected speech recognition methods.
The first one (Fig. 1A) is based on the DTW algorithm, and the second one (Fig. 1B) on a
probabilistic matching algorithm. In both methods, the analog signal which results of an
utterance is filtered, and acoustic features are extracted at constants intervals. Depending on
the acoustic analysis method which is used, these features may be band energies, formant
frequencies, cepstral coefficients, or linear prediction coefficients. Each vector of features,
called a frame, encodes usually 20ms of speech signal and contains 8 to 15 values. End-
points of the utterance are then determined by examining variations in the 'energy of the
speech signal. At this point, the pronounced utterance is represented by a sequence of
frames called the acoustic test pattern. Two different approaches are then possible. In
the first one (Flg 1A), reference words are memorized as acoustic patterns. Distance measures
between reference words and every subsequence of the test pattern are calculated using the
dynamic time warping algorithm. These distances are then combined in order to retrieve the
original sentence. The other approach (Fig. 1B) consists in preprocessing the acoustic test pat-
tern in order to encode it as a string of phonemes called the phonetic test pattern. The
reference words, also represented as strings of phonemes, are then matched against the
phonetic test pattern resulting in probabilities that are then used for the sentence recognition.

From the point of view of recognition accuracy, the DTW approach is superior to the
‘probabilistic matching because the phonetic analysis that must be carried out before the pro-
babilistic matching is a very inaccurate process. This explains why up to now only the
DTW algorithm has been considered for practical application of speech recognition. However,
in the long term, the second approach presents the advantage of being less computation
intensive and of needing less memory to store the reference words.

In the following, we describe in more detail the algorithms underlying each of these
approaches. The DTW algorithm is first presented. Then we describe the connected word
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recognition algorithm based on DTW. Finally, the probabilistic matching algorithm is
explained. -

2.1. THE DYNAMIC TIME WARPING ALGORITHM

The dynamic time warping algorithm is an application of the dynamic programming
principle [10] to speech recognition. The following description is based essentially on the
paper of Sakoe and Chiba [11]. :

Let R = R(1) --- R(N) be a reference word and 7 = T(1) --- T(M) be a test
utterance. Given a pattern R, (word or conaected word mquence) we shall denote as
R(:j) = R@) --- R(j) the subpattern of R from frame { to frame j and by IR! the

number of frames of R. Let d(i,j) = Il RG)~T(j) |l denote a distance between frame i of
R and frame j of T . This distance may be the Chebischev distance, the Fuclidean distance, .
or the log spectral distance depending on the type of acoustic feature considered.

Let C be a parametric curve of the plane defined by C(k) = G(k),jk)), k=1 --- K,
where C(1) = (1,1) and C(X) = (N,M) (Fig2). The dynaxmc time warping distance
between R and T is defined by:

K
¥ dle®)) . wk)

k=1

D(RT) = min

wi(k)
1 : 1

T =

where w(k) are weighting coefficients.

Various recurrent schemes have been proposed to compute D(R,T’) depending on restric-
tions made on the curve C. In the following, we shall only consider one of the most com-
monly used recurrent scheme (11} The curve C is constrained to have a slope p such that

1
; € p € 2 and the weighting coefficients w(k) are given by:

w(k) = j(k) — j(k—1) 2
We have then:

K

T wk)=M . .

e ‘ ©)

Such a DTW-distance is then said to be assymetric. Equation (1) may be solved by solving
the following recurrence:




D(@-1,j-2) + d@,j—1) + d(@,j)
D@,j) = min| DG~-1,j—1) + d(,j)

DG=2,j—1) + d(i—l,j)2+ a@,j) W

with the following initial conditions:
D) =0; D(@,j) = ifi<0and j21orif i21and j<O )]

it results immediately from (1) and (3) that:

N
DRT) = M) ®

Note that normalization by the coefficient M is not necessary if the comparisons are made
only between distances involving the same test pattern. Since this will be the case in the
remaining of this paper, we shall confuse D(RT) and D(N,M). Finally, a very common
heuristics is that values D(i,j) are computed only for the points (,j) which lie in the band
defined by: *

li—jI<r @)

where r is a given constant. This restriction avoids unreasonable stretching or compression
of the reference pattern, and reduces the amount of computations to be carried out.

2.2. CONNECTED SPEECH RECOGNITION USING DTW

The DTW algorithm may be used either for isolated word recognition, or as a basis for
connected word recognition. We shall only consider the later case here. Algorithms for con-
nected word recognition have been described by Banatre et al. [7] Bridle et al [13] Myers
and Rabiner [14], and Sakoe [15] The algorithms described in [14] and [15] find the best
matching connected word sequence considering successively sequences of qne word, then two
words, etc. The results are then compared and the best connected word sequence is deter-
mined. In [7] and [13] tbe best connected word sequence is found in a single pass of the
algorithm. In [13], the DTW algorithm and the connected word algorithm are merged, which
results in a very efficient but memory consuming algorithm. In [7] the DTW algorithm and
the connected word algorithm are done separately. The following description is based on [7].

Let T be the pattern resulting from the acoustic analysis of a sequence of words taken
from a given vocabulary. We denote as V the number of reference words of the vocabulary,
and denote as R, the v'" reference word. The length of R, is denoted as N, . (The index v
will be omitted when understood by the context). We call super-reference and denote as
R® the pattern obtained by the concatenation of a finite number of words R, of the vocabu-
lary. IR®|l denotes the number of words of R® (not to be confused with |R*!, which is the
number of frames of R®). '

With the above notations, the connected speech recognition algorithm consists, given a
test sentence T, in finding the super-reference R° which minimizes the distance D(R®T).



This process consists in two steps. First, one computes the quantity:
D" = min D(R*T) | : o (®
RS
Then one finds out the sequence of words whose concatenation achieves the distance D.
A Let D*(b,e) be the minimal distance between any reference word and a subpattern
T(be) of T, i.e:

DYbe) = win D(R,.T(be)) ©)
1:5v<V .
We denote as v*(b,e) the number of the reference pattern which minimizes (9). Let D (e)
be the minimum distance between any super-reference and 7'(1:), defined by:
D’(e) = min D(R* T (1:2)) o 10)
RS '
Finally, let D ;(e) be the distance between a L-word length super-reference and T'(1:).
Since the recurrence scheme of equation (4) is considered, a L-word super-reference can
match only a pattern having at least L frames. As a consequence, we have:
D'(e)= min D ,(e) 11
1L <e
On the other hand, since the DTW distance is assymetric, D 1(e) obey the following
recurrence equation: ‘

D";(e) = min lD' - (b—'1)+D*(b,e)] |
z 1€h<e i , ' (12)
- Substituting (12) into (11) gives:
D'(e) = min | min |D' 1—1(6~1) + D+(b,e)]
1SL <e [1<b<e (13)
By inverting the two minimum operations, we obtain:
D'(e) = min min [ D.L—l(b_l) + D+(b,e)|
1<bh<ef1SL<e
or, equivalently:
D'(e) = min H min D', _,(b—1) ] + D*(b,g)]
1€b€ellI<L <e . .
which gives finally: |
D)= min [DG-1)+ DG - -
1<b<e (14)

In this equation, the quantity D*(b,) may be obtained by applying the DTW algorithm
given by equation (4). For a given value b and a given word R,, a single application of the



algorithm allows all the quantities D(R,,T(b:e)) to be computed for all values e lying in
the interval [e,,e,] where

1=b—'1+N‘,"'r

ey=b~1+N,+7r Gas)

Accordmg to equation (9) a first minimization over the index v gives then the distance
D*(b,). Finally, a second minimization over b by applying equation (14) gives the final
resuit,

In order to retrieve the string of reference word numbers that minimizes D (e), it is
sufficient to keep track during the calculation of (14) of the index b(e) which achieve the
minimum as well as the number v*(b,e) of the word which achieves the minimum distance
D™(bs). The string of word numbers v (¢) which minimizes D'(e) is then obtained by the
following recurrence:

vie)=v(b'e)). vi(b*e)+1,¢) (16)

where x.y denotes the concatenation of strings x and y.

2.3. PROBABILISTIC SPEECH RECOGNITION

As mentioned earlier, another way to recognize speech is to preprocess the input data in
order to identify the phohemes that have been pronounced. This process, called phonetic
analysis is independent of the vocabulary chosen for the application, and reduces by
approximately a factor of S the amount of information to be processed later on. Fig. 3 gives
an example of the result of the phonetic analysis. The ideal transcription of the French sen-
tence "liste des connecteurs” is presented together with the results of the phonetic analysis, as
performed by the KEAL speech understanding system [16]. Each frame 7°(i) contains a few
phoneme candidates (three to five usually), with each of which is attached a probability (the
probabﬂxtm are not represented on the figure for the sake of clarity). We denote as x(i,k)
the k** candidate phoneme of frame 7(i) and p(i,k) the probability associated with it.

Let R, be the words of the vocabulary, where the frames of R, are now the
phonemes of the ideal phonetic transcription of the word. The connected speech recognition
algorithm consists in retrieving the super-reference R® that is most likely to have produced
the test pattern 7. Such a process may be carried out by the DTW algorithm provided a
distance is defined between frames of the reference words and of the test utterance. How-
ever, the information lost during the phonetic analysis makes it impossible to achieve a high
recognition accuracy in this way.

Another way to proceed is to describe the behavior of the phonemic analyzer more
accurately using the concept of Probabilistic Finite State Machine (PFSM) introduced by Bahl
and Jelinek {10} To each phoneme y is associated a PFSM (Fig. 4) which describes how the
phonemic analyzer is likely to deal with it. The PFSM has two states $(0) and S(1). Before
reading y, it is is state S(0), and may choose between three possibilities, namely insertion,
confusion or omission. With each of these three possibilities is associated a probablhty



denoted respecnvely P, (y) P (y) a.nd P (y) If the insertion is chosen, the PFSM remains in
state S(0), and produces a phonetic label x, with a conditional probability g(xiy). In the
case of a confusion, the PFSM reads the phoneme y and outputs x with' conditional probabil-
ity g.(xly). Finally, if the omission is chosen, the PFSM skips the phoneme y thhprobabll-
ity P,,(y). In order for the model to be consistent; we must have the following relation-
ships for every phoneme y: :

P + Py) + Py = 1

¥ g(xly) =1
X

T gxly) =1

X .
These probability distributions can be estimated from the actual results of the phbnemic
analyzer

From the elementary PFSM's associated with each individual phonemes, it is poslble to
modelize the behavior of the phonetic analysis when dealing with a reference word
R, = R,(1) --- R,(N,) by concatenating the PFSM’s associated to R,(1), -, R,(N,) (Fig.
5). It is convenient to assume that every reference word ends with a special marker denoted
] whose PFSM is such that P;(D = P.(D =0, which prevents the PFSM to produce any
result when reading this special marker.

The recognition process may be carried out from this model as follows. Consider the
likelihood that a test pattern 7 has been produced by analyzing a given reference
R = R(1). - - - R(N). Let us denote by L(i,j) the probability for the PFSM to enter state
S(@) after having produced 7(1:j). ‘The PFSM may enter S(i) after either an insertion of
any candidate phoneme of 7'(i) before reading R(j), or after confusing R(j) with one of the
candidate phoneme of T(i), or finally after skipping R(j). As a consequence, L(i,]) is given
by the following recurrence equatlons.

L@,j) = L,G,j) + L.G,j) + L,Q,j) _ an
L,G,j) = LG,j—1D x P,CRGE+D ) x ¥ p(jk) ¢;( x(jk) | RIE+1)) (18)
, . . |
LG,j) = LG-1,j=1) X P.(RG)) x § p(jk) ¢.( x(jk) | RGD) (19)
k
L,(,j) = L(—1,j) x P,( RG)) 20)

where L;(i,j), L,(G,j) and L,(i,j) denote respectively the probability for the _PFSM to enter
state S(i) after inserting 7'(j), confusing 7(j) and R@), or missing R(). Equation (17) is
valid when 1<i<N and 1€ j<M. If we add the following conditions:



Fig. 3: Example of phonetic transcription for the french sentence "liste des
connecteurs'. :

Pronounced liste des connecteurs

sentence

1deal phonetic | i s t e« d e k 8 n & k't e T
translation X, X, X; X, X, . X¢ X, Xs X9 X0 X X, Xy,
Outputof p ! i ] ¢ b e p @ n ¢ p o

the phonetic t e f e d y t ® v & t @
analyzer k g € k & g€ k

@' Pily) qilx/y)

/
Poly) {

I Pcly)  qeixlyl

Fig.ﬂ PFSM associated with the phoneme y

Pily(1}) qilxty(1))
Polyl(1}} Pcly(1}) qcix/ylt))
Pilyl(2)) qilx/y(2))
Paly(2)) Pcly(2)) qcix/y(2))
@' Pi(3)=0
!
Poll)=1 | Pc(l)=0

Fig. £ PFSM associated with the word Y =y(1) y(2)



LG0) =0 if i>0

L0,j)=0 if j>0
L(00) =1 5 | 1)
LGO=0 Vi

L,0,j)=0 Vj
then (17) is still valid if {f = O or j = 0.

As in the case of the DTW algorithm, one can restrict the computation of L(,j) to the
" points ({,j) which lie into a band of width r, i.e. such that | i — j | < r

The above probabilistic model may be adapted to connected speech recognition, in a
very similar way as explained in section 2.2 for the DTW algonthm Suppose now. that T
has been produced by the phonetic analysis of a super-reference R°. Denote as L (e) the
maximum probability of a super-reference R® given a test T(1:), and as L'(b,e) the max-
n'num probability of a single reference word given the test T'(b,e). By a similar reasoning,
L (e) can be estimated by :

x E
L (e) = max |L (b-1) x L*(be)
1<h<e _ . (22)
This equation is very similar to equation (14). The recurrent scheme for retrieving the pro-
nounced utterance is the same as explained in the section 4.

3. TWO-DIMENSIONAL SYSTOLIC ARRAYS FOR SPEECH RECOGNITION

The speech recognition algorithms that have been described both have the property to
be 'very regular in the sense that the basic computation to be executed at point (f,j) depends
pnly on results provided by computations at neighboring points. This property makes it pos-
~ sible to implement the algorithms on systolic arrays. As we shall see, various systolic struc-
tures are possible. The purpose of this section is to explain how a two-dimensional drray can
support these algorithms. The following presentation is based on [3] for the DTW algorithm,
and on [6]8] for the probabilistic matching algorithm. The systolic array for the connected
word recognition was described in [7].

The basic idea is to associate one processing element to the computation of each value
D(,j) in the case of the DTW algorithm, or to the values L(Z,j) in the case of the proba-
bilistic matching. Consider an array of processors denoted P, ,j connected as indicated by Fig.
6 (a) : P; ; has three input ports denoted 7, (vertical input), I, (diagonal input) and I,
'(honzontal input), and two output ports O,, O; and O, (respectively vertical, dmgonal and
horizontal output ports). I,, of P; .j is connected to O, of P;_, j, I; is connected to O; of
P;_yj-qyand I} is connected to Op, of P; ;4. In order to clarify the explanation in the fol-
lowing, we assume that each processor has the functional architecture depicted by Fig. 6 (b).
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A set of vegisters memorize the partial calculations performed by the arithmetic unit. We
assume that the L/O operations are performed synchronously on the whole array. We con-
sider successively the case of the DTW algorithm and the probabilistic algorithm.

3.1. DTW-Algorithm , .

In the following section, we describe the elementary cell calculation, then the overall
operation of the array, the pipelining mode of operation, and finally, how the array can be
used for connected word recognition. ‘

3.1.1. Elementary cell calculation
Py ; bas to perform the computation expressed by equation (4), i.e:

D‘(i--l..j—z) + d(@,j-1 + d@,j)
- .D@,j) = min| D@{-1,j—-1) + d(,j)
d@-1,j) + dQ,j)

D(-2,j-1) + ; : @

Fig. 7 illustrates the way data have to be transmitted between the processors. Let us first
-focus on the data that are required by P; ; to compute (4). These data are represented by
solid arrows on Fig. 7. D(i-1,j—2) is produced by P,_;;_, and has consequently to be
routed to P, ;y then to P, ;. In the same way, D(i—2,j—1) is routed through P;_;; to
reach P, ;, Distance D(i—1,j—1) may be routed through P, ;_;, and then to P, ;. The ele-
mentary distance (2, ) is computed by P; j, assuming R(i) and T'(j) are known from P, .
But since R(#) is used by all the processors of row #, R({) may be provided by P, ;_y; simi-
larly, T(j) is provided by P;_; j- Finally, the elementary distances d(#,j—1) and d(i—1,j)
are also provided by P; ;_, and P;_, ; respectively.

P; ; has not only to perform the computation of equation (4), but also to provide pro-
- cessors Py 44, Pryy j4q and Py ; with the data they need. These data are represented by
dashed arrows on Fig.7. Processor P;; sends D(i,j) and d(i,j) w processor Py,q ;4. and
#ends D{i=-1,j~1) and d(,j) to the processors P,,; ; and P, ;,,. The program that must be
performed by P, ; is given by Fig. 8. In the following, the duration of this program will
be called the ¢ycle of the systolic array.

3.1.2. Overall operation of the systolic array

The overall operation of the two-dimensional systolic array for the DTW algorithm is
made on a diagonal basis. Consider the comparison of a reference pattern R and of a test
pattern 7. Assuming that the computation start at time O, at time ¢, all the processors P, ;
such that i + j = ¢ are active. In such a way, it can be easily checked that all the argu-
ments needed for the computation of equation (4) have already been computed and have
been routed correctly. The results D(N,j) are obtained by the processors of the bottom row:



{ Program performed during a systolic ¢yéele =~ *°
D,d,D,,Dy, D, ,d, ,d,dy, T and R
are registers of the elementary processor.
Instructions separated by | are executed’

simultaneously.} L
{ Read new value T(j) and send old one }-
T <1, | T -> 0,
{ read D(i-2,j-1), and send old D(G,j) }
D, <-1I, ! D->o0,
{ read d(i-1,) and send old d(i,p }
d, <-1, I d->o0,
{ read D(i-1,j-1) and send old D(,}) }
{ Read new value R(i) and send old one }
{ read D(i-1,;2) and send old DG, }
{ tead d(i,j1) and send old d(i,j) }
{ compute new d(.,j }
d=I1IR-TN
{ compute new DG,j) }
d, +d
D=min|D, +d, +d Dy +d D, + —

Fig. 8: Program performed by a cell during a bagic cy;';l‘e,‘

Al



52 (1) T(2) T(3)
Input time 1 (1) (2)

T (1)

R1) R)(1) R,D) QR
R,(3) e

o

D(RyT(11)): D(R,I(1:2)) D(R,T(13) 44

D(R,T(11) D(R,T(12)) 3
D(R,,T(1:1)) Pa
‘ S.....,....so..-,...Tl . ) 1 l 1
D*(1) DP*(2) D*(3) | P, - P, P,

Fig. 9: Pipelining three reference words into the systolic array. The time at’ “which
the data enter or leave the array are indicated on dotted arrows.
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Py, ; delivers D(N,j) at time N + j ~ 1.

In order to cope with variable length reference patterns, the array is dimensioned

according to the longest reference word. Let N, inazv N, be the maximum number of
18sv s

frames of the reference words. The array has thus N, rows and N + r columns. The
process remains essentially the same if the length N, of the reference is smaller than N,
In such a case, the final values D(N,,j) are computed by processors of row N, , and must be
transmitted to the bottom of the array. One way to solve this problem is to associate a flag
with each reference frame R(i). This flag is set to 1 for i2N, and set to O otherwise. A
processor receiving this flag set to 1 from its left neighbor transmits the value D(i,j) instead
of D(i—1,j) to its bottom neighbor, and +eo instead of D(i,j) to P(+1,j+1). In such a
way, the processors of the rows N, , N, +1, etc, propagate the final values D(N,,j) to the
bottom boundary of the array.

3.1.3. Pipelining the reference words

Since only one diagonal of this network is active at a time for the computation of the
DTW algorithm, several computations may be pipelined into the array. as illustrated on Fig.
9. The pipeline operation of the array allows all the distances between any reference and
any sub-pattern of 7 to be computed very efficiently. A sub-pattern 7( b : b+N, +r—1)
that enters the top of the array remains constant, and the successive reference patterns R,,
1Sv <V enter the left part of the array. It can be seen that after a certain delay, each pro-
cessor Py _; of the bottom row of this array will output values D(R,T(bb+j—1)), for

1<v £V, one during each systolic cycle. When all the vocabulary has been matched against
the test pattern, it remains to shift the test pattern one position to the left before repeating
the process. In the following, we will refer to the process of comparing the whole vocabu-
lary with a sub-pattern of the test utterance as a vocabulary cycle.

3.1.4. Connected speech recognition

The computation of D (e) (defined by equation (14)) is carried out by a linear row of
processors connected to the bottom row of the two-dimensional array, as depicted on Fig. 9.
]

The processors of this extra row are denoted as P j»1 X j € Npt+r . Recall that:
D(e) = min D (b—1)+ D*(be) | 19
1€b<e ' 14
During a vocabulary cycle, a processor P ; receives the quantities D(R,,T(b:b+j~1)), that

are output by processors Pva j and can thus perforin the minimization:

D*(bp+j—1) = min DR, T(b:H+j~-1)
1SvsV
P'm .j also keeps track of the number vipb+ j=1 of the reference pattern which achieves
the minimum. Assume for the moment that processor P j Teceives from its left neighbor
the quantity D (b—1) (We shall see later on how this can be done). Then P~ ; is able to
compute the quantity D (b—1) + D*(b,b+j—1). But since the test utterance is shifted one
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position to the left at the end of the vocabulary cycle, processor P j-1 will receive during
the next vocabulary cycle the quantities D(R,T(b+1b+j—1)) and, in a similar way, will
compute D*(b+1,b+j~1) and D () + D+(b+1,b+1-l) In order to achieve the minimiza-

tion over b of equation (14), it is sufficient that P j sends to P j—1 at the end of -each voca-
bulary cycle the final value D ‘®-1 + DTG+ 1—1) it has found. This value is compared .
to the value D (b) + D+(b+1,b+1-1) computed by P _y during the next vocabulary

cycle. In such a way, each step of the minimization is carned out in turn by the Processors

of the bottom row, from the right to the left. Therefore, the final results D *(e) are com-

puted by processor P 1- It remains now to explain how values D (b, may reach the proces- -
sors at the right time. Note that all the processors need the same value D’ (b) at the end of a

given vocabulary cycle. But this value has just been produced by P 1 at the end of the pre-

vious vocabulary cycle. Therefore, if this value reenters P 1 and move from left to right

one processor every systolic cycle, it is broadcasted to all the cells of the bottom row.

The above implementation requires (W wFDXN, 7)) processors, if the full array is

implemented. If only processors P; J(such)that i —jl <r are implemented, a simple cal-
rir—1

culation shows that 2(r+1)N,, — are required. Since the vocabulary cycles are

pipelined, one reference word enters the array during each cycle. The number of systolic
cycles needed to compare the whole vocabulary is thus VM + 2N,, + r, where M is the
length of the test pattern. In other words, the array does V systolic cycles for each test
frame.

3.2. PROBABILISTIC MATCHING WITH A TWO-DIMENSIONAL ARRAY

The overall operation of the array is similar to those of the DTW-algorithm. In partic-
ular, the pipelining scheme remains the same. In this section we will focus on the operation
of the basic processor, and on the main problem in implementing this algorithm, namely the
memory size requirement. Consider the comparison between a reference pattern R contain-
ing N phonemes (including the end of word marker D and a test pattern T having M
frames. We assume that the last test frame 7(M) is composed uniquely of the end-of-word
marker ], with probability 1 The array needed to implement such a computation has N
rows.and M columns. Processors are numbered P; ; where 0<i<N—1 and 0€j<M—1.
Fig. 10 describes the computations performed by processor P; ;. Processor P; ; receives
T(j+1) and L,G,j) on its I, port, L (z,]) on I; and finally R(z+1) and L J) on I.
Using equation (17), the processor computes then L(i,j). Then using equations (18), (19) and
(20), it computes L,(i+1,j) which is sent together with T(j+1) on O,, then L (i+1,j +1)
which is sent on Oy, and finally L;(i,j+1) which is sent together with R@+1) on Oy,.

Note that this process still remains valid for processors at the boundaries of the array.
As far as processors of the top row and the left column are concerned, equation (21) defines
the initial values L,, L, and L; that must enter these processors. Consider now Processors
Pp_y,; for j<M-—1. Since we assume that each reference word is terminated with a special
marker ], and since P,() = 0, we can deduce from (20) that:



1,j1 i1,

L.(,j) L,G.j)

i
i,j1 : iy F------= >l i,j+1 l
LG,j)

RG+1)

|

| N

| N . .

L,G+1,j) 1 \\LC(L+1,J+1)
T(j+1) | AN

i N

y N

i+1,j 1,31

Fig. 10: Data transmission during a cycle performed by pro-
cessor P; ; for the Probabilistic Matching Algorithm.
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L(N,j) = L,(N-1,j) - | -3

Therefore, the final value L(N,j) is delivered by Py ; on its O, port. Finally, consider the
processors P; py_y of the right column. Provided that we have g.(ly) = ¢,(ly) = 0 for all

phoneme y, it can be seen that P, i still delivers L,(i+1,M~—1) on its vertical output

port O,. Therefore, from (23), Py_, M—1 provides L(N,M ~1) on its O, port.

Note that this operation assumes that each processor knows the probabilities distribu-
tions P,, P;, P; as well as q,, q. and g;. However, the pipelining scheme described in the
previous secticn helps to reduce significantly the amount of memory required, since the test
pattern remains unchanged during a2 whole vocabulary cycle. As a consequence, processor
P; ; receives the same frame 7'(j+1) during V consecutivé systolic cycles. This suggests
loading the processors with the probabilities g.(x!y) and g,(x|y) only for the phonemes x
which are in T'(j+1). Before every vocabulary cycle, these parameters are loaded into the
first row of the array, then the second, etc., until the whole array is mmahzed.

4. CONNECTED SPEECH RECOGNITION USING A LINEAR SYSTOLIC ARRAY

' The following section presents two differents schemes that may be used for the real-
time connected speech recognition of vocabularies of up to a few hurdred words.

The systolic structure that can support these algorithms is made out of processing ele-
ments numbered P;, that are two-way linearly connected as depicted on Fig. 11. Each pro-
cessing element has two input ports denoted as I; (input from the left) and 7, (input from
the right) and similarly two output ports, O; and O,. This structure can be used in a
number of different ways to perform the computations of the DTW algorithm or the Proba-
bilistic Matching. The basic idea is to make this linear array perform the computation of
either successive rows, diagonals, or columns of the two-dimensional array previously
described. For reasons that will be made clear in the following development, will shall here
consider the diagonal scheme only for the DTW algorithm, and the row scheme for the pro-
babilistic matching algorithm.

4.1. DTW USING A DIAGONAL SCHEME

Consider the comparison between a reference pattern R of N frames, and a test pattern
T of M frames. We have to compute D(@,j) for (,j) such that 1<i<N, 1< j<M and
li—j1<r. For the sake of simplicity, we assume r = 29 to be even. We have seen in sec-
tion 3.1 that a simple way to order the calculations is to have D({,j) computed at time
¢(i,j) = i+j. A first systolic implementation is obtained. by assuming that Py, carries out all
the computations D(i,j) such that i—j = k. However, this implementation has the draw-
back that each processor is only working every other time. Another more interesting imple-’

mentation consists in having P, compute the values D(Z,j) such that (where |x]

~ denotes the greatest integer lower than or equal to x) as depicted on Fig. 12 (a) In such a-
way, the linear array has r+1 processors numbered P_ through P
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Fig 11 (a): Structure of the linear array.
r— - - - - - - =7
| |
| 2 |
| l
l |
h T |
| - l
1 l
| |
0 < | |
| i
| 1
l |
! |
Lo - - ]

Fig. 11 (b): Functional structure of the cells.
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Fig. 12 (a): Trace of the computations executed by the proces-
sors during the execution of the Dynamic Time Warping
Algorithm on the linear systolic array. Solid lines join the
points corresponding to the calculations performed. by each
Processor.
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Fig. 12 (b): Data transfers during a T-cycle. Solid lines join
the calculations performed on the same processor. Dashed
arrows show data transfers.



G151+

e G
[ + ,._‘... —_— ...) + ‘
RG)

b i
dG.i1)

Pk—l

R
&
1

Fig. 12 (c): Data transfers during a Rcycle. |

v G




{ Program performed during a T -cycle
D,d,D,,D,, D, .d,,d,, d;,T and R
are registers of the elementary processor }

{ Read new value T(j) and send old one }

T <-1 | T -> 0,
{ read D(i-2,j-1), and send old D(i,j) }
D, <-1, | D -> 0,
{ read d(i-1.)) and send old d(i,) }
d, <-1, dy -> 0,
{ compute new d(i,j) }
d=I1IR—-TH
{ compute new D(i, }
_ 4, +d1.
D =min|D, +d, +d, D, +d'D\’+H-—i'T-F?
{ Prepare nest R-cycle }
D, <- D,
D, <-D,
Dp <-D
d, <-d

"Fig. 13 (a); Program performed by a cell during a T-cycle.



{ Program performed during a R-cycle }
{ Read new value R(j) and send old one }
R<-I, | R->0,

{ read D(i-1,j2), and send old D(i,j) }
D, <-1I; | D ->o0,

{ read d(i,j-1) and send old d(i,) }
d, <-I, | a4 ->o0,

{ compute new d(@,j) }
d=1R—-TIl

{ compute new D(,j) } J

\4

D =min|D, +d, +d,D; +d ,D, + =%

2

{ Prepare nest T cycle }
Dh <" Dd

DP <-D

dh <' d

- Fig. 13 (b): Program performed by a cell during a R-cycle.-
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4.1.1. Permanent regime

" Let us first examine the operation of each processor when permanent regime is attained.
P, executes two different cycles depending on whether i—j = 2k or i—j = 2k+1.
Case 1: i—j = 2k (Fig. 12 (b))

In this situation, P; has already the values R(i), d(i,j—1) and D(i—1,j—2) that were
needed for the calculation of D(i,j—1) during the previous cycle. It contains also the value
D(i—1,j—1) which was used two cycles before. Values D(i—2,j—1), d(i—1,j) and T'(j) are
provided by processor Pj_;. Well shall refer to this cycle as a T-cycle (for T transmit
cycle) later on. Fig. 13 (a) give a more detailed description of this cycle.

Case 2: i—j = 2k+1 (Fig. 12 (c))

Symmetrically, P, contains already values T(i), d(i—1,j) and D(i—2,j—1) obtained
during the ‘previous cycle, and D(i—1,j—1) obtained two cycles before. It remains to get
D(i—1,j=2), d(i,j—1) and R(@) from processor P, ,,. This cycle is called a R-cycle (for R
transmit cycle, see Fig. 13 (b)). '

4.1.2. Initialization and termination

‘The initialization and termination process need to be examined carefully, since it is
very important to keep the overall process regular: in particular, it is most important that
data enter or leave the array only.through the extremal processing elements, namely P_,
and Pq, in such a way that the number of connections with the othgr_,pgrtp of the system
are minimized.

During the initialization cycles, data enter the array in such a way that all the pro-
cessing elements reach a consistent state and thus become able to perform their first compu- -
tation. This is achieved by performing particular initialization cycles referred to as T'I -cycle
and RI-cycle. During a TI-cycle, processor P, reads a test frame 7(j) from P ,,, and ini-
tialization values for the registers D,, d,, Dy and D,. During a RI-cycle the processor Py
reads a reference frame R(i) and initialization values for the registers D), and dj. The ini-
tialization sequence consists of g—1 T'J-cycles and g RIcycles.

The termination process is carried out by making the final values D(N,j) move tc pro-
cessor P_, so that they may be output. After a processor has received the last reference
frame R(N), the processor does not compute value D(i,j) which is not significant any more,
but instead propagates during the 7' -cycles the value D(Z,j) it receives from its right neigh-
bor. This termination scheme has the advantage that the data are output only by P_, and
also that no extra hardware is needed to send the results. However, since the last result
D(N_ N +r) is produced by Pg, 2r cycles are hecessary before this result reaches P_,,
introducing a significant overhead. Another way to proceed is to have each processor access a
common output bus so that the results are sent directly to the outside. This is possible, since
at a given time, at most one processor produces a final result.

The number of processors required to implement this scheme is r+1. The comparison
between a reference Ry and a pattern 7' consists in r~1 initialization cycles and 2N +r—1
calculation cycles, assuming that the results are output directly by each processor. Therefore,
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'  Fig 14: Data movement during a basic cycle of processor P; (a) before com-
putation of L(i,j) and (b) after.
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the total number of systolic cycles for one comparison is 2(N,4r). This means that the
- array has V X2(N+r)systolic cycles to perform for each test frame.
4.2. PROBALISTIC MATCHING USING A ROW SCHEME

Although it is possible to use the diagonal scheme to implement the probabilistic
matching algorithm, this scheme has the main drawback that the probability values q.. and
q; have to be left-shifted every cycle, since the test frames flow from right to left.

A better scheme is to bave processor P, compute values LG,j)G=1 --- ,N),in
such a way that frame 7T'(j) stays in P j during a whole vocabulary cycle, thus minimizing
data transfers between processors. In this implementation, called the row scheme, the linear
array emulates successives rows of the two-dimensional array described in section 3. There-
fore, the linear array has M processors numbered P, through Ppy.

To explain in more details the operation of the array, consider the comparison between
a reference pattern of N frames and a test pattern T'; assume that processor P; is already
loaded with T(j+1) and the probabilities g.(xly) and g,(xly) for x € T(j+1). During a
basic cycle, P; has to compute L(i,j) according to equations (17), (18), (19) and (20) (see
Fig. 14). L,(i,j), which has been computed by P ; during the previous cycle is already in
P;. Values L.(i,j), R(+1) and L,(i,j) are obtained from P j-1- Processor P; computes then
L(@i,j), LG,j+1), L ,(i4+1,j+1) and Ly(i+1,j). Values L;,(,j+1) and R(i+1) are then sent to
P j41- The probability L (i+1,j+1) has to stay in processor P, since P j+1 Will need it only
two cycles later. Instead, L.(i,j+1) which was kept from the previous cycle is sent to P et

If we assume that the computation of L(0,0) is done at time O, then processor P 4 com-
putes L(i,j) at time i+j. Final results L(N,j) (0 € j € M), are thus obtained respec-
tively by Pg, - - - P ; at time N+j.

In the context of connected speech recognition, these results need not to be sent outside
the array. During a vocabulary cycle, processor P j computes successively the probabilities
L(N,j) for all the references words of the vocabulary. P ; can therefore compute the quan-
tity L*(bb+j) by keeping track of the maximum probability over the whole vocabulary.
At the end of the vocabulary cycle, a special cycle is required to carry out the minimization
of equation (22). '

The row scheme requires N,+r+1 processors, assuming that N,, is the maximum
number of phonemes of the reference words (final marker excluded). The number of Sys-
tolic cycles for a single comparison is 2(N,+1) + r. Note however that the vocabulary
cycles may be overlapped, since as soon as a processor P j ends a vocabulary cycle, it can
start the next one. In such a way, N +1 cycles are in fact needed for each comparison.
Therefore, the array does V X(N+1) cycles for each test frame, where NV denotes the average
number of phonemes of the reference words.

S. THE API89 CHIP

The following section is devoted to the structure of a special-purpose chip named
API89 which implements one basic processor of the various systolic organizations that. have
been presented [9]. The design of this chip was made having in mind the following goals:
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- try to have the maximum speed by using special-purpose elements required by the algo-
rithms that must be supported by the chip;

- reduce the space layout by’ implementing only the functions that are needed;

- keep the processor general enough to support the different variations that are commonly
used in the class of speech recognition methods here above presented.

- finally, choose a structure simple enough to avoid difficulties in designing and testing the

. chip.

v

S.1. Overall organization and Control
These ideas lead to the organization depicted by Fig. 15. The various elements of the

circuit are organized around a single bus. These elements are:

a) Two input registers denoted as VR (vertlcal register) and HR (honzontal register);
b) One output register OR;
c) An Arithmetic Unit (AU) capable of performing addition, subtraction and incremen-

tation on 16-bit values; the AU has an accumulator (ACC) and an _input register (AR);

d) An array of 16 general purpose registers R[0] to R[15}

e) A 60 12-bit word memory with a Memory Address Register (MAR), a Memory Read
Register (MR) and a Memory Write Register (MW);

f) A look-up table called the _Z module, implemented using a PLA, for the summation

of logarithms; this look-up table has an input register IZ and an output register OZ. -

All the registers and the data ‘paths are 16-bit wide in order to provide enough preci-

~ sion for the calculations as well as fast /0. Operation of the processor is entirely synchro-

nous and based on a two—phase nonoverlapping clock scheme. These two phases are denoted
as ¢, and ¢, in the following. :

The operation of the circuit is controlled by 10-bit micro-instructions which are gen-
erated outside the chip and expanded inside using a very simple control unit. Two types of
micro-instructions have been defined as displayed on table 16. Microinstructions of the first
type are executed during ¢, and concern the transfers of data between the different modules
through the bus. Microinstructions of the second type are synchronized on ¢, and are used
for /0, memory and arithmetic operations. In order to increase speed, instructions are
latched in a pipeline register thus allowing instruction decoding and execution o overlap.
One instruction is thus executed every clock phase. :

5.2. Description of the modules
Three modules of the chip need to be explamed in more detail.

5.2.1. The memory

. The memory is organized in such a way that the parameters necessary for the proba-
bilistic matching algorithm can be memorized. We have seen that a processor need to keep
track of the probabilities 9.(x1y) and g¢;(x1y) for only three candidate phonemes. However,
since there are about tthty-ﬁve phonemes in a language as English or French, the amount of
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Fig. 15: Architecture of the APIS9 chip.




P1 l;xstruc;ioxis: register transfers
Origin  Destination
R[] R[]
ACC AR
(874 1Z
MW MR
HR OR
VR MAR
¢2 Instryctions RM Read Memory
WM Write Memory
RR Read for Refresh
LDI Load Input Register
RST Reset Accumulator
INC Increment Accumulator
ADD  Add to Accumulator
SUB Substract from Accumulator
STR Conditionally Substract from Accumulator
SBS Conditionally Complement Accumulator -

Table 16: API89 instruction set.

po
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memory needed is too large to be reasonably implemented uéing the currently available tech-
nology. Two simplifications of the model are made according to an earlier software imple-
mentation of the algorithm [17) First of all, it is assumed that the probability to insert a
phoneme x is independent of the phonetic symbol y. Secondly, the probability to confuse a
vowel and a consonant is assumed to be null. Therefore, for a given candidate phoneme x,
it is only needed to memorize the quantities ¢;(xy) and g.(xly) for phonemes y which are
of the same type (consonant or vowel) as x. Since we consider only three candidate phoneme
for each test frame, the memory contains only 60 12-bits words, each candidate phoneme
being represented on 20 words (this value has been chosen since there are 20 consonants in
French). Each 12-bit word has two fields: a flag indicating the type of the phoneme, and a
probability value coded on 11 bits.

The instructions for the memory are given by table 16. The RM instruction has a par-
ticular effect: if the type of the phoneme which has been loaded into the memory address
vegister MAR and the type of the phoneme memorized in the memory word addressed are
identical, then the value contained in that memory is loaded into the memory read register
MR. Otherwise, the number representing probability O is loaded. In such a way, only one
¢ycle is required to read a value g.(xly) whatever the type of x and y are. Since the
memory is implemented using dynamic memory cells, a particular instruction called RR is
provided for memory refreshment.

$.2,2. Arithmetic Unit

The arithmetic Unit can perform addition, subtraction and incrementation as indicated
on table 16. Two conditional instructions denoted as STR (star) and SBS (substar) are pro-
vided: STR complements the accumulator if the AU flag is set to 1; SBS subtract the AU
input register to the ACC if the AU flag is set to 1. The AU flag is set to 1 when an arith-
metic operation results in a negative number. As a consequence, the AU is capable to emu-
late comparison and absolute value instructions.

8.2.3. The Z module

Since the probabilistic matching algorithm has to perform multiplications, and manipu-
late very small values, the probabilities are coded using radix-2 logarithms. However, exa-
mining formulas (18), (19), and (20) reveals that we have to perform the calculation of
Log(a+b) given Log a and Log b. This problem has been solved in the following way.
Let Z be the real mapping defined by:

Z(t) = Log(1 + 2)
We have then:
Log (a+b) = Log(a) + Z(Log b — Log a) = Log(b) Z(Log a — Log b)

Given the value of the function Z on the interval [ O, +oo ] it is possible to compute
Log(a+b) from Log(a) and Log(b). Since the values are coded on 16 bits, it has been possi-
~ ble to implement the function Z using a PLA having only 128 product terms, with a good
accuracy.
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5.3. VLSI design of the chip

Two sets of chips have been fabricated. The first one using Su-NMOS technology was
fabricated by the French MPC. The chip contains approximately 12,000 transistors and meas-
ures Smm by 6mm. The second set was fabricated by MOSIS using 4u-NMOS technology.
The chip is housed in a 64-pin package since 16-bit wide parallel ports are used. The pin out
is the following: ’

- 32 pins for the two input ports;
- 16 pins for the output port;
- 10 pins for the instructions;
- 4 pins for power and clocks.

Since the processor is microprogrammable, and since the inside decoding is reduced,
access to the internal elements is relatively easy. A micro assembler has been written to
compile tests programs and generate bit patterns for the circuit. Moreover, this micro-
assembler is used for simulating the processor and thus generate a print out of the bit pat-
terns expected on the oﬁtput pads. The basic clock cycle has been estimated to be 500 ns for
the Su version. The chip is currently being tested.

5.4. Example of systolic afray implementation using API89

As an example, we show in this section how the chip can be used to implement the
two-dimensional array for the probabiljstic matching algorithm. Fig. 17 depicts the intercon-
nection of the array, for N = M = 3. We assume, moreover, that the full array is imple-
mented. The operation of the array is fully synchronous. A control unit (CU) broadcasts
the microinstructions to all the processors of the array, and provides a separate flow of
microstructions for the connected word recognition array. Control .lines are indicated by
dashed arrows in the figure. Note that although each processor has only two input ports and
one output port, all the logical connections needed can be emulated on this network, since
the operation are synchronous. For example, vertical transmissions of data between processors
are done by having all the processors load the output register with the value to be transmit-
ted, and then read during the next cycle on the vertical input register. On the other hand,
the left-to-right interconnection between the processors of the bottom row (see Fig. 9) is
needed only for the broadcasting of the values L (b) to compute equation (22). This can be
emulated by having these values enter the last row of the array, move from left-to-right on
this row, and be sent to the bottom processors.

~ A last remark that should be made concerns the synchronization of the connected word
recognition row. Since the references are pipelined in the array, the operation of processor
P j+1 is the same as the operation of P ;j but occurs one cycle later. However, since each
processor look for the maximum of the results L(N,j) sent by the last row of the array, it
is possible to align in time the connected word recognition array by havihg the network
deliver values O when no significant comparison is done.
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6. DISCUSSION

Table 18 summarizes the characteristics of the four systolic arrays presented. For each
implementation, an example of estimated size and performances is glven, bawd on reallsnc
parameter values. R

The two-dimensional systolic array for the DTW algorithm leadsto ai’2000 Pprocessor

- metwork when the full array is implemented, and to 925 processors when only the band of

processors P; j Whith i — jI < r is implemented. This estimation is baséd on .N,, = 40
and r = 10. Such an device would permit real-time recognition for a vocabulary of 5,000
words, based on a systolic cycle time of 4 microseconds, and a feature extractlon interval of
20 milliseconds. This implementation is rather unrealistic for practical purpose due to the

_ number of processors. It could only be considered if the number of prmm's were reduced

by folding the computations. However, the control of this array would then be much more
complicated.

The probabilistic matching algorithm may be run on a two-dimensional array. having
180 processors if the full array is implemented, and 104 processors.if *the;ba.nd is .imple-
mented. This estimation is based on N,, = 10 and r = 4. Executed on the API89 chip, the
systolic cycle time is s=50 microseconds. Based on this parameter and assummg an average
phoneme duration of 100 milliseconds, vocabularies of up to 2000 words coiild be handled in
real time. Note however that the cycle time could be significantly reduced if the architecture
of the chip was fully dedicated to the algorithm. The probabilistic matching implementa-
tion would be a good candidate for wafer-scale integration as presented in [s1 ,

The linear systolic arrays are more realistic. The DTW algorithin ‘implementation
would permit a real time recognition of approximately 70 words, using 11 processors. On
the other hand, 15 processors would allow the recognition of 250 words using the - proba-
bilistic matching algorithm. The difference of performances between ‘these two systolic
implementations comes from the fact that the initialization overhead is, very significant in

~the case of the diagonal scheme. Although the row scheme could also. be .considered for. the
- DTW algorithm, the number of processors would then be much higher, since N,,+r proces-

sors are needed. Both systolic arrays could be implemented on a smgle chip with the
current available technology.

7. CONCLUSION

We have described several systolic arrays architectures which can implement two basic
connected speech recognition methods. The API89 VLSI chip has been presented and it has
been shown how such a chip can be used as the basic processor of these architectures. This

- study shows that there are many different ways to implement in parallel tasks such as con-

mected speech recognition, even if one restricts oneself to a singie type of architectures.
Choosing between the different possibilities implies investigating in great details how the
algorithm may be implemented, taking into consideration parameters such as the number of
processors, the communications between the processors, and the complexity of the control.
Our belief is that the new avenues opened by VLSI technology for special purpose hardware
will become more and more practical, provided more is known about the various ways to



Number of Number of cycles
Method p per Test frame Example
Two-dimensional
DTW (N, +1XN,+r) v ir =10, N_ =40, s=4us.
Full array 2000 proc., V=5000
Two-dimensional Ar+1N,, =10, N, =40, s=4ps.
DTW \ m
Band array ~ r202 925 proc., V=5000
Two-dimensiona! - =
Prob. Matching (N, +#2XN 47 +1) v r=4, N,=10, s=50us.
Full array 180 proc, V=2000
Twodimensional | 5, 44y N 41) lr=4, N_=10, s =50ps.
Prob. Matching \ 4 m
Band array - rlr=1)/2 104 proc., V=2000
Linear, diagonal = r=10, N=30, s=4us.
DTW r+1 2V X(N+r) 11 proc, V=10 .
Linear, row N +r+1 VX(N+1) r=4, N=8, s=50us.
Prob. Matching m 1S processors, V=250

Table 18: Comparison of the systolic impiementations.” N, is the maximum number of
frames in the reference words, N the average number of fmmes in the reference words, V is
the vocabulary size and s is the systolic cycle duration. The feature interval time for the

DTW algorithm is assumed to be 20 milliseconds, and the duration of a phoneme is assumed
t0 be 100 milliseconds.
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map an algorithm onto a parallel architecture.
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