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Abstract—In this paper, a macroblock classification method is 

proposed for various video processing applications involving 

motions. Based on the analysis of the Motion Vector field in the 

compressed video, we propose to classify Macroblocks of each 

video frame into different classes and use this class information to 

describe the frame content. We demonstrate that this 

low-computation-complexity method can efficiently catch the 

characteristics of the frame. Based on the proposed macroblock 

classification, we further propose algorithms for different video 

processing applications, including shot change detection, motion 

discontinuity detection, and outlier rejection for global motion 

estimation. Experimental results demonstrate that the methods 

based on the proposed approach can work effectively on these 

applications.  
 

Index Terms—MB Classification, Motion Information 
 

I. INTRODUCTION AND RELATED WORK 

ideo processing techniques such as video compression 

and video content analysis have been widely used in 

various applications [1-17]. In many of these techniques 

and applications, motion-based features play an important role 

since they are closely related to the ‘dynamic’ nature of videos 

[1-17]. 

There have been many researches which use the 

motion-based or motion-related features for video processing. 

Efros et al. [4] and Chaudhry et al. [5] use optical flow to detect 

human and recognize their activities in video. Lin et al. [6] and 

Chen et al. [7] analyze the video contents by first tracking and 

extracting the motions of objects and humans. However, in 

many applications, video processing steps are often integrated 

with the video compression module, for example, analyzing 

video contents for facilitating rate control [8], detecting gradual 

shot changes for applying weighted motion prediction [9] for 

improving video compression efficiency, segmenting irregular 
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motion regions for improving global motion estimation 

efficiency, and labeling shot change or motion discontinuity 

places during video compression for further editing. Most of 

these applications require the video processing algorithms to 

have low complexity such that few computation overheads are 

introduced to the computation-intensive video compression 

module. From this point of view, many of the above mentioned 

algorithms have high computation complexity and are not 

suitable for these applications.  

Furthermore, many works also extract motion features from 

the Motion Vector (MV) information which is already available 

in many compressed-domain videos. Akutsu et al. [10] and Shu 

et al. [11] detect the shot changes based on the information of 

MV motion smoothness. However, their methods have 

limitations in differentiating shot changes and motion 

discontinuities. Porikli et al. [12] and Yoon et al. [13] utilize the 

compressed-domain MV field for object segmentation or event 

detection. Su et al. [14] utilize the MV field information to 

speed up the global motion estimation. Although these methods 

can create satisfying results, their complexities are still high 

when integrated with the computation-intensive video 

compression module. Furthermore, although some other 

MV-feature-based methods are proposed which try to improve 

the video processing performance with reduced complexity 

[15-17], most of their motion features only focus on one specific 

application and are often unsuitable when applied on other 

applications.  

In this paper, a new Macroblock (MB) classification method 

is proposed which can be used for various video processing 

applications. According to the analysis of the MV field, we first 

classify the Macroblocks of each frame into different classes 

and use this class information to describe the frame content. 

Based on the proposed approach, we further propose algorithms 

for various video processing applications including shot change 

detection, motion discontinuity detection, and outlier rejection 

for global motion estimation. Experimental results demonstrate 

that algorithms based on the proposed approach can work 

efficiently and perform better than many existing methods. 

Since the proposed MB class information is extracted from the 

information readily available in the Motion Estimation (ME) 

process [2, 18] or from the compressed bit-stream, its 

computation overhead is low. It can easily be implemented into 

most existing video coding systems without extra cost. 

The rest of the paper is organized as follows: Section II 

describes our proposed MB classification method. Based on the 

proposed approach, Section III proposes three algorithms for 

shot change detection, motion discontinuity detection, and 

outlier rejection for global motion estimation applications, 
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respectively. The experimental results are given in Section IV. 

Section V discusses some possible extensions, and Section VI 

summarizes the paper.  

 

II.  THE MB CLASSIFICATION METHOD  

In most practical applications, videos are processed and 

stored in the compressed domain where ME is performed during 

the compression process to remove the temporal redundancy. 

Since ME is a process to match similar areas between frames, 

much information related to frame content correlation and 

object motion are already available from the ME process. The 

compressed video provides the MV information which can be 

directly extracted from the bitstream. Therefore, in this section, 

we propose to use MV information to classify MBs.  

Without loss of generality, the MB classification method can 

be described in Eqn. (1). 
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where cur_MB is the current MB, init_COST is the initial 

matching cost value calculated based on the motion information 

of spatial or temporal neighboring MBs, Th1 is a threshold, 

PMVcur_MB is the Predictive Motion Vector of the current MB 

[18], MVpre_final is the final Motion Vector (MV) of the 

co-located MB in the previous frame, and Th2 is another 

threshold checking the closeness between PMV cur_MB and 

MVpre_final. Using Eqn. (1), MBs with small init_COST values 

will be classified as Class 1. MBs will be classified as Class 3 if 

their PMVs are close to the final MVs of their collocated MBs 

in the previous frame. Otherwise, MBs will be classified into 

Class 2.  The motivation of using Eqn. (1) is that the variables 

involved are all readily available from most of the ME 

processes. 

The motivations of classifying MBs according to Eqn. (1) can 

be summarized as follows: 

(1)  According to Eqn. (1), MBs in Class 1 have two features: 

(a) their MVs can be predicted accurately (i.e., init_COST is 

calculated based on the motion information of spatial or 

temporal neighboring MBs). This means that the motion 

patterns of these MBs are regular (i.e., can be predicted) and 

smooth (i.e., coherent with the previous-frame motions). (b) 

They have small matching cost values. This means that these 

MBs can find good matches from the previous frames. 

Therefore, the Class 1 information can be viewed as an indicator 

of the content correlation between frames. 

(2) According to Eqn. (1), Class 2 includes MBs whose 

motion cannot be accurately predicted by their neighboring 

information (PMV) and their previous motion information 

(MVpre_final). This means that the motion patterns of these MBs 

are irregular and unsmooth from those of the previous frames. 

Therefore, the Class 2 information can be viewed as an indicator 

of the motion unsmoothness between frames. 

(3) According to Eqn. (1), Class 3 includes MBs whose MVs 

are close to the PMVs and whose matching cost values are large. 

Therefore, Class 3 MBs will include areas with complex 

textures but similar motion patterns to the previous frames. 

Fig. 1 shows two example classification results for two 

sequences using Eqn. (1). The experimental setting is the same 

as that described in Section IV. Fig. 1 (a) and (e) are the original 

frames. Blocks labeled grey in (b) and (f) are MBs belonging to 

Class 1. Blocks labeled black in (c) and (g) and blocks labeled 

white in (d) and (h) are MBs belonging to Class 2 and Class 3, 

respectively. 

 

    
(a)                                            (b) 

    
                          (c)                                           (d) 

     
                              (e)                                           (f) 

     
                           (g)                                        (h) 

Fig. 1. The original frames (a, e) and the distributions of Class 1 (b, f), Class 2 

(c, g), and Class 3 (d, h) MBs for Mobile_Cif and Bus_Cif using Eqn. (1). 

 

Several observations can be drawn from Fig. 1 as follows: 

From Fig. 1 (b) and (f), we can see that most Class 1 MBs 

include backgrounds or flat areas that can find good matches in 

the previous frames. From Fig. 1 (c) and (g), we can see that our 

classification method can effectively detect irregular areas and 

classify them into Class 2 (for example, the edge between the 

calendar and the background as well as the bottom circling ball 

in (c), and the running bus as well as the down-right logo in (g)). 

From Fig. 1 (d) and (h), we can see that most complex-texture 

areas are classified as Class 3, such as the complex background 

and calendar in (d) as well as the flower area in (h). 
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Since init_COST is only available in the ME process, Eqn. (1) 

is more suitable for applications where video coding and other 

video processing are performed at the same time, such as global 

motion estimation, rate control, computation control coding [8], 

as well as labeling shot changes in the process of compressing 

videos [2]. However, it should be noted that Eqn. (1) is only an 

implementation example of the proposed classification method. 

The idea of the proposed MB classification is general and it can 

be easily extended to other forms for different applications. For 

example, for some compressed-domain video processing 

applications (i.e. processing already-compressed videos where 

init_COST is not readily available), Eqn. (1) can be extended to 

Eqn. (2): 
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where SUMred is the absolute sum of the decoded residual of the 

current MB [19]. Fig. 2 shows the classification results using 

Eqn. (2) where Th1 and Th2 are set to be the same as in Fig. 1. 

We can see from Fig. 2 that Eqn. (2) can result in similar 

classification results as Eqn. (1). In the following, we will 

perform discussion and experiments according to Eqn. (1) in the 

rest of the paper. 

 

    
                           (a)                                              (b) 

    
(c)                                             (d) 

Fig. 2. The original frames (a) and the distributions of Class 1 (b), Class 2 (c), 

and Class 3 (d) MBs for Mobile_Cif using Eqn. (2). 

 

With the proposed MB class information, we can develop 

various algorithms for different applications. Since our 

proposed method is directly defined based on the information 

readily available from the ME process or from the compressed 

video bitstream, it is with low computational complexity and is 

applicable to various video applications, especially for those 

with low-delay and low-cost requirements. In the following 

section, we will propose algorithms for the three example 

applications: shot change detection, motion discontinuity 

detection, and outlier rejection for global motion estimation. 

III. USING THE MB CLASS INFORMATION FOR VIDEO 

APPLICATIONS  

A. Shot Change Detection 

In this paper, we define a ‘shot’ as a segment of continuous 

video frames captured by one camera action (i.e., a continuous 

operation of one camera), and a ‘shot change’ as the boundary 

of two shots [2]. Fig. 3 shows an example of an abrupt shot 

change. 

 

Shot 1 Shot 2 

Shot Change 
 

 
Fig. 3 An example of an abrupt shot change. 

 

From the discussions in the previous section, we can outline 

the ideas of applying our approach to shot change detection as 

follows: 

Since shot changes (including abrupt, gradual, fade-in or 

fade-out) [2] always happen between two uncorrelated video 

shots, the content correlation between frames at shot changes 

will be low. Therefore, we can use the information of Class 1 as 

the primary feature to detect shot changes. Furthermore, since 

the motion pattern will also change at shot changes, the 

information of Class 2 and Class 3 can be used as additional 

features for shot change detection.  

Fig. 4 shows an example of the effectiveness in using our 

class information for shot change detection. More results will be 

shown in the experimental results. Fig. 4 (b)-(d) show the MB 

distributions of three classes at the abrupt shot change from 

Bus_Cif to Mobile_Cif. We can see that the information of Class 

1 can effectively indicate the low content correlation between 

frames at the shot change (i.e., no MB is classified as Class 1 in 

Fig. 4-(b)). Furthermore, a large number of MBs are classified 

as Class 2. This indicates the rapid motion pattern change at the 

shot change. 

 

    
 (a) Original frame                        (b) Class 1 

    
                          (c) Class 2                           (d) Class 3 

Fig. 4 The MB distributions at the abrupt shot change frame from Bus_Cif to 

Mobile_Cif. 
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Based on the above discussions, we can propose a 

Class-Based Shot Change detection (CB-Shot) algorithm. It is 

described as in Eqn. (3):  
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where t is the frame number and Fgshot(t) is a flag indicating 

whether a shot change happens at the current frame t or not. 

Fgshot(t) will equal to 1 if there is a shot change and will equal to 

0 else. NIntra_MB(t) is the number of intra-coded MBs at frame t, 

NIR(t) is the number of intra-refresh MBs in the current frame 

(i.e., forced intra-coding MBs [20]). Nclass_1(t), Nclass_2(t) and 

Nclass_3(t) are the total number of Class 1, Class 2 and Class 3 

MBs in the current frame t, respectively. T1, T2, T3 and T4 are the 

thresholds for deciding the shot change. In this paper, T1 -T4 are 

calculated by Eqn. (4). 
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where NMB(t) is the total number of MBs of all classes in the 

current frame.  

It should be noted that in Eqn. (3) the Class 1 information is 

the main feature for detecting shot changes (i.e., Nclass_1(t)≤T1 

and Nclass_1(t)≤T2 in Eqn. (3)). The intuitive of using the Class 

1 information as the major feature is that it is a good indicator of 

the content correlation between frames. The Class 2 and Class 3 

information is used to help detect frames at the beginning of 

some gradual shot changes where a large change in motion 

pattern has been detected but the number of Class 1 MBs has not 

yet decreased to a small number. The intra-coded MB 

information can help discard the possible false alarm shot 

changes due to the MB mis-classfication. From, Eqn. (3) and (4), 

we can also see that when intra-refresh functionality is enabled 

(i.e., when NIR(t) > 0), our algorithm can be extended by simply 

excluding these intra-refreshed MBs and only performing shot 

change detection based on the remaining MBs. 

Furthermore, note that Eqn. (3) is only one implementation of 

using our class information for shot change detection. We can 

easily extend Eqn. (3) by using more sophisticated methods 

such as cross-validation [6] to decide the threshold values in an 

automatic way. Besides, other machine learning models can also 

be used to decide the shot detection rules and to take the place of 

the manually-set rules in Eqn. (3). For example, we can train a 

support vector machine (SVM) or a Hidden Markov Model 

(HMM) based on our class information for detecting shot 

changes [21, 22]. By this way, we can avoid the tediousness of 

manually tuning multiple thresholds simultaneously. This 

point will be further discussed in the experimental results. 

B. Motion Discontinuity Detection 

We define motion discontinuity as the boundary between two 

Smooth Camera Motions (SCMs), where SCM is a segment of 

continuous video frames captured by one single motion of the 

camera (such as zooming, panning, or tilting) [2, 11]. For 

example, in Fig. 5, the first several frames are captured when the 

camera has no or little motion. Therefore, they form the first 

SCM (SCM1). The second several frames form another SCM 

(SCM2) because they are captured by a single camera motion of 

rapid rightward. Then, a Motion Discontinuity (MD) can be 

defined between these two SCMs. It should be noted that the 

major difference between shots and SCMs is that a shot is 

normally composed of multiple SCMs. 

 

SCM2 SCM1 

… … 

Motion 

Discontinuity  
Fig. 5 An example of motion discontinuity. 

 

Basically, motion discontinuity can be viewed as motion 

unsmoothness or the change of motion patterns. The detection 

of motion discontinuity can be very useful in video content 

analysis or video coding performance improvement [9, 23]. 

Since our class information, especially Class 2 information, can 

efficiently reflect the irregular motion patterns, it can be easily 

used for motion discontinuity detection.  

The ideas of applying our MB class information into motion 

discontinuity detection can be outlined as follows: 

Since MD happens between different camera motions, the 

motion smoothness will be disrupted at the places of MDs. 

Therefore, we can use the Class 2 information as the primary 

feature to detect MDs. Furthermore, since frames at MDs 

belong to the same camera action (i.e., the same shot), their 

content correlation will not decrease. Therefore, the information 

of Class 1 can be used to differentiate shot changes from MDs. 

 

     
(a) Original frame                        (b) Class 1 

     
                    (c) Class 2                           (d) Class 3 

Fig. 6 The MB distributions at a Motion Discontinuity frame in Foreman_Cif. 
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Fig. 6 shows an example of the effectiveness in using our 

class information in MD detection. Fig. 6 (b)-(d) show the MB 

distributions of a Motion Discontinuity frame in Foreman_Cif 

when the camera starts to move rightward rapidly. The large 

number of Class 2 MBs indicates the motion unsmoothness due 

to the MD. Furthermore, the big number of Class 1 MBs 

indicates the high content correlation between frames, which 

implies that it is not a shot change.  

Therefore, we can propose a Class-Based Motion 

Discontinuity Detection (CB-MD) algorithm. It is described as 

in Eqn. (5): 
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where  I(f) is an indicator. I will equal to 1 if f is true, and 0 if f is 

false. Eqn. (5) means that an MD will be detected only if the 

number of Class 2 MBs is larger than a threshold for k+1 

consecutive frames. This is based on the assumption that an 

obvious camera motion change will affect several frames rather 

than one. By including the information of several frames, the 

false alarm rate can be reduced. Furthermore, similar to shot 

change detection, the decision rules in Eqn. (5) can also be 

extended to avoid the manual setting of thresholds. 

 

C. Outlier Rejection for Global Motion Estimation 

Global motion estimation is another useful application of our 

class information. Since a video frame may often contain 

various objects with different motion patterns and directions, 

motion segmentation is needed to filter out these irregular 

motion regions before estimating the global motion parameters 

of the background. Since our class information can efficiently 

describe the motion patterns of different MBs, it is very useful 

in filtering out the irregular motion areas (outliers). For example, 

we can simply filter out Class-2 or Class-2+Class-3 MBs and 

perform global motion estimation based on the remaining MBs.  

Based on the MB class information, the proposed global 

motion estimation algorithm can be described as follows: 

Step 1: Use our class information to get a segmentation of the 

irregular motion MBs, as shown in Eqn. (6): 
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where Nclass_2(t) and Nclass_3(t) are the number of Class 2 and 

Class 3 MBs in t, and ThF is a threshold.  

Step 2: Estimate the global motion parameters based on the 

remaining background MVs. In this paper, we use the 

6-parameter model as the global motion model, as described in 

Eqn. (7). 
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 is the 6-parameter model. 

(x,y) and (x’,y’) represent the pixel’s original and 

global-motion-compensated location, respectively. There are 

many ways to estimate S. In this paper, we use the Least-Square 

method [17] which searches parameters in S that minimizes a 

given cost function (mean-square error), as in Eqn. (8). 
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where Tyx 1VVyxV )(),(  and ),( yx VV are the MV 

terminate coordinates for pixel (x,y).  

Fig. 7 shows some results of using our class information for 

irregular motion region segmentation. From Fig. 7 (a)-(b), we 

can see that our class information can efficiently locate the 

foreground object regions. However, from Fig. 7 (c), we can 

also see that our algorithm more focuses on detecting the 

“irregular motion regions” instead of the foreground object. In 

Fig. 7 (c), since only the person’s left hand is moving while the 

other parts of the person keep unchanged, only those blocks 

corresponding to the left hand are identified as irregular motion 

regions.  

Note that although our class information is focused on 

detecting irregular motion regions in this paper, it can also be 

extended to detect real foreground objects by combining with 

texture information such as DC and AC coefficients [12].  

    
(a) Dancer_cif 

    
(b) Stefan_cif 

    
(c) Silent_cif 

Fig. 7 Examples of using our class information for irregular motion region 

segmentation for global motion estimation (Left column: original frames; right 

column: segmented frames) 
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IV. EXPERIMENTAL RESULTS  

In this section, we perform experiments for the proposed 

methods in Section III. The algorithms are implemented on the 

H.264/MPEG-4 AVC reference software JM10.2 version [20]. 

The picture resolutions for the sequences are CIF and SIF. For 

each of the sequences, the picture coding structure was IPPP…. 

In the experiments, only the 16x16 partition was used with one 

reference frame coding for the P frames. The QP was set to be 

28, the search range was 32 pixels, and the frame rate was 30 

frame/sec. The motion estimation is based on our proposed 

Class-based Fast Termination method [18]. Note that our MB 

classification method is general regardless of the ME algorithms 

used. It can easily be extended to other ME algorithms [24-25]. 

Furthermore, we disable the intra-refresh functionality [20] in 

the experiments in this paper in order to focus on our class 

information. However, from our experiments, the shot detection 

results will not differ by much when intra-refresh is enabled.  

 A. Experimental Results for Shot Change Detection 

We first perform experiments for shot change detection. Four 

shot change detection algorithms are compared.  

(1) Detect shot changes based on the number of Intra 

MBs [26-27] (Intra-based in Table 1). A shot change will be 

detected if the number of Intra MBs in the current frame is 

larger than a threshold. 

(2) Detect shot changes based on motion smoothness [10, 

11] (MV-Smooth-based in Table 1). The motion smoothness can 

be calculated by the Square of Motion Change [11], as in Eqn. 

(9): 
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where SMC(t) is the value of the Square of Motion Change at 

frame t. )(tMV i

x
 and )(tMV i

y
 are the x and y component of the 

motion vector for Macroblock i of frame t, respectively. From 

Eqn. (9), we can see that SMC is just the ‘sum of squared motion 

vector difference’ between co-located MBs of neighboring 

frames. Based on Eqn. (9), a shot change can be detected if 

SMC(t) is larger than a threshold at frame t.  

(3) Detect shot changes based on the combined 

information of Intra MB and motion smoothness [11] 

(Intra+MV-Smooth in Table 1). In this method, the Intra-MB 

information is included into the Square of Motion Change, as in 

Eqn. (10). 
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where SMCIntra_included(t) is the Square of Motion Change with 

Intra-MB information included. MC(i) is defined as:  
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where i is the MB number, L is a large fixed number. In the 

experiment of this paper, we set L to be 500. From Eqn. (10) and 

Eqn. (11), we can see that the Intra+MV-Smooth method is 

similar to the MV-Smooth-based method except that when MB i 

is intra-coded, a large value L will be used instead of the 

squared motion vector difference. It should be noted that when 

the number of intra MBs is low, the Intra+MV-Smooth method 

will be close to the MV-Smooth-based method. If the number of 

intra MBs is high, the Intra+MV-Smooth method will be close 

to the Intra-based method. 

(4) The proposed Class-Based shot change detection 

algorithm which uses the Class 1 information as the major 

feature for detection, as in Eqn. (3) (Proposed-All Class+Intra 

in Table 1).   

It should be noted that we choose Method (I)-(III) as the 

reference algorithms to compare with our methods because they 

are all computationally efficient methods (with the average 

operation time less than 5 ms). Thus, they are suitable for the 

application of shot change detection for video coding. More 

comparisons with other methods will also be provided in the 

experiment of Table 2. 

Fig. 8 shows the curves of features that are used in the above 

algorithms. Since all the algorithms perform well in detecting 

abrupt shot changes, we only show the curves of a gradual shot 

change in Fig. 8.  

Fig. 8 (a)-(e) are the feature curves of a gradual shot change 

sequence as in Fig. 9 (a). In this sequence, the first 5 frames are 

Bus_Cif, the last 5 frames are Football_Cif, and the middle 20 

frames are the period of the gradual shot change. Fig. 8-(a) is the 

ground-truth for the shot change sequence; Fig. 8-(b) shows the 

curve of the number of Intra MBs in each frame; Fig. 8-(c) 

shows the curve of SMC(t); Fig. 8-(d) shows the curve of 

SMCIntra_included(t); and Fig. 8-(e) shows the curve of the number 

of Class 1 MBs in each frame. It should be noted that we reverse 

the y-axis of Fig. 8-(e) so that the curve has the same concave 

shape as others.  

 

 
Fig. 8 Feature curves of a gradual shot change sequence. 

 
 

… … … 

Bus_Cif Shot Change Football_Cif  
(a) An example sequence that we created 

     
(b) The example sequence from TRECVID dataset [28] 

Fig. 9 Example sequences in the extended TRACVID dataset. 
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Fig. 8 shows the effectiveness of using our class information 

for shot change detection. From Fig. 8 (e), we can see that the 

number of Class 1 MBs suddenly decreases to 0 when a shot 

change happens and then quickly increases to a large number 

right after the shot change period. Therefore, our proposed 

algorithms can effectively detect the gradual shot changes based 

on the Class 1 information. Compared to our class information, 

the method based on the Intra MB number, SMC(t) and 

SMCIntra_included(t) have low effectiveness in detecting the 

gradual shot changes. We can see from Fig. 8 (b)-(d) that the 

Intra MB number, SMC(t) and SMCIntra_included(t) have similar 

values for frames inside and outside the shot change period. 

This makes them very difficult to differentiate the 

gradual-shot-change frames. Fig. 8 (c) shows that SMC(t) is the 

least effective. This implies that only using motion smoothness 

information cannot work well in detecting shot changes. Our 

experiments show that the effectiveness of SMC(t) will be 

further reduced when both of the sub-sequences before and after 

the shot change have similar patterns or low motions. In these 

cases, the motion unsmoothness will not be so obvious at the 

shot change.  

 

Table 1 compares the Miss rate, the False Alarm rate, and the 

total error frame rate (TEFR) [6] for different algorithms in 

detecting the shot changes in an extended TRECVID dataset. 

The extended TRECVID dataset has totally 60 sequences which 

include both the sequences from the public TRECVID dataset 

[28-29] and the sequences that we create. There are totally 16 

abrupt shot change sequences and 62 gradual shot change 

sequences with different types (gradual transfer, fade-in and 

fade-out) and with different length of shot-changing period (e.g., 

10 frames, 20 frames, and 30 frames). The example sequences 

of the dataset are shown in Fig. 9. The Miss rate is defined by 
kk

miss NN / , where 
k

missN  is the total number of mis-detected 

shot change frames in sequence k and 
kN  is the total number of 

shot change frames in sequence k. The False Alarm rate is 

defined by 
kk

FA NN / , where 
k

FAN  is the total number of false 

alarmed frames in sequence k and 
kN  is the total number of 

non-shot-change frames in sequence k. We calculate the Miss 

rate and the False Alarm rate for each sequence and average the 

rates. The Total Error Frame Rate (TEFR) rate is defined by 

Nt_miss / Nt_f, where Nt_miss is the total number of mis-detected shot 

change frames for all sequences and Nt_f is the total number of 

frames in the dataset. The TEFR rate reflects the overall 

performance of the algorithms in detecting all sequences.  

In order to have a fair comparison, we also list the results of 

only using Class 1 information for detection (i.e., detect a shot 

change frame if Nclass_1(t)<T1, Proposed-Class 1 only in Table 1). 

In the experiments of Table 1, the thresholds for detecting shot 

changes in Method (1) (Intra-based), Method (2) 

(MV-Smooth-based) and Method (3) (Intra+MV_Smooth) are 

set to be 200, 2000 and 105000, respectively. These thresholds 

are selected based on the experimental statistics.  

Table 1 Performance comparison of different algorithms in detecting the 

shot changes in the extended TRACVID dataset 

     Miss (%) False Alarm (%)   TEFR 

Intra-based 25.24 4.27 13.50 

MV-Smooth-based 43.72 17.36 22.75 

Intra+MV-Smooth 24.71 3.49 12.58 

Proposed-Class 1 only 8.34 3.81 5.51 

Proposed-All Class+Intra 6.13 2.91 3.23 

 

From Table 1, we can see that the performances of our 

proposed algorithms (Proposed-Class 1 only and Proposed-All 

Class+Intra) are better than the other methods.  

Furthermore, several other observations can be drawn from 

Table 1 as follows: 

(1) Basically, our Class 1 information, the Intra MB 

information [26-27] and the residue information [30] can all be 

viewed as the features to measure the content correlation 

between frames. However, from Table 1, we can see that the 

performance of our Proposed-Class 1 only method is obviously 

better than the Intra-based method. This is because the Class 1 

information includes both the residue information and the 

motion information. Only those MBs with both regular motion 

patterns (i.e., MV close to PMV or (0,0) MV) and 

low-matching-cost values are classified as Class 1. We believe 

that these MBs can reflect more efficiently the nature of the 

content correlation between frames. In our experiment, we 

found that there are a large portion of MBs in the 

gradual-shot-change frames where neither intra nor inter 

prediction can perform well. The inter/intra mode selections for 

these MBs are quite random, which affects the performance of 

the Intra-based method. Compared to the Intra-based method, 

our algorithm can work well by simply classifying these MBs 

outside Class 1 and discarding them from the shot change 

detection process. 

(2) The performance of the Proposed-All Class+Intra 

method can further improve the performance from the 

Proposed-Class 1 only method. This implies that including 

Class 2 and Class 3 can help detect those frames that cannot be 

easily differentiated by only using the Class 1 information at the 

boundary of the shot change period. Furthermore, the reduced 

FA rate of the Proposed-All Class+Intra method also implies 

that including the intra-coded MB information can help discard 

false alarm frames due to MB misclassification.  

For further demonstrating the effectiveness of our class 

information, we conduct another experiment by utilizing the 

linear support vector machine (linear SVM) [22] for shot 

change detection (i.e., extracting features for each frame and 

then using SVM to detect shot changes). As mentioned, the 

advantage for using SVM is that the decision rules can be 

automatically obtained from the training process instead of 

using the manually set rules in Eqn. (3) [21]. In this experiment, 

we compare our class information with three recently proposed 

features for shot change detection. They are as follows: 

(1) Inter prediction mode information [21]. 

(Inter-mode+SVM in Table 2) 

(2) Local indicators [16] (Local-Indi+SVM in Table 2) 
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(3) Color feature and reliable MV proportions [31] 

(Color+relyMV+SVM in Table 2) 

(4) Our proposed class information and Intra information 

(Proposed-All Class+Intra+SVM in Table 2) 

Note that in order to have a fair comparison, only the features 

are borrowed from the reference works [16 ,21, 31] while all the 

decision rules are obtained by training the SVM. The shot 

change detection results and the average operation time (AOT, 

the average operation time for performing shot change detection 

on each frame) is shown in Table 2.  

 
Table 2 Performance comparison by using different features in the extended 

TRACVID dataset when SVN is used for shot change detection 

 Miss (%) False Alarm 

(%) 

TEFR AOT(ms) 

Inter-mode+SVM 12.93 6.04 8.23 3.5 

Local-Indi+SVM 7.68 3.27 4.57 5.6 

Color+relyMV+SVM 4.28 2.30 2.91 37.8 

Proposed-All 

Class+Intra+SVM 

4.72 2.15 2.97 2.3 

 

Several observations can be obtained from Table 2: (a) 

Comparing Table 2 with Table 3, we can see that the 

performance of our class information (Proposed-All 

Class+Intra+SVM) is improved. It demonstrates that SVM can 

achieve more sophisticated decision rules than our manually set 

rules in Eqn. (3). (b) Using inter prediction mode information 

only (i.e., Inter-mode+HMM) have less satisfactory results since 

they do not include MV information. Similarly, although local 

indicator features (Local-Indi+HMM) can effectively detect 

abrupt changes, they are less effective in gradual shot changes 

due to the lack of MV information. Compared to these two 

methods, the reliable MV proportion method 

(Color+relyMV+HMM) as well as our proposed class 

information (Class+Intra+HMM) can achieve better shot 

detection results. (c) Although the reliable MV proportion 

method has the best performance, its complexity is high. 

Compared to this, our proposed class information can achieve 

similar performance while with obviously low complexities. 

 

B. Experimental Results for Motion Discontinuity 

Detection 

In this section, we perform experiments for MD detection. 

The following four methods are compared. Method (1)-(3) are 

the same as the previous section. 

(1) Detect MD based on the number of Intra MBs 

(Intra-based). 

(2) Detect MD based on motion smoothness 

(MV-Smooth-based). 

(3) Detect MD based on the combined information of Intra 

MB and motion smoothness (Intra+MV-Smooth). 

(4) Our proposed MD detection algorithm as in Eqn. (5) 

(Proposed). 

Fig. 10 shows the curves of features that are used in the above 

algorithms for Stefan_Sif sequence. Fig. 10 (a) shows the 

ground truth segment of Smooth Camera Motions. In Fig. 10 (a), 

the segments valued 0 represent SCMs with low or no camera 

motion and the segments with value 1 represent SCMs with high 

or active camera motion. For example, the segment between 

frame 177 and 199 represents an SCM where there is a rapid 

rightward of the camera; and the segment between frame 286 

and 300 represents an SCM of a quick zoom-in of the camera. 

The frames between SCMs are the Motion Discontinuity frames 

that we want to detect. The ground truth MD frames are labeled 

as the vertical dashed lines in Fig. 10 (b)-(e). It should be noted 

that most MDs in Fig. 10 include several frames instead of only 

one. Fig. 10 (b)-(e) show the curves of the number of Intra MBs, 

SMC(t), SMCIntra_included(t), and the number of Class 2 MBs, 

respectively.  

 

 
Fig. 10 Feature curves for the MD detection in Stefan_Sif. 

Several observations can be drawn from Fig. 10 (b)-(e) as 

follows: 

(1) Our Class 2 information is more effective in detecting the 

MDs. For example, in Fig. 10-(e), we can see that our Class 2 

information has strong response when the first three MDs 

happen. Comparatively, the other features in Fig. 10 (b)-(d) 

have low or no response. This implies that Method (I)- (III) will 

easily miss these MDs.  

(2) Our Class 2 information has quicker and sharper response 

to MDs. For example, the value of our Class 2 information 

increases quickly at the places of the fourth (around frame 175) 

and sixth (around frame 220) MDs, while the other features 

response much slower or more gradual. 

(3) Fig. 10 also demonstrates that our Class 2 information is a 

better measure of the motion unsmoothness. Actually the largest 

camera motion in Stefan_Sif takes place in the segment between 

frame 222 and frame 278. However, we can see from Fig. 10-(e) 

that the values of the Class 2 information are not the largest in 

this period. This is because although the camera motion is large, 

the motion pattern is pretty smooth during the period. Therefore, 

a big number of MBs will have regular and predictable motions 

and will not be classified as Class 2. In most cases, our Class 2 

information will have the largest responses when the motion 

pattern changes or the motion smoothness disrupts. Compared 

to our Class 2 information, other features are more sensitive to 

the ‘motion strength’ rather than the ‘motion unsmoothness’. 

Furthermore, although SMC can also be viewed as a measure of 

the motion smoothness, we can see from Fig. 10 that our Class 2 

information is obviously a better measure for motion 

unsmoothness. 
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Fig. 11-(b) shows the MD detection result of the proposed 

method based on the Class 2 information in Fig. 10-(e), where k, 

th1
shot

 and th3
shot

 in Eqn. (5) are set to be 4, 50 and 100, 

respectively. From Fig. 11, we can see that: (a) the proposed 

method can detect most MDs except the one at frame 200. The 

frame-200 MD is missed because we use a large window size of 

5 frames (i.e., k=4 in Eqn. (5)). This MD can also be detected if 

we select a smaller window size. (b) Since the proposed method 

detects MDs based on the information of several frames, some 

delay may be introduced. We can see that the MDs detected in 

Fig. 11-(b) have a delay of a couple of frames from the ground 

truth in Fig. 11-(a). (c) There are also some false alarms such as 

the period between frame 180 and 190. This is because the 

camera motions in these periods are too rapid. In these cases, the 

motion prediction accuracy will be decreased and some 

irregular global motions will be included. These factors will 

prevent the number of Class 2 MBs from decreasing after the 

MD finish. In these cases, some post-processing steps may be 

needed to discard these false alarms. 
 

 
Fig. 11 The detection result of the proposed algorithm in Stefan_Sif. 
 

As another example, Fig. 12 shows the feature curves for the 

Coastguard_Cif sequence, respectively. In this sequence, there 

are four obvious MDs: the first two belongs to a rapid upward of 

the camera and the second two belong to the small shakes of the 

camera. From Fig. 12, we can further see the effectiveness of 

our MB class information: our Class 2 information can 

effectively detect the two camera-shake MDs while the other 

methods will easily miss them. This is because when the 

magnitude of camera shake is small, the MV difference between 

frames will also be small, thus resulting in a small SMC. 

Furthermore, since the motion compensation still perform well 

in case of small camera shakes, the number of Intra MBs will 

also change little. However, our Class 2 information will 

effectively respond to these small camera shakes by classifying 

a large number of motion-unpredictable MBs into Class 2.  

 
Fig. 12 Feature curves for the MD detection in Coastguard_Cif. 

C. Experimental Results for Global Motion Estimation 

We compare the following four GME algorithms. For all of 

the methods, we use the same 6-parameter model for estimating 

the global motions, as in Eqn. (7) 

(1) Do not discard the foreground MBs and directly use the 

Lease-Square method [17] to estimate the global model 

parameters (LS-6) 

(2) Use the MPEG-4 VM global motion estimation method 

[32] (MPEG-4)  

(3) Use the method in [17] for global motion estimation. In 

[17], an MV histogram is constructed for parameter estimation 

to speed up the global motion estimation process (MSU) 

(4) Use the method in [12] to segment and discard 

foreground MBs and perform GME on the background MBs 

(P-Seg) 

(5) Use our MB class information to segment and discard 

foreground MBs and perform GME on the background MBs, as 

described in Section III-C (Proposed) 

Table 3 compares the Mean Square Error (MSE) of the global 

motion compensated results of the five algorithms. Normally, a 

small MSE value can be expected if the global motion 

parameter is precisely estimated. Table 4 compares the average 

MSE and the average operation time for different methods. 

Furthermore, Fig. 13 also show the subjective global-motion- 

compensated results for the five methods.  

 
Table 3 Comparison of global-motion-compensated MSE results for 

different GME methods. 

 LS-6 MPEG-4 MSU P-Seg Proposed 

Bus 27.73 22.67 22.85 23.42 22.32 

Stefan 22.71 20.99 19.09 19.36 19.52 

Flowertree 24.92 20.66 21.51 20.83 19.72 

 
Table 4 Comparison of average MSE and average operation time for 

different GME methods (Note: the operation time for the object segmentation 

part for P-Seg is taken from [12]) 

 LS-6 MPEG-4 MSU P-Seg Proposed 

Average MSE 25.12 21.44 21.15 21.20 20.52 

Average operation 

time (ms) 

17 376 56 37 25 

 

   
(a) LS-6                          (b) MPEG-4                       (c) MSU 

  
                             (d) P-Seg                     (e) Proposed 

Fig. 13 Subjective global-motion- compensated results of the four methods for 

Dancer_cif. 
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Some observations can be drawn from Table 3-4 and Fig. 13 

as follows:  

(a) Since the LS-6 method does not differentiate foreground 

and background, it cannot estimate the global motion of the 

background precisely. We can see from Table 3 that the LS-6 

method has larger MSE values. Furthermore, Fig. 13-(a) also 

shows that there are obvious background textures in the 

compensated frame.  

(b) Compared to the LS-6 method, the other four methods 

will segment and discard the foreground MBs before estimating 

the global motion for the background. We can see that our 

proposed method can achieve similar performance to the 

MEPG-4 and MSU methods.  

(c) Since the MEPG-4 algorithm uses a three-layer method to 

find the outlier (foreground) pixels, its computation complexity 

is high. Although the MSU and the P-Seg algorithms reduce the 

complexity by constructing histograms or performing volume 

growth for estimating the foreground area, they still requires 

several steps of extra computations for estimating the global 

parameters. Compared with these two methods, our proposed 

method segments the foreground based on the readily available 

class information, the extra computation complexity is 

obviously minimum. Note that this operation time reduction will 

become very obvious and important when the GME algorithms 

are integrated with the computation-intensive video 

compression module for real-time applications. 

(d) Although P-Seg can create good object segmentation 

results, its GME performance is not as good as our method. This 

is because our proposed algorithm focuses on detecting and 

filtering the “irregular motion” blocks while P-Seg more 

focuses on segmenting a complete object. By using our 

algorithm, blocks which do not belong to the foreground but 

have irregular motions will also be filtered from the GME 

process. This further improves the GME performance.  

V. DISCUSSION AND ALGORITHM EXTENSION  

In this section, we discuss some additional advantages and 

possible extensions of the algorithm. They are described in the 

following. 

(1) It should be noted that we only discuss some example 

applications of our MB class information in this paper. We 

believe that our proposed class information can be used in many 

other video processing applications. For example, the MB class 

information can be used for rate control where the total number 

of MBs in each class can be used for frame-level bit allocation 

and the class label of each MB can be used for MB-level bit 

allocation. Similarly, we can also use the proposed MB class 

information for computation control motion estimation or rate 

control [8]. 

 (2) As mentioned, the idea of our MB class information is 

general and it can be easily extended in different ways. For 

example, we can define more classes instead of three to have a 

more precise description of the frame content. We can also 

extend our MB class information to multiple partition sizes or 

multiple reference frame cases [1].  

VI. SUMMARY 

In this paper, a new MB class information is proposed for 

various video processing applications. We first propose to 

classify Macroblocks of each frame into different classes and 

use this class information to describe the frame content. Based 

on the proposed method, we further propose several algorithms 

for various video processing applications including shot change 

detection, motion discontinuity detection and global motion 

estimation. Experimental results demonstrate that methods 

based on the proposed class information can work efficiently 

and perform better than many of the existing methods.  
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