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Abstract— This paper proposes a multicast content download 

service based on the use of residual network capacity to push 
multimedia content to available local storage in personal 
multimedia devices. The service under study is based on the 
FLUTE protocol. Specifically, FLUTE packets fill the spare 
capacity in the IP tunnels reserved for the primary streaming 
service (opportunistic insertion). The paper also evaluates the use 
of Application Layer – Forward Error Correction (AL-FEC) 
parity to overcome transmission errors, object multiplexing to 
send the most popular multimedia contents more frequently and 
cache management policies that consider user preferences in 
order to keep in storage the most useful items. The service has 
been evaluated through simulations and measurements 
performed with an application prototype based on the DVB-H 
standards. The results show that AL-FEC enables the use of 
residual capacity for background content download services. In 
turn, AL-FEC, as well as object multiplexing, improves the 
relation between the number of content items and the overall 
access time. Moreover, results show that high percentages of 
requests can be served from the local cache of the service, 
provided that it is possible to estimate the popularity of content 
items and the user preferences. 
 

Index Terms— Background services, AL-FEC, Cache 
management, FLUTE, Carousel scheduling 
 

EDICS— 2-SYSS, 8-MSAT, 8-WMMM 

I. INTRODUCTION 
OBILE television promoted the appearance of a 
number of technologies to provide IP multicast / 
broadcast access to mobile multimedia devices. This 

way, the last years have witnessed the release of standards 
such as IMB (Integrated Mobile Broadcast), to enable IP 
broadcast support in cellular 3G networks, or DVB-H (Digital 
Video Broadcasting - Handheld) and ATSC-H/M (Advanced 
Television Systems Committee –Handheld/Mobile) that are 
meant to enable the provision of IP services over terrestrial 
broadcast networks. The use of dedicated broadcast networks 
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(and the associated investments) is only motivated when there 
is a critical mass of spectators looking at the same program 
and at the same time. This only happens for television content 
that is sufficiently popular in the service area. For the rest of 
the content offering, video delivery over point-to-point 
connections seems like a better alternative than broadcast. 
Obviously, in this case, the mobile network needs to be 
dimensioned to support peak traffic load, which is heavily 
dependent on IP video traffic. Without IP broadcast or 
multicast support, there are no means to save the limited radio 
spectrum resources when several users watch the same 
content. 

Hence, both alternatives, i.e. the usage of dedicated 
broadcast networks (when few content items have many 
simultaneous viewers) and the usage of point-to-point 
connections (when simultaneous viewers look at different 
content items) require investments in network infrastructure 
that are only necessary during certain day parts. This is 
because, in both alternatives, it is assumed that content needs 
to be streamed, i.e. transmitted at the time that users watch it. 
However this is not always true, because pre-produced content 
is delay-tolerant, in the sense that it can be transmitted at any 
time after it is produced and stored in available storage space 
in wireless terminals until it is consumed. 

This way, content items can be delivered over a push 
Content Download Service (CDS) and stored in local caches 
until users watch it. Moreover, the CDS can use network 
capacity between peak network loads, as a background 
service, so that the network is not overloaded with the addition 
of a new service. 

The reuse of excess network capacity for the delivery of 
delay-tolerant multimedia content has been investigated for 
cellular networks [1]. In particular, cellular networks are 
dimensioned to support the expected peak traffic demand in 
the service area. Therefore, there are idle intervals when the 
demand is lower and the resulting excess capacity can be used 
to deliver delay-tolerant multimedia content through unicast 
connections. Exploiting this instantaneous excess of capacity 
for the delivery of delay-tolerant data services in mobile 
networks can increase both user perceived quality and service 
value. On the other hand, the use of prefetching and caching in 
broadcast networks has been investigated in the literature [2], 
[3], although not as background services. The results show 
that caching from broadcast CDSs is an efficient method for 
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delivering pre-produced multimedia content to a potentially 
massive audience.  

This paper proposes the use of residual capacity of 
broadcast networks for the provision of background push 
CDS, as a way to reduce the traffic of unicast streaming 
services over cellular networks and improve the Quality of 
Experience (QoE) of mobile television services. The excess of 
capacity in broadcast networks can be used to push content to 
mobile terminals in any scenario where battery consumption is 
not constrained, for instance whenever the terminal is charging 
battery or in systems embedded in vehicles. Thus, the services 
under study in this paper push popular content to portable 
devices through existing broadcast connections, by means of 
background services that do not interfere with the primary 
network services. Background broadcast services reuse 
network investments, while at the same time consume little 
(and unused) network resources. Therefore, these services turn 
out to be inexpensive to network operators. Additionally, the 
use of broadcast capacity to send just popular content and the 
time-shifting achieved with background CDSs foster an 
appropriate use of broadcast spectrum. Hence, background 
broadcast push CDS can improve the efficiency of mobile 
television content delivery with very little overhead in terms 
of operational expenditures and no need for additional 
infrastructure. 

This kind of background services can be provisioned over 
any wireless network with support for IP broadcast. 
Specifically, this paper proposes the provisioning of 
background push CDS in DVB networks through 
opportunistic insertion, in particular DVB-H networks. DVB 
networks carry a number of streaming services that are 
multiplexed together. Normally, operators leave some spare 
room in the multiplex, i.e. some marginal bandwidth for the 
sake of security during the multiplexing process. With 
opportunistic insertion, this filling capacity is used by a 
background push CDS to broadcast non-live content items, as 
an IP datacast service through the DVB network. The protocol 
stack of the proposed background CDS uses the FLUTE (File 
Delivery over Unidirectional Transport) protocol, adopted by 
DVB among other organizations, such as ATSC, 3GPP (Third 
Generation Partnership Project) or OMA (Open Mobile 
Alliance). FLUTE has been designed to deliver files in 
unidirectional environments where the network does not 
guarantee the delivery of data and it has been adopted for the 
delivery of CDS on several mobile TV standards besides 
DVB-H, like MBMS (Multimedia Broadcast / Multicast 
Services). FLUTE applies a transmission scheme known as 
file carousels, where files are repeatedly delivered in a 
continuous cycle. In order to establish the connection, clients 
need only to join the broadcast session to start receiving the 
packets of the carousel. 

Background push CDS could play different roles for the 
primary mobile TV services, either linear TV services or 
content on demand services. For the latter, the service could 
be used to push content offered on demand to local storage, 
thus reducing the traffic of the on demand service for the 
content provider and the access time for the user. Other use 

cases, useful for both linear and on demand services, could be 
to detach the transmission of advertisements from the main 
transmission service or to send alternative content for 
playback under special circumstances, like no proper reception 
of the main service.  

These use cases show that background push CDS could 
provide value for different actors in the value chain: television 
viewers benefit from improved Quality of Experience; content 
providers make more value of the resources dedicated to 
content delivery; and network operators make a better usage of 
radio spectrum resources. Moreover, it is clear that current 
trends in hardware capabilities, in terms of memory 
consumption, processing power and storage capacity make it 
feasible to support this kind of services.  

However, the use of residual bandwidth involves difficulties 
for the provisioning of the service with acceptable 
performance. First, it is necessary to verify that the use of 
residual broadcast capacity in this scenario is feasible and 
provides sufficient bitrate for the CDS. Obviously, there is a 
trade-off between the number of files offered by the CDS and 
the time needed to access any of the files therein (access time). 
Thus, it is necessary to assess this trade-off for relevant 
number of files and their respective sizes. Last, it is necessary 
to manage appropriately the storage space available in user 
terminals in order to maximize the number of content requests 
served from local storage (cache hit ratio).  

Taking this into consideration, this paper evaluates the 
combination of three different mechanisms to improve the 
performance of broadcast CDSs over background channels. In 
particular, the paper presents Application Layer Forward Error 
Correction (AL-FEC) mechanisms that improve the reliability 
of the content delivery service; object multiplexing to improve 
the relation between number of files and access time; and 
cache replacement policies that maximize the cache hit ratio. 
The combination of these techniques can optimize the 
performance of existing broadcast CDSs, allowing broadcast 
network operators to use the residual capacity in their 
networks to push mobile video programs to local storage in 
mobile terminals. The novelty of this research work is that it 
provides a framework to evaluate the performance of 
broadcast push CDSs combining AL-FEC, object multiplexing 
and caching. This framework is used to evaluate a service for 
mobile devices, including measurements over an application 
prototype in laboratory conditions. As mentioned, the 
application prototype is based on the DVB-H standard. 
However, it is worth noting that the proposal is applicable in 
other mobile TV standard specifications, for instance MBMS 
or ATSC-H/M. 

The paper is structured as follows: Section II presents an 
overview of the relevant work in the three related areas; 
Section III explains the architecture of the service; Section IV 
provides the analytical models used to evaluate the 
background service; Section V presents the methodology used 
to evaluate the service; Section VI shows the measurement 
results and their corresponding analysis; Lastly, Section VII 
includes some final conclusions. 
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II. RELATED WORK 
This section presents the three main technologies under 

study: AL-FEC, object multiplexing and caching. Each 
subsection includes a description of the technology, references 
to related works and the contribution of this study to the state 
of the art.  

A. AL-FEC 
There are three complementary mechanisms to provide 

reliability in Content Download Services based on the FLUTE 
protocol [4]: file retransmissions, file repair sessions and AL-
FEC. In unidirectional networks, content download services 
use carousel retransmissions in combination with AL-FEC.  

The objective of AL-FEC is to reduce the number of cycles 
needed to download a file in the presence of errors, by 
applying error-correcting encoding to the file. The AL-FEC 
encoding algorithms work with pieces of the files known as 
source blocks, operating over smaller fragments known as 
encoding symbols. There are two kinds of encoding symbols: 
source and parity symbols. In FLUTE transmissions, first, the 
file is divided into source blocks, made of k source symbols. 
Later, the error-correcting code generates n - k parity symbols, 
out of the k symbols in the source block. Thus, n is the number 
of symbols after FEC encoding, as depicted in Fig. 1. The 
relationship between n and k is expressed either as the code 
rate k/n (CR) or its inverse, the FEC ratio (FR), n/k. 

 
Fig. 1.  FLUTE packet construction. 

This way, by applying AL-FEC, the size of the file will 
increase by a factor equal to the FEC ratio. However, receivers 
will only need to download an amount of symbols slightly 
higher than the number of symbols that compose the file 
without AL-FEC encoding. The ratio between the number of 
symbols needed to successfully decode a file and the original 
number of symbols of the file is known as the inefficiency 
ratio (inef_ratio) and it depends of the AL-FEC code used. In 
this sense, an ideal AL-FEC code would provide an inef_ratio 
equal to one, regardless of the packet loss rate of the 
communication channel. [5] provides a comparison of the 
encoding efficiency of relevant AL-FEC codes for content 
download services. Besides the inefficiency ratio, there are 
other application aspects, like the content size or the memory 
requirements, which should be taken into consideration when 
deciding which AL-FEC code is better suited for a given 
application. There are different codes supported by FLUTE, 
such as Compact No-Code, Reed-Solomon, Raptor, RaptorQ 
or LDPC (Staircase and Triangle) [6].  

In file carousels, the amount of AL-FEC parity added to a 
file and the channel losses affect the time needed for a client 
to recover a file completely, i.e. its download time. As 
explained in [7], there is an optimal code rate that minimizes 
the download time for clients of a file carousel. In this context, 
it is also important to bear in mind that different clients on a 

service area will experience different losses and consequently, 
the amount of AL-FEC parity needed should be optimized so 
as to minimize the average download time over all clients in a 
service area, instead of being optimized for the losses 
experienced by a client alone. [8] and [9] regard this problem 
from a network planning perspective, yielding to FLUTE file 
recovery configurations that minimize infrastructure costs or 
energy consumption.  

There are other application parameters that affect the 
download time in file carousels, such as the distribution of file 
sizes, the relative popularity of the files added to the carousel 
or aspects related to file scheduling and cache management. 
One of the contributions of this study is to show how AL-FEC 
improves the download time of CDS taking into consideration 
these application parameters. 

B. Object Multiplexing 
Several research works focus on the optimization of 

broadcast data carousels in communication channels without 
errors [2], [3], [10]. These studies assume that clients do not 
issue the same number of requests to each item in the carousel, 
since some items are more popular than others. The results 
show how the average download time in a service area can be 
reduced by weighting the bitrate used to deliver each file, so 
that more popular items are transmitted more frequently. They 
propose different scheduling policies to accomplish this. [2] 
allocates the available rate in broadcast disks: sub-carousels 
with independent queues in which files are placed according to 
their popularity. Moreover, [10] considers the economic cost 
for the operator related to each data item. The results show 
that the proposed scheduling policy -based on the broadcast 
disk proposal- minimizes the overall cost of the service for the 
operator.  

On the other hand, [3] states that it is not necessary to send 
several files concurrently, since the download time depends on 
the long-term average transmission rate assigned to each file. 
Thus, files are sent at the maximum available download rate 
one after the other, but more popular files appear more often 
in the carousels. Specifically, [3] derives an optimum value for 
the long-term average rate assigned to each file, which 
depends on its size and its popularity. Once the optimum long-
term average rate is obtained, the carousel can be shaped by 
adapting fair queuing algorithms to implement scheduling 
policies for file carousels. In this paper, the optimum long-
term average rates are obtained taking into account the effect 
of AL-FEC and the losses in the channel.  

C. Cache Management 
While object multiplexing aims at reducing the average 

download time by sending more often the most popular 
content items, caching aims at reducing the access time by 
storing files locally. In its most basic form, the problem of 
finding the optimum set of files that better utilize the available 
cache space reduces to the 0-1 knapsack optimization problem 
[11]: there is a set of items with certain weight and value and 
there is a need to determine which combination of items 
maximize the value, given a constraint on the total weight for 
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the selection. For cache management, the size of files can be 
understood as the weight of items and the total size of the 
cache as the constraint on the total weight of the knapsack 
problem. However, the concept of value is open for 
interpretation and there are many different aspects that can be 
taken into account for its definition, like the size of the file or 
the time it was used for the last time. [12] presents a good 
compilation of cache replacement policies in the context of 
web caches.  

The concept of value needs to be redefined for broadcast 
caches, quite different from web caches. [2] presents a cache 
replacement policy, named PIX, for caches of non-uniform 
accessed broadcast data in which the value of storing a file in 
memory is directly proportional to the future access 
probability of a file and inversely proportional to its relative 
transmission frequency (i.e. the inverse of its carousel cycle 
period). [13] introduces the size of the file in the calculation of 
its value in cache. In this paper, this policy is referred to as 
PIXS (Probability inverse frequency and size). 

It is worth noting that the results in the aforementioned 
works are oriented to on demand applications and the content 
is cached after a request for a file. In this study, the cache 
works as a prefetching cache, downloading files from the 
broadcast carousel before the user issues a request for it.  

III. SERVICE ARCHITECTURE 
 Fig. 2 shows the architecture of the multicast push CDS 

proposed in this paper. A broadcast Content Download Service 
will push contents over a background transmission channel, 
made of the residual transmission capacity in the reservations 
of a television service (the primary service). The server 
implements a Scheduler that decides which file to transmit at 
each time, to optimize the service performance. Also, the 
service inserts packets from the Content Download Service 
whenever there is capacity available (Opportunistic Insertion 
in the diagram).  

 
Fig. 2.  Background multicast push CDS architecture. 

The client will need to implement the corresponding 
broadcast Content Download Client. The figure presents the 
protocol stack of the one implemented and under study in this 
paper. The background service will push content to storage 
memory, managed by some Storage Management Policy, to 

ensure that the client uses only the storage capacity reserved 
for the background service. In this proposal, the Recommender 
uses feedback from user interaction and the metadata in the 
Content Guide to build a User Profile that models user 
preferences. The Recommender then provides the Storage 
Management with an estimation of the usefulness of each 
content item. In turn, the Storage Management uses this 
information to decide which contents to keep in storage. 

As mentioned in the introduction, DVB broadcast networks 
transport streaming services over a constant bitrate MPEG 
Transport Stream (MPEG-TS). This study proposes 
opportunistic insertion of content download services based on 
the DVB-H IP protocol stack [14]. IP datagrams need some 
encapsulation protocol to be transmitted on top of the MPEG-
TS. [15] defines a mechanism, time slicing, aimed at reducing 
the battery consumption of MPE decapsulation by sending the 
datagrams in bursts and shutting down the receiver at idle 
times.  

Due to time slicing, the multiplex consists of bursts, which 
are made up of a considerable amount of video and audio 
packets belonging to the same mobile TV service. These 
bursts do not have a constant size. On the other hand, CDS 
services do not have real time requirements like the zapping 
time. Therefore, it is possible to provide a background content 
download service together with every video service so that the 
resulting burst size and burst period are kept constant, as 
shown in Fig. 3. Clearly, this simplifies the multiplexing 
process, making it easier to use the whole capacity of the 
multiplex.  

 
Fig. 3.  DVB-H bursts with time slicing. 

Some of the building blocks have already been introduced 
in the previous section. Regarding AL-FEC, the service uses 
LDPC coding, since they provide a good trade-off between 
performance (download time) and complexity [16]. As for the 
Scheduler, the carousel uses the whole available capacity to 
send the files as units, without interleaving packets belonging 
to different files. The operator needs to configure the weight 
of each file in the carousel, so that more popular files are 
transmitted at higher long-term bitrates. The calculation of the 
weights and the algorithm for the Scheduler are presented in 
the next section. Similarly, at the receiver, the cache 
management downloads files from the carousel, so as to keep 
in local storage the files that better fit the user needs. The size 
of the cache is limited and therefore, the cache management 
applies a cache replacement policy to maximize the value of 
the files kept in memory.  

In order to determine the value of each file in cache, the 
Recommender uses the descriptions of the files in the Content 
Guide to apply content-based recommendation techniques 
[17]. As indicated in the figure, a content-based recommender 
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will determine the usefulness of a file by comparing its 
description with the user profile. 

IV. THEORETICAL ANALYSIS 
This section provides an analytical model of the techniques 

under study in this paper: AL-FEC, object multiplexing and 
cache management. The main objective of these techniques is 
to improve the performance of the CDS proposed in this 
paper. Following the structure presented in Fig. 2, the section 
is organized describing the models at the server, the channel 
and the client needed to characterize these techniques. For the 
sake of clarity, Table I summarizes the main notation used:  

TABLE I 
NOTATION 

bj  Long-term bitrate of file j 

cj  Average number of cycles to download file j 
inef_ratio Inefficiency ratio of AL-FEC encoding 

k Number of transmitted packets of a file 
l Number of missing packets on a cycle 

m Total number of missing packets at the beginning 
of a cycle 

n Number of transmitted packets of a file after AL-
FEC encoding 

N Number of files in the carousel 
pj Access probability of file j 
!pj  Estimated probability of access of file j 

r Number of correctly received packets at the 
beginning of a cycle 

sA Local storage size 
sj Size of file j 
sj
FEC

 File size of file j after AL-FEC encoding 

tA
j  Access time of file j 

TC
j

 Long-term carousel cycle time of file j 

TC,FEC
j  Long-term carousel cycle time of file j after AL-

FEC encoding 
tC
j (k)  kth sub-carousel cycle time of file j 

tD
j  Download time of file j 

tW
j  Waiting time of file j 

vj Value of file j in cache 
x(i) Expected number of received packets on cycle i 

A. Server Model 

1) Optimal scheduling 

The first step in the analysis is to model the broadcast 
carousel transmission of the CDS, including the effect of AL-
FEC, object multiplexing and opportunistic insertion. Later, 
the model is used to estimate the optimal long-term bitrates for 
the files in the carousel. Thus, the service will broadcast N 
files of sizes s1,s2,…,sN that have a certain access probability in 
the service area. The access probability is represented by  
p1,p2,…,pN where pj is defined as the number of accesses to a 
file j divided by the overall number of accesses to all files. 
Client applications will need a given amount of time to fetch a 

certain file of the carousel and store it. In this study, this time 
is referred to as the access time. Connecting with the 
architecture (Fig. 2), the access time is the time between a 
request from the cache management to download a certain file 
and the instant when that file is completely downloaded to 
cache.  

The objective of optimal scheduling is to minimize the 
overall access time, that is, the average of the access time of 
all file downloads in the service area. The access time to file j, 

, is a random variable with expected value . Thus, 
taking into account the access probability to files in the service 
area, the overall access time is calculated as: 

 E[tA ]= E[tA
j ]·pj

j=1

N

!  (1) 

Therefore, the objective is to find a minimum of expression 
(1), accounting for the effect of AL-FEC, object multiplexing 
and opportunistic insertion. These techniques can affect the 
access time to files, but not the access probabilities. With this 
in mind  will depend on the waiting time, , and the 

download time, . The waiting time is the time between the 
instant when the client application joins the broadcast carousel 
and the time when it starts receiving packets of that file. On 
the other hand, the download time is the time needed to 
download the remainder of the file, after the first packet is 
received. Please note that tD

j  depends on the error rate: 

 tA
j = tW

j + tD
j  (2) 

The next step is to provide an expression for tW
j  and tD

j  in 
carousel transmissions. For the sake of clarity, Fig. 4 shows an 
example of a transmission of three files, which are sent with 
different frequencies (for instance, F1 is sent more frequently 
than the others). The transmission frequency of each file j 
determines the sub-carousel cycle time of that file, tC

j (k) , that 
is, the maximum time containing the kth transmission of object 
j.  

 
Fig. 4.  Time model of the access time. 

Regarding , let us assume a client application joins the 
channel at an instant of time t, within sub-carousel cycle k. 
Assuming that the client application can join the carousel at 
any time with the same probability within tC

j (k) , it is clear that 
the expected value for tW

j (k, t)  is E[tW
j (k, t)]= tC

j (k) / 2 .  
Now, as noted in the picture, tC

j (k)  is not necessarily the 
same for every index k. In the following equation, it is 
assumed that the scheduler generates a periodic carousel, with 
a certain carousel period, TC. As Fig. 4 shows, each carousel 

tA
j E[t jA ]

tA
j tW

j

tD
j

tW
j



 6 

cycle contains the same sequence of files (F1-F2-F1-F3-F1-F2 
in the example). Inside the carousel period any element j 
appears an integer number of times, Kj. If !k = tC (k) /TC  is 
the probability that the client joins the channel at sub-cycle k, 
the expectation value of tW

j  is: 

 E[tW
j ]= !k

tC
j (k)
2

=
k=1

K j

! 1
2

!ktC
j (k) =

k=1

K j

! TC
j

2
  (3) 

In the equation, TC
j  is defined as the long-term carousel 

cycle time of file j. For the calculation of the download time, 
, if there are no losses, the download time is a deterministic 

variable equal to sj/b, where sj is the size of the file j and b is 
the bitrate of the datacast service. However, if there are losses 
in the reception of the datacast carousel, the download time 
becomes a statistical variable dependent of the number of 
cycles needed to complete the download. Specifically, to 
download a file j, clients need an entire number of cycles (cj-
1) plus a fraction lj of the transmission of the file. For instance, 
in Fig. 4, in order to download file F2, the client needs 2 entire 
sub-carousel cycles (c2-1=2) plus a fraction of the last sub-
carousel cycle (l2). The average number of cycles needed to 
download file j is defined as  and depends on the 

size of the file and the losses on the channel. If the receiver 
starts the download at cycle , after a time equal to 

, the receiver will begin the downloading of the last 

portion of the file. In order to fetch this last portion, the 
receiver will wait a time equal to , where lj is a fraction 
of the transmission of file j. Note that, with channel losses, lj is 
not necessarily equal to the portion of the file missing. In the 
example, in the last cycle after c2, the receiver recovers 20% 
of F2, but since there are losses, it needs to wait a longer 
fraction of the time of the file in the carousel. Thus, the 
average download time can be divided in two terms, the first 
of them dependent on the carousel cycle: 

 E[tD
j (k)]= tC

j (i)
i=k

k+cj!1

" +E
sj ·l j
b

#

$
%

&

'
(  (4) 

Now, the long-term download time of file j is defined as:  

 E[tD
j ]= !k !E

k=1

K j

" [tD
j (k)]= !k ! tC

j (i)
i=k

k+cj#1

" +E
sj ·l j
b

$

%
&

'

(
)

*

+
,,

-

.
//

k=1

K j

"  (5) 

note that both summations add consecutive cycles of the same 
file j. For instance, coming back to the example above where 
c2-1=2 and K2=2, with k=1, the inner summation results in 
tC
2 (1)+ tC

2 (2)+ tC
2 (3) . Similarly, with k=2 the inner summation 

yields tC
2 (2)+ tC

2 (3)+ tC
2 (4) . Since the carousel is periodic, it 

turns that tC
j (1) = tC

j (3)  and tC
j (2) = tC

j (4) . Hence, it can be 
noted that when the outer summation is applied, every tC

j (k)  is 
repeated exactly cj  times. Therefore, the terms of the 
summations can be re-arranged to obtain the relationship 
between  and TC

j : 

 
E[tD

j ]= cj !k !
k=1

K j

" tC
j (k)+E

sj ·l j
b

#

$
%

&

'
(= cjTC

j +E
sj ·l j
b

#

$
%

&

'
(  (6) 

Combining the expected values for the waiting time and the 
download time, the expected value for the access time of a file 
j becomes: 

 E[tA
j ]= E[tW

j ]+E[tD
j ]= TC

j · cj +
1
2

!

"
#

$

%
&+E

sj ·l j
b

'

(
)

*

+
,  (7) 

In the last expression, the average number of cycles and the 
portion of the file downloaded in the last cycle are mainly 
related to the losses in the communication channel and in turn 
to AL-FEC. On the other hand, the sub-carousel cycles of each 
file j are determined by the scheduler and related to object 
multiplexing. First, let us introduce the effect of AL-FEC. AL-
FEC encoding reduces the average number of cycles  at the 
expense of increasing the file sizes by the FEC ratio (FR>1). 
Thus, AL-FEC will increase the size of all files to 

. If AL-FEC is applied, long-term carousel cycle 

of each file is noted as TC,FEC
j . 

Now, object multiplexing will send some files more often, 
in order to adjust the long-term carousel cycle of each file. For 
instance, in the figure, F1 appears in the carousel more often 
than F2 or F3. The optimum configuration for the long-term 
carousel cycles provides a minimum of the overall access 
time, as defined in (1). Therefore, in order to determine the 
optimization problem, it is necessary to substitute 

 
in (1) 

for the expression derived in (7): 

 E[tA ]= TC,FEC
j · cj +

1
2

!

"
#

$

%
&+E

sj
FEC ·l j
b

'

(
)

*

+
,

!

"
##

$

%
&&·pj

j=1

N

-  (8) 

With object multiplexing, files that are sent more often have 
shorter cycles and, in turn, shorter access times. This way, 
since files have different transmission frequencies, files are 
not transmitted at the same rate in the long run. Therefore, 
files will have different long-term bitrates and files with 
shorter average download times can be seen as files with 
higher long-term bitrates. The long-term bitrate assigned to 
file j (bj) is defined as:  

 bj =
sj
FEC

TC,FEC
j  (9) 

Note that bj accounts for the effect of the scheduler but also 
for the effect of opportunistic insertion, since the long-term 
carousel cycle depends on the available bitrate b. 
Nevertheless, it is worth noting that the scheduler does not 
need to be aware of the available bitrate, since the set of long-
term bitrates are constraint by:  

 
bj =

j=1

N

! b  (10) 

The scheduler will only need to know the ratios bj/b that 
define the optimum share of the available bitrate among the 
different files in the carousel. Taking this into account, (8) can 
be rewritten as:  

tD
j

E cj!" #$= cj

tC
j (k)

tC
j (l)

l=k

k+cj!1

"

sjl j / b

E tD
j!" #$

cj

sj
FEC = sj !FR

E tA
j!" #$
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 E[tA ]=
sj
FEC

bj
cj +

1
2

!

"
#

$

%
&·pj

j=1

N

' + E
sj
FEC ·l j
b

(

)
*

+

,
-·pj

j=1

N

'  (11) 

Now, optimizing the carousel, i.e. finding the optimal 
sequence of files that minimizes the access time, is equivalent 
to finding the set of relative bitrates that minimizes the first 
term in (11). The only relationship between the different long-
term bitrates is the boundary condition in equation (10), 
therefore they are independent variables, but subject to that 
condition. Thus, the following auxiliary function is used to 
solve the optimization problem: 

 
f(b1,...,bN ) =

sj
FEC cj +1/ 2( )·pj

bjj=1

N

! +! b" bj
j=1

N

!
#

$
%%

&

'
((  (12) 

In order to find the minimum of (12), its derivate is equaled 
to zero:    

 
! f(bj )
!bj

= !
sj
FEC cj +1/ 2( )·pj

bj
2 !" = 0  (13) 

Providing the set of optimal bitrates:  

 

bj =
b sj

FEC cj +1/ 2( )·pj
si
FEC ci +1/ 2( )·pi

i=1

N

!
 (14) 

2) Object Multiplex algorithm 

The expression obtained in the previous section provides an 
optimum share of the available bandwidth between the 
different files. As explained, the scheduler will need to create 
a carousel that provides such long-term average bitrates, by 
multiplexing the different objects in the time domain. The 
problem can be regarded as a form of service discipline in 
which objects must be scheduled for transmission in a shared 
medium of limited capacity. This problem has been 
thoroughly studied in literature related to data packet 
scheduling. In fact, the algorithms originally proposed to deal 
with packet scheduling, such as WFQ (Weighted Fair 
Queuing) or VC (Virtual Clock), can be adapted to work with 
file scheduling. This is the case of the Modified Virtual Clock 
(MVC) algorithm proposed in [3], hereby adapted to account 
for the channel losses.  

The MVC algorithm is divided into two phases. In the 
initialization phase the algorithm assigns to each file a delay, 

which is calculated as bj
j=1

N

!
"

#
$$

%

&
'' / bi  and sorts the files according 

this value. In the multiplexing phase, the algorithm tries to 
adjust the cycle period of each data element to the delay value, 
placing data elements in a multiplexing queue ordered by 
increasing delay values. 

The algorithm tries to adjust the long-term bitrates of files 
to the optimal values calculated in the previous section. The 
service operator needs an estimate of the access probabilities 
and of the channel losses. These parameters can be estimated 
from operational data of the primary services and it is worth 
noting that all these metrics are familiar to service providers 
and network operators. Specifically, the access probability can 
be estimated from audience measurements or access statistics 

on the primary services. On the other hand, the channel losses 
are estimated in the wireless network planning phase and are 
used to configure the optimal FEC rate and compute the 
average number of cycles. The amount of losses depends on 
the channel, as next subsection explains. 

Phase 1: Initialization  
1: for i=1 to N 

2:  object(i).delay= bj
j=1

N

!
"

#
$$

%

&
'' / bi  

3:  object(i).tag = object(i).delay 
4:  object(i).count = 0 
5:  object(i).enabled = TRUE  
6:   QueueObjectsByOrderIncreasingTag() 
7: end 
 
Phase 2: Multiplexing 
8: while (not_exit) 
9:  i = FindObjectWithLeastTagInActiveQueue() 
10:  SendObject(i) 
11:  object(i).tag = object(i).tag + object(i).delay 
12:  object(i).enabled = FALSE 
13:  for j=1 to N 
14:   object(j).count = object(j).count + 1 
15:   if (object(j).count >= object(j).delay) 
16:    object(j).count = object(j).count-object(j).delay 
17:    object(j).enabled = TRUE 
18:   end 
19:  end 
20: end 

B. Channel Model 
For the system hereby proposed, the transmission channel is 

simulated using the two-state Markov model [18], also known 
as Gilbert model. This model is widely used in literature ([19], 
[20]), since it simulates well the error bursts typical in wireless 
networks. This model is based on two states: on/off. Each state 
indicates whether the last packet has been received or not. 
Depending on the state, there are different probabilities of 
losing the upcoming packet. In general, the probability of 
losing a packet is higher if the previous packet was lost.  

As mentioned, if there are losses it is very likely that clients 
need several cycles in order to download the file. [21] 
performs a complete analysis of data carousels in channels 
with packet losses. In order to calculate the number of cycles 
needed to download a file, first it is necessary to know how 
many new packets are received per cycle. Formula (15) 
models the probability of receiving exactly x new packets in a 
loop using a hyper-geometric probability distribution. In the 
equation, k is the number of transmitted packets (source 
symbols) of the file, l is the number of lost packets in the loop 
and m is the total number of missing packets at the beginning 
of the loop. 

 P(x,m,k, l) =

m
x

!

"
#

$

%
&

k 'm
(k ' l)' x

!

"
##

$

%
&&

k
k ' l

!

"
#

$

%
&

 (15) 

The numerator expresses the possibilities of receiving 
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exactly x new packets of the m missing packets out of the k - l 
packets received in a carousel cycle. Similarly, the 
denominator expresses the possible combinations of k - l 
packets out of the transmitted k packets. Applying this hyper-
geometric probability distribution, the expected number of 
packets received at loop i is: 

 x(i) = !P(!,m,k, l)
!=0

m

!  (16) 

Finally, the number of cycles needed to download a file is 
calculated using an iterative process, according to: 

 c =min(i) | x(i) ! k  (17) 
If AL-FEC is used, the probability of receiving x new 

packets in a new loop can be modeled in a similar way, 
although there are some changes in the equations, due to the 
benefits of error protection. Thus, formula (18), describing the 
probability of receiving x new packets at cycle i with AL-FEC 
is slightly different to formula (15). Here, r is the number of 
correctly received symbols at the beginning of the loop, n is 
the total number of encoding symbols (k source symbols plus 
n - k parity symbols) of the file and l is again the number of 
lost packets in the loop: 

 P(x,n, r, l) =

n! r
x

"

#
$

%

&
'

r
(n! l)! x

"

#
$$

%

&
''

n
n! l

"

#
$

%

&
'

 (18) 

In this case, the numerator expresses the possibilities of 
receiving x new packets of the n - r packets that have not been 
received correctly in previous cycles, out of the n - l packets 
that are received in the current cycle. The denominator 
expresses the total number of possible combinations of n - l 
packets in the n transmitted packets. Then, the expectation 
value is defined as: 

 

x(i) = !P(!,n, r, l)
!=0

n!r

"  (19) 

Finally, recalling that the AL-FEC decoder needs to receive 
at least the number of source symbols k times the inefficiency 
ratio inef_ratio, the number of cycles needed to download a 
file when AL-FEC is applied is:  

 c =min(i) | x(i) ! k " inef _ ratio  (20) 
Therefore, with these formulas it is possible to calculate the 

number of cycles needed to download a file, depending on 
whether AL-FEC is used or not: the expected number of new 
packets received per loop is calculated iteratively until there 
are enough packets to recover the file.  

In the calculation, the number of packets lost in every loop, 
l, is obtained from a two state Markov model. The Markov 
model determines how many of the transmitted packets (k 
when no AL-FEC is applied and n when AL-FEC is applied) 
are correctly received. The parameters of the Markov model 
are adjusted to match the statistical properties of error traces 
measured in the cases under study. 

C. Client Model 
Up to this point, the analysis has covered the models for the 

server and the channel. This section will describe the models 
used at the client side. Back to the architecture in Fig. 2, the 
client implements the CDS client, the cache and the storage 
management. Moreover, the storage management uses 
information from the recommender to decide which files to 
keep in cache. Initially, the cache is empty. The CDS client 
will fetch a file from the carousel and store it in cache as 
requested by the cache management. It is worth noting that, 
since the service under study is a background service, the user 
does not implicitly requests the CDS client to download a file. 
Instead, it is the recommender that initiates the download 
process. 

As explained in the introduction, recommenders calculate 
the utility (or usefulness) of a content item for a particular user 
through a given utility function [17]. The design of the 
recommender and the details of such utility functions are out 
of the scope of this thesis. For the purpose of this study, it is 
enough to acknowledge that a recommender will determine 
how useful each of the content items are for the user. 
However, for the sake of clarity, let us explain briefly how a 
content filtering recommender [17] would work inside the 
client application. 

Thus, the recommender analyses the content descriptions to 
determine the utility of file j, !pj . Later, the cache management 
will calculate the value of file j, vj, as a function of !pj . The 
cache has a storage capacity equal to sA. As this storage 
capacity is, in general, smaller than the sum of the size of all 
files in the carousel, the storage management must decide the 
set of files that maximize the overall value of the files in 
cache. In this study, the cache management only keeps entire 
files. Therefore, the cache management needs to find the 
decision vector Y={y1,y2,…,yN} that maximizes the value of 
files in cache, where yj=1 if the storage management decides 
that file j should be kept in memory, or 0 otherwise. This 
problem can be expressed as: 

 Find Y={y1,y2,…,yN}
 , 

 

 maximize yivi
i=1

N

! ,   
yisi

i=1

N

! " sA    
 (21) 

Clearly, this is an instance of the 0-1 knapsack problem, 
thoroughly studied in the literature [11]. The problem is NP-
complete, but there are many algorithms that solve it in 
polynomial time, each one optimized for a particular kind of 
instance of the problem.  

The algorithm used in our proposal can model the decisions 
made by algorithms for cache management policies based on 
the branch-and-bound algorithms, which is the most basic 
approach to solve the 0-1 knapsack problem. The cache 
management algorithm decides which files should be stored in 
memory every time tk when the recommender provides a new 
estimation of the utility of a file. Note that the recommender 
may have not estimated the value of all files in the carousel at 
tk. Let Ik be the subset of files of the carousel with a value 

yi !{0,1}  /
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estimation up to the beginning of tk. I0 is initially empty. The 
algorithm will find the decision vector Y={y1,y2,..,yN} by 
ordering the files in descending value, conditioned by their 
sizes: 

1. Sort Ik such that  

2. Find im =min(i : sj ! sAj=1

i
" )  	
 (22) 

3.  yj = 1; j < im and yj = 0; j ≥ im 

The branch-and-bound algorithm presented above will 
model how the storage management policy will handle the 
storage space, according to an estimation of the utility of a file 
provided by the recommender. At every time tk, the cache 
management will calculate the decision vector Y. If yj changes 
from 0 to 1, the storage management will issue a download 
request for file j to the CDS client. Contrarily, if yj changes 
from 1 to 0, it will remove the data of file j stored in the cache.  

Regarding the definition of value, as explained in the 
related work section, there are different definitions for the 
value of files in broadcast caches. Table II provides the 
definitions under study in this paper: 

TABLE II 
DEFINITION OF VALUE FOR DIFFERENT CACHE REPLACEMENT POLICIES 

Algorithm Value of object j in cache 

P vj = !pj  

PIX vj = !pj ·tC
j  

PIXS vj = !pj ·tC
j / sj

 
Each cache replacement policy will estimate vj using 

different parameters as a function of the utility. Note that, in 
this study the utility is seen as an estimation of the future 
probability of access to file j, as defined in the broadcast cache 
literature. The PIX and PIXS policies also account for tC

j , the 
carousel cycle time of file j. Note that, in order to use tC

j  in 
the calculation of the value, the recommender needs to know 
the scheduling of the files beforehand. Finally, the PIXS 
policy also accounts for si, which is the size of file i. 

V. EVALUATION METHODOLOGY 
The main purpose of this study is to validate the 

performance of background push CDS over terrestrial DVB 
networks. The case under study is a background push CDS 
associated to a DVB-H mobile service, although it is worth 
noting that the background CDS service can be provisioned 
over any hybrid unicast / multicast TV platform [23].  

The background push CDS implementation has been tested 
in laboratory conditions. Specifically, the performance of the 
background CDS channel has been measured experimentally, 
as described in section V.B. The objective of the 
measurements has been to characterize the long-term bitrate 
and the average number of cycles with opportunistic insertion 

in this scenario (E[b] and cj , respectively). Additionally, the 
measurement results show configurations of the AL-FEC layer 
of the background CDS service that minimize the download 
time of a single file. 

Later, the overall average access time is evaluated for 
different probability distributions of the popularity and the file 
sizes. The results are generated through simulations according 
to the analytical model and applying the empirical values 
obtained from the measurements. The overall access time is 
regarded as the most important quality metric for the 
background CDS as a standalone service. Even though the 
operational costs of the service for the operator are really low, 
the service will only be viable if it can provide sufficiently 
large catalogues of content at reasonable rates. 

Finally, the study includes a performance analysis of 
different storage management strategies for broadcast caches, 
using the channel model described in Section III and the 
results from the measurements. The parameters selected to 
evaluate the performance of the storage management policies 
are two. First, the cache hit ratio, which is the ratio between 
the requests served from cache to the total number of requests 
generated. The second parameter taken into consideration 
represents the time needed by a cache management policy to 
complete the download of the files selected to fill the available 
storage capacity, refer to as delta time. These two parameters 
are relevant when the background service is associated to a 
video on demand (VOD) service, as a utility to lower the 
bandwidth consumed by the primary service. After comparing 
the cache management policies discussed in the previous 
section, the results show the relationship between cache size 
and cache hit ratio in different reception scenarios. 

A. Parameters for the evaluation  
The evaluation of the access time needs a model for the 

access probability distribution and the file size distribution. 
The access probability distribution regarded is the ZIPF 
distribution [24]. This is a quite common approach to model 
the relative popularity of multimedia items. The ZIPF 
distribution is defined by the parameter α, which indicates 
how fast the relative popularity of files decreases. In the 
results below, the range of values for α (0.6 – 2) is derived 
from previous related studies ([24], [25], [26]). The lower 
values, α (0.6-0.85) are taken from previous studies on the 
popularity of web files and video sharing sites, while the 
higher values are taken from [26], which investigates the 
suitability of multicasting against unicasting depending on the 
content popularity. The main conclusion is that the benefits of 
multicasting are more noticeable when α is higher than 1.5. 
For this reason, we have analyzed this case more thoroughly in 
the results. 

Similarly, the sizes of files used in the simulations follow a 
lognormal distribution, as suggested in [27]. The parameters 
of the lognormal distribution (µ, σ) can be adjusted to provide 
certain mean and variance values. In this study, the mean file 
size and the variance of the lognormal distribution are adjusted 
to match the statistics of the file size in a popular VOD service 
[28]. The files sent through the background CDS represent 

v j
s j
!
v j+1
s j+1
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videos and therefore the mean file size is related to their mean 
duration. The relationship between file size and video length is 
given by the encoding rate. The studies assume video formats 
and encoding rates typical of portable devices. In particular, 
the video encoding rate is set to 384 kbps, which is the 
maximum encoding rate of a video with resolution 320x240 
and 20 frames per second with H.264 (basic profile, level 1.2). 
The audio encoding rate is 128 kbps, providing a bitrate of 
640 kbps for the video. With this, a file size of 10Mb 
corresponds to approximately 2 minutes of video. 

In summary, the simulations do not use models for the 
popularity and the file size specific of any particular 
application. For the popularity, we use models considered 
relevant for broadcasting applications. Similarly, for the file 
size we use a lognormal model based on the statistics of a 
video sharing site, corresponding to short videos (2 minutes on 
average) suitable for mobile video applications.  

Regarding AL-FEC, the simulations use different AL-FEC 
code rates. The model simulates an AL-FEC with an 
efficiency ratio of 1.07. Note that the measurements have been 
carried out using an implementation of the LDPC Staircase 
codes developed by the authors. According to [22] and [30], 
the inefficiency ratio of LDPC Staircase is approximately 1.07 
for sufficiently large files and encoding rates. 

In the client, the knapsack algorithm decides which files to 
store in cache. In the simulations, the description of the file, 
needed to compute its associated value, is transmitted at the 
beginning of each file. This way, the decision vector is 
modified every time the client finds a new file in the carousel. 
The requests generated by VOD clients are modeled as a 
Poisson distributed event, completely independent of the 
status of the carousel or the cache. The expected value of 
requests per unit of time is defined as λ=50. Furthermore, the 
expected value of requests per unit of time for each file is λi = 
λ·pi, where pi is the probability of access for file i, according to 
the ZIPF probability distribution. 

It is worth noting that there could be deviations from the 
estimated values used by the MVC algorithm and the actual 
popularity in the service area, i.e. implementation losses 
related to the scheduler and the recommender. These 
implementation losses are not regarded in this study. With this 
in mind, the results in this paper should be regarded as upper 
bounds of the access times and cache hit ratios that can be 
accomplished with background push CDS. 

B. Measurement setup 
Fig. 5 shows the diagram of the measurement setup. The 

server implements a video streaming server, to generate the 
traffic of the primary video service and a FLUTE server that 
generates the traffic for the background CDS service. All 
service layers except for the physical layer are implemented in 
software, providing an MPEG Transport Stream to an external 
baseband DVB-H modulator. The radiofrequency (RF) 
waveform is generated from the baseband DVB-H signal with 
an Arbitrary Waveform Generator (AWG). To perform 
measurements for error free reception (0% losses), the receiver 
is just connected to the transmitter.  In order to simulate 

mobile reception with losses, the AWG implements a 
baseband channel simulator. The channel simulator applies a 
TU6 channel model [29] with a Doppler speed of 50 km/h to 
the baseband signal, in order to simulate urban mobile 
reception. The CNR level of the received signal is set to two 
different values, to emulate two reception scenarios: good 
reception, defined as less than 5% of losses [31], and bad 
reception (50% losses). Finally, the receiver demodulates the 
DVB-H signal, extracts the CDS service and generates the 
measurement results. 

The automation of the measurement procedure is achieved 
by allowing the client to reconfigure the parameters of the 
server. This way, the client can evaluate a configuration a 
number of times and then update the configuration of the 
server, thus automating the generation of results. The client 
software controls the server through a control channel that is 
not part of the service architecture, while the parameters for 
the measurements (number of files, AL-FEC configuration, 
number of iterations) are written down in test scripts. These 
scripts contain configuration parameters for the carousel, 
telling the server how many files should be included in the 
transmission and their parameters (size or AL-FEC encoding).  

  
Fig. 5.  Block diagram of the configuration of the measurements 

Fig. 6 shows an example of a network capture of the 
received IP packets for both the primary streaming service 
(RTP) and the associated background service (FLUTE). First, 
the picture shows that the packets from both broadcast 
services arrive in bursts. The bursts have a fixed size and the 
CDS packets are used to fill in the spare burst capacity unused 
by the streaming service, as showed in Fig. 3. Therefore, on 
every measurement point, the number of FLUTE packets 
received is significantly smaller than the number of RTP 
packets. 

The long-term bitrate for the CDS service in this scenario 
(E[b]) is 50kbps. Next sections present the results for AL-
FEC, optimal scheduling and cache management. 

 
Fig. 6.  Traffic generated by the primary streaming service and the 

associated background CDS service. 
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VI. RESULTS AND ANALYSIS 

A. AL-FEC 
As mentioned above, the background service uses two 

different error recovery techniques. Apart from AL-FEC, the 
service uses carousel retransmissions in order to allow clients 
to obtain packets missed in previous carousel cycles. It is clear 
that the number of cycles has a substantial impact on the 
performance of the service, especially if the number of files 
present in the carousel is high. 

  
Fig. 7.  Cycles needed to recover a file in good reception conditions. 

Fig. 7 shows the number of cycles needed to download files 
of different sizes with 5% losses, while Fig. 8 shows the 
number of cycles needed with 50% losses for different 
configurations of AL-FEC: adding no AL-FEC parity, 20% of 
AL-FEC parity and 50% of AL-FEC parity. Both figures 
include the results obtained in the measurements against the 
results obtained with the simulation model. Clearly, the 
addition of AL-FEC parity reduces the number of cycles 
needed to recover the file. Fig. 7 shows that the average 
number of cycles with AL-FEC is approximately 1. 

In Fig. 8, the number of cycles is significantly higher. The 
more parity added the less cycles are needed to download a 
file. Best results are provided by adding 50% of AL-FEC 
parity, corresponding to approximately 2 cycles. As for the 
channel model, the number of cycles provided is very similar 
to the number of cycles in the measurements in all cases. 

 
Fig. 8.  Cycles needed to recover a file in bad reception conditions. 

The last study evaluates the relation k/n (or code rate) with 
0%, 5% and 50% of losses. In this study, a file of 500 kb is 
used. Fig. 9 shows the effective data rate, defined as the 
average bitrate perceived by the CDS application during the 
download of a file. Relating to the theoretical analysis, the 
effective rate is equal to the size of the file divided by the 
download time. This parameter is evaluated for different 
configurations of the LDPC AL-FEC code rate in the three 
scenarios. 

 
Fig. 9.  Effective rate against different configurations of the AL-FEC block 

under three reception conditions. 
With 5% losses, the addition of too many parity packets 

degrades the effective rate. Thus, for a given communication 
channel, there is an optimal AL-FEC code rate that maximizes 
the effective rate. However, this optimal value depends 
strongly on the reception conditions. For this reason, the 
optimum configuration of the AL-FEC module for 5% of 
losses is the addition of a moderate amount of FEC packets, 
with an optimum configuration of k/n over 0.8 (25% of AL-
FEC) in the graph. With 50% losses, the code rate does not 
have such a drastic impact on the effective rate.  

B. Object Multiplexing 
The aim of the following results is to show the benefits of 

using object multiplexing. In this sense, Fig. 10 shows the 
ratio between the overall access time obtained with object 
multiplexing at the optimum long-term bitrates defined in eq. 
(15) and that obtained when the files are transmitted 
sequentially.  

 
Fig. 10.  Normalized overall access time without losses, mean file size = 

10Mb. 

As shown in Fig. 10, there are great benefits in using object 
multiplexing. Results show that the gain is greater as the 
number of files in the carousel increases and also, when the 
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popularity distribution is sharper (greater α). For instance, for 
200 files in the carousel and alpha = 2, the overall access time 
with object multiplexing is 10% the access time without object 
multiplexing. 

Fig. 11 presents the same figure of merit, also against the 
number of files in the carousel, but this time in the presence of 
losses (5%) and for different amounts of AL-FEC added to 
each file. The graph shows that the effect of losses and AL-
FEC is equivalent both for optimal scheduling and for 
sequential scheduling, meaning that there is no noticeable 
dependency between the object multiplexing gain and the 
configuration of the AL-FEC block or the amount of losses in 
the channel. This result has been validated against other 
simulations at different losses and AL-FEC rates. 

 
Fig. 11.  Normalized overall access time with 5% of losses, ZIPF alpha = 2 

and mean file size = 10 Mb. 

 In order to minimize the access time in the presence of 
losses, it is necessary to apply AL-FEC coding at an optimum 
rate. Fig. 12 shows the average access time achieved with 
different AL-FEC code rates with a 5% loss rate. 

 
Fig. 12.  Access time evaluation, with ZIPF alpha = 2, mean file size = 

10Mb and 5% of losses. 

 Moreover, Fig. 13 provides the average access time 
experienced when the packet loss rate increases to 50% and, as 
expected, the results for the different configurations of the 
AL-FEC block do not keep the same order as in the previous 
study because, for every packet loss rate, there is an optimum 
FEC code rate that minimizes the download time of each file. 

 
Fig. 13.  Access time evaluation with ZIPF alpha = 2, mean file size = 10 

Mb and 50% of losses. 

At this point, it is interesting to compare the values that 
optimize the download of a single file (Fig. 9) and the values 
that optimize the download of a carousel (Fig. 12 and Fig. 13). 
For 5% channel losses, the optimum AL-FEC configuration 
for a single file is around 25% (CR = 0.8), while 10% (CR ≈	
 
0.9) and 50% (CR = 0.7) provide similar results. When 
evaluating the overall access time of carousel transmissions, it 
is worth noting that the size of the carousel is directly 
proportional to the amount of AL-FEC parity added. 
Therefore, the addition of AL-FEC parity has a dual effect: it 
lowers the average number of cycles at the expense of 
increasing the average waiting time. Fig. 12 shows that the 
minimum overall access time corresponds to 10% AL-FEC 
parity, although 25% and 50% AL-FEC parity provides 
similar overall access times, whereas the results for AL-FEC 
5% are much worst. As for 50%, Fig. 13 shows that the overall 
access time in carousel downloads decreases gradually with 
the addition of AL-FEC parity, down to the minimum 
provided by 50% AL-FEC parity. In general, when evaluating 
the download time over an entire file carousel, there will be an 
optimum value of AL-FEC code rate that will minimize the 
access time. Moreover, the average access time is much higher 
if the AL-FEC parity is slightly below this optimum value 
than if the AL-FEC parity is higher. So far, the results show 
that object multiplexing and AL-FEC reduce considerably the 
overall access time. However, the overall access time obtained 
is very high to use the background push CDS as a standalone 
on demand service. Next section shows the performance of the 
background push CDS as a complementary service to a 
content on demand service. 

C. Cache Management  
The next results compare the cache hit ratio (CHR) 

achieved by the branch-and-bound algorithm of section IV.C, 
with different definitions of value, each one representing a 
different cache replacement policy. Additionally, the study 
compares the time needed by each policy to stabilize, referred 
to as delta. A cache will be stable once it has discovered all 
files in the carousel and it has downloaded completely those 
files with the best aggregated value, as determined by the 
branch-and-bound algorithm. 
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For this study, the effective rate is set to 50 kbps, while the 
CDS offers 100 files with sizes that follow a lognormal 
distribution of mean file sizes equal to 10 Mb. The average 
packet loss rate is 5%. As in previous studies, the probability 
of files follows a ZIPF distribution with α=1.5 and 2. The 
scheduler applies object multiplexing. The cache size is set to 
4 times the mean file size. Table III shows the average 
percentage of files served from local storage (cache hit ratio, 
CHR) and the cache loading time (delta) of the different 
replacement policies presented:  

TABLE III 
CACHE HIT RATIO FOR DIFFERENT CACHE REPLACEMENT POLICIES 

 
α=1.5 α=2 

CHR Delta CHR Delta 

P 70.8  % 65.8 hours 87.5 % 63.6 hours 

PIX 60.4 % 68.1 hours 80.4 % 64.1 hours 

PIXS 60.0 % 65.0 hours 74.6 % 63.4 hours 

As the table shows, the best results are achieved by the P 
policy, although its results are very similar to those of the 
other two policies. It is worth noting that the implementation 
of the P policy is significantly simpler, because receivers do 
not need to know beforehand the scheduling of files or their 
relative transmission rates. Looking at the results, it is clear 
that the PIX and PIXS policies do not justify their additional 
complexity in terms of cache hit ratio or delta time. Regarding 
the delta value, the P policy will need more than 60 hours to 
have a stable cache with the files that best fit the user needs. 
Any update on the content carousel before the client has a 
stable cache could affect the cache hit ratio. Clearly, the cache 
in the chosen example is too small for a practical application. 
Fig. 14 shows the cache hit ratio for different cache sizes. 
Note that the cache size is normalized by the mean file size. 

 
Fig. 14.  Cache hit ratio against the cache size, relative to the mean file size. 

Results obtained for other values of the mean file size are 
equivalent to those in the figure, meaning that the important 
parameter to take into account is the relationship between the 
cache size and the mean file size. Fig. 14 shows how the CHR 
increases with the size of the cache for the P cache 
replacement policy. In general, the hit ratios are rather high. 
For instance, with a mean file size of 10Mb and a cache size 

of 100Mb (cache size / mean file size = 10 in the x axis of the 
graph), the client handles more than 80% of the requests with 
the files in local storage. In both scenarios, the cache hit ratios 
achieve a maximum value, which does not improve for larger 
cache sizes. With higher losses, the CDS client needs more 
file cycles to download the files. This penalizes the CHR to 
some extent under bad reception conditions. However, the 
client application achieves good levels of cache hits in both 
reception scenarios under consideration. 

At this point, it is important to emphasize that the 
popularity and file size distributions are application 
dependent. Hence, in extension, the results for the optimal 
cache size should be regarded as application dependent. As 
explained, the models used for the file sizes are characteristic 
of short videos encoded for mobile terminals. 

VII. CONCLUSIONS 
We have presented a background content download service 

associated with a broadcast mobile TV service. Results show 
that the service can effectively use residual bandwidth to push 
multimedia content to mobile receivers. The performance of 
background push CDS improves with AL-FEC, object 
multiplexing and caching.  

First, the addition of AL-FEC mechanisms improves the 
performance of the background CDS. AL-FEC encoding 
improves drastically how the service scales with the number of 
files in the carousel in all the cases regarded in this study. 
Therefore, background CDSs should always implement some 
AL-FEC encoding. Moreover, results show that adding extra 
AL-FEC parity, above the optimum value, does not degrade 
the overall access time as much as adding less AL-FEC parity.  

The object multiplexing technique also improves 
considerably the scalability of the overall access time with the 
number of files in the carousel.  

At this point, it is interesting to see the improvement in the 
access time achieved by the combination of AL-FEC and 
object multiplexing. With an average bitrate of 50 kbps, an 
average file size of 10Mb, a carousel of 200 files, and 5% 
losses, the average access time to a file is over 9 days. With 
object multiplexing, the average access time is reduced to 
around 33 hours. Adding AL-FEC at an optimum rate lowers 
the average access time down to 5 hours.   

Still, this value is very high to offer content to users and it is 
necessary to add a prefetching cache to improve the QoE of 
the service. The paper presents an algorithm to manage the 
storage space and evaluates its performance. The results show 
that the most relevant parameter to assess the value of files in 
cache is the future probability of access. Apparently, taking 
into account the size of files or their broadcast frequency does 
not improve the cache hit ratio.  

Finally, results show that such caches can serve a 
considerable amount of VOD requests using little storage 
memory in the client. The cache hit ratio increases rapidly 
with the size of the cache up to a certain value. This value can 
be regarded as the optimum cache size, because larger cache 
sizes do not improve the cache hit ratio significantly. In the 
case under study, cache sizes of approximately 100Mb provide 
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cache hit ratios higher than 65%, even under bad reception 
conditions.  
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