

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/TBC.2013.2289639

http://hdl.handle.net/10251/55400

Institute of Electrical and Electronics Engineers (IEEE)

Fraile Gil, F.; De Fez Lava, I.; Guerri Cebollada, JC. (2014). Evaluation of background push
content download services to mobile devices over DVB networks. IEEE Transactions on
Broadcasting. 60(1):1-15. doi:10.1109/TBC.2013.2289639.

 1

Abstract— This paper proposes a multicast content download

service based on the use of residual network capacity to push
multimedia content to available local storage in personal
multimedia devices. The service under study is based on the
FLUTE protocol. Specifically, FLUTE packets fill the spare
capacity in the IP tunnels reserved for the primary streaming
service (opportunistic insertion). The paper also evaluates the use
of Application Layer – Forward Error Correction (AL-FEC)
parity to overcome transmission errors, object multiplexing to
send the most popular multimedia contents more frequently and
cache management policies that consider user preferences in
order to keep in storage the most useful items. The service has
been evaluated through simulations and measurements
performed with an application prototype based on the DVB-H
standards. The results show that AL-FEC enables the use of
residual capacity for background content download services. In
turn, AL-FEC, as well as object multiplexing, improves the
relation between the number of content items and the overall
access time. Moreover, results show that high percentages of
requests can be served from the local cache of the service,
provided that it is possible to estimate the popularity of content
items and the user preferences.

Index Terms— Background services, AL-FEC, Cache
management, FLUTE, Carousel scheduling

EDICS— 2-SYSS, 8-MSAT, 8-WMMM

I. INTRODUCTION
OBILE television promoted the appearance of a
number of technologies to provide IP multicast /
broadcast access to mobile multimedia devices. This

way, the last years have witnessed the release of standards
such as IMB (Integrated Mobile Broadcast), to enable IP
broadcast support in cellular 3G networks, or DVB-H (Digital
Video Broadcasting - Handheld) and ATSC-H/M (Advanced
Television Systems Committee –Handheld/Mobile) that are
meant to enable the provision of IP services over terrestrial
broadcast networks. The use of dedicated broadcast networks

Manuscript received October 11, 2012.
F. Fraile*, I. de Fez, and J. C. Guerri are with the Institute of

Telecommunications and Multimedia Applications (iTEAM) from Universitat
Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain (phone: 34-
963879588; fax: 34-963879583; e-mail: ffraile@iteam.upv.es,
isdefez@iteam.upv.es, jcguerri@dcom.upv.es). This work is founded in part
by the PAID-05-12 program of the Universitat Politècnica de València.

(and the associated investments) is only motivated when there
is a critical mass of spectators looking at the same program
and at the same time. This only happens for television content
that is sufficiently popular in the service area. For the rest of
the content offering, video delivery over point-to-point
connections seems like a better alternative than broadcast.
Obviously, in this case, the mobile network needs to be
dimensioned to support peak traffic load, which is heavily
dependent on IP video traffic. Without IP broadcast or
multicast support, there are no means to save the limited radio
spectrum resources when several users watch the same
content.

Hence, both alternatives, i.e. the usage of dedicated
broadcast networks (when few content items have many
simultaneous viewers) and the usage of point-to-point
connections (when simultaneous viewers look at different
content items) require investments in network infrastructure
that are only necessary during certain day parts. This is
because, in both alternatives, it is assumed that content needs
to be streamed, i.e. transmitted at the time that users watch it.
However this is not always true, because pre-produced content
is delay-tolerant, in the sense that it can be transmitted at any
time after it is produced and stored in available storage space
in wireless terminals until it is consumed.

This way, content items can be delivered over a push
Content Download Service (CDS) and stored in local caches
until users watch it. Moreover, the CDS can use network
capacity between peak network loads, as a background
service, so that the network is not overloaded with the addition
of a new service.

The reuse of excess network capacity for the delivery of
delay-tolerant multimedia content has been investigated for
cellular networks [1]. In particular, cellular networks are
dimensioned to support the expected peak traffic demand in
the service area. Therefore, there are idle intervals when the
demand is lower and the resulting excess capacity can be used
to deliver delay-tolerant multimedia content through unicast
connections. Exploiting this instantaneous excess of capacity
for the delivery of delay-tolerant data services in mobile
networks can increase both user perceived quality and service
value. On the other hand, the use of prefetching and caching in
broadcast networks has been investigated in the literature [2],
[3], although not as background services. The results show
that caching from broadcast CDSs is an efficient method for

Evaluation of background push content
download services to mobile devices over DVB

networks
Francisco Fraile, Ismael de Fez and Juan Carlos Guerri

M

 2

delivering pre-produced multimedia content to a potentially
massive audience.

This paper proposes the use of residual capacity of
broadcast networks for the provision of background push
CDS, as a way to reduce the traffic of unicast streaming
services over cellular networks and improve the Quality of
Experience (QoE) of mobile television services. The excess of
capacity in broadcast networks can be used to push content to
mobile terminals in any scenario where battery consumption is
not constrained, for instance whenever the terminal is charging
battery or in systems embedded in vehicles. Thus, the services
under study in this paper push popular content to portable
devices through existing broadcast connections, by means of
background services that do not interfere with the primary
network services. Background broadcast services reuse
network investments, while at the same time consume little
(and unused) network resources. Therefore, these services turn
out to be inexpensive to network operators. Additionally, the
use of broadcast capacity to send just popular content and the
time-shifting achieved with background CDSs foster an
appropriate use of broadcast spectrum. Hence, background
broadcast push CDS can improve the efficiency of mobile
television content delivery with very little overhead in terms
of operational expenditures and no need for additional
infrastructure.

This kind of background services can be provisioned over
any wireless network with support for IP broadcast.
Specifically, this paper proposes the provisioning of
background push CDS in DVB networks through
opportunistic insertion, in particular DVB-H networks. DVB
networks carry a number of streaming services that are
multiplexed together. Normally, operators leave some spare
room in the multiplex, i.e. some marginal bandwidth for the
sake of security during the multiplexing process. With
opportunistic insertion, this filling capacity is used by a
background push CDS to broadcast non-live content items, as
an IP datacast service through the DVB network. The protocol
stack of the proposed background CDS uses the FLUTE (File
Delivery over Unidirectional Transport) protocol, adopted by
DVB among other organizations, such as ATSC, 3GPP (Third
Generation Partnership Project) or OMA (Open Mobile
Alliance). FLUTE has been designed to deliver files in
unidirectional environments where the network does not
guarantee the delivery of data and it has been adopted for the
delivery of CDS on several mobile TV standards besides
DVB-H, like MBMS (Multimedia Broadcast / Multicast
Services). FLUTE applies a transmission scheme known as
file carousels, where files are repeatedly delivered in a
continuous cycle. In order to establish the connection, clients
need only to join the broadcast session to start receiving the
packets of the carousel.

Background push CDS could play different roles for the
primary mobile TV services, either linear TV services or
content on demand services. For the latter, the service could
be used to push content offered on demand to local storage,
thus reducing the traffic of the on demand service for the
content provider and the access time for the user. Other use

cases, useful for both linear and on demand services, could be
to detach the transmission of advertisements from the main
transmission service or to send alternative content for
playback under special circumstances, like no proper reception
of the main service.

These use cases show that background push CDS could
provide value for different actors in the value chain: television
viewers benefit from improved Quality of Experience; content
providers make more value of the resources dedicated to
content delivery; and network operators make a better usage of
radio spectrum resources. Moreover, it is clear that current
trends in hardware capabilities, in terms of memory
consumption, processing power and storage capacity make it
feasible to support this kind of services.

However, the use of residual bandwidth involves difficulties
for the provisioning of the service with acceptable
performance. First, it is necessary to verify that the use of
residual broadcast capacity in this scenario is feasible and
provides sufficient bitrate for the CDS. Obviously, there is a
trade-off between the number of files offered by the CDS and
the time needed to access any of the files therein (access time).
Thus, it is necessary to assess this trade-off for relevant
number of files and their respective sizes. Last, it is necessary
to manage appropriately the storage space available in user
terminals in order to maximize the number of content requests
served from local storage (cache hit ratio).

Taking this into consideration, this paper evaluates the
combination of three different mechanisms to improve the
performance of broadcast CDSs over background channels. In
particular, the paper presents Application Layer Forward Error
Correction (AL-FEC) mechanisms that improve the reliability
of the content delivery service; object multiplexing to improve
the relation between number of files and access time; and
cache replacement policies that maximize the cache hit ratio.
The combination of these techniques can optimize the
performance of existing broadcast CDSs, allowing broadcast
network operators to use the residual capacity in their
networks to push mobile video programs to local storage in
mobile terminals. The novelty of this research work is that it
provides a framework to evaluate the performance of
broadcast push CDSs combining AL-FEC, object multiplexing
and caching. This framework is used to evaluate a service for
mobile devices, including measurements over an application
prototype in laboratory conditions. As mentioned, the
application prototype is based on the DVB-H standard.
However, it is worth noting that the proposal is applicable in
other mobile TV standard specifications, for instance MBMS
or ATSC-H/M.

The paper is structured as follows: Section II presents an
overview of the relevant work in the three related areas;
Section III explains the architecture of the service; Section IV
provides the analytical models used to evaluate the
background service; Section V presents the methodology used
to evaluate the service; Section VI shows the measurement
results and their corresponding analysis; Lastly, Section VII
includes some final conclusions.

 3

II. RELATED WORK
This section presents the three main technologies under

study: AL-FEC, object multiplexing and caching. Each
subsection includes a description of the technology, references
to related works and the contribution of this study to the state
of the art.

A. AL-FEC
There are three complementary mechanisms to provide

reliability in Content Download Services based on the FLUTE
protocol [4]: file retransmissions, file repair sessions and AL-
FEC. In unidirectional networks, content download services
use carousel retransmissions in combination with AL-FEC.

The objective of AL-FEC is to reduce the number of cycles
needed to download a file in the presence of errors, by
applying error-correcting encoding to the file. The AL-FEC
encoding algorithms work with pieces of the files known as
source blocks, operating over smaller fragments known as
encoding symbols. There are two kinds of encoding symbols:
source and parity symbols. In FLUTE transmissions, first, the
file is divided into source blocks, made of k source symbols.
Later, the error-correcting code generates n - k parity symbols,
out of the k symbols in the source block. Thus, n is the number
of symbols after FEC encoding, as depicted in Fig. 1. The
relationship between n and k is expressed either as the code
rate k/n (CR) or its inverse, the FEC ratio (FR), n/k.

Fig. 1. FLUTE packet construction.

This way, by applying AL-FEC, the size of the file will
increase by a factor equal to the FEC ratio. However, receivers
will only need to download an amount of symbols slightly
higher than the number of symbols that compose the file
without AL-FEC encoding. The ratio between the number of
symbols needed to successfully decode a file and the original
number of symbols of the file is known as the inefficiency
ratio (inef_ratio) and it depends of the AL-FEC code used. In
this sense, an ideal AL-FEC code would provide an inef_ratio
equal to one, regardless of the packet loss rate of the
communication channel. [5] provides a comparison of the
encoding efficiency of relevant AL-FEC codes for content
download services. Besides the inefficiency ratio, there are
other application aspects, like the content size or the memory
requirements, which should be taken into consideration when
deciding which AL-FEC code is better suited for a given
application. There are different codes supported by FLUTE,
such as Compact No-Code, Reed-Solomon, Raptor, RaptorQ
or LDPC (Staircase and Triangle) [6].

In file carousels, the amount of AL-FEC parity added to a
file and the channel losses affect the time needed for a client
to recover a file completely, i.e. its download time. As
explained in [7], there is an optimal code rate that minimizes
the download time for clients of a file carousel. In this context,
it is also important to bear in mind that different clients on a

service area will experience different losses and consequently,
the amount of AL-FEC parity needed should be optimized so
as to minimize the average download time over all clients in a
service area, instead of being optimized for the losses
experienced by a client alone. [8] and [9] regard this problem
from a network planning perspective, yielding to FLUTE file
recovery configurations that minimize infrastructure costs or
energy consumption.

There are other application parameters that affect the
download time in file carousels, such as the distribution of file
sizes, the relative popularity of the files added to the carousel
or aspects related to file scheduling and cache management.
One of the contributions of this study is to show how AL-FEC
improves the download time of CDS taking into consideration
these application parameters.

B. Object Multiplexing
Several research works focus on the optimization of

broadcast data carousels in communication channels without
errors [2], [3], [10]. These studies assume that clients do not
issue the same number of requests to each item in the carousel,
since some items are more popular than others. The results
show how the average download time in a service area can be
reduced by weighting the bitrate used to deliver each file, so
that more popular items are transmitted more frequently. They
propose different scheduling policies to accomplish this. [2]
allocates the available rate in broadcast disks: sub-carousels
with independent queues in which files are placed according to
their popularity. Moreover, [10] considers the economic cost
for the operator related to each data item. The results show
that the proposed scheduling policy -based on the broadcast
disk proposal- minimizes the overall cost of the service for the
operator.

On the other hand, [3] states that it is not necessary to send
several files concurrently, since the download time depends on
the long-term average transmission rate assigned to each file.
Thus, files are sent at the maximum available download rate
one after the other, but more popular files appear more often
in the carousels. Specifically, [3] derives an optimum value for
the long-term average rate assigned to each file, which
depends on its size and its popularity. Once the optimum long-
term average rate is obtained, the carousel can be shaped by
adapting fair queuing algorithms to implement scheduling
policies for file carousels. In this paper, the optimum long-
term average rates are obtained taking into account the effect
of AL-FEC and the losses in the channel.

C. Cache Management
While object multiplexing aims at reducing the average

download time by sending more often the most popular
content items, caching aims at reducing the access time by
storing files locally. In its most basic form, the problem of
finding the optimum set of files that better utilize the available
cache space reduces to the 0-1 knapsack optimization problem
[11]: there is a set of items with certain weight and value and
there is a need to determine which combination of items
maximize the value, given a constraint on the total weight for

 4

the selection. For cache management, the size of files can be
understood as the weight of items and the total size of the
cache as the constraint on the total weight of the knapsack
problem. However, the concept of value is open for
interpretation and there are many different aspects that can be
taken into account for its definition, like the size of the file or
the time it was used for the last time. [12] presents a good
compilation of cache replacement policies in the context of
web caches.

The concept of value needs to be redefined for broadcast
caches, quite different from web caches. [2] presents a cache
replacement policy, named PIX, for caches of non-uniform
accessed broadcast data in which the value of storing a file in
memory is directly proportional to the future access
probability of a file and inversely proportional to its relative
transmission frequency (i.e. the inverse of its carousel cycle
period). [13] introduces the size of the file in the calculation of
its value in cache. In this paper, this policy is referred to as
PIXS (Probability inverse frequency and size).

It is worth noting that the results in the aforementioned
works are oriented to on demand applications and the content
is cached after a request for a file. In this study, the cache
works as a prefetching cache, downloading files from the
broadcast carousel before the user issues a request for it.

III. SERVICE ARCHITECTURE
 Fig. 2 shows the architecture of the multicast push CDS

proposed in this paper. A broadcast Content Download Service
will push contents over a background transmission channel,
made of the residual transmission capacity in the reservations
of a television service (the primary service). The server
implements a Scheduler that decides which file to transmit at
each time, to optimize the service performance. Also, the
service inserts packets from the Content Download Service
whenever there is capacity available (Opportunistic Insertion
in the diagram).

Fig. 2. Background multicast push CDS architecture.

The client will need to implement the corresponding
broadcast Content Download Client. The figure presents the
protocol stack of the one implemented and under study in this
paper. The background service will push content to storage
memory, managed by some Storage Management Policy, to

ensure that the client uses only the storage capacity reserved
for the background service. In this proposal, the Recommender
uses feedback from user interaction and the metadata in the
Content Guide to build a User Profile that models user
preferences. The Recommender then provides the Storage
Management with an estimation of the usefulness of each
content item. In turn, the Storage Management uses this
information to decide which contents to keep in storage.

As mentioned in the introduction, DVB broadcast networks
transport streaming services over a constant bitrate MPEG
Transport Stream (MPEG-TS). This study proposes
opportunistic insertion of content download services based on
the DVB-H IP protocol stack [14]. IP datagrams need some
encapsulation protocol to be transmitted on top of the MPEG-
TS. [15] defines a mechanism, time slicing, aimed at reducing
the battery consumption of MPE decapsulation by sending the
datagrams in bursts and shutting down the receiver at idle
times.

Due to time slicing, the multiplex consists of bursts, which
are made up of a considerable amount of video and audio
packets belonging to the same mobile TV service. These
bursts do not have a constant size. On the other hand, CDS
services do not have real time requirements like the zapping
time. Therefore, it is possible to provide a background content
download service together with every video service so that the
resulting burst size and burst period are kept constant, as
shown in Fig. 3. Clearly, this simplifies the multiplexing
process, making it easier to use the whole capacity of the
multiplex.

Fig. 3. DVB-H bursts with time slicing.

Some of the building blocks have already been introduced
in the previous section. Regarding AL-FEC, the service uses
LDPC coding, since they provide a good trade-off between
performance (download time) and complexity [16]. As for the
Scheduler, the carousel uses the whole available capacity to
send the files as units, without interleaving packets belonging
to different files. The operator needs to configure the weight
of each file in the carousel, so that more popular files are
transmitted at higher long-term bitrates. The calculation of the
weights and the algorithm for the Scheduler are presented in
the next section. Similarly, at the receiver, the cache
management downloads files from the carousel, so as to keep
in local storage the files that better fit the user needs. The size
of the cache is limited and therefore, the cache management
applies a cache replacement policy to maximize the value of
the files kept in memory.

In order to determine the value of each file in cache, the
Recommender uses the descriptions of the files in the Content
Guide to apply content-based recommendation techniques
[17]. As indicated in the figure, a content-based recommender

 5

will determine the usefulness of a file by comparing its
description with the user profile.

IV. THEORETICAL ANALYSIS
This section provides an analytical model of the techniques

under study in this paper: AL-FEC, object multiplexing and
cache management. The main objective of these techniques is
to improve the performance of the CDS proposed in this
paper. Following the structure presented in Fig. 2, the section
is organized describing the models at the server, the channel
and the client needed to characterize these techniques. For the
sake of clarity, Table I summarizes the main notation used:

TABLE I
NOTATION

bj Long-term bitrate of file j

cj Average number of cycles to download file j
inef_ratio Inefficiency ratio of AL-FEC encoding

k Number of transmitted packets of a file
l Number of missing packets on a cycle

m Total number of missing packets at the beginning
of a cycle

n Number of transmitted packets of a file after AL-
FEC encoding

N Number of files in the carousel
pj Access probability of file j
!pj Estimated probability of access of file j

r Number of correctly received packets at the
beginning of a cycle

sA Local storage size
sj Size of file j
sj
FEC

 File size of file j after AL-FEC encoding

tA
j Access time of file j

TC
j

 Long-term carousel cycle time of file j

TC,FEC
j Long-term carousel cycle time of file j after AL-

FEC encoding
tC
j (k) kth sub-carousel cycle time of file j

tD
j Download time of file j

tW
j Waiting time of file j

vj Value of file j in cache
x(i) Expected number of received packets on cycle i

A. Server Model

1) Optimal scheduling

The first step in the analysis is to model the broadcast
carousel transmission of the CDS, including the effect of AL-
FEC, object multiplexing and opportunistic insertion. Later,
the model is used to estimate the optimal long-term bitrates for
the files in the carousel. Thus, the service will broadcast N
files of sizes s1,s2,…,sN that have a certain access probability in
the service area. The access probability is represented by
p1,p2,…,pN where pj is defined as the number of accesses to a
file j divided by the overall number of accesses to all files.
Client applications will need a given amount of time to fetch a

certain file of the carousel and store it. In this study, this time
is referred to as the access time. Connecting with the
architecture (Fig. 2), the access time is the time between a
request from the cache management to download a certain file
and the instant when that file is completely downloaded to
cache.

The objective of optimal scheduling is to minimize the
overall access time, that is, the average of the access time of
all file downloads in the service area. The access time to file j,

, is a random variable with expected value . Thus,
taking into account the access probability to files in the service
area, the overall access time is calculated as:

 E[tA]= E[tA
j]·pj

j=1

N

! (1)

Therefore, the objective is to find a minimum of expression
(1), accounting for the effect of AL-FEC, object multiplexing
and opportunistic insertion. These techniques can affect the
access time to files, but not the access probabilities. With this
in mind will depend on the waiting time, , and the

download time, . The waiting time is the time between the
instant when the client application joins the broadcast carousel
and the time when it starts receiving packets of that file. On
the other hand, the download time is the time needed to
download the remainder of the file, after the first packet is
received. Please note that tD

j depends on the error rate:

 tA
j = tW

j + tD
j (2)

The next step is to provide an expression for tW
j and tD

j in
carousel transmissions. For the sake of clarity, Fig. 4 shows an
example of a transmission of three files, which are sent with
different frequencies (for instance, F1 is sent more frequently
than the others). The transmission frequency of each file j
determines the sub-carousel cycle time of that file, tC

j (k) , that
is, the maximum time containing the kth transmission of object
j.

Fig. 4. Time model of the access time.

Regarding , let us assume a client application joins the
channel at an instant of time t, within sub-carousel cycle k.
Assuming that the client application can join the carousel at
any time with the same probability within tC

j (k) , it is clear that
the expected value for tW

j (k, t) is E[tW
j (k, t)]= tC

j (k) / 2 .
Now, as noted in the picture, tC

j (k) is not necessarily the
same for every index k. In the following equation, it is
assumed that the scheduler generates a periodic carousel, with
a certain carousel period, TC. As Fig. 4 shows, each carousel

tA
j E[t jA]

tA
j tW

j

tD
j

tW
j

 6

cycle contains the same sequence of files (F1-F2-F1-F3-F1-F2
in the example). Inside the carousel period any element j
appears an integer number of times, Kj. If !k = tC (k) /TC is
the probability that the client joins the channel at sub-cycle k,
the expectation value of tW

j is:

 E[tW
j]= !k

tC
j (k)
2

=
k=1

K j

! 1
2

!ktC
j (k) =

k=1

K j

! TC
j

2
 (3)

In the equation, TC
j is defined as the long-term carousel

cycle time of file j. For the calculation of the download time,
, if there are no losses, the download time is a deterministic

variable equal to sj/b, where sj is the size of the file j and b is
the bitrate of the datacast service. However, if there are losses
in the reception of the datacast carousel, the download time
becomes a statistical variable dependent of the number of
cycles needed to complete the download. Specifically, to
download a file j, clients need an entire number of cycles (cj-
1) plus a fraction lj of the transmission of the file. For instance,
in Fig. 4, in order to download file F2, the client needs 2 entire
sub-carousel cycles (c2-1=2) plus a fraction of the last sub-
carousel cycle (l2). The average number of cycles needed to
download file j is defined as and depends on the

size of the file and the losses on the channel. If the receiver
starts the download at cycle , after a time equal to

, the receiver will begin the downloading of the last

portion of the file. In order to fetch this last portion, the
receiver will wait a time equal to , where lj is a fraction
of the transmission of file j. Note that, with channel losses, lj is
not necessarily equal to the portion of the file missing. In the
example, in the last cycle after c2, the receiver recovers 20%
of F2, but since there are losses, it needs to wait a longer
fraction of the time of the file in the carousel. Thus, the
average download time can be divided in two terms, the first
of them dependent on the carousel cycle:

 E[tD
j (k)]= tC

j (i)
i=k

k+cj!1

" +E
sj ·l j
b

#

$
%

&

'
((4)

Now, the long-term download time of file j is defined as:

 E[tD
j]= !k !E

k=1

K j

" [tD
j (k)]= !k ! tC

j (i)
i=k

k+cj#1

" +E
sj ·l j
b

$

%
&

'

(
)

*

+
,,

-

.
//

k=1

K j

" (5)

note that both summations add consecutive cycles of the same
file j. For instance, coming back to the example above where
c2-1=2 and K2=2, with k=1, the inner summation results in
tC
2 (1)+ tC

2 (2)+ tC
2 (3) . Similarly, with k=2 the inner summation

yields tC
2 (2)+ tC

2 (3)+ tC
2 (4) . Since the carousel is periodic, it

turns that tC
j (1) = tC

j (3) and tC
j (2) = tC

j (4) . Hence, it can be
noted that when the outer summation is applied, every tC

j (k) is
repeated exactly cj times. Therefore, the terms of the
summations can be re-arranged to obtain the relationship
between and TC

j :

E[tD

j]= cj !k !
k=1

K j

" tC
j (k)+E

sj ·l j
b

#

$
%

&

'
(= cjTC

j +E
sj ·l j
b

#

$
%

&

'
((6)

Combining the expected values for the waiting time and the
download time, the expected value for the access time of a file
j becomes:

 E[tA
j]= E[tW

j]+E[tD
j]= TC

j · cj +
1
2

!

"
#

$

%
&+E

sj ·l j
b

'

(
)

*

+
, (7)

In the last expression, the average number of cycles and the
portion of the file downloaded in the last cycle are mainly
related to the losses in the communication channel and in turn
to AL-FEC. On the other hand, the sub-carousel cycles of each
file j are determined by the scheduler and related to object
multiplexing. First, let us introduce the effect of AL-FEC. AL-
FEC encoding reduces the average number of cycles at the
expense of increasing the file sizes by the FEC ratio (FR>1).
Thus, AL-FEC will increase the size of all files to

. If AL-FEC is applied, long-term carousel cycle

of each file is noted as TC,FEC
j .

Now, object multiplexing will send some files more often,
in order to adjust the long-term carousel cycle of each file. For
instance, in the figure, F1 appears in the carousel more often
than F2 or F3. The optimum configuration for the long-term
carousel cycles provides a minimum of the overall access
time, as defined in (1). Therefore, in order to determine the
optimization problem, it is necessary to substitute

in (1)

for the expression derived in (7):

 E[tA]= TC,FEC
j · cj +

1
2

!

"
#

$

%
&+E

sj
FEC ·l j
b

'

(
)

*

+
,

!

"
##

$

%
&&·pj

j=1

N

- (8)

With object multiplexing, files that are sent more often have
shorter cycles and, in turn, shorter access times. This way,
since files have different transmission frequencies, files are
not transmitted at the same rate in the long run. Therefore,
files will have different long-term bitrates and files with
shorter average download times can be seen as files with
higher long-term bitrates. The long-term bitrate assigned to
file j (bj) is defined as:

 bj =
sj
FEC

TC,FEC
j (9)

Note that bj accounts for the effect of the scheduler but also
for the effect of opportunistic insertion, since the long-term
carousel cycle depends on the available bitrate b.
Nevertheless, it is worth noting that the scheduler does not
need to be aware of the available bitrate, since the set of long-
term bitrates are constraint by:

bj =

j=1

N

! b (10)

The scheduler will only need to know the ratios bj/b that
define the optimum share of the available bitrate among the
different files in the carousel. Taking this into account, (8) can
be rewritten as:

tD
j

E cj!" #$= cj

tC
j (k)

tC
j (l)

l=k

k+cj!1

"

sjl j / b

E tD
j!" #$

cj

sj
FEC = sj !FR

E tA
j!" #$

 7

 E[tA]=
sj
FEC

bj
cj +

1
2

!

"
#

$

%
&·pj

j=1

N

' + E
sj
FEC ·l j
b

(

)
*

+

,
-·pj

j=1

N

' (11)

Now, optimizing the carousel, i.e. finding the optimal
sequence of files that minimizes the access time, is equivalent
to finding the set of relative bitrates that minimizes the first
term in (11). The only relationship between the different long-
term bitrates is the boundary condition in equation (10),
therefore they are independent variables, but subject to that
condition. Thus, the following auxiliary function is used to
solve the optimization problem:

f(b1,...,bN) =

sj
FEC cj +1/ 2()·pj

bjj=1

N

! +! b" bj
j=1

N

!
#

$
%%

&

'
(((12)

In order to find the minimum of (12), its derivate is equaled
to zero:

! f(bj)
!bj

= !
sj
FEC cj +1/ 2()·pj

bj
2 !" = 0 (13)

Providing the set of optimal bitrates:

bj =
b sj

FEC cj +1/ 2()·pj
si
FEC ci +1/ 2()·pi

i=1

N

!
 (14)

2) Object Multiplex algorithm

The expression obtained in the previous section provides an
optimum share of the available bandwidth between the
different files. As explained, the scheduler will need to create
a carousel that provides such long-term average bitrates, by
multiplexing the different objects in the time domain. The
problem can be regarded as a form of service discipline in
which objects must be scheduled for transmission in a shared
medium of limited capacity. This problem has been
thoroughly studied in literature related to data packet
scheduling. In fact, the algorithms originally proposed to deal
with packet scheduling, such as WFQ (Weighted Fair
Queuing) or VC (Virtual Clock), can be adapted to work with
file scheduling. This is the case of the Modified Virtual Clock
(MVC) algorithm proposed in [3], hereby adapted to account
for the channel losses.

The MVC algorithm is divided into two phases. In the
initialization phase the algorithm assigns to each file a delay,

which is calculated as bj
j=1

N

!
"

#
$$

%

&
'' / bi and sorts the files according

this value. In the multiplexing phase, the algorithm tries to
adjust the cycle period of each data element to the delay value,
placing data elements in a multiplexing queue ordered by
increasing delay values.

The algorithm tries to adjust the long-term bitrates of files
to the optimal values calculated in the previous section. The
service operator needs an estimate of the access probabilities
and of the channel losses. These parameters can be estimated
from operational data of the primary services and it is worth
noting that all these metrics are familiar to service providers
and network operators. Specifically, the access probability can
be estimated from audience measurements or access statistics

on the primary services. On the other hand, the channel losses
are estimated in the wireless network planning phase and are
used to configure the optimal FEC rate and compute the
average number of cycles. The amount of losses depends on
the channel, as next subsection explains.

Phase 1: Initialization
1: for i=1 to N

2: object(i).delay= bj
j=1

N

!
"

#
$$

%

&
'' / bi

3: object(i).tag = object(i).delay
4: object(i).count = 0
5: object(i).enabled = TRUE
6: QueueObjectsByOrderIncreasingTag()
7: end

Phase 2: Multiplexing
8: while (not_exit)
9: i = FindObjectWithLeastTagInActiveQueue()
10: SendObject(i)
11: object(i).tag = object(i).tag + object(i).delay
12: object(i).enabled = FALSE
13: for j=1 to N
14: object(j).count = object(j).count + 1
15: if (object(j).count >= object(j).delay)
16: object(j).count = object(j).count-object(j).delay
17: object(j).enabled = TRUE
18: end
19: end
20: end

B. Channel Model
For the system hereby proposed, the transmission channel is

simulated using the two-state Markov model [18], also known
as Gilbert model. This model is widely used in literature ([19],
[20]), since it simulates well the error bursts typical in wireless
networks. This model is based on two states: on/off. Each state
indicates whether the last packet has been received or not.
Depending on the state, there are different probabilities of
losing the upcoming packet. In general, the probability of
losing a packet is higher if the previous packet was lost.

As mentioned, if there are losses it is very likely that clients
need several cycles in order to download the file. [21]
performs a complete analysis of data carousels in channels
with packet losses. In order to calculate the number of cycles
needed to download a file, first it is necessary to know how
many new packets are received per cycle. Formula (15)
models the probability of receiving exactly x new packets in a
loop using a hyper-geometric probability distribution. In the
equation, k is the number of transmitted packets (source
symbols) of the file, l is the number of lost packets in the loop
and m is the total number of missing packets at the beginning
of the loop.

 P(x,m,k, l) =

m
x

!

"
#

$

%
&

k 'm
(k ' l)' x

!

"
##

$

%
&&

k
k ' l

!

"
#

$

%
&

 (15)

The numerator expresses the possibilities of receiving

 8

exactly x new packets of the m missing packets out of the k - l
packets received in a carousel cycle. Similarly, the
denominator expresses the possible combinations of k - l
packets out of the transmitted k packets. Applying this hyper-
geometric probability distribution, the expected number of
packets received at loop i is:

 x(i) = !P(!,m,k, l)
!=0

m

! (16)

Finally, the number of cycles needed to download a file is
calculated using an iterative process, according to:

 c =min(i) | x(i) ! k (17)
If AL-FEC is used, the probability of receiving x new

packets in a new loop can be modeled in a similar way,
although there are some changes in the equations, due to the
benefits of error protection. Thus, formula (18), describing the
probability of receiving x new packets at cycle i with AL-FEC
is slightly different to formula (15). Here, r is the number of
correctly received symbols at the beginning of the loop, n is
the total number of encoding symbols (k source symbols plus
n - k parity symbols) of the file and l is again the number of
lost packets in the loop:

 P(x,n, r, l) =

n! r
x

"

#
$

%

&
'

r
(n! l)! x

"

#
$$

%

&
''

n
n! l

"

#
$

%

&
'

 (18)

In this case, the numerator expresses the possibilities of
receiving x new packets of the n - r packets that have not been
received correctly in previous cycles, out of the n - l packets
that are received in the current cycle. The denominator
expresses the total number of possible combinations of n - l
packets in the n transmitted packets. Then, the expectation
value is defined as:

x(i) = !P(!,n, r, l)
!=0

n!r

" (19)

Finally, recalling that the AL-FEC decoder needs to receive
at least the number of source symbols k times the inefficiency
ratio inef_ratio, the number of cycles needed to download a
file when AL-FEC is applied is:

 c =min(i) | x(i) ! k " inef _ ratio (20)
Therefore, with these formulas it is possible to calculate the

number of cycles needed to download a file, depending on
whether AL-FEC is used or not: the expected number of new
packets received per loop is calculated iteratively until there
are enough packets to recover the file.

In the calculation, the number of packets lost in every loop,
l, is obtained from a two state Markov model. The Markov
model determines how many of the transmitted packets (k
when no AL-FEC is applied and n when AL-FEC is applied)
are correctly received. The parameters of the Markov model
are adjusted to match the statistical properties of error traces
measured in the cases under study.

C. Client Model
Up to this point, the analysis has covered the models for the

server and the channel. This section will describe the models
used at the client side. Back to the architecture in Fig. 2, the
client implements the CDS client, the cache and the storage
management. Moreover, the storage management uses
information from the recommender to decide which files to
keep in cache. Initially, the cache is empty. The CDS client
will fetch a file from the carousel and store it in cache as
requested by the cache management. It is worth noting that,
since the service under study is a background service, the user
does not implicitly requests the CDS client to download a file.
Instead, it is the recommender that initiates the download
process.

As explained in the introduction, recommenders calculate
the utility (or usefulness) of a content item for a particular user
through a given utility function [17]. The design of the
recommender and the details of such utility functions are out
of the scope of this thesis. For the purpose of this study, it is
enough to acknowledge that a recommender will determine
how useful each of the content items are for the user.
However, for the sake of clarity, let us explain briefly how a
content filtering recommender [17] would work inside the
client application.

Thus, the recommender analyses the content descriptions to
determine the utility of file j, !pj . Later, the cache management
will calculate the value of file j, vj, as a function of !pj . The
cache has a storage capacity equal to sA. As this storage
capacity is, in general, smaller than the sum of the size of all
files in the carousel, the storage management must decide the
set of files that maximize the overall value of the files in
cache. In this study, the cache management only keeps entire
files. Therefore, the cache management needs to find the
decision vector Y={y1,y2,…,yN} that maximizes the value of
files in cache, where yj=1 if the storage management decides
that file j should be kept in memory, or 0 otherwise. This
problem can be expressed as:

 Find Y={y1,y2,…,yN}
 ,

 maximize yivi
i=1

N

! ,
yisi

i=1

N

! " sA
 (21)

Clearly, this is an instance of the 0-1 knapsack problem,
thoroughly studied in the literature [11]. The problem is NP-
complete, but there are many algorithms that solve it in
polynomial time, each one optimized for a particular kind of
instance of the problem.

The algorithm used in our proposal can model the decisions
made by algorithms for cache management policies based on
the branch-and-bound algorithms, which is the most basic
approach to solve the 0-1 knapsack problem. The cache
management algorithm decides which files should be stored in
memory every time tk when the recommender provides a new
estimation of the utility of a file. Note that the recommender
may have not estimated the value of all files in the carousel at
tk. Let Ik be the subset of files of the carousel with a value

yi !{0,1} /

 9

estimation up to the beginning of tk. I0 is initially empty. The
algorithm will find the decision vector Y={y1,y2,..,yN} by
ordering the files in descending value, conditioned by their
sizes:

1. Sort Ik such that

2. Find im =min(i : sj ! sAj=1

i
") 	
 (22)

3. yj = 1; j < im and yj = 0; j ≥ im

The branch-and-bound algorithm presented above will
model how the storage management policy will handle the
storage space, according to an estimation of the utility of a file
provided by the recommender. At every time tk, the cache
management will calculate the decision vector Y. If yj changes
from 0 to 1, the storage management will issue a download
request for file j to the CDS client. Contrarily, if yj changes
from 1 to 0, it will remove the data of file j stored in the cache.

Regarding the definition of value, as explained in the
related work section, there are different definitions for the
value of files in broadcast caches. Table II provides the
definitions under study in this paper:

TABLE II
DEFINITION OF VALUE FOR DIFFERENT CACHE REPLACEMENT POLICIES

Algorithm Value of object j in cache

P vj = !pj

PIX vj = !pj ·tC
j

PIXS vj = !pj ·tC
j / sj

Each cache replacement policy will estimate vj using

different parameters as a function of the utility. Note that, in
this study the utility is seen as an estimation of the future
probability of access to file j, as defined in the broadcast cache
literature. The PIX and PIXS policies also account for tC

j , the
carousel cycle time of file j. Note that, in order to use tC

j in
the calculation of the value, the recommender needs to know
the scheduling of the files beforehand. Finally, the PIXS
policy also accounts for si, which is the size of file i.

V. EVALUATION METHODOLOGY
The main purpose of this study is to validate the

performance of background push CDS over terrestrial DVB
networks. The case under study is a background push CDS
associated to a DVB-H mobile service, although it is worth
noting that the background CDS service can be provisioned
over any hybrid unicast / multicast TV platform [23].

The background push CDS implementation has been tested
in laboratory conditions. Specifically, the performance of the
background CDS channel has been measured experimentally,
as described in section V.B. The objective of the
measurements has been to characterize the long-term bitrate
and the average number of cycles with opportunistic insertion

in this scenario (E[b] and cj , respectively). Additionally, the
measurement results show configurations of the AL-FEC layer
of the background CDS service that minimize the download
time of a single file.

Later, the overall average access time is evaluated for
different probability distributions of the popularity and the file
sizes. The results are generated through simulations according
to the analytical model and applying the empirical values
obtained from the measurements. The overall access time is
regarded as the most important quality metric for the
background CDS as a standalone service. Even though the
operational costs of the service for the operator are really low,
the service will only be viable if it can provide sufficiently
large catalogues of content at reasonable rates.

Finally, the study includes a performance analysis of
different storage management strategies for broadcast caches,
using the channel model described in Section III and the
results from the measurements. The parameters selected to
evaluate the performance of the storage management policies
are two. First, the cache hit ratio, which is the ratio between
the requests served from cache to the total number of requests
generated. The second parameter taken into consideration
represents the time needed by a cache management policy to
complete the download of the files selected to fill the available
storage capacity, refer to as delta time. These two parameters
are relevant when the background service is associated to a
video on demand (VOD) service, as a utility to lower the
bandwidth consumed by the primary service. After comparing
the cache management policies discussed in the previous
section, the results show the relationship between cache size
and cache hit ratio in different reception scenarios.

A. Parameters for the evaluation
The evaluation of the access time needs a model for the

access probability distribution and the file size distribution.
The access probability distribution regarded is the ZIPF
distribution [24]. This is a quite common approach to model
the relative popularity of multimedia items. The ZIPF
distribution is defined by the parameter α, which indicates
how fast the relative popularity of files decreases. In the
results below, the range of values for α (0.6 – 2) is derived
from previous related studies ([24], [25], [26]). The lower
values, α (0.6-0.85) are taken from previous studies on the
popularity of web files and video sharing sites, while the
higher values are taken from [26], which investigates the
suitability of multicasting against unicasting depending on the
content popularity. The main conclusion is that the benefits of
multicasting are more noticeable when α is higher than 1.5.
For this reason, we have analyzed this case more thoroughly in
the results.

Similarly, the sizes of files used in the simulations follow a
lognormal distribution, as suggested in [27]. The parameters
of the lognormal distribution (µ, σ) can be adjusted to provide
certain mean and variance values. In this study, the mean file
size and the variance of the lognormal distribution are adjusted
to match the statistics of the file size in a popular VOD service
[28]. The files sent through the background CDS represent

v j
s j
!
v j+1
s j+1

 10

videos and therefore the mean file size is related to their mean
duration. The relationship between file size and video length is
given by the encoding rate. The studies assume video formats
and encoding rates typical of portable devices. In particular,
the video encoding rate is set to 384 kbps, which is the
maximum encoding rate of a video with resolution 320x240
and 20 frames per second with H.264 (basic profile, level 1.2).
The audio encoding rate is 128 kbps, providing a bitrate of
640 kbps for the video. With this, a file size of 10Mb
corresponds to approximately 2 minutes of video.

In summary, the simulations do not use models for the
popularity and the file size specific of any particular
application. For the popularity, we use models considered
relevant for broadcasting applications. Similarly, for the file
size we use a lognormal model based on the statistics of a
video sharing site, corresponding to short videos (2 minutes on
average) suitable for mobile video applications.

Regarding AL-FEC, the simulations use different AL-FEC
code rates. The model simulates an AL-FEC with an
efficiency ratio of 1.07. Note that the measurements have been
carried out using an implementation of the LDPC Staircase
codes developed by the authors. According to [22] and [30],
the inefficiency ratio of LDPC Staircase is approximately 1.07
for sufficiently large files and encoding rates.

In the client, the knapsack algorithm decides which files to
store in cache. In the simulations, the description of the file,
needed to compute its associated value, is transmitted at the
beginning of each file. This way, the decision vector is
modified every time the client finds a new file in the carousel.
The requests generated by VOD clients are modeled as a
Poisson distributed event, completely independent of the
status of the carousel or the cache. The expected value of
requests per unit of time is defined as λ=50. Furthermore, the
expected value of requests per unit of time for each file is λi =
λ·pi, where pi is the probability of access for file i, according to
the ZIPF probability distribution.

It is worth noting that there could be deviations from the
estimated values used by the MVC algorithm and the actual
popularity in the service area, i.e. implementation losses
related to the scheduler and the recommender. These
implementation losses are not regarded in this study. With this
in mind, the results in this paper should be regarded as upper
bounds of the access times and cache hit ratios that can be
accomplished with background push CDS.

B. Measurement setup
Fig. 5 shows the diagram of the measurement setup. The

server implements a video streaming server, to generate the
traffic of the primary video service and a FLUTE server that
generates the traffic for the background CDS service. All
service layers except for the physical layer are implemented in
software, providing an MPEG Transport Stream to an external
baseband DVB-H modulator. The radiofrequency (RF)
waveform is generated from the baseband DVB-H signal with
an Arbitrary Waveform Generator (AWG). To perform
measurements for error free reception (0% losses), the receiver
is just connected to the transmitter. In order to simulate

mobile reception with losses, the AWG implements a
baseband channel simulator. The channel simulator applies a
TU6 channel model [29] with a Doppler speed of 50 km/h to
the baseband signal, in order to simulate urban mobile
reception. The CNR level of the received signal is set to two
different values, to emulate two reception scenarios: good
reception, defined as less than 5% of losses [31], and bad
reception (50% losses). Finally, the receiver demodulates the
DVB-H signal, extracts the CDS service and generates the
measurement results.

The automation of the measurement procedure is achieved
by allowing the client to reconfigure the parameters of the
server. This way, the client can evaluate a configuration a
number of times and then update the configuration of the
server, thus automating the generation of results. The client
software controls the server through a control channel that is
not part of the service architecture, while the parameters for
the measurements (number of files, AL-FEC configuration,
number of iterations) are written down in test scripts. These
scripts contain configuration parameters for the carousel,
telling the server how many files should be included in the
transmission and their parameters (size or AL-FEC encoding).

Fig. 5. Block diagram of the configuration of the measurements

Fig. 6 shows an example of a network capture of the
received IP packets for both the primary streaming service
(RTP) and the associated background service (FLUTE). First,
the picture shows that the packets from both broadcast
services arrive in bursts. The bursts have a fixed size and the
CDS packets are used to fill in the spare burst capacity unused
by the streaming service, as showed in Fig. 3. Therefore, on
every measurement point, the number of FLUTE packets
received is significantly smaller than the number of RTP
packets.

The long-term bitrate for the CDS service in this scenario
(E[b]) is 50kbps. Next sections present the results for AL-
FEC, optimal scheduling and cache management.

Fig. 6. Traffic generated by the primary streaming service and the

associated background CDS service.

 11

VI. RESULTS AND ANALYSIS

A. AL-FEC
As mentioned above, the background service uses two

different error recovery techniques. Apart from AL-FEC, the
service uses carousel retransmissions in order to allow clients
to obtain packets missed in previous carousel cycles. It is clear
that the number of cycles has a substantial impact on the
performance of the service, especially if the number of files
present in the carousel is high.

Fig. 7. Cycles needed to recover a file in good reception conditions.

Fig. 7 shows the number of cycles needed to download files
of different sizes with 5% losses, while Fig. 8 shows the
number of cycles needed with 50% losses for different
configurations of AL-FEC: adding no AL-FEC parity, 20% of
AL-FEC parity and 50% of AL-FEC parity. Both figures
include the results obtained in the measurements against the
results obtained with the simulation model. Clearly, the
addition of AL-FEC parity reduces the number of cycles
needed to recover the file. Fig. 7 shows that the average
number of cycles with AL-FEC is approximately 1.

In Fig. 8, the number of cycles is significantly higher. The
more parity added the less cycles are needed to download a
file. Best results are provided by adding 50% of AL-FEC
parity, corresponding to approximately 2 cycles. As for the
channel model, the number of cycles provided is very similar
to the number of cycles in the measurements in all cases.

Fig. 8. Cycles needed to recover a file in bad reception conditions.

The last study evaluates the relation k/n (or code rate) with
0%, 5% and 50% of losses. In this study, a file of 500 kb is
used. Fig. 9 shows the effective data rate, defined as the
average bitrate perceived by the CDS application during the
download of a file. Relating to the theoretical analysis, the
effective rate is equal to the size of the file divided by the
download time. This parameter is evaluated for different
configurations of the LDPC AL-FEC code rate in the three
scenarios.

Fig. 9. Effective rate against different configurations of the AL-FEC block

under three reception conditions.
With 5% losses, the addition of too many parity packets

degrades the effective rate. Thus, for a given communication
channel, there is an optimal AL-FEC code rate that maximizes
the effective rate. However, this optimal value depends
strongly on the reception conditions. For this reason, the
optimum configuration of the AL-FEC module for 5% of
losses is the addition of a moderate amount of FEC packets,
with an optimum configuration of k/n over 0.8 (25% of AL-
FEC) in the graph. With 50% losses, the code rate does not
have such a drastic impact on the effective rate.

B. Object Multiplexing
The aim of the following results is to show the benefits of

using object multiplexing. In this sense, Fig. 10 shows the
ratio between the overall access time obtained with object
multiplexing at the optimum long-term bitrates defined in eq.
(15) and that obtained when the files are transmitted
sequentially.

Fig. 10. Normalized overall access time without losses, mean file size =

10Mb.

As shown in Fig. 10, there are great benefits in using object
multiplexing. Results show that the gain is greater as the
number of files in the carousel increases and also, when the

 12

popularity distribution is sharper (greater α). For instance, for
200 files in the carousel and alpha = 2, the overall access time
with object multiplexing is 10% the access time without object
multiplexing.

Fig. 11 presents the same figure of merit, also against the
number of files in the carousel, but this time in the presence of
losses (5%) and for different amounts of AL-FEC added to
each file. The graph shows that the effect of losses and AL-
FEC is equivalent both for optimal scheduling and for
sequential scheduling, meaning that there is no noticeable
dependency between the object multiplexing gain and the
configuration of the AL-FEC block or the amount of losses in
the channel. This result has been validated against other
simulations at different losses and AL-FEC rates.

Fig. 11. Normalized overall access time with 5% of losses, ZIPF alpha = 2

and mean file size = 10 Mb.

 In order to minimize the access time in the presence of
losses, it is necessary to apply AL-FEC coding at an optimum
rate. Fig. 12 shows the average access time achieved with
different AL-FEC code rates with a 5% loss rate.

Fig. 12. Access time evaluation, with ZIPF alpha = 2, mean file size =

10Mb and 5% of losses.

 Moreover, Fig. 13 provides the average access time
experienced when the packet loss rate increases to 50% and, as
expected, the results for the different configurations of the
AL-FEC block do not keep the same order as in the previous
study because, for every packet loss rate, there is an optimum
FEC code rate that minimizes the download time of each file.

Fig. 13. Access time evaluation with ZIPF alpha = 2, mean file size = 10

Mb and 50% of losses.

At this point, it is interesting to compare the values that
optimize the download of a single file (Fig. 9) and the values
that optimize the download of a carousel (Fig. 12 and Fig. 13).
For 5% channel losses, the optimum AL-FEC configuration
for a single file is around 25% (CR = 0.8), while 10% (CR ≈	

0.9) and 50% (CR = 0.7) provide similar results. When
evaluating the overall access time of carousel transmissions, it
is worth noting that the size of the carousel is directly
proportional to the amount of AL-FEC parity added.
Therefore, the addition of AL-FEC parity has a dual effect: it
lowers the average number of cycles at the expense of
increasing the average waiting time. Fig. 12 shows that the
minimum overall access time corresponds to 10% AL-FEC
parity, although 25% and 50% AL-FEC parity provides
similar overall access times, whereas the results for AL-FEC
5% are much worst. As for 50%, Fig. 13 shows that the overall
access time in carousel downloads decreases gradually with
the addition of AL-FEC parity, down to the minimum
provided by 50% AL-FEC parity. In general, when evaluating
the download time over an entire file carousel, there will be an
optimum value of AL-FEC code rate that will minimize the
access time. Moreover, the average access time is much higher
if the AL-FEC parity is slightly below this optimum value
than if the AL-FEC parity is higher. So far, the results show
that object multiplexing and AL-FEC reduce considerably the
overall access time. However, the overall access time obtained
is very high to use the background push CDS as a standalone
on demand service. Next section shows the performance of the
background push CDS as a complementary service to a
content on demand service.

C. Cache Management
The next results compare the cache hit ratio (CHR)

achieved by the branch-and-bound algorithm of section IV.C,
with different definitions of value, each one representing a
different cache replacement policy. Additionally, the study
compares the time needed by each policy to stabilize, referred
to as delta. A cache will be stable once it has discovered all
files in the carousel and it has downloaded completely those
files with the best aggregated value, as determined by the
branch-and-bound algorithm.

 13

For this study, the effective rate is set to 50 kbps, while the
CDS offers 100 files with sizes that follow a lognormal
distribution of mean file sizes equal to 10 Mb. The average
packet loss rate is 5%. As in previous studies, the probability
of files follows a ZIPF distribution with α=1.5 and 2. The
scheduler applies object multiplexing. The cache size is set to
4 times the mean file size. Table III shows the average
percentage of files served from local storage (cache hit ratio,
CHR) and the cache loading time (delta) of the different
replacement policies presented:

TABLE III
CACHE HIT RATIO FOR DIFFERENT CACHE REPLACEMENT POLICIES

α=1.5 α=2

CHR Delta CHR Delta

P 70.8 % 65.8 hours 87.5 % 63.6 hours

PIX 60.4 % 68.1 hours 80.4 % 64.1 hours

PIXS 60.0 % 65.0 hours 74.6 % 63.4 hours

As the table shows, the best results are achieved by the P
policy, although its results are very similar to those of the
other two policies. It is worth noting that the implementation
of the P policy is significantly simpler, because receivers do
not need to know beforehand the scheduling of files or their
relative transmission rates. Looking at the results, it is clear
that the PIX and PIXS policies do not justify their additional
complexity in terms of cache hit ratio or delta time. Regarding
the delta value, the P policy will need more than 60 hours to
have a stable cache with the files that best fit the user needs.
Any update on the content carousel before the client has a
stable cache could affect the cache hit ratio. Clearly, the cache
in the chosen example is too small for a practical application.
Fig. 14 shows the cache hit ratio for different cache sizes.
Note that the cache size is normalized by the mean file size.

Fig. 14. Cache hit ratio against the cache size, relative to the mean file size.

Results obtained for other values of the mean file size are
equivalent to those in the figure, meaning that the important
parameter to take into account is the relationship between the
cache size and the mean file size. Fig. 14 shows how the CHR
increases with the size of the cache for the P cache
replacement policy. In general, the hit ratios are rather high.
For instance, with a mean file size of 10Mb and a cache size

of 100Mb (cache size / mean file size = 10 in the x axis of the
graph), the client handles more than 80% of the requests with
the files in local storage. In both scenarios, the cache hit ratios
achieve a maximum value, which does not improve for larger
cache sizes. With higher losses, the CDS client needs more
file cycles to download the files. This penalizes the CHR to
some extent under bad reception conditions. However, the
client application achieves good levels of cache hits in both
reception scenarios under consideration.

At this point, it is important to emphasize that the
popularity and file size distributions are application
dependent. Hence, in extension, the results for the optimal
cache size should be regarded as application dependent. As
explained, the models used for the file sizes are characteristic
of short videos encoded for mobile terminals.

VII. CONCLUSIONS
We have presented a background content download service

associated with a broadcast mobile TV service. Results show
that the service can effectively use residual bandwidth to push
multimedia content to mobile receivers. The performance of
background push CDS improves with AL-FEC, object
multiplexing and caching.

First, the addition of AL-FEC mechanisms improves the
performance of the background CDS. AL-FEC encoding
improves drastically how the service scales with the number of
files in the carousel in all the cases regarded in this study.
Therefore, background CDSs should always implement some
AL-FEC encoding. Moreover, results show that adding extra
AL-FEC parity, above the optimum value, does not degrade
the overall access time as much as adding less AL-FEC parity.

The object multiplexing technique also improves
considerably the scalability of the overall access time with the
number of files in the carousel.

At this point, it is interesting to see the improvement in the
access time achieved by the combination of AL-FEC and
object multiplexing. With an average bitrate of 50 kbps, an
average file size of 10Mb, a carousel of 200 files, and 5%
losses, the average access time to a file is over 9 days. With
object multiplexing, the average access time is reduced to
around 33 hours. Adding AL-FEC at an optimum rate lowers
the average access time down to 5 hours.

Still, this value is very high to offer content to users and it is
necessary to add a prefetching cache to improve the QoE of
the service. The paper presents an algorithm to manage the
storage space and evaluates its performance. The results show
that the most relevant parameter to assess the value of files in
cache is the future probability of access. Apparently, taking
into account the size of files or their broadcast frequency does
not improve the cache hit ratio.

Finally, results show that such caches can serve a
considerable amount of VOD requests using little storage
memory in the client. The cache hit ratio increases rapidly
with the size of the cache up to a certain value. This value can
be regarded as the optimum cache size, because larger cache
sizes do not improve the cache hit ratio significantly. In the
case under study, cache sizes of approximately 100Mb provide

 14

cache hit ratios higher than 65%, even under bad reception
conditions.

REFERENCES
[1] P. Lungaro, Z. Segall, and J. Zander, “Predictive and Context-Aware

Multimedia Content Delivery for Future Cellular Networks”, presented
at the IEEE Vehicular Technology Conference (VTC), Taipei, Taiwan,
May 2010.

[2] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast disks:
data management for asymmetric communication environments,” in
Proc. of the ACM SIGMOD Conference on Management of Data, San
Jose, California, USA, May 1995, pp. 199-210.

[3] G. Zhiqi, Y. Songyu, and Z. Wenjun, “Using object multiplex technique
in data broadcast on digital CATV channel,” IEEE Transactions on
Broadcasting, vol. 50, no. 2, pp. 113-119, Jun. 2004.

[4] T. Paila, R. Walsh, M. Luby, V. Roca, and R. Lehtonen, “FLUTE – File
Delivery Over Unidirectional Transport,” IETF RFC, vol. 6726, Nov.
2012.

[5] K. Nyborn, D. Vukobratoviç, and J. Björkqvist, “Sparse-Graph AL-FEC
Solutions for IP Datacasting in DVB-H”, presented at the IEEE Int.
Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), Bilbao, Spain, May 2009.

[6] V. Roca, C. Neumann, and D. Furodet, “Low Density Parity Check
(LDPC) Staircase and Triangle Forward Error Correction (FEC)
Schemes,” IETF RFC, vol. 5170, Jun. 2008.

[7] I. de Fez, F. Fraile, R. Belda and J. C. Guerri, “Performance evaluation
of AL-FEC LDPC codes for push content applications in wireless
unidirectional environments,” Multimedia Tools and Applications, vol.
60, no. 3, pp. 669-688, Jun. 2012.

[8] D. Barquero and A. Bria, “Forward Error Correction for File Delivery in
DVB-H,” in Proc. of the Vehicular Technology Conference, Baltimore,
USA, Oct. 2007, pp. 2951-2955.

[9] T. Lohmar and J. Huschke, “Radio resource optimization for MBMS file
transmissions,” presented at the IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB), Bilbao,
Spain, May 2009.

[10] CK. Liaskos, SG. Petridou, and GI. Papadimitrou, “Cost-Aware
Wireless Data Broadcasting,” IEEE Transactions on Broadcasting, vol.
56, no.1, pp. 66-76, Mar. 2010

[11] H. Kellerer, U. Pferschy, and D. Pisinger, “Knapsack problems,”
Springer, 2004.

[12] S. Podlipnig and L. Böszörmenyi, “A survey of Web cache replacement
strategies,” ACM Computing Surveys, vol. 35, no. 4, pp. 374–398, Dec.
2003.

[13] J. Xu, Q. Hu, W. Lee, and D.L. Lee, “Performance evaluation of an
optimal cache replacement policy for wireless data dissemination,” IEEE
Transactions on Knowledge and Data Engineering, vol. 16, no. 1, pp.
125-139, Feb. 2004.

[14] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content
Delivery Protocols, ETSI TS 102 472 v1.3.1, Jun. 2009.

[15] Digital Video Broadcasting (DVB); DVB specification for data
broadcasting, ETSI EN 301 192 v.1.4.2, Apr. 2004.

[16] E. Paolini, M. Varrella, M. Chiani, B. Matuz, and G. Liva, “Low-
complexity LDPC codes with near-optimum performance over the
BEC,” in Proc. of the Advanced Satellite Mobile Systems (ASMS),
Bologna, Italy, Aug. 2008, pp. 274-282.

[17] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions,” IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 6, pp. 734-759, Jun. 2005.

[18] H. Bai and M. Atiquzzaman, “Error modeling schemes for fading
channels in wireless communications: A survey,” IEEE Communications
Surveys and Tutorials, vol. 5, no. 2, pp. 2-9, Fourth Quarter 2003.

[19] G. Gardikis, A. Kourtis, and P. Constantinou, “Modelling TCP
performance in mobile DVB-T receivers,” in Proc. of the 8th WSEAS
Conference on Communications, Athens, Greece, Jul. 2004, pp. 632-
635.

[20] J. Poikonen and J. Paavola, “Error models for the transport stream
packet channel in the DVB-H link layer,” in Proc. of the IEEE
International Conference on Communications, Istanbul, Turkey, Jun.
2006, pp. 1861-1866.

[21] J. Peltotalo, S. Peltotalo, J. Harju, and R. Walsh, “Performance analysis
of a file delivery system based on the FLUTE protocol,” International

Journal of Communications Systems, vol. 20, no. 6, pp. 633-659, Jun.
2007.

[22] I. de Fez, F. Fraile, R. Belda, and J. C. Guerri, “Analysis and evaluation
of adaptive LDPC AL-FEC codes for content download services,” IEEE
Transactions on Multimedia, vol. 14, no. 3, pp. 641-650, Jun. 2012.

[23] Z. Avramova, D. De Vleeschauwer, S. Wittevrongel, and H. Bruneel,
“Capacity gain of mixed multicast/unicast transport schemes in a TV
distribution network,” IEEE Transactions on Multimedia, vol. 11, no. 5,
pp. 918-931, Aug. 2009.

[24] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications,” in Proc. of the
IEEE INFOCOM, New York, USA, Mar. 1999, pp. 126-134.

[25] M. Chesire, A. Wolman, G. M. Voelker, and H. M. Levy, “Measurement
and analysis of a streaming-media workload,” in Proc. of the 3rd
Conference on Usenix Symposium on Internet Technologies and
Systems, San Francisco, California, USA, Mar. 2001, pp. 1-12.

[26] J. Aaltonen, J. Karvo, and S. Aalto, “Multicasting vs. unicasting in
mobile communication systems,” in Proc. of the 5th ACM International
Workshop on Wireless Mobile Multimedia (WOWMOM), Atlanta, USA,
Sep. 2002, pp. 104-108.

[27] A. Downey, “The structural cause of file size distributions,” in Proc. of
the 9th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), vol. 29, no.
1, Cincinatti, Ohio, USA, Aug. 2001, pp. 361-370.

[28] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic
characterization: a view from the edge,” in Proc. of the 7th ACM
SIGCOMM Conference on Internet measurements (ICM ’07), vol. 20,
San Diego, California, USA, Oct. 2007, pp. 15-28.

[29] COST 207, “Digital land mobile radio communications (final report),”
Commission of the European Communities, Directorate General
Telecommunications, Information Industries and Innovation, 1989.

[30] V. Roca and C. Neumann, “Design, evaluation and comparison of four
large block FEC codecs, LDPC, LDGM, LDGM staircase and LDGM
triangle, plus a Reed-Solomon small block FEC codec,” INRIA, Rhône-
Alpes, Montbonnot-St-Martin, France, INRIA Res. Rep. RR-5225, Jun.
2004.

[31] G. Faria, J. A. Henriksson, E. Stare, and P. Talmola “DVB-H: Digital
Broadcast Services to Handheld Devices,” in Proc. of the IEEE, vol. 94,
no. 1, pp. 194-209, Jan. 2006.

Francisco Fraile obtained a degree in
Telecommunication Engineering from the Universitat
Politècnica de València (UPV) and the M. Sc. Degree in
microwave engineering from the University of Gävle in
2004. Since then, until 2010, he has worked as a
Research Engineer for the Swedish company Interactive
TV Arena. In 2006, he joined the Multimedia
Communications research group (COMM) of the
Institute of Telecommunications and Multimedia

Applications (iTEAM), UPV.
 Ismael de Fez received the Telecommunications
Engineering degree and the M.S. degree in Telematics
from the Universitat Politècnica de València (UPV),
Valencia, Spain, in 2007 and 2010, respectively.
Currently, he is a Researcher at the (COMM) research
group of the UPV where he is working toward the Ph.
D. degree. His areas of interest are file transmission
over unidirectional environments and file encoding.

Juan Carlos Guerri received his M.S. and Ph. D. (Dr.
Ing.) degrees, both in telecommunication engineering,
from the Universitat Politècnica de València (UPV), in
1993 and 1997, respectively. He is a professor in the
E.T.S. Telecommunications Engineering at the
Universitat Politècnica de València, where he leads the
COMM research group of the iTEAM Institute. He is
currently involved in research and development projects
for the application of multimedia to industry, medicine,

education, and communications.

