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Abstract—For an orthogonal frequency-division multiplexing
(OFDM) system over a doubly selective (DS) channel, a large
number of pilot subcarriers are needed to estimate the numerous
channel parameters, resulting in low spectral efficiency. In this
paper, by exploiting temporal correlation of practical wireless
channels, we propose a highly efficient structured distributed
compressive sensing (SDCS) based joint multi-symbol channel
estimation scheme. Specifically, by using the complex exponential
basis expansion model (CE-BEM) and exploiting the sparsity
in the delay domain within multiple OFDM symbols, we turn
to estimate jointly sparse CE-BEM coefficient vectors rather
than numerous channel taps. Then a sparse pilot pattern within
multiple OFDM symbols is designed to obtain an ICI-free
structure and transform the channel estimation problem into a
joint-block-sparse model. Next, a novel block-based simultaneous
orthogonal matching pursuit (BSOMP) algorithm is proposed to
jointly recover coefficient vectors accurately. Finally, to reduce
the CE-BEM modeling error, we carry out smoothing treatments
of already estimated channel taps via piecewise linear approxima-
tion. Simulation results demonstrate that the proposed channel
estimation scheme can achieve higher estimation accuracy than
conventional schemes, although with a smaller number of pilot
subcarriers.

Index Terms—Channel estimation, doubly selective, multiple
OFDM symbols, structured distributed compressive sensing,
piecewise linear

I. INTRODUCTION

O
RTHOGONAL frequency division multiplexing

(OFDM) is an attractive communication system because

of its robustness against frequency-selective (FS) fading

channels, high data rate transmission capability and high

spectral efficiency. Recently, OFDM has gained its popularity

in a number of wireless broadband communication systems,

such as the digital video broadcasting (DVB) system,

IEEE802.16e (WIMAX), and 3GPP long-term evolution

(LTE) systems [1]–[3]. As the accurate channel state

information (CSI) can notably improve system performance,

it is necessary to provide a reliable channel estimation method

[4]. Most existing researches consider the FS channel with

slow time-variation properties, and channel estimation has

not posed a severe challenge [5].

Unfortunately, OFDM systems are sensitive to Doppler

effect induced by fast time variations, which will destroy
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the orthogonality among subcarriers and induce inter-carrier

interference (ICI). The channels faced with both FS and time-

selective (TS) fading are often referred to as doubly-selective

(DS) channels [6]. Channel estimation for DS channels is

extremely challenging due to the fact that the parameters to

be estimated are numerous. For example, the total number of

unknown channel parameters within a single OFDM symbol

is NL, where N is the number of subcarriers and L is the

maximum delay spread of the channel impulse responses

(CIR) and both are very large in many broadband systems

[5]. To estimate the numerous channel parameters, lots of pilot

subcarriers are required, resulting in a low spectral efficiency.

The recently introduced methodology of compressive sens-

ing (CS) is capable of reconstructing sparse signals from fewer

samples than what is required by Nyquist rate [7]. Further,

growing experimental studies verify that many wireless broad-

band channels exhibit sparsity, where the delay spread could

be very large but the number of channel taps with significant

power is usually small [8], [9]. As such, applying CS theory

to the OFDM channel estimation can dramatically reduce the

number of pilot subcarriers. In [10]–[13], CS theory has been

applied to estimate a DS channel, showing better estimation

performance than conventional channel estimation methods

such as minimal mean square error (MMSE) and least squares

(LS) methods. However, in [10], [11], the ICI is treated as

noise, and in [12], [13], an iterative procedures are designed

to reduce ICI, which incurs high computational complexity

and results in error propagation.

In contrast to CS theory that reconstructs each sparse

signal individually, the distributed compressive sensing (DCS)

proposed in [14] aims to jointly reconstruct a collection of

sparse signals by exploiting their joint sparsity. In [14], a

DCS simultaneous orthogonal matching pursuit (DCS-SOMP)

algorithm is proposed to reconstruct jointly sparse signals. It

is shown in [5], [15], [16] that DCS-based methods achieve

higher estimation accuracy than CS-based methods. In [5],

a novel DCS based channel estimation scheme is proposed

to track the DS channel with a large Doppler shift, which

introduces an ICI-free structure without additional iterative

operations. However, [5] ignores the temporal correlation of

sparse channels and merely exploits the sparse characteristic

of channel parameters within a single OFDM symbol.

Further studies [17], [18] have shown the temporal corre-

lation of practical time-varying channels: although the path

gains will change over adjacent OFDM symbols, the path

delays may remain relatively unchanged. This observation

motivates us to seek effective joint multi-symbol channel

estimation methods to enhance the estimation precision over a
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DS channel. Some works regarding joint multi-symbol channel

estimation methods have been reported in literature [19]–[21].

However, these works are not based on DCS theory which

can improve spectral efficiency and estimation accuracy. To

our best knowledge, little has been done about applying DCS

theory to joint multi-symbol channel estimations over a DS

channel.

In this paper, we propose a novel structured DCS (SDCS)

based joint multi-symbol channel estimation scheme. To be

specific, in order to reduce the number of unknown chan-

nel coefficients, we utilize the complex exponential basis

expansion model (CE-BEM) to model the time variation of

a DS channel within multiple OFDM symbols. Then, by

exploiting the sparsity in the delay domain and designing

special pilot pattern within multiple OFDM symbols, we are

able to decouple jointly sparse CE-BEM coefficient vectors,

leading to a special jointly sparse block structure in the

aggregate coefficient vectors. To obtain a channel estimator

consistent with this joint-block-sparse model, a block-based

SOMP (BSOMP) algorithm derived from the classical SOMP

algorithm is proposed to jointly recover the channel parame-

ters. Based on the exploitation of the structural property in the

model, we can expect the channel estimation performance to

be significantly improved.

In order to reduce the modeling error in the CE-BEM

when modeling the DS channel, we carry out smoothing

treatments of already estimated channel taps via piecewise

linear approximation. Jeon and Chang have assumed a linear

model for channel variations under the condition of low

Doppler shift in [22]. On the basis of [22], [23] has proved

piecewise linear approximation is a good estimate of channel

time-variations even for normalized Doppler of up to 0.2. It is

also found that in [24], [25], a piecewise linear model is used

to approximate time-varying underwater acoustic channels. In

this paper, we propose two novel smoothing treatment methods

within a single OFDM symbol and within multiple OFDM

symbols, respectively. Both of our methods are based on a

piecewise linear approximation for a DS channel. Simulation

results demonstrate that the proposed smoothing treatment can

significantly improve the channel estimation performance.

The main contributions of this paper lie in two aspects. One

is that exploiting the temporal correlations of a DS channel,

we propose a novel SDCS based joint multi-symbol estimation

model, and a novel BSOMP algorithm is proposed to solve

the model. The other is that we propose two novel smoothing

methods via piecewise linear approximation. Our simulation

results show that when dealing with the joint multi-symbol

channel estimation model, the proposed SDCS-based scheme

can achieve higher estimation accuracy than the CS-based and

DCS-based schemes. And the proposed smoothing treatment

scheme can significantly improve the channel estimation accu-

racy. Further, it is shown that the proposed joint multi-symbol

channel estimation scheme is superior to the conventional

single-symbol channel estimation scheme [5] in terms of both

estimation accuracy and spectrum efficiency.

The remainder of this paper is organized as follows. Section

II introduces an OFDM system model over a DS channel

and the CE-BEM. Section III describes formulation of SDCS-

based channel estimation model. Section IV describes the

proposed BSOMP algorithm and the process of smoothing

treatment. In section V, simulation results are provided to

demonstrate the superior performance of our proposed scheme.

Finally in Section VI, some concluding remarks are given.

Notations : For a given matrix A, A
−1, A

†, A
T and

A
H denote its inverse, pseudo inverse, transpose and con-

jugate transpose, respectively. ‖A‖2 denotes the Frobenius-

norm of A. [A]k,n, [A]P,L and [A]P denote (k, n)-th entry

of a matrix A, a submatrix of A with row indices P and

column indices L, and a submatrix of A with row indices P
and all columns, respectively. D{A0, . . . ,AN−1} denotes a

block-wise diagonal matrix with the matrices A0, . . . ,AN−1

on the diagonal. For a given vector a, ‖a‖p (subject to

p ≥ 1) denotes the p-norm of vector a, and D{a} denotes

a diagonal matrix with a on its main diagonal. RM×N and

CM×N represent the set of M × N matrices in real field

and complex field, respectively. ⊗ represents the Kronecker

product. IN stands for an N × N identity matrix, 1N for

the N × 1 column vector of all ones, and FN for a N -

point normalized discrete Fourier transform (DFT) matrix

with [FN ]n,m = 1/
√
Ne

−j2πnm
N (n,m ∈ [0, N − 1]). The

cardinality of the set S is denoted by |S|. E(z) represents

the average of z.

II. SYSTEM MODEL

Here, we first introduce the fundamental model of OFDM

systems over a DS channel. Then, we describe the CE-BEM

within a single OFDM symbol and extend the model to

multiple OFDM symbols.

A. OFDM System Model over a DS Channel

We consider an OFDM transmission system with N sub-

carriers, and use hn,l to denote the channel gain of the l-
th (l ∈ [0, L − 1]) discrete path of the CIR at time n.

The transmit signal of the j-th OFDM symbol is denoted

as X
(j) = [X(j)(0), . . . , X(j)(N − 1)], for j ∈ [0, J − 1].

Let us use [X(j)]P to denote the pilots of the j-th OFDM

symbol, where P (|P| = P ) is the set of pilot subcarrier

indices, and [X(j)]D to denote the corresponding data, where

D (|D| = N − P ) is the set of data subcarriers indices.

Once performing inverse DFT (IDFT) on X
(j), we can

express the time-domain modulated signal as x(j) = F
H
NX

(j).

In order to avoid the ISI resulting from multipath delay

spreads, the time-domain signal is concatenated by a cyclic

prefix (CP) with length LCP (LCP ≥ L). Finally, the symbol

streams are converted from a parallel to a serial form and

transmitted through a DS channel.

At the receiver side, after removing the CP, we demodulate

the remaining samples by N point DFT matrix FN . The

received signal of the j-th OFDM symbol can be expressed

as

Y
(j) = FNH

(j)
T F

H
N

︸ ︷︷ ︸

H
(j)
F

X
(j) +W

(j), (1)

where H
(j)
T is the N×N matrix in time-domain including the

effects of concatenating and removing the CP, H
(j)
F ∈ CN×N
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represents the corresponding frequency-domain channel ma-

trix, and W
(j) ∈ C

N×1 denotes the additive noise. To be

specific, the (p, q)-th (p, q ∈ [0, N − 1]) entry of H
(j)
T can be

expressed as

[H
(j)
T ]p,q = hj(N+LCP )+LCP+p,mod(p−q,N), (2)

where mod(a, b) stands for the remainder of a divided by b.

Clearly, if the channel is time-invariant, H
(j)
T will be a

circular matrix and as a result H
(j)
F will be a diagonal

matrix. While in a DS channel, H
(j)
T exhibits pseudo-circular

structure, which results in a full matrix H
(j)
F instead of a

diagonal one and thus induces ICI.

For channel estimation during J consecutive OFDM sym-

bols, JNL channel coefficients of hn,l need to be estimated.

Thus we should allocate pilot subcarriers on the order of

JNL, which is very large. In the following subsection, we

will introduce the CE-BEM to reduce the total number of

coefficients to be estimated.

B. CE-BEM in the Time Domain

In this subsection, we will try to model the time-variation of

a DS channel by using the CE-BEM due to the temporal (n)
variation of hn,l is usually rather smooth. Let us define the l-th

(l ∈ [0, L− 1]) channel tap related to the j-th OFDM symbol

as h
(j)
l

∆
=

(
hj(N+LCP )+LCP ,l, . . . , h(j+1)(N+LCP )−1,l

)T ∈
CN×1, which can be expressed as

h
(j)
l = (b0 · · · bQ−1)






c(j) [0, l]
...

c(j) [Q− 1, l]




+ ξ

(j)
l , (3)

where Q (Q≪ N) denotes the BEM order, bq ∈ CN×1(q ∈
[0, Q − 1]) is the orthonormal basis function, c(j)[q, l] repre-

sents the corresponding BEM coefficient related to the j-th

OFDM symbol, and ξ
(j)
l ∈ CN×1 denotes the BEM modeling

error. Note that ξ
(j)
l will be dealt with by a piecewise linear

smoothing treatment proposed in Section IV. To be specific,

the CE-BEM basis functions are complex exponential with a

period of N , and the q-th basis function bq can be expressed

as

bq =
(

1, . . . , ej
2π
N

n(q−Q−1
2 ), . . . , ej

2π
N

(N−1)(q−Q−1
2 )

)T

. (4)

The CE-BEM is able to make the frequency-domain channel

matrix H
(j)
F strictly banded [5]. Note that to exploit the

symmetrical property in the sequel, we assume that Q is an

odd number.

We further define c
(j)
q

∆
=

(
c(j)[q, 0], . . . , c(j)[q, L− 1]

)T ∈
CL×1. Then the time-domain channel matrix H

(j)
T given in

(2) can be illustrated in terms of the CE-BEM as

H
(j)
T =

Q−1
∑

q=0

D {bq}FH
ND

{

VLc
(j)
q

}

FN + ξ(j), (5)

where VL ∈ CN×L denotes the submatrix that extracts the

first L columns of
√
NFN [21], which can be written as

VL =








1 1 · · · 1
1 w · · · wL−1

...
...

...
...

1 wN−1 · · · w(N−1)(L−1)








N×L

, (6)

with w
∆
= exp

(
−i 2πN

)
. Substituting (5) into (1), we can obtain

the received signal of the j-th OFDM symbol in terms of the

CE-BEM as

Y
(j) =

Q−1
∑

q=0

I
〈q−Q−1

2 〉

N D

{

VLc
(j)
q

}

︸ ︷︷ ︸

H
(j)
F

X
(j) + Z

(j), (7)

where I
〈q〉
N ∈ CN×N denotes a permutation matrix obtained

from IN by shifting its column circularly |q|-times to the left

if q > 0 and to the right otherwise, and Z
(j) ∈ CN×1 includes

the additive noise and the CE-BEM modeling error.

Accordingly, we can express the received J consecutive

OFDM symbols as

Y =







H
(0)
F

. . .

H
(J−1)
F






X+ Z, (8)

where Y
∆
=

(

Y
(0)T , . . . ,Y(J−1)T

)T

∈ CJN×1 and X
∆
=

(

X
(0)T , . . . ,X(J−1)T

)T

∈ RJN×1 denote the received and

transmitted subcarriers during J consecutive OFDM symbols,

respectively, Z =
(

Z
(0)T , . . . ,Z(J−1)T

)T

∈ CJN×1 repre-

sents the total error and noise, and H
(j)
F (j ∈ [0, J − 1])

is expressed in (7). Note that the CE-BEM basis functions

{bq}Q−1
q=0 are common for each OFDM symbol, but the CE-

BEM coefficient vectors {c(j)q }Q−1
q=0 are not.

Therefore, instead of estimating numerous channel taps

{h(j)
l }L−1

l=0 , we turn to identify the CE-BEM coefficient vectors

{c(j)q }Q−1
q=0 . Obviously, the CE-BEM is able to dramatically

reduce the total number of unknown coefficients within J
consecutive OFDM symbols from JNL to JQL with Q≪ N .

III. PROPOSED CHANNEL ESTIMATION SCHEME

In this section, we first briefly introduce some basic CS

and DCS theories. Then, we give a detailed description about

the joint sparsity of the CE-BEM coefficients within multiple

OFDM symbols. Next, we design a special pilot pattern and

thus transform original channel estimation problem into a

SDCS form.

A. CS theory

CS is a revolutionary technique to reconstruct a sparse

signal from an undetermined model. Consider Y = Φθ + η,

where Φ is an G × L matrix with G < L, θ ∈ CL is

an unknown signal vector, Y ∈ CG represents the observed

vector, and η ∈ CG denotes a noise vector. The goal of
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CS is to reconstruct θ correctly based on the knowledge of

Y and Φ. Fundamental researches [26], [27] indicate that if

Φ satisfies the restricted isometry property (RIP) and θ has

merely K (K ≪ L) nonzero values, θ can be reconstructed

correctly with CS reconstruction methods such as the basis

pursuit (BP) and the orthogonal matching pursuit (OMP) even

under an undetermined condition.

However, it incurs tremendous computational complexity to

verify that Φ satisfies the RIP. To simplify the calculation, we

consider the mutual coherence property (MCP) as alternative

property, which has been widely adopted in the literature. The

mutual coherence of Φ can be expressed as

µ(Φ) = max
1≤i6=j≤L

∣
∣
〈
φi,φj

〉∣
∣

‖φi‖2
∥
∥φj

∥
∥
2

, (9)

where φi and φj are the two arbitrary columns of Φ. Accord-

ing to [16], the smaller µ(Φ) is, the more accurately θ will

be recovered.

B. DCS theory

The DCS theory extends the CS theory to recover a set of

multiple correlated signals. Instead of reconstructing a single

sparse signal alone, the objective of DCS is to reconstruct a

collection of jointly sparse signals from the same measure-

ment matrix Φ satisfying MCP. Let us consider a set of Q
undetermined problems

Yq = Φθq + ηq, q ∈ {0, 1, . . . , Q− 1}, (10)

where Yq ∈ C
G, Φ ∈ C

G×L, ηq ∈ C
G and θq ∈ C

L. Here,

each vector θq are jointly sparse, i.e., not only does each vector

θq have K nonzero entries, but also the nonzero entries in all

θq occur in the same positions.

Let us write (10) in a combined form as

Ȳ = Φθ̄ + η̄, (11)

where Ȳ = (Y0, . . . ,YQ−1) ∈ CG×Q, θ̄ =
(θ0, . . . , θQ−1) ∈ CL×Q, and η̄ = (η0, . . . ,ηQ−1) ∈ CG×Q.

To recover jointly sparse signals, a DCS-SOMP algorithm was

proposed in [14]. Obviously, we can carry out CS theory to

reconstruct each θq from Yq individually. However, it has

been verified in [16] that under the condition of the same

number of samples, DCS outperforms CS notably in terms of

recovery accuracy. This advantage is owing to the fact that

the joint processing in DCS can yield higher possibility of

searching the correct location of nonzero values.

C. Sparsity of the CE-BEM Coefficient Vectors within Multiple

OFDM Symbols

In a broadband system with a large bandwidth B and a

small number of propagation paths, the delay interspacings

are usually larger than the delay resolution bin of width ∆τ =
1/B. Not every delay bin of size ∆τ contains a physical path.

Thus the delay domain exhibits sparsity [6]. To explore the

sparsity of a DS channel in the delay domain, we introduce

the definition of K-sparse channel based on [8].

Definition 1: For a fixed n, suppose that L = {l : |h[n, l]| >
ε} denotes the set of indices of dominant channel coefficients

1t

1t

2t
2t

S

Fig. 1: Illustration for multipath signal transmission

.

of a wireless channel for some appropriately chosen ε. We say

that the channel is effectively K-sparse in the delay domain

if it satisfies K = |L| ≪ L, where L is the maximum number

of resolvable paths.

For a DS channel, practical wireless channels exhibit tem-

poral correlations. The path delays usually vary much slower

than the path gains [28]. This is because the duration Tdelay

for the path delay variation is inversely proportional to the

signal bandwidth fs, while the coherence time of time-varying

path gains Tgain is inversely proportional to the system’s

carrier frequency fc [18]. Since we have fs ≪ fc for a

practical wireless system, we obtain Tgain ≪ Tdelay . In [17],

we observe that during several consecutive OFDM symbols,

although the path gains will be quite different, the path delays

typically remain unchanged.

Let us now elaborate this formally. In Fig. 1, during J
consecutive OFDM symbols, we calculate the displacement

of the vehicle as S = JTs (N + LCP ) v, where Ts is the

sampling period and v is the velocity of the vehicle. It is

easy to show that the maximum variation of all path delays

∆τmax ≤ S/c, where c is the speed of light. As a result, we

have

∆τmax ≤ JTs (N + LCP ) v/c. (12)

For a fixed Ts, once it satisfies ∆τmax/Ts < 0.01, the

maximum variation of all path delays is much smaller than

the sampling period Ts such that we could assume the path

delays remain relatively unchanged.

Consequently, when the number of consecutive OFDM

symbols J subjects to

J <
0.01c

(N + LCP ) v
, (13)

we could assume that the positions of nonzero entries in CIR

within J consecutive symbols remain unchanged. Thus we

obtain hn,l = 0 (n ∈ [0, J(N + LCP ) − 1]) for l /∈ L,

where L denotes the aggregate dominant paths described in

Definition 1. Then we have h
(j)
l = 0 (j ∈ [0, J − 1]) for

l /∈ L. Further, based on (3), it is easy to show that

c(j)[0, l] = · · · = c(j)[Q− 1, l] = 0 (l /∈ L) (14)
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due to (c(j)[0, l], · · · , c(j)[Q − 1, l])T = (b0, . . . ,bQ−1)
†
hl

regardless of the modeling error. Consequently, c
(j)
q will be

a sparse vector with a sparsity of K and all c
(j)
q (j ∈

[0, J − 1], q ∈ [0, Q − 1]) share the common locations of

nonzero values, i.e., {c(0)0 , . . . , c
(0)
Q−1, . . . , c

(J−1)
0 , . . . , c

(J−1)
Q−1 }

are jointly sparse.

D. The SDCS Formulation

In this subsection, we will extend it the same idea in [5] to

design sparse pilot pattern but seek optimal pilot placement

among J consecutive OFDM symbols, which is related to the

CE-BEM order Q. Then an ICI free structure is obtained and

finally the channel estimation problem is formulated into an

SCDS framework.

We denote the total number of pilot subcarriers within J
OFDM symbols as P , and the corresponding pilot indices as

P . The pilot subcarriers are grouped in G (K < G ≪ JL)
clusters. Each cluster includes one value pilot and (2Q − 2)
guard pilots. The value pilot index set Pval (|Pval| = G) is

expressed as

Pval = {p0, . . . , pG−1}, (15)

where 0 ≤ p0 < · · · < pG−1 ≤ JN − 1. And the guard pilot

index Pguard (|Pguard| = (2Q− 2)G) is given by

Pguard = ∪{k−Q+1, . . . , k−1, k+1, . . . , k+Q−1}, (16)

where k ∈ Pval. We set the elements in the value pilot sub-

carriers Pval ∈ CG with constant amplitude and the elements

in the guard pilot subcarriers Pguard as zero.

It is clear that |Pval| + |Pguard| = (2Q − 1)G = P and

Pval ∪ Pguard = P . Note that we must have |pi − pj| ≥
2Q − 1, i 6= j, to prevent the locations of the value pilot

subcarriers and the guard pilot subcarriers overlapping.

Next, we re-divide pilot indices P into Q subsets, denoted

as 





P0 = Pval − Q−1
2

...

PQ−1
2

= Pval

...

PQ−1 = Pval +
Q−1
2 ,

(17)

where Pval − Q−1
2 stands for a new set with all elements in

Pval subtract Q−1
2 . Such an arrangement of the pilot pattern

P with Q = 3 is depicted in Fig. 2.

Value pilot 

subcarriers

Guard pilot 

subcarriers

data subcarriers

0-th symbol (J-1)-th symbol

  

Fig. 2: The pilot pattern (Q = 3)

.

Based on the designed sparse pilot pattern and properties

of the CE-BEM, the estimation of JQ sparse CE-BEM coef-

ficient vectors {c(j)q }Q−1
q=0 could be decoupled from (8) by Q

separate equations without ICI as







[Y]P0
= Ψ[IJ ⊗VL]Pval







c
(0)
0
...

c
(J−1)
0







+ Z0

...

[Y]PQ−1
2

= Ψ[IJ ⊗VL]Pval








c
(0)
Q−1

2

...

c
(J−1)
Q−1

2








+ ZQ−1
2

...

[Y]PQ−1
= Ψ[IJ ⊗VL]Pval







c
(0)
Q−1
...

c
(J−1)
Q−1







+ ZQ−1,

(18)

where Ψ = D{Pval} denotes a diagonal matrix with the value

pilot subcarriers on its diagonal, [Y]Pq
∈ CG×1 represents

the subset of received J consecutive OFDM subcarriers Y

corresponding to Pq , VL is given in (6), and Zq ∈ CG×1

includes the noise and the modeling error. (Please refer to

Appendix for the complete proof of (18).)

We further define c
′
q

∆
= ((c

(0)
q )T , . . . , (c

(J−1)
q )T )T ∈

CJL×1. Since we have verified in sec-

tion C that the aggregate coefficient vectors

in {c(0)0 , . . . , c
(0)
Q−1, . . . , c

(J−1)
0 , . . . , c

(J−1)
Q−1 } are jointly

sparse, we obtain {c′q}Q−1
q=0 are also jointly sparse. In

addition, each equation in (18) shares the same measurement

matrix Ψ(IJ ⊗VL)Pval
. Consequently, we are able to

estimate {c′q}Q−1
q=0 based on DCS theory.

However, it can be observed that the coefficient vectors

{c′q}Q−1
q=0 have the inherent structured sparsity, which motivates

us to apply the theory of SDCS instead of the conventional

DCS theory to estimate sparse coefficient vectors. Let us

rearrange the elements of the vector c′q as

sq =
((

s
0
q

)T
, . . . ,

(
s
L−1
q

)T
)T

∈ C
JL×1, (19)

with

s
l
q = (c′q(l), . . . , c

′
q((J − 1)L+ l)T ∈ C

J×1. (20)

Then the system model of (18) can be reobtained as






[Y]P0
= Φs0 + Z0

...

[Y]PQ−1
2

= ΦsQ−1
2

+ ZQ−1
2

...

[Y]PQ−1
= ΦsQ−1 + ZQ−1,

(21)

where the new measurement matrix Φ = (Φ0, . . . ,ΦL−1) ∈
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CG×JL with Φl ∈ CG×J expressed as

Φl =
[
Ψ(IJ ⊗VL)Pval

]

l:L:(J−1)L+l
. (22)

Here, [A]l:L:(J−1)L+l denotes a submatrix extracting the

columns of A according to the indices {l, L + l, . . . , (J −
1)L+ l}.

Thanks to the inherent structured sparsity of {c′q}Q−1
q=0 , the

rearranged coefficient vectors {sq}Q−1
q=0 exhibit block sparsity

as well as joint sparsity, leading to a special jointly sparse

block structure in the system model. In addition, each equation

in (21) shares the same measurement matrix Φ. We write (21)

in a more compact form and obtain the SDCS model as

([Y]P0 , . . . , [Y]PQ−1) = Φ(s0, . . . , sQ−1) + Z. (23)

Now there are two remaining major issues, listed as below

1) The common measurement matrix Φ needs to meet

MCP, which motives us to seek optimal pilot placement

to make µ(Φ) as small as possible.

2) We need to propose an efficient algorithm corresponding

to the SDCS model.

To solve the first problem, we formulate the optimization

problem as

min
PQ−1

2

µ (Φ)

s.t. |pi − pj | ≥ 2Q− 1, ∀i, j, i 6= j,
(24)

where |pi − pj| ≥ 2Q − 1, ∀i, j, i 6= j must be met to the

establishment of (23). Here, we design the pilot location with

given pilot entries to minimize the coherence µ(Φ). Instead

of exhaustive search, we found that the discrete stochastic

optimization (DSO) technique [29] can optimize an objective

function which can’t be evaluated analytically over a collection

of feasible parameters. A DSO based value pilot pattern design

algorithm is proposed in [5] to seek the optimal pilot pattern

within a single symbol. We can extend the algorithm to the

joint multi-symbols pilot pattern by simply increasing the

dimension, and obtain the optimal value pilot allocation Pval.

For simplicity, we give no more redundant illustration of the

DSO algorithm.

We will solve the second problem in next section. Here,

we would like to remind the readers that the sparse vectors

{sq}Q−1
q=0 in (23) could also be recovered using the conven-

tional DCS theory or CS theory.

To this end, our goal is to identify the sparse vectors

{sq}Q−1
q=0 . For a channel with sparsity K , QG (Q≪ N, JK <

G ≪ JL) pilot subcarriers are sufficient to estimate the

channel within J consecutive OFDM symbols.

IV. PROPOSED CHANNEL ESTIMATION ALGORITHM

In this section, a novel BSOMP algorithm is first proposed

to compute the channel parameters. Then, we use novel

smoothing treatments based on piecewise linear approximation

to reduce the modeling error.

A. The Proposed BSOMP Algorithm

Let us define S
∆
= (s0, . . . , sQ−1) ∈ CJL×Q. Considering

the joint-block-sparse structure in {sq}Q−1
q=0 , we are able to

obtain the enhanced distributed compressive channel estimate

by solving a L0-norm optimization problem, presented as

follows

Ŝ = arg min ‖u‖0, s.t. ‖Y −ΦS‖2 ≤ ε, (25)

where the vector u = (‖S0‖2, . . . , ‖SL‖2)T ∈ R
L×1 and S

l =
(sl0, . . . , s

l
Q) ∈ CJ×Q is the subblock of the matrix S. For

the reason that we have additional block structural constraint

on S, the SOMP algorithm for conventional DCS needs to

be adapted to obtain a more accurate solution, leading to the

following block-based SOMP (BSOMP) algorithm.

Algorithm 1 Block-based Simultaneous Orthogonal Matching

Pursuit for Channel estimation

Input:

Received signals: Y = ([Y]P0 , . . . , [Y]PQ−1);
Measurement matrix: Φ = (Φ0, . . . ,ΦL−1);
Sparsity: K .

Output:

S = (s0, . . . , sQ−1).
1: Initialize the iteration index i = 0, the sparse vector

S
0 = 0JL×Q, the residual r

0 = Y − ΦS
0 = Y, the

support vector Ω = [ΩT
0 , . . . ,Ω

T
L−1]

T = [0T
J , . . . ,0

T
J ]

T

with length JL.

2: Calculate the residual errors for all l ∈ {0, . . . , L− 1} as

ǫil = ‖ri −Φl(Φ
H
l Φl)

−1
Φ

H
l r

i‖22.

3: Among {ǫil}L−1
l=0 calculated above, find the index m with

the minimal residual error ǫim. Then update the support

vector Ω by Ωm = 1J .

4: Update ΦΩ by extracting the columns of Φ according to

the updated support vector Ω. And update the residual as

r
i = Y −ΦΩ(Φ

H
Ω
ΦΩ)

−1
Φ

H
Ω
Y.

5: i← i+ 1.

6: Repeat Steps 2 to 5 until i > K .

7: Based on the optimal least square (LS) estimate, we obtain

SΩ = (ΦH
Ω
ΦΩ)

−1
Φ

H
Ω
Y. Then S is calculated as S(Ω) =

SΩ, while the coefficient vectors out of the support are

denoted as S(Ω̃) = 0.

In each iteration of Algorithm 1, we first calculate the

residual errors for all l ∈ {0, . . . , L− 1} by Step 2. Then, we

search the optimal index to make the residual error minimal,

and add the corresponding index block to the current support

set by Step 3. Note that we update J entries of the support

vector simultaneously. In Step 4 we update the measure matrix

Φ at the resolution of submatrix with J column vectors, which

is different from the SOMP algorithm that only updates one

column in each iteration.

Note that Q sparse coefficient vectors {sq}Q−1
q=0 could also

be recovered based on conventional DCS theory with SOMP

algorithm, or recovered individually based on the CS theory

with OMP algorithm. However, SDCS-BSOMP based scheme

can significantly improve the recovery accuracy compared with

CS-OMP and DCS-SOMP based schemes, which is due to

the fact that the explicit use of joint-block-sparsity in SDCS-

BSOMP based scheme improves the success rate in searching

the location of nonzero values.
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Fig. 3: Piecewise linear model within a single OFDM symbol

After recovering coefficient vectors {sq}Q−1
q=0 by Algorithm

1, we can calculate the CE-BEM coefficients {c(j)q }Q−1
q=0 (j ∈

[0, J−1]) based on (19), (20), and further obtain {h(j)
l }L−1

l=0 ac-

cording to (3). In next subsection, we will carry out smoothing

treatment to the already estimated channel tap h
(j)
l to reduce

the CE-BEM modeling error.

B. Smoothing Treatment

The CE-BEM could introduce large modeling error, making

it difficult to approximate DS channels accurately. In order

to reduce the modeling error, we present two smoothing

treatment methods to the already estimated channel tap hn,l.

The first method is carried out within a single OFDM symbol

and is related to single-symbol channel estimation scheme,

while the second one is performed within multiple OFDM

symbols and is related to joint multi-symbols channel esti-

mation scheme. Both of our methods are based on piecewise

linear approximation model, which has been proved in [23] to

be a good estimate of DS channel even for normalized Doppler

of up to 0.2.

1) Piecewise Linear Smoothing within a Single OFDM

Symbol: We can approximate the CIR of each subchannel

by a linear model during one OFDM symbol. For the sake

of simplicity, we drop the index j. Let us define have1
l

∆
=

E
(
h0,l, . . . , hN/2−1,l

)
, have2

l
∆
= E

(
hN/2,l, . . . , hN−1,l

)
,

where hn,l is the already estimated channel tap. Consider-

ing the linear model proposed in [23], we can approximate

hl

(
N
4 − 1

)
and hl

(
3N
4 − 1

)
with the estimate of have1

l and

have2
l , respectively (see Fig. 3). Thus the discrete time gap

between have1
l and have2

l is N/2 and the slope of the l-th path

in the current OFDM symbol can be calculated as follows:

αl =
have2
l − have1

l

N/2
, l ∈ [0, L− 1]. (26)

Learned the knowledge above, the CIR of the l-th path at

time n via linear smoothing treatment can easily be derived

as

hn,l =

(

n+ 1− N

4

)

αl + have1
l , n ∈ [0, N − 1]. (27)

2) Piecewise Linear Smoothing within Multiple OFDM

Symbols: We define {h(j)ave
l }L−1

l=0 to denote the time average

of the already estimated CIR during the j-th OFDM symbol,

j-th symbol

time

(j-1)-th symbol (j+1)-th symbol

prefix prefixdata prefixdata data

( )1j ave

lh
-

( )j ave
lh

( )+1j ave

lh

mid-point mid-point mid-point

Fig. 4: Piecewise linear model within multiple OFDM symbols

represented as

h
(j)ave
l =

1

N

∑(j+1)(N+LCP )−1

n=j(N+LCP )+LCP

hn,l, l ∈ [0, L−1]. (28)

A significant finding in [23] is that when n = (N2 − 1),

|h(j)ave
l − h

(j)
l (n)| meets its minimum. Consequently, for the

l-th path, we can approximate h
(j)
l

(
N
2 − 1

)
with the estimate

of h
(j)ave
l , which is shown in Fig. 4. Obviously, we learn

that the discrete time gap between h
(j)ave
l and h

(j−1)ave
l is

(N +LCP ), so the estimate of the slope between the (j− 1)-
th and the j-th OFDM symbol can be obtained as follows

α
(j−1)
l =

h
(j)ave
l − h

(j−1)ave
l

N + LCP
, l ∈ [0, L− 1]. (29)

Similarly, the slope between the j-th and the (j+1)-th OFDM

symbol can be obtained as follows

α
(j)
l =

h
(j+1)ave
l − h

(j)ave
l

N + LCP
, l ∈ [0, L− 1]. (30)

We can utilize both α
(j−1)
l and α

(j)
l to calculate the CIR of

the l-th path, denoted as h
(j)r1
l and h

(j)r2
l , respectively.

{

h
(j)r1
l (n) =

(
n+ LCP + 1 + N

2

)
α
(j−1)
l + h

(j−1)ave
l

h
(j)r2
l (n) =

(
n+ 1− N

2

)
α
(j)
l + h

(j)ave
l

,

(31)

where 0 ≤ n ≤ N − 1. Then by calculating the average of

h
(j)r1
l and h

(j)r2
l , we obtain more accurate CIR via piecewise

linear smoothing treatment, represented as

h
(j)
l =

1

2

(

h
(j)r1
l + h

(j)r2
l

)

, l ∈ [0, L− 1]. (32)

We will show in the simulation results in Section V that the

smoothing treatment in (27) and (32) can significantly improve

the DS channel estimation performance.

C. Algorithms Summary and Complexity Analysis

Now, we make a summary of our proposed SDCS based

joint multi-symbols channel estimation scheme. We first uti-

lize the DSO based value pilot pattern design algorithm

proposed in [5] to obtain the optimal value pilot alloca-

tion Pval. Then we estimate the coefficient vectors {sq}Q−1
q=0

based on Algorithm 1 and calculate the CE-BEM coefficients

{c(j)q }Q−1
q=0 (j ∈ [0, J−1]) based on (19), (20). Next, according

to (3), we can obtain {h(j)
l }L−1

l=0 (j ∈ [0, J − 1]). Finally, we
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carry out the smoothing treatment to the already estimated

channel tap h
(j)
l based on piecewise linear approximation

by (27), (31), (32), and obtain the final results for channel

estimation.

Here, we briefly discuss the computational complexity of

our proposed scheme. Obviously, the main computational

burden comes from Algorithm 1. In Step 2, owing to

the priori information of Φl, the complexity of calculating

Φl(Φ
H
l Φl)

−1
Φ

H
l could be omitted. Then for each iteration,

Step 2 can be implemented with the complexity in the order

of O
(
G2Q

)
. In step 4, we obtain the least square (LS) solu-

tion and perform the residual update with the complexity of

O
(
GJ2K2 + J3K3 +G2Q

)
and O (GJKQ), respectively.

Thus, the total complexity of the BSOMP algorithm with K
iterations is O

(
GJ2K3 + J3K4 +G2KQ+GJK2Q

)
for J

consecutive OFDM symbols. In a practical application, J ,

K and Q are constant parameters and much smaller than

G. Consequently, we obtain the approximate complexity of

Algorithm 1 in the order of O
(
G2

)
.

V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation studies are performed to show the

advantage of our proposed channel estimation scheme. First,

based on the joint multi-symbol channel estimation model,

we compare the performance of the proposed SDCS scheme

with conventional DCS and CS schemes. Then, we present

comparisons between our proposed joint multi-symbols chan-

nel estimation scheme and conventional single-symbol channel

estimation scheme presented in [5].

For the simulations, we generate DS channels conforming

Jakes’ Doppler profile. The parameters of OFDM symbols are

based on LTE standard [30], listed in Table I.

TABLE I: PARAMETERS OF THE SIMULATION

Parameters Values

Number of subcarriers N = 512

Length of CP LCP = 64

Length of CIR L = 64

Nonzero taps K = 6

Subcarrier spacing ∆f = 15 KHz
Bandwidth B = 7.68 MHz

CE-BEM order Q = 3

Carrier frequency fc = 3 GHz
Modulation QPSK

The sparse multiple channel hn,l has K = 6 nonzero

channel taps, which are randomly distributed among L = 64
taps. The channel gain of each path is assumed to obey

complex Gaussian distributed according to CN (0, 1
K ). The

variation of the channel is characterized by the normalized

Doppler shift (NDS), calculated as vDmax = fcv
c△f . To be able

to approximate the DS channel by a CE-BEM, we use the

standard rule of thumb Q ≥ 2vDmax+1 to satisfy the Nyquist

criterion. In all simulation cases, we have vDmax ≤ 1 such

that Q = 3 could be adequate [31]. Further, we set the average

power of the pilots to be equal to the average power of the

data symbols.

In order to satisfy (13) which guarantees the J consecutive

OFDM symbols sharing the same path delays, we set the
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/d
B

CS w/o smoothing

CS with smoothing

DCS w/o smoothing

DCS with smoothing

SDCS w/o smoothing

SDCS with smoothing

Fig. 5: Comparison of the NMSE performance between the proposed SDCS scheme and

the conventional DCS/CS scheme with 350 km/h

number of multiple OFDM symbols that are jointly estimated

to be J = 3. The average number of pilot subcarriers within a

OFDM symbol in our proposed joint multi-symbol estimation

scheme is P = (2Q − 1)G/J = 5× 20 = 100 with G = 60.

However, in the conventional single-symbol estimation scheme

[5], the number of pilot subcarriers needed is fixed to P = 120.

To qualify the channel estimation performance, we calcu-

late the normalized mean square error (NMSE) of different

estimators, which is expressed as

NMSEh̄ (dB) = 10log10




E
(∥
∥h̄− h̄estimated

∥
∥
2

2

)

E
(∥
∥h̄

∥
∥
2

2

)



 (33)

where h̄estimated denotes the estimated CIR. Note that in the

above criterion, the true channel h̄ is used.

A. NMSE Comparison between SDCS and DCS/CS

In Figs. 5-6, we show the NMSE comparison of different

estimators based on the joint multi-symbol channel estimation

model. Meanwhile, the channel estimation accuracy improve-

ment due to the piecewise linear smoothing treatment within

multiple OFDM symbols is also demonstrated.

In Fig. 5, We have the speed v = 350 km/h (vDmax =
0.065). Considering the curves without smoothing, it is clearly

shown that the SDCS scheme is superior to the DCS and

CS schemes. For example, at NMSE = −20 dB, the SDCS

scheme achieves a signal to noise ratio (SNR) gain of about

6 dB compared with DCS scheme and 13 dB compared with

CS scheme.

Similar to our expectation, the smoothing treatment within

multiple OFDM symbols can reduce the CE-BEM modeling

error and improve the performance of channel estimation

accuracy. It can be observed in Fig. 5 that the NMSE perfor-

mance is significantly improved by smoothing. For example,

at NMSE = −20 dB, the SDCS scheme achieves an SNR

gain of around 6 dB from the smoothing treatment.



9

0 5 10 15 20 25 30
−35

−30

−25

−20

−15

−10

−5

0

SNR/dB

N
M

S
E

/d
B

CS w/o smoothing,P=100

CS with smoothing,P=100

DCS w/o smoothing,P=100

DCS with smoothing,P=100

SDCS w/o smoothing,P=100

SDCS with smoothing,P=100

DCS w/o smoothing,P=140

DCS with smoothing,P=140

P=100

P=140

Fig. 6: Comparison of the NMSE performance between the proposed SDCS scheme and

the conventional DCS/CS scheme with 500 km/h

In order to further illustrate the better performance of

our proposed SDCS scheme for higher vehicle speed, we

carry out the similar comparison in Fig. 6 with the speed

of v = 500 km/h (vDmax = 0.093). A similar superiority

of our proposed SDCS scheme can be observed. And we can

also observe the good performance of the smoothing treatment.

However, compared with all curves in Fig. 5, the performance

of the corresponding curves in Fig. 6 are degraded, which is

mainly due to the CE-BEM modeling error getting larger when

Doppler shift increases. In Fig. 6, we also depict curves of the

DCS scheme with the average number of pilots P = 140. It

is shown that with the similar NMSE performance between

SDCS and DCS, the SDCS scheme incurs an overhead of

η = 19.5%, while the DCS scheme has an overhead of

η = 27.3%. This clearly demonstrates the superiority of our

proposed SDCS scheme over the DCS scheme in terms of

overhead.

B. NMSE Comparison between Joint Multi-symbol Channel

Estimation and Single-symbol Channel Estimation

In this subsection, we make the NMSE comparison be-

tween our proposed joint multi-symbol channel estimation

scheme and the conventional single-symbol channel estima-

tion scheme. Here, our proposed joint multi-symbol scheme

represents the SDCS-based method combined with piecewise

linear smoothing within multiple OFDM symbols, while the

single-symbol scheme denotes the channel estimation scheme

in [5] combined with piecewise linear smoothing within a

single OFDM symbol or combined with a smoothing treat-

ment via discrete prolate spheroidal sequences (DPSSs) [5].

As a reference, we also plot the curves without smoothing

treatment.

In Fig. 7, we carry out the comparison in the condition of

v = 500 km/h. It is clearly shown that the proposed joint

multi-symbol scheme significantly outperforms the single-

symbol scheme. For example, at NMSE = −20 dB, the

proposed joint multi-symbol scheme achieves an SNR gain
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Fig. 7: Comparison of the NMSE between the joint multi-symbol scheme and the

conventional single-symbol scheme with 500 km/h

of around 3 dB compared with the single-symbol scheme.

Furthermore, the single-symbol scheme incurs the number of

pilots P = 120 within an OFDM symbol. In contrast, the

proposed joint multi-symbol scheme only has the average

number of pilots P = 100, which represents an improvement

in overhead. This apparently demonstrates the superiority of

our proposed joint multi-symbol scheme over the single-

symbol scheme in terms of both estimation accuracy and

spectral efficiency.

We can also observe from Fig. 7 that as to the single-

symbol scheme, the proposed smoothing treatment is superior

to the method via DPSSs proposed in [5] in the condition of

SNR > 15 dB, and both the methods share the similar perfor-

mance at low SNR. Due to this reason, we only consider the

single-symbol scheme combined with the proposed smoothing

treatment in the following simulation.

To see how Doppler shift influences the performance of

channel estimation, Fig. 8 shows the NMSE performance

versus the NDS for the case of SNR = 20 dB. The graph

shows that with the increase of the NDS, the NMSE curves

rise, which is mainly caused by the CE-BEM modeling error

getting larger when Doppler shift increases. It can also be

observed from Fig. 8 that the proposed joint multi-symbol

scheme outperforms the single-symbol scheme when the NDS

is less than 0.13 (the speed v = 702 km/h), while we obtain

the opposite conclusion when the NDS is greater than 0.13.

This is mainly caused by the fact that the piecewise linear

smoothing within multiple symbols fails to approximate the

DS channel when the Doppler shift gets big enough. For

practical situations, the vehicle speed is usually less than

702 km/h, so our proposed joint multi-symbol scheme is

meaningful.

C. BER Performance

In Fig. 9, we compare the coded bit error rate (BER)

performance of the proposed joint multi-symbol scheme with

the single-symbol scheme. As a reference, we also plot the
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scheme and the conventional single-symbol scheme with 500 km/h

BER performance under the ideal channel, which means that

HF in (7) is available at the receiver. Here, the rate-1/2 con-

volutional code is applied and the zero-forcing (ZF) equalizer

is adopted. It is clearly shown that the proposed joint multi-

symbol scheme significantly outperforms the single-symbol

scheme. For example, at BER = 10−2, the proposed joint

multi-symbol scheme achieves an SNR gain of around 1 dB

compared with the single-symbol scheme, and is only about

0.2 dB away from the case with perfect channel knowledge.

VI. CONCLUSION

In this paper, we presented a novel SDCS based joint multi-

symbol channel estimation scheme over a DS channel. By uti-

lizing the CE-BEM and designing a special sparse pilot pattern

within multiple OFDM symbols, we transformed the original

sparse DS channel into a joint-block-sparse channel model,

and proposed a novel BSOMP algorithm to exploit the jointly

sparse block structure of the coefficient vectors. To reduce

the modeling error induced by the CE-BEM, two smoothing

treatment methods via piecewise linear approximation were

proposed. Simulation results demonstrate the proposed SDCS-

based scheme achieves higher estimation accuracy than the

conventional DCS-based and CS-based scheme when track-

ing the joint multi-symbol estimation model, and the pro-

posed joint multi-symbol scheme outperforms the conventional

single-symbol scheme in terms of both estimation accuracy

and spectral efficiency.

APPENDIX

For convenience, we temporarily ignore Z of illustration.

From (7), we have

Y
(j) =

Q−1
∑

q=0

I
〈q−Q−1

2 〉

N D

{

X
(j)

}

VLc
(j)
q . (34)

Then (8) can be rewritten as

Y =

Q−1
∑

q=0

I
〈q−Q−1

2 〉

JN D {X}(IJ ⊗VL)







c
(0)
q

...

c
(J−1)
q






. (35)

Let us define the q-th (q ∈ [0, Q − 1]) pilot subcarriers

selector matrix as Rq
∆
= [IJN ]Pq

∈ CG×JN . It then follows

from (35) that

[Y]Pq
= Rq

Q−1
∑

q′=0

I
〈q′−Q−1

2 〉

JN D {X}(IJ ⊗VL)







c
(0)
q′

...

c
(J−1)
q′






.

(36)

Due to RqI
〈q′−Q−1

2 〉
JN = Rq−q′+Q−1

2
, then we obtain

[Y]Pq
=

Q−1
∑

q′=0

Rq−q′+Q−1
2

D {X}(IJ ⊗VL)







c
(0)
q′

...

c
(J−1)
q′






.

(37)

Considering the pilot subcarriers

[X]Pq
=

{
Pval q = Q−1

2

0 q 6= Q−1
2

, (38)

we can extract nonzero values from X only if q′ = q.

Consequently, (37) can be rewritten as

[Y]Pq
= D {Pval} [IJ ⊗VL]Pval







c
(0)
q

...

c
(J−1)
q







(39)

where 0 ≤ q ≤ Q− 1. Until now, we can obtain (18).
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