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Blind Reconstruction of Reed-Solomon Encoder
and Interleavers over Noisy Environment
Swaminathan R, A. S. Madhukumar, Senior member, IEEE, Guohua Wang, and Ting Shang Kee

Abstract—Blind estimation of code and interleaver parameters
is useful in smart storage systems and ubiquitous communication
applications such as adaptive modulation and coding, reconfig-
urable radio systems, non-cooperative radio systems, etc. In this
paper, we analyze Reed-Solomon (RS) encoded data stream and
propose blind estimation algorithms to identify RS code param-
eters. We also provide algorithms to estimate block interleaver
parameters from RS coded and block interleaved data stream.
In addition, synchronization compensation through appropriate
bit/symbol positioning is integrated with the proposed code and
interleaver parameter estimation algorithms. Simulation results
validating the proposed algorithms are given for various test
cases involving both erroneous and non-erroneous scenarios.
Moreover, the accuracy of estimation of RS code and block
interleaver parameters are also given with detailed inferences
for different modulation schemes, codeword length, and code
dimension values. It has been inferred that the accuracy of
parameter estimation improves with decrease in code dimension
and codeword length values of RS codes. Further, the accuracy
of estimation of lower modulation order schemes is better when
compared to higher modulation order schemes as expected. It
has also been noted that the proposed code and interleaver pa-
rameter estimation algorithms for noisy environment consistently
outperform the algorithms proposed in the prior works.

Index Terms—Adaptive modulation and coding, blind recon-
struction, block interleaver, data storage systems, non-cooperative
systems, and Reed-Solomon (RS) codes

I. INTRODUCTION

Forward error correcting (FEC) codes and interleavers are
primarily used to counteract random and burst errors, respec-
tively, in digital storage and communication systems. Blind
reconstruction of code and interleaver parameters plays a vital
role in non-cooperative scenarios [1] and [2], which exist
particularly in military, spectrum surveillance, signals intelli-
gence (SIGINT), and communications intelligence (COMINT)
systems. Further, it will also provide additional advantages in
applications such as adaptive modulation and coding, satellite
communication systems, data storage systems, cognitive radio
or reconfigurable receiver systems, etc. It is mandatory to
reconstruct/estimate the FEC code parameters at the receiver
in the case of non-cooperative systems. This is because,
complete information about the code parameters used in
the transmitter may not be available at the receiver. In the
case of adaptive modulation and coding (AMC) systems,
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modulation and coding parameters are usually communicated
to the receiver through control channel. Blind recognition
of related parameters will lead to conservation of channel
resources in such cases as mentioned in [3]-[5]. It is to be
noted that wireless sensor networks (WSNs) also adopt AMC
and the usage of blind parameter estimation algorithms help
to reduce transmission overheads and total energy consump-
tion of WSNs [3]. In most of the broadcast/communication
applications, the code and interleaver parameters are known
at the receiver. With the evolution of modern digital com-
munication systems, designing separate decoding system for
every broadcast/communication application is a costly and a
tedious process. Therefore, it is essential to design an intel-
ligent broadcast/communication receiver system which adapts
itself to any specific broadcast/communication applications as
suggested in [6] and [7]. In addition, it is also mandatory to
blindly estimate the code and interleaver parameters for the
intelligent receiver system or reconfigurable cognitive-radio-
based broadcast/communication receiver system in order to
adapt to the variations in the channel coding schemes for
extracting the original data symbols [1]. Apart from the above
applications, the parameter estimation techniques is also useful
in the study of DNA sequences to identify possible error
correcting codes in the genetic code [8] and [9].

Various methods for the blind estimation of coding and
interleaver parameters are available in the recent literature. In
[6]-[10], the blind recognition of convolutional code parame-
ters was reported. In addition, interesting dual code properties
were proposed in [11] for blind parameter estimation of
convolutional codes. It is to be noted that the parameter
estimation of convolutional codes was restricted to binary
field (i.e. Galois Field GF(2)) in [6]-[11] and was extended
to GF (2m) case in [12] assuming noiseless environment. The
blind recognition of binary cyclic codes was carried out in
[13]. In [14], the blind recognition algorithms were proposed
for estimating punctured convolutional code parameters. In
[15], an algebraic method for identification of puncturing
pattern over noisy transmission was proposed. Recently, in
[16], code classification algorithms were proposed to classify
the incoming FEC coded symbols among block coded, con-
volutionally coded, and uncoded symbols. Further, in [17],
the blind recognition of codeword length for various non-
binary error correcting codes was extensively studied for noisy
environment. In [18], the blind estimation of Reed-Solomon
(RS) encoder was reported for noisy scenario. The algorithm
in [18] was based on Barbier’s dual code method [19]. The
blind encoder identification technique based on the average
log-likelihood ratio (LLR) of syndrome a posteriori probability
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(SPP) was proposed for low-density parity-check (LDPC), RS,
and convolutional codes in [3], [4], and [5], respectively.

Interleaver, which follows FEC encoder, plays a vital role
in communication and storage systems to distribute the burst
errors. In general, the systematic interleavers can be classi-
fied into block and convolutional interleavers. Algorithms for
parameter estimation of block interleaver were proposed and
analyzed in [19] and [20]. Here, the received data matrix
is converted into row or column echelon form using Gauss-
Jordan elimination through pivoting (GJETP) process [21].
The algorithm in [19] estimates the interleaver period based
on the number of ones in row echelon form. The interleaver
period along with the number of rows and columns of block
interleaver matrix were estimated in [20] for convolutional
encoded data based on the number of zeros in column echelon
form. It is to be noted that the methodologies in [19] and
[20] were valid only for binary coded data. The interleaver
period estimation algorithm for block interleaver was extended
to non-binary (RS coded) data in [22]. In [23]-[25], the
algorithms for blind estimation of convolutional interleaver
parameters were reported assuming linear block encoded,
convolutional coded, and RS coded data symbols, respectively.
However, the algorithms in [23] and [24] for noisy environ-
ment were restricted to binary field and the algorithm was
restricted to noiseless environment in [25]. Finally, the code
classification and code parameter estimation techniques for
various FEC codes over non-erroneous scenario were studied
in [1] with greater details.

RS codes, which is a special class of non-binary Bose-
Chaudhuri-Hocquenghem (BCH) codes [26], are widely used
in data storage, deep space, Digital video broadcasting (DVB),
and satellite communication systems. Further, block inter-
leavers play a vital role in error control systems compared to
other interleavers. In this manuscript, we propose algorithms
for estimating the parameters of block interleavers and associ-
ated RS codes. RS outer code followed by interleaver plays a
vital role in concatenated codes, which are more prominently
used in DVB-Terrestrial (DVB-T) systems [27] and compact
disk (CD). Two levels of coding (i.e. inner and outer code) are
usually applied to achieve desired error performance in case of
serial concatenated codes. The input data is first encoded using
outer code and then sent to interleaver. The interleaved data
is further encoded using inner code. RS outer code followed
by interleaver and convolutional inner code are widely used
in applications such as space communication, DVB [27], and
worldwide interoperability for microwave access (WiMAX)
systems.

The following sections discuss the limitations of the existing
approaches within the context of current research and major
contributions of the proposed work.

A. Motivations

The main motivations behind the proposed work are given
as follows:
• In a non-cooperative system, it is always mandatory

to recognize the code and interleaver parameters at the
receiver for decoding and de-interleaving, respectively.

• To propose an intelligent broadcast or communication re-
ceiver system which adapts itself to any specific broadcast
or communication applications by estimating the code
and interleaver parameters.

• Previously proposed algorithm in [17] for blind recon-
struction of RS encoder can recognize only codeword
length. However, generator polynomial and code dimen-
sion are mandatory for decoding RS coded symbols.

• The LLR-based technique proposed for RS codes in
[4] assumes a predefined candidate set of RS encoders
at the transmitter and receiver. Further, the bit position
adjustment parameter to achieve time synchronization is
not recognized.

• In the prior works, the block interleaver parameter estima-
tion algorithms were restricted to convolutional encoded
data. Furthermore, only interleaver period of block inter-
leaver was estimated for non-binary RS codes and the
same is not sufficient to de-interleave the coded symbols.
Therefore, to the best of our knowledge, algorithms or
methodologies have not been proposed for estimating
all block interleaver parameters considering non-binary
codes along with symbol position adjustment parameter
to achieve time synchronization.

• It is also mandatory to propose algorithms for blind
estimation of interleaver and RS outer code parameters
to complete the parameter estimation process of serial
concatenated codes.

• Finally, the accuracy of estimation of RS code and inter-
leaver parameters and its inferences are not extensively
reported in the literature.

B. Contributions
The major contributions of this manuscript are given as

follows:
• Algorithms for the blind recognition of RS code pa-

rameters such as codeword length n, code dimension k,
number of bits per symbol m, primitive polynomial p, and
generator polynomial g(x) are given for non-erroneous
(noiseless) and erroneous (noisy) scenarios.

• Algorithms are proposed for the joint recognition of
RS code and block interleaver parameters for erroneous
(noisy) scenario. Matrix and helical scan interleavers are
the types of block interleavers taken into consideration
in the present work. Moreover, interleaver period β,
number of rows Nr and columns Nc of interleaver matrix,
and helical array step size d are the block interleaver
parameters estimated from the incoming erroneous, non-
synchronized, and non-binary coded data symbols.

• Bit/symbol position adjustment to achieve frame synchro-
nization is also integrated with the proposed code and
interleaver parameter estimation algorithms.

• Accuracy of parameter estimation of RS codes and block
interleavers for various test cases considering different
modulation schemes, codeword length, and code dimen-
sion values is demonstrated to prove the robustness of
the algorithms. M−ary quadrature amplitude modulation
(M−QAM) and M−ary phase-shift keying (M−PSK)
schemes are considered in our simulation studies.
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• Finally, performance of the proposed algorithms is also
compared with the prior works reported in the literature.

The proposed algorithms can be integrated with convolu-
tional inner code parameter estimation algorithms proposed
in [6]-[10] to complete the parameter estimation process of
serial concatenated codes. However, in this manuscript, we
have restricted our work to the estimation of RS code and
block interleaver parameters alone. It is also to be noted that
together with the blind channel estimation techniques given
in [28] and [29], the proposed code and interleaver parameter
estimation techniques with blind frame synchronization will
pave the way for designing a blind/intelligent/reconfigurable
receiver system.

C. Organization of the manuscript

The manuscript is organized as follows. In Section II, the
blind reconstruction of RS encoder over non-erroneous and
erroneous scenarios is discussed with greater details. Further,
in Section III, the parameter estimation algorithms for block
interleavers over RS codes are given. In Section IV, simulation
results and related discussions are given for various case
studies. Finally, concluding remarks are given in Section V.

II. PARAMETER ESTIMATION OF RS CODES WITHOUT
INTERLEAVER

Here, in this section, we discuss the parameter estimation
of RS codes without interleaver. Firstly, a brief introduction
about RS codes is given. After that the parameter estimation
process is explained with the help of a block diagram. Further,
methodologies for parameter estimation over erroneous and
non-erroneous scenarios are discussed.

A. Reed-Solomon Codes

RS codes belong to a special class of non-binary BCH
codes. The code symbols generated from RS codes belong
to GF (2m), where m denotes the number of bits per symbol
and m≥3. Let α be a primitive element of GF (2m) such that
α2m−1 =1. In the case of t error correcting (n, k) RS codes,
α, α2, · · ·, α2t are the roots of the generator polynomial g(x)
with degree n− k, which is given by

g(x)= lcm(φ1(x), φ2(x), ..., φ2t(x)), (1)

where φi(x) is the minimal polynomial of αi. Since αi is
an element of GF (2m), φi(x) =x − αi. Hence, g(x) can be
written as

g(x) = (x− α)(x− α2) · · · (x− α2t)

= g0 + g1 x+ g2 x
2 + · · ·+ g2t−1 x

2t−1 + x2t (2)

From (2), it is observed that g(x) has 2t+1 non-zero terms.
Since g(x) is n − k degree polynomial, it can be written as
n−k=2t. In a nutshell, RS code with symbols from GF (2m)
has the following parameters [26]:
• Codeword length n=2m − 1
• Number of parity check symbols n− k=2t
• Code dimension k = 2m − 1− 2t
• Minimum hamming distance dmin =2t+ 1

In this manuscript, we denote RS encoded data symbols as
RS(n, k,m, p), where n, k, m, and p denote the codeword
length, code dimension, number of bits per symbol, and integer
representation of primitive polynomial p(x), respectively.

B. Code parameter estimation process

The generic block diagram for the parameter estimation
of RS codes is given in Fig. 1. The RS coded symbols
are converted into binary data and then modulated using
appropriate modulation schemes for storage or transmission.
In the receiver side, after demodulation, the RS code and
bit position adjustment parameters are estimated from binary
coded data symbols by varying m, corresponding primitive
polynomials p(x), and bit position adjustment φ. We also
discuss the parameter estimation when the receiver frames are
not properly synchronized. In order to analyze such cases, we
introduce bit offset at the receiver. The receiver only knows
that the incoming data is RS coded without knowing the code
parameters.

C. Parameter estimation over non-erroneous scenario

The parameter estimation of RS codes over non-erroneous
scenario has been explained using Algorithm 1. The incoming
binary symbols after demodulation are converted into non-
binary RS coded symbols while simultaneously varying m,
primitive polynomials p(x) corresponding to m, and bit posi-
tion adjustment parameter φ. Note that p=primpoly(m, ‘all′)
returns all primitive polynomials p(x) corresponding to m in
an integer form, where m≥3. For instance, p=37 represents
the polynomial p(x) = x5 + x2 + 1 due to the fact that
3710=1 0 0 1 0 12. After converting the incoming binary data
symbols into non-binary symbols between 0 and 2m − 1, a
Galois field (GF) array is created. This array comprises of GF
elements between 0 and 2m − 1 and it interprets the integers
in the array with respect to a specific primitive polynomial
for that field. The GF array, which comprises of RS coded
symbols, is reshaped into a matrix S of size a×b, where a and
b denote the number of rows and columns of S, respectively.
Since the matrix contains coded data symbols, it is called
data matrix. The rank and rank ratio of S are calculated by
performing finite-field Gauss elimination process [22]. The
rank ratio refers to the ratio of the rank of a matrix to the
number of columns. The rank of a matrix is the number
of linearly independent rows/columns of a matrix. It can be
obtained by transforming the given matrix into its row/column
echelon form using Gauss elimination method. The number
of non-zero rows/columns of row/column echelon form gives
the rank. In this paper, column-wise operation is performed
and the column echelon form of S is denoted by F . Please
note that the similar operations can be performed row-wise
as well. As RS coded symbols belong to finite-field or GF,
finite-field Gauss elimination method has to be used instead
of Gauss elimination to evaluate rank and rank ratio. From
the rank ratio values, RS code parameters m, n, k, and p(x)
along with bit position adjustment parameter φ are estimated.
Note that when rank of S is equal to min(a, b) or rank ratio
is equal to unity or when all the columns and rows of S are
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Fig. 1. Generic block diagram for parameter estimation of RS codes

Algorithm 1: Estimation of RS code parameters (non-
erroneous scenario)
Notations: Let φ denotes the bit position adjustment to
achieve synchronization. b and a indicate the number of
columns and rows of data matrix S, respectively. The
rank and rank ratio of S are denoted by ρ(m, p, φ) and
ρ′(m, p, φ), respectively and F denotes the column
echelon form of S. Finally, mest, nest, kest, pest, and φest
denote the estimate of m, n, k, p, and φ, respectively
Assumptions: a≥2b, m ∈ [mmin , mmax],
φ ∈ [0, ((2m − 1)m)− 1] and the incoming bit stream is
assumed to be RS encoded.
1: for m = mmin : mmax do

2: p=primpoly(m, ‘all′);
3: for φ = 0 : ((2m − 1)m)− 1 do

4: Shift φ bit positions and convert the binary
data symbols into the respective elements of GF
using p;
5: Reshape the RS encoded GF elements into a
data matrix S of size a×b, where b=2m − 1;
6: Use finite-field Gauss elimination process in
GF (2m) to convert S into F ;
7: Compute ρ(m, p, φ) from the number of
non-zero columns in F ;
8: Compute ρ′(m, p, φ)=ρ(m, p, φ)/b;

end
end
9: Obtain [mest, pest, φest]=argmin

m,p,φ
(ρ′(m, p, φ)),

nest =2mest − 1, and kest =ρ(mest, pest, φest);

linearly independent, then S is called full rank matrix. If the
rank of S is less than min(a, b) or rank ratio is less than unity
or when there is at least one column/row that is dependent on
other columns/rows, then S is called rank deficient matrix.

While varying m in Algorithm 1, it is to be noted that b
is also varied, since b= 2m − 1. The correct combination of
[m, p, φ], which minimizes rank ratio ρ′(m, p, φ), has been
chosen as the estimated RS code and bit position adjustment
parameters as mentioned in step 9 of Algorithm 1. The
reason for rank deficiency is explained as follows: Firstly,
we demonstrate the rank deficiency and full rank phenomena

using RS(7, 3, 3, 11). In Fig. 2(a) and Fig. 2(b), the rank ratio
and rank values of S are plotted against the number of columns
b by assuming that the incoming data is synchronized for RS
code RS(7, 3, 3, 11) considering non-erroneous and erroneous
scenarios, respectively. From Fig. 2(a), it is inferred that when
b is a multiple of n, rank deficiency is obtained. Further, for the
case when b is not a multiple of n, full rank is obtained. From
Fig. 2(b), it is observed that full rank is obtained irrespective
of the number of columns for erroneous scenario (detailed
explanation for Fig. 2(b) is given in Section II.D).

In the manuscript, we have used systematic encoding to
explain the rank deficiency and full rank phenomena with
better clarity. However, the proposed algorithms also work in
the case of non-systematic encoding. Due to inherent property
of systematic RS codes, n coded output data symbols depend
on k uncoded input data symbols or each parity symbol is a
linear combination of information symbols [22]. In the case
of non-systematic RS codes, each of n data symbols will be
a linear combination of k symbols [17]. Hence, α′ · n output
symbols of S depend on α′ ·k symbols, where α′ is an integer
and α′ ≥ 1. As depicted in Fig. 3, it is observed that α′

codewords in all the rows will be aligned properly in the
same column only for the case when b is a multiple of n i.e.
b=α′ ·n. Note that Fig. 3 is shown for the case when α′=1. If
the data (i.e. independent) and parity (i.e. dependent) symbols
in all the rows are aligned properly in the same column as
shown in Fig. 3, the linear relation is satisfied in all the rows.
Therefore, there will exist linear relations between columns
in S. After converting S into F through finite field Gauss
elimination process [22], all α′ · (n − k) dependent columns
in S will be eliminated. There will be only α′ · k non-zero
or independent columns out of b columns and hence, rank
deficiency will be obtained. The deficient rank value for the
case when b=α′ · n is given by α′ · k. The finite field Gauss
elimination process converts a given matrix, whose elements
belong to a finite field, into a row or column echelon form by
eliminating all the dependent rows or columns. In Algorithm
1, for the correct combination of [m, p, φ], the data and parity
symbols of α′ = 1 codeword in all the rows of S will be
aligned properly in the same column, which in turn will lead
to deficient rank. The reason for rank deficiency in the case
of RS codes is also explained in Appendix A using case study
1.
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Fig. 2. (a) Variation of rank ratio and rank versus number of columns for RS(7, 3, 3, 11) considering non-erroneous case (b) Variation of rank ratio and
rank versus number of columns for RS(7, 3, 3, 11) considering SER=3×10−2

Fig. 3. Structure of data matrix for the case when (a) b=n and (b) b 6=n

As depicted in Fig. 3, it is noticed that the data and parity
symbols of α′ codewords in all the rows are not aligned
properly in the same column for the case when b is not a
multiple of n i.e. b 6= α′ · n. If data and parity symbols of
a same code word are segregated in different rows and are
not aligned properly in the same column, then certain parity
symbols of a particular codeword cannot be represented as
a linear combination of message symbols. Hence, the linear
relation in a particular row will be affected, which in turn will
lead to disappearance of linear relations between columns in
S. Therefore, S will behave like a random matrix and will
not have any dependent columns. After converting S into F ,
no dependent columns will be eliminated and full rank will
be obtained. In Algorithm 1, the data and parity symbols of
α′=1 codeword in all the rows of S with b columns will not be

aligned properly in the same column for incorrect combination
of [m, p, φ], which in turn will lead to full rank. The reason
for full rank is also explained in Appendix A using case study
1.

Refer to [6], [7], [16], and [17] for further details regarding
the rank deficiency and full rank phenomena in block and
convolutional codes.

In a nutshell, assuming [mest, pest, φest] are correct values
of estimated parameters from Algorithm 1, if b = nest =
2mest −1, then the rank deficiency will be obtained. The rank
and rank ratio for b=nest are, respectively, given by

ρ(mest, pest, φest) = kest,

ρ′(mest, pest, φest) =
kest
b

=r , (3)
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where r is the code rate of RS codes. Similarly, if b is a
multiple of nest (i.e. b=α′ · nest), then ρ(mest, pest, φest) =
α′ · kest and ρ′(mest, pest, φest)=r.

However, if b 6= α′ · nest, then full rank will be obtained
i.e. ρ(mest, pest, φest) = b and hence, ρ′(mest, pest, φest) = 1.
Since only correct combination of [m, p, φ] gives deficient
rank, we obtain the RS code parameters and bit position
adjustment parameter which minimize ρ′(m, p, φ).

D. Parameter estimation over erroneous scenario

Since all the dependent columns in S will be eliminated
using finite-field Gauss elimination process, the number of
non-zero columns gives the deficient rank value in the case of
non-erroneous scenario. The proposed rank deficiency based
algorithm considering non-erroneous scenario fails for noisy
scenario [16], [19], and [22]. As stated before, full rank of
a matrix corresponds to the fact that all rows and columns
of the matrix are linearly independent. In addition, a matrix
would have deficient rank only when there is at least one
column/row that is dependent on other columns/rows. The
presence of transmission errors or white noise increases the
linear independence among rows/columns of a deficient rank
matrix [17]. It is because of this reason, the data matrix S
exhibits full rank feature irrespective of the number of columns
b in an erroneous environment. However, it is to be noted
that this linear independence increases with the noise level.
When the noise level exceeds a threshold value, the resulting
received data matrix S will not have any dependent columns
and will behave like a random matrix. Hence, full rank will
be obtained irrespective of b. For example, in Fig. 2(b), the
variation of rank ratio and rank values with respect to the
number of columns is shown for RS(7, 3, 3, 11) considering
the case when SER = 3×10−2. It is observed that full rank
is obtained irrespective of b. However, it is noticed that the
dependent columns in S will have less number of non-zero
elements in F compared to independent columns. Hence, it is
intuitive that the column echelon form of deficient rank matrix
over erroneous channel conditions will have less number of
non-zero elements compared to the full rank matrix. In the
case of full rank matrix, each element in the finite field will
occur with equally likely probability [22]. Thus, the rank
deficient matrix over erroneous channel conditions can be
identified based on the number of non-zero elements in F
instead of number of non-zero columns. Therefore, we modify
Algorithm 1 for erroneous scenario and RS code parameters
are estimated based on normalized non-zero-mean-ratio of
F using Algorithm 2. The normalized non-zero-mean-ratio,
which is denoted by µ′(m, p, φ) in Algorithm 2, is the ratio of
the sum of normalized mean value of the number of non-zero
elements in each column to the total number of columns of F .
Note that the normalization is done with respect to maximum
value.

Most of the steps (i.e. step 1 to 6) in Algorithm 2 are
similar to Algorithm 1. The only difference is the correct
combination of [m, p, φ], which minimizes normalized non-
zero-mean-ratio µ′(m, p, φ), has been chosen as the estimated
RS code and bit position adjustment parameters instead of

Algorithm 2: Estimation of RS code parameters (erro-
neous scenario)

Notations: Let us denote the mean value and normalized
mean value of number of non-zero elements in cth

column of F as σ(c,m, p, φ) and σ′(c,m, p, φ),
respectively. Further, the normalized non-zero-mean-ratio
is denoted as µ′(m, p, φ).
Assumptions: a≥ t b, where t is a constant and the
erroneous incoming bit stream is assumed to be RS
encoded.
1: for m = mmin : mmax do

2: p=primpoly(m,′ all′);
3: for φ = 0 : ((2m − 1)m)− 1 do

4: Shift the erroneous incoming binary data
symbols by φ bit positions and convert it into the
respective elements of GF using p;
5: Reshape the RS encoded GF elements into a
data matrix S of size a×b, where b=2m − 1;
6: Convert S into F using finite-field Gauss
elimination process;
7: Evaluate σ(c,m, p, φ), where c ∈ {1, 2, ..., b},
and normalize the obtained values with respect to
the maximum value;
8: Calculate µ′(m, p, φ), where

µ′(m, p, φ)=

∑b

c=1
σ′(c,m,p,φ)

b ;
end

end
9: Obtain [mest, pest, φest]=argmin

m,p,φ
(µ′(m, p, φ)) and

nest =2mest − 1;
10: Identify the number of roots of generator polynomial
and estimate n− k;
11: Obtain kest from n− k;
12: Obtain the generator polynomial g(x) from (2);

identifying the parameters based on rank ratio. It is to be
noted that the code polynomials share the roots of generator
polynomial. Hence, we evaluate the number of roots of more
than 100 code polynomials. It has been observed that in most
of the cases, the number of roots for code polynomials and
generator polynomial are the same though there exists few
cases with different number of roots. Hence, we adopt a
maximum likelihood approach to evaluate the number of roots
of the generator polynomial. Therefore, by identifying the
number of roots, 2t is estimated and for RS codes n− k=2t.
As nest is already known from Algorithm 2, kest is recognized
from n − k. After estimating the number of roots of code
polynomial, the generator polynomial g(x) is obtained from
(2).

III. PARAMETER ESTIMATION OF BLOCK INTERLEAVERS
OVER RS CODES

In this section, the parameter estimation of block inter-
leavers, which include matrix and helical scan interleavers,
over RS codes is discussed. A brief introduction about the
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Fig. 6. Generic block diagram for interleaver parameter estimation process over RS codes considering block interleavers

interleavers is given. After that the parameter estimation
methodologies for both the interleavers are reported.

A. Block interleavers
Since block interleavers are being used in most of the

communication and storage systems, we have taken the same
into consideration. The operation of a matrix-based block
interleaver is simple and straight forward. For neighboring
symbols to encounter independent fading, a matrix-based
block interleaver stores the data symbols row-wise in a matrix
of size Nr × Nc and reads column-wise, where Nr and
Nc denote the number of rows and columns of the matrix,
respectively. An example for matrix-based block interleaver
with Nr = 6 and Nc = 4 is shown in Fig. 4. Similarly, the
helical scan interleaver stores the data symbols row-wise in
a matrix of size Nr×Nc. However, the data symbols will be
interleaved in a helical fashion according to helical array step
size d unlike matrix-based block interleaver and d<Nr. It is
to be noted that the interleaver period for block interleavers is
given by β =Nr×Nc. In Fig. 5, the helical scan interleaver
operation with Nr=6, Nc=4, and d=1 is shown.

B. Interleaver parameter estimation process

A generic block diagram is given in Fig. 6, which shows
the interleaver parameter estimation process over RS codes.
Here, the interleaver block follows the RS encoder to coun-
teract the burst errors. The RS encoded and interleaved data
stream is transmitted using suitable modulation scheme. After
demodulation at the receiver, interleaver period β along with
RS code parameters (i.e. m, p(x), and n) and symbol position
adjustment parameter φ′ will be estimated. The interleaver
period is an intermediate parameter which is to be estimated
in order to identify Nr, Nc, and d. Subsequently, individual
block interleaver parameters and symbol adjustment parameter
will be estimated by de-interleaving with limited possible
combinations of interleaver parameters. The code dimension
k and generator polynomial g(x) will be estimated after de-
interleaving using the estimated interleaver parameters. The
receiver only knows that the incoming data is RS coded and
block interleaved without knowing the code and interleaver
parameters.
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Algorithm 3: Estimation of interleaver period (non-
erroneous scenario)
Notations: The rank and rank ratio of S are denoted by
ρ(m, p, b) and ρ′(m, p, b), respectively.
Assumptions: a≥2b, b ∈ [bmin , bmax] and the incoming
bit stream is assumed to be RS encoded and block
interleaved.
1: for m = mmin : mmax do

2: p=primpoly(m,′ all′);
3: for b = bmin : bmax do

4: Convert the incoming RS coded and block
interleaved binary data symbols into the
respective elements of GF using p;
5: Reshape the RS encoded GF elements into a
data matrix S of size a×b;
6: Convert S into F using finite-field Gauss
elimination process;
7: Compute ρ(m, p, b) from the number of
non-zero columns in F ;
8: Compute ρ′(m, p, b)=ρ(m, p, b)/b;

end
end
9: Obtain [mest, pest, best]=argmin

m,p,b
(ρ′(m, p, b)) and

nest =2mest − 1;

C. Parameter estimation over non-erroneous scenario

In this section, innovative algorithms are proposed for esti-
mating the block interleaver parameters from the RS encoded
data stream. Firstly, the algorithm for estimating interleaver
period (i.e. β = Nr ×Nc) over non-erroneous scenario is
proposed (refer to Algorithm 3).

Unlike Algorithm 1, b is varied from bmin to bmax in
Algorithm 3. The correct combination of [m, p, b], which
minimizes the rank ratio ρ′(m, p, b), has been chosen as the
estimated parameters as mentioned in step 9 of Algorithm 3.

We already know that the output n data symbols depend
only on k input symbols in the case of RS codes. Hence,
α′ · γ · n output symbols of S in a particular row depend on
α′ ·γ ·k input symbols, where γ and α′ are integers, α′≥1 and
γ ≥ 1. The message and parity symbols of α′ · γ codewords
in all the rows will be aligned properly in the same column
only for the case when b is a multiple of β i.e. b = α′ · β
and β is a multiple of n i.e. β=γ · n. Because of the proper
alignment similar to Fig. 3(a), there will exist linear relations
between the columns of S. Hence, after converting S into F ,
there will be only α′ · γ · k independent columns out of b
columns and the rank deficiency will be observed for the case
when b is a multiple of β. The deficient rank value is given by
α′·γ ·k. Similarly, if β is not a multiple of n, then it is expected
that the rank deficiency will be observed for the case when
b is a multiple of lcm(n, β) i.e. b= α′ · lcm(n, β) assuming
lcm(n, β)=Γ·n, where Γ is an integer and Γ≥1. In Algorithm
3, the data and parity symbols of α′ · γ or α′ · Γcodewords
in all the rows of S with b columns will be aligned properly
in the same column for the correct combination of [m, p, b],

which in turn will lead to deficient rank.
If b 6= α′ · β or b 6= α′ · lcm(n, β), then data and parity

symbols of α′ · γ or α′ · Γ codewords in all the rows will not
be aligned properly in the same column similar to Fig. 3(b).
Because of this the linear relations between the columns in
S will be affected and S will behave like a random matrix.
Since no dependent columns will be eliminated using finite
field Gauss elimination process, full rank will be obtained.
In Algorithm 3, the data and parity symbols of α′ · γ or
α′ · Γ codewords in all the rows of S with b columns will
not be aligned properly in the same column for the incorrect
combination of [m, p, b], which in turn will lead to full rank.
As only correct combination of [m, p, b] gives deficient rank,
we obtain interleaver period and RS code parameters which
minimize ρ′(m, p, b).

The rank deficiency and full rank phenomena of RS code
with block interleaver for the case when β is a multiple of n
is also explained using another case study given in Appendix
B.

It is also inferred from Algorithm 3 that βest =best for the
case when β is a multiple of n, where βest is the estimate of
interleaver period β. For the case when β is not a multiple of n,
lcm(nest, βest)=best. Note that βest or lcm(nest, βest)=best is
applicable when ρ′(mest, pest, best) is the only minimum value
in the search space. If there are multiple values of b for which
ρ′(m, p, b) is minimum, then the difference between successive
number of columns with rank deficiency gives the estimate of
βest or lcm(nest, βest). Let b = α′ · β and b′ = (α′ + 1) · β
denote two successive columns with deficient rank values for
the case when β=γ · n. From b′ − b, the interleaver period β
is identified. Similarly, lcm(n, β) is identified from b′ − b for
the case when β 6=γ · n and lcm(n, β)=Γ · n.

For further details regarding the rank deficiency and full
rank phenomena in case of FEC codes with interleaver, [16],
[19], [20], [22], and [24] can be referred.

In a nutshell, let the RS coded and block interleaved
symbols are reshaped into a data matrix S with b columns.
Assuming [mest, pest, best] are estimated correctly using Al-
gorithm 3, if β is a multiple of n i.e. β=γ ·n and b=α′ · β,
where γ and α′ are integers, then the rank deficiency will be
obtained. The deficient rank and rank ratio are, respectively,
given by

ρ(mest, pest, best) = α′ · γ · kest,

ρ′(mest, pest, best) =
ρ(mest, pest, best)

b
=r . (4)

However, if b 6=α′ · β, then full rank will be obtained.
Moreover, If β is not a multiple of n, then rank deficiency

will be obtained for the case when b is a multiple of lcm(n, β)
i.e. b = α′ · lcm(n, β). Assuming lcm(n, β) = Γ · n, where
Γ is an integer, the deficient rank and rank ratio values are,
respectively, given by

ρ(mest, pest, best) = α′ · Γ · kest,

ρ′(mest, pest, best) =
ρ(mest, pest, best)

b
=r . (5)

However, if b 6=α′ · lcm(n, β), then full rank will be obtained.
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Algorithm 4: Estimation of interleaver period (erroneous
scenario)
Notations: Let us denote the mean value and normalized
mean value of number of non-zero elements in cth

column of F as σ(c,m, p) and σ′(c,m, p), respectively.
Further, the normalized non-zero-mean-ratio is denoted
as µ′(m, p, b).
Assumptions: a≥ t b, where t is a constant, and the
erroneous incoming bit stream is assumed to be RS
encoded and block interleaved.
1: for m = mmin : mmax do

2: p=primpoly(m,′ all′);
3: for b = bmin : bmax do

4: Convert the incoming RS coded and block
interleaved binary data symbols into the
respective elements of GF using p;
5: Reshape the RS encoded GF array elements
into a data matrix S of size a×b;
6: Convert S into F using finite-field Gauss
elimination process;
7: Evaluate σ(c,m, p), where c ∈ {1, 2, ..., b},
and normalize the obtained values with respect to
the maximum value;
8: Calculate normalized non-zero-mean-ratio
µ′(m, p, b), where µ′(m, p, b)=

∑b

c=1
σ′(c,m,p)

b ;
end

end
9:Obtain [mest, pest, best]=argmin

m,p,b
(µ′(m, p, b)) and

nest =2mest − 1;

D. Parameter estimation over erroneous scenario

The methodology proposed for non-erroneous scenario
when applied to erroneous scenario will result in full rank
irrespective of the number of columns due to erroneous sym-
bols. Hence, Algorithm 3 is modified for erroneous scenario
and β or lcm(n, β) is estimated based on normalized non-
zero-mean-ratio of F i.e. µ′(m, p, b) using Algorithm 4.

It is observed from Algorithm 4 that βest = best for the
case when β is a multiple of n. For the case when β is
not a multiple of n, lcm(nest, βest) = best. Alternatively,
βest or lcm(nest, βest) can be estimated by observing the
difference between successive number of columns with lower
values of µ′(m, p, b). After estimating βest or lcm(nest, βest),
nest, mest, and pest, it is mandatory to estimate the number
of rows and columns of block interleaver i.e. Nr and Nc
(for both matrix-based and helical scan block interleavers),
step size for helical scan interleaver d, symbol position ad-
justment parameter φ′, and code dimension k of RS codes.
Algorithm 5 is proposed for estimating Nr, Nc, d, φ′, and
k. Firstly, the incoming binary data symbols are converted
into respective elements of GF (2m), where m=mest, using
the estimated primitive polynomial pest. After that the coded
symbols are shifted by φ′ symbol positions, where φ′ is
the symbol adjustment parameter, and de-interleaved with
limited possible combinations of interleaver parameters i.e.

Algorithm 5: Estimation of Nr, Nc, φ′, d, and k (erro-
neous scenario)

Notations : Let us denote ζest = lcm(nest, βest), φ′ as the
symbol position adjustment to achieve synchronization. d
denotes the helical array step size. Further, the
normalized non-zero-mean-ratio of F for matrix-based
and helical scan interleavers are denoted as
µ′(N ′r, N

′
c, φ
′) and µ′(N ′r, N

′
c, d, φ

′), respectively.
Finally, Nest

r , Nest
c , dest, φest

1 denote the estimate of Nr,
Nc, d, and φ′.
Assumptions : a≥ t b, φ′ ∈ [0 , ζest− 1], d ∈ [1 , N ′r− 1].
It is assumed that lcm(n, βest) or βest, mest, nest, and
pest are estimated correctly using Algorithm 4.
1: for φ′ = 0 : ζest − 1 do

2: Convert the incoming RS coded and block
interleaved binary data symbols into the respective
elements of GF using pest;
3: Get all possible values of δ′ that satisfy
lcm(nest, δ′)=ζest;
4: Get all possible combinations of two factors N ′r
and N ′c that satisfy N ′r N

′
c=δ′;

5: Shift the coded and interleaved non-binary
symbols by φ′ symbol positions;
6: De-interleave using N ′r and N ′c in the case of
matrix-based block interleaver;
7 De-interleave using N ′r, N

′
c, and d in the case of

helical scan interleaver;
8: Fix b as a multiple of nest;
9: Reshape the RS encoded GF elements into a data
matrix S of size a×b;
10: Convert S into F using finite-field Gauss
elimination process;
11: Evaluate µ′(N ′r, N

′
c, φ
′) for all possible values of

N ′r and N ′c in the case of matrix interleaver;
12: Evaluate µ′(N ′r, N

′
c, d, φ

′) for all possible values
of N ′r, N

′
c, and d in the case of helical scan

interleaver;
end
13: Matrix-based block interleaver: Obtain
[Nest

r , Nest
c , φest

1 ]= argmin
N ′

r,N
′
c,φ

′
(µ′(N ′r, N

′
c, φ
′));

14: Helical scan interleaver: Obtain
[Nest

r , Nest
c , dest, φest

1 ]= argmin
N ′

r,N
′
c,d,φ

′
(µ′(N ′r, N

′
c, d, φ

′));

15: Matrix-based block interleaver: Shift φest
1 symbol

positions and de-interleave using Nest
r and Nest

c ;
16: Helical scan interleaver: Shift φest

1 symbol positions
and de-interleave using Nest

r , Nest
c , and dest;

17: Identify the number of roots of generator polynomial
and estimate n− k;
18: Obtain kest from n− k;
19: Obtain the generator polynomial g(x) from (2);
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Fig. 7. Variation of ρ′(m, p, φ) with respect to [m, p, φ] for
RS(63, 45, 6, 67) assuming 64-QAM scheme, ∆ = 6, and non-erroneous
scenario

[N ′r, N
′
c] or [N ′r, N

′
c, d] as mentioned in steps 6 and 7 of

Algorithm 5. The de-interleaved symbols are reshaped into a
data matrix of size a×b, where b is fixed as a multiple of nest.
Using finite-field Gauss elimination process, the data matrix is
converted into its column echelon form F and the normalized
non-zero-mean-ratio of F is calculated for limited possible
combinations of interleaver and synchronization parameters
[N ′r, N

′
c, φ
′] or [N ′r, N

′
c, d, φ

′] as given in steps 11 and 12.
The corresponding interleaver and synchronization parameters
for which the normalized non-zero-mean-ratio reaches global
minimum gives the estimate of Nr, Nc, d, and φ′ as shown
in steps 13 and 14. Finally, the code dimension is estimated
from the number of roots of generator polynomial similar to
Algorithm 2.

In Algorithm 5, by fixing b as a multiple of nest,
the block interleaver parameters are estimated successfully
by searching the correct combination of [N ′r, N

′
c, φ
′] or

[N ′r, N
′
c, d, φ

′], which minimizes the normalized non-zero-
mean-ratio µ′(N ′r, N

′
c, φ
′) or µ′(N ′r, N

′
c, d, φ

′), respectively.
The reason for fixing b as a multiple of nest is given as fol-
lows: After de-interleaving using the correct block interleaver
parameters, the data symbols will be RS encoded. If b is fixed
as a multiple of nest, then the rank deficiency will be obtained
for RS coded data symbols. Equivalently, the normalized
non-zero-mean-ratio µ′(N ′r, N

′
c, φ
′) or µ′(N ′r, N

′
c, d, φ

′) will
be lower for rank deficient matrix in erroneous scenario.
However, if RS encoded data symbols are de-interleaved using
incorrect block interleaver parameters, it is highly impossible
to obtain deficient rank value by fixing b as a multiple of
nest due to misalignment of data and parity bits. Therefore,
µ′(N ′r, N

′
c, φ
′) or µ′(N ′r, N

′
c, d, φ

′) will be higher for incor-
rect combinations of block interleaver parameters. Thus, the
correct combination of [N ′r, N

′
c, φ
′] or [N ′r, N

′
c, d, φ

′], which
minimizes µ′(N ′r, N

′
c, φ
′) or µ′(N ′r, N

′
c, d, φ

′), respectively,
is chosen as the estimated block interleaver parameters as
mentioned in steps 13 and 14 of Algorithm 5. It is also to
be noted that b 6= ζest in Algorithm 5. This is because, if
b = ζest, then the rank deficiency will be observed for all

TABLE I
SIMULATION PARAMETERS

Modulation schemes BPSK, QPSK, 8-PSK, 8-QAM
16-PSK, 16-QAM, 32-QAM,
64-QAM, 256-QAM

Symbol error rate (SER) 0.001 to 0.1
Signal-to-noise ratio (SNR) ≥5 dB
Number of rows a=2b (for non-erroneous case)

and a > 2b (for erroneous
case)

RS Codes tested RS(7, 3, 3, 11),
RS(15, 7, 4, 19),
RS(15, 9, 4, 19),
RS(15, 11, 4, 19),
RS(31, 15, 5, 37),
RS(31, 19, 5, 37),
RS(31, 23, 5, 37),
RS(63, 45, 6, 67),
RS(255, 127, 8, 285)

Block interleaver parameters (a) Nr = 15 and Nc = 7 (b)
Nr =5, Nc =2, and d=4 (c)
Nr =5 and Nc =6

possible combinations of N ′r and N ′c. Hence, the normalized
non-zero mean ratio value will be approximately same for all
possible combinations, which will lead to wrong estimation of
Nr and Nc.

IV. SIMULATION RESULTS AND DISCUSSIONS

Firstly, various simulation parameters assumed in this sec-
tion are listed in Table I. For instance, if the receiver starts
receiving the modulated data symbols at ∆th symbol position
of χth RS code word, then time synchronization is achieved
after demodulation by shifting φ = (χ m (q − 1) + 1) −
(∆ M1 − M1 + 1) bit positions, where M1 = log2 Mand
q=2m, for a system without interleaver. Further, if the receiver
starts receiving the modulated data symbols at ∆th symbol
position of χ′ th interleaver block, then time synchronization
is achieved after shifting φ′=(χ′ζest+1)−∆ symbol positions.
It is to be noted that as the number of rows or t increases, the
accuracy of estimation improves for erroneous case.

A. Simulation results for estimation of RS code parameters

In Fig. 7, the variation of rank ratio ρ′(m, p, φ) is shown
with respect to [m, p, φ] for non-erroneous scenario, where
m denotes the number of bits per symbol, m ∈ [4 , 6], p
denotes the integer representation of primitive polynomial,
assuming RS(63, 45, 6, 67), 64-QAM scheme (i.e. M = 64
and M1 = 6), ∆ = 6, and χ = 1. From the curves, it
is inferred that for [m, p, φ] = [6, 67, 348], ρ′(m, p, φ) is
minimum and ρ′(m, p, φ) = r = 0.714, which validates (3).
Hence, RS code parameters mest =6, nest =63, pest =67, and
kest = ρ(m, p, φ) = 45 are recognized correctly using Algo-
rithm 1 for non-erroneous scenario. Moreover, the bit position
adjustment to achieve time synchronization (i.e. φest =348) is
also identified successfully using Algorithm 1.

In Fig. 8(a), the variation of normalized non-zero-mean-ratio
µ′(m, p) is shown with respect to [m, p], where m ∈ [3 , 8],
for RS(255, 127, 8, 285) considering synchronized scenario as-
suming 256-QAM scheme and SER=2×10−3. Since the coded
data is synchronized, we vary m and p alone in Algorithm 2 to
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Fig. 8. (a) Variation of normalized non-zero-mean-ratio µ′(m, p) with [m, p] for RS(255, 127, 8, 285) coded data symbols assuming 256-QAM scheme
and SER=2×10−3 (b) Variation of normalized non-zero-mean-ratio µ′(m, p, φ) with [m, p, φ] for RS(31, 15, 5, 37) coded data symbols assuming 16-QAM
scheme, ∆=2, and SER=10−2

evaluate normalized non-zero-mean-ratio. From the figure, it is
inferred that for [m, p] = [8, 285], µ′(m, p) reaches minimum
compared to other possible combinations. Hence, mest and
pest are identified successfully. From mest = 8, codeword
length nest = 255 is recognized correctly. Further, from the
number of roots of generator polynomial, nest−kest has been
estimated. From nest − kest, the code dimension kest = 127
has been recognized correctly.

Similarly, the variation of µ′(m, p, φ) with respect to
[m, p, φ], where m ∈ [3 , 5] and φ denotes the bit posi-
tion adjustment parameter, is shown in Fig. 8(b) assuming
RS(31, 15, 5, 37), 16-QAM scheme (i.e. M=16 and M1 =4),
∆ = 2, χ= 1, and SER = 10−2. From the plot, it is inferred
that µ′(m, p, φ) reaches minimum at [m, p, φ] = [5, 37, 151].
Therefore, the RS code parameters mest = 5, nest = 31,
and pest = 37 are estimated successfully using Algorithm 2.
Further, the number of roots of generator polynomial is also
estimated and is given by nest−kest =16. The code dimension
kest = 15 is recognized correctly from nest − kest. Finally,
the adjustment of bit position to achieve synchronization (i.e.
φest =151) is also identified correctly using Algorithm 2.

In Fig. 9(a) and 9(b), the accuracy of estimation of RS
codes considering RS(15, 9, 4, 19) is given for various M -
QAM and M -PSK schemes by varying the SNR value. It is
to be noted that additive white Gaussian noise (AWGN) is
considered. Here, it can be observed that as the modulation
order decreases, improvement in the accuracy of estimation is
observed, as expected.

In Fig. 10(a), the accuracy of estimation of RS codes
assuming n=15, m=4, and p=19 with 16-QAM scheme is
given for different code dimension values by varying the SER
value. From the plots, it can be observed that the accuracy of
estimation of RS code parameters deteriorates with increase
in the value of k or r. As r increases, it is always difficult to
classify rank-deficient and full-rank data matrices based on
µ′(m, p, φ) due to less number of dependent columns (i.e.
n − k). In Fig. 10(b), the accuracy of estimation plot by

varying the SER value is given for different RS codes such as
RS(63, 45, 6, 67), RS(31, 23, 5, 37), and RS(15, 11, 4, 19) for
16-QAM scheme assuming code rate r≈0.7. From the plots,
it is inferred that the accuracy of estimation deteriorates as n
increases.

B. Simulation results for estimation of interleaver parameters

According to Algorithm 4, the variation of normalized non-
zero-mean-ratio µ′(m, p, b) with respect to [m, p, b], where b
denotes the number of columns of data matrix S, is shown in
Fig. 11(a) for RS(7, 3, 3, 11) considering matrix-based block
interleaver assuming interleaver period β = 105, Nr = 15,
Nc = 7, 8-PSK constellation, ∆ = 4, and SER=8× 10−3.
Firstly, from the plot it is inferred that at [m, p, b]=[3, 11, 105],
µ′(m, p, b) reaches global minimum and hence, interleaver
period βest = 105 (i.e. best = 105) is estimated correctly.
Moreover, the RS code parameters mest =3, nest =23−1=7,
and pest = 11 are also recognized successfully. Since β is a
multiple of n, ζest = β is estimated using Algorithm 4. In
Fig. 11(b), the variation of normalized non-zero-mean-ratio
by fixing b= nest is given for the same case as assumed in
Fig. 11(a). According to Algorithm 5, the normalized non-
zero-mean-ratio µ′(N ′r, N

′
c, φ
′) is evaluated for all possible

values of [N ′r, N
′
c, φ
′]. From the figure, it is observed that at

[N ′r, N
′
c, φ
′] = [15, 7, 102], µ′(N ′r, N

′
c, φ
′) achieves minimum.

Therefore, by shifting 102 symbol positions (i.e. (χ′ζest+1)−
∆ positions, where χ′= 1), time synchronization is achieved
and with Nest

r = 15 and Nest
c = 7, the block interleaved data

symbols can be successfully de-interleaved. Hence, from Fig.
11(a) and Fig. 11(b), the matrix-based block interleaver and
synchronization parameters are estimated correctly.

In Fig. 12(a), the variation of µ′(m, p, b) with respect
to [m, p, b] is shown for RS(15, 7, 4, 19) with helical scan
interleaver assuming Nr = 5, Nc = 2, d = 4, 16-PSK
constellation, and SER=10−2. From the figure, it can be
observed that µ′(m, p, b) reaches global minimum for the case
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Fig. 9. (a) Accuracy of estimation of RS codes RS(15, 9, 4, 19) for different M -QAM schemes by varying the average SNR value (b) Accuracy of estimation
of RS codes RS(15, 9, 4, 19) for different M -PSK schemes by varying the average SNR value

(a)

SER
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
c
c
u

ra
c
y

 o
f 

E
st

im
a
ti

o
n

10-1

100

RS(15,7,4,19)
RS(15,9,4,19)
RS(15,11,4,19)

(b)

SER
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

A
cc

u
ra

cy
 o

f 
E

st
im

at
io

n

10-1

100

RS(63,45,6,67)
RS(31,23,5,37)
RS(15,11,4,19)

Fig. 10. (a) Accuracy of estimation of RS codes considering n= 15, m= 4, and p= 19 with 16-QAM scheme for different values of code dimension k.
(b) Accuracy of estimation of RS codes with 16-QAM scheme for different values of codeword length n

when [m, p, b] = [4, 19, 30]. Hence, ζest = lcm(n, β) = 30,
mest = 4, pest = 19, and nest = 24 − 1 = 15 are estimated
successfully using Algorithm 4. Since β=10 is not a multiple
of n= 15, ζest = lcm(n, β) is recognized using Algorithm 4.
Moreover, in Fig. 12(b), the variation of µ′(N ′r, N

′
c, d, φ

′) with
respect to [N ′r, N

′
c, d, φ

′] is shown for the same case. From
the figure, it is observed that for [N ′r, N

′
c, d, φ

′]= [5, 2, 4, 14],
µ′(N ′r, N

′
c, d, φ

′) achieves minimum and hence, all the helical
scan interleaver and synchronization parameters are success-
fully estimated using Algorithm 4 and 5.

In Fig. 11(a) and Fig. 12(a), the corresponding [m, p, b]
values for which µ′(m, p, b) reaches global minimum gives
the actual RS code parameters and block interleaver period.
However, in some cases, we observe local minimum points due
to deficient rank values. For example, a local minimum point is
observed when b=210 in Fig. 11(a) and few local minimum
points are observed in Fig. 12(a) when b = 60, 90, and 120.
This observation is useful in validating the interleaver period.

This is because, the interleaver period can also be estimated
by observing the difference between successive number of
columns with lower values of µ′(m, p, b). For example, βest
in Fig. 11(a) can also be identified by observing the difference
between successive number of columns with lower values of
µ′(m, p, b).

In Fig. 13, the accuracy of estimation of block interleaver
parameters over RS codes is shown by varying the SNR value
considering Nr = 5 and Nc = 6 for different M−QAM
schemes. It has been noticed from the figure that as M
increases, the estimation accuracy deteriorates, as expected.

C. Performance comparison of proposed algorithms with
prior works

The performance comparison of the proposed algorithm for
RS codes over erroneous scenario (i.e. Algorithm 2) with the
LLR-based methodology reported in [4] is shown in Fig. 14.
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∆ = 17, and SER=10−2 (b) Variation of µ′(N ′r, N
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d=4, 16-PSK scheme, ∆=17, and SER=10−2

Here, the probability of correct detection of two RS codes
namely RS(15, 7, 4, 19) and RS(31, 19, 5, 37) assuming 16-
QAM and 32-QAM schemes, respectively, are compared. It
is noticed from the performance curves that the proposed
algorithm outperforms the LLR-based methodology. The LLR
approach proposed in [4] estimates the true RS encoder with
100% and 40% accuracy for RS(15, 7, 4, 19) when SNR≥20
dB and SNR = 15 dB, respectively. On the other hand, our
algorithm can successfully recognize RS code parameters with
100% accuracy when SNR≥15 dB.

The probability of correct detection of RS code
RS(15, 7, 4, 19) using Algorithm 2 is also compared with the
Barbier’s method [18] for different SER values in Table II.
The Barbier’s method is based on recognizing potential dual-
codewords and estimating the code parameters that maximize
the rank of a matrix, whose rows are dual-codewords. In

our algorithm, RS code parameters are identified based on
deficient rank and normalized non-zero-mean-ratio values. It
is inferred from the tabulated values that for SER = 0.075
and SER=0.1, improvement in the accuracy of estimation of
code parameters is obtained using Algorithm 2 compared to
the algorithm proposed in [18]. In Table III, the probability of
correct detection of interleaver period β=21 using Algorithm
4 is compared with the interleaver period estimation algorithm
proposed in [22] for different bit error rate (BER) values.
From the tabulated values, improvement in the probability
of correct detection of interleaver period is noticed using
Algorithm 4 for all the BER values compared to the algorithm
proposed in [22]. Note that the algorithm in [22] is proposed
to estimate only interleaver period based on evaluating the
mean or variance of number of zero elements of column
echelon form F crossing a particular threshold value 1/M2,



14

SNR (dB)
8 10 12 14 16 18 20 22 24

A
cc

u
ra

cy
 o

f 
E

st
im

at
io

n

10-1

100

4-QAM
16-QAM
8-QAM
64-QAM
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Fig. 14. Performance comparison of Algorithm 2 with the algorithm proposed
in [4]

where M2 denotes number of non-binary symbols.
Finally, the proposed algorithms after slight modification

can also be extended to shortened RS codes. However, the
simulation results are not provided due to space constraints.

V. CONCLUSIONS

In this paper, the blind estimation algorithms are proposed
for estimating RS code and block interleaver parameters. The
proposed algorithms are based on rank deficiency and normal-
ized non-zero-mean-ratio values for noiseless and noisy envi-
ronments, respectively. The bit/symbol positioning adjustment
is also integrated with the proposed code and interleaver pa-
rameter estimation algorithms to achieve time synchronization.
The simulation studies show that the proposed algorithms can
successfully estimate RS code and block interleaver parame-
ters for various test cases. Further, the accuracy of estimation
plots are shown for different M -QAM and M−PSK schemes,
code dimension, and codeword length values. It has been
inferred that the accuracy of parameter estimation improves
with decrease in code dimension and codeword length values.

TABLE II
COMPARISON OF PROBABILITY OF CORRECT DETECTION OF RS CODE

RS(15, 7, 4, 19)

SER Probability of
correct detection
([18])

Probability of
correct detection
(proposed
algorithm)

0.001 1 1
0.01 1 1
0.05 1 1
0.075 0.52 0.92
0.1 0 0.40

TABLE III
COMPARISON OF PROBABILITY OF CORRECT DETECTION OF

INTERLEAVER PERIOD FOR RS CODE RS(7, 3, 3, 11)

BER Probability of
correct detection
([22])

Probability of
correct detection
(proposed
algorithm)

0.006 0.85 1
0.009 0.37 1
0.015 0.1 1

Further, the lower modulation order schemes perform better
then the higher modulation order schemes. It has also been
noted that the proposed algorithm for noisy environment
consistently outperforms the algorithms proposed in the prior
works.

APPENDIX A
CASE STUDY 1: RS CODE WITHOUT INTERLEAVER

A case study explaining the rank deficiency and full
rank phenomena considering RS code RS(7, 3, 3, 11) with-
out interleaver has been discussed for better understanding
in this Appendix. Let us assume the non-binary input se-
quence (t1, t2, t3, t4, · · ·) enters the systematic RS encoder
RS(7, 3, 3, 11) one symbol at a time. The RS codeword
corresponding to the non-binary input sequence is given by
(t1, t2, t3, g1, g2, g3, g4, ···), where g1, g2, g3, and g4 denote the
parity symbols corresponding to the input sequence (t1, t2, t3).
Similarly, g5, g6, g7, and g8 denote the parity symbols cor-
responding to the input sequence (t4, t5, t6). The RS encoded
symbols are reshaped into a matrix S of size a× b, where
b= 7, 10, and, 14 and a= 3 as shown in Table IV. From the
reshaped coded data matrix, one complete codeword is noticed
in all the three rows for the case when b= 7. Similarly, for
the case when b= 14, two complete codewords are noticed.
It is also observed that for both the cases, the data and parity
symbols are aligned properly in the same column. For any
linear block code including RS code, a codeword of length
n bits/symbols depend only on k input message bits/symbols
[17]. Therefore, α′.n output coded bits/symbols will depend
on α′ · k input message bits/symbols. Hence, after converting
S into F through finite field Gauss elimination process, only
α′ · k= 3 non-zero or independent columns will be observed
for b=7 and α′ · k=6 independent columns will be observed
for b= 14. It is to be noted that α′ = 1 for b= 7 and α′= 2
for b = 14. Since the number of independent columns gives
the rank of a matrix, the corresponding rank values obtained
for b = 7 and 14 well agree with (3) as well as Fig. 3(a).
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TABLE IV
RS CODE RS(7, 3, 3, 11) RESHAPED INTO A DATA MATRIX S OF SIZE 3×b

t1 t2 t3 g1 g2 g3 g4
b=7 t4 t5 t6 g5 g6 g7 g8

t7 t8 t9 g9 g10 g11 g12

t1 t2 t3 g1 g2 g3 g4 t4 t5 t6
b=10 g5 g6 g7 g8 t7 t8 t9 g9 g10 g11

g12 t10 t11 t12 g13 g14 g15 g16 t13 t14

t1 t2 t3 g1 g2 g3 g4 t4 t5 t6 g5 g6 g7 g8
b=14 t7 t8 t9 g9 g10 g11 g12 t10 t11 t12 g13 g14 g15 g16

t13 t14 t15 g17 g18 g19 g20 t16 t17 t18 g21 g22 g23 g24

TABLE V
RS CODE RS(7, 3, 3, 11) WITH BLOCK INTERLEAVER Nr =7 AND Nc =3 RESHAPED INTO A DATA MATRIX S OF SIZE 3×b

t1 g1 g4 t6 g7 t8 g10 t2 g2 t4 g5 g8 t9 g11 t3 g3 t5 g6 t7 g9 g12
b=21 t10 g13 g16 t15 g19 t17 g22 t11 g14 t13 g17 g20 t18 g23 t12 g15 t14 g18 t16 t21 g24

t19 g25 g28 t24 g31 t26 g34 t20 g26 t22 g29 g32 t27 g35 t21 g27 t23 g30 t25 g33 g36

t1 g1 g4 t6 g7 t8 g10 t2 g2 t4 g5 g8 t9 g11 t3 g3 t5 g6 t7 g9 g12 t10 g13 g16
b=24 t15 g19 t17 g22 t11 g14 t13 g17 g20 t18 g23 t12 g15 t14 g18 t16 t21 g24 t19 g25 g28 t24 g31 t26

g34 t20 g26 t22 g29 g32 t27 g35 t21 g27 t23 g30 t25 g33 g36 t28 g37 g40 t33 g43 t35 g46 t29 g38

Further, it is also observed that the rank deficiency is obtained
only when b is a multiple of codeword length n i.e. b=α′ ·n.
This is mainly due to proper alignment of the data and parity
symbols in the same column and existence of linear relations
between the columns of S.

Suppose, if b 6=α′ ·n, then it is noticed from the case when
b=10 that the data and parity symbols are not properly aligned
in the same column. Due to improper alignment, certain parity
symbols of a particular codeword cannot be represented as a
linear combination of input message symbols. For example,
g5, g6, g7, and g8 in second row for b = 10 case cannot be
represented as a linear combination of message symbols t4, t5,
and t6. Due to this improper alignment, it is also noticed from
Table IV that there are no linear relations between columns
in S in contrast to the case when b = 7 and b = 14. Hence,
data matrix S behaves like a random matrix, which will lead
to full rank.

APPENDIX B
CASE STUDY 2: RS CODE WITH BLOCK INTERLEAVER

In this appendix, a case study explaining the rank deficiency
and full rank phenomena considering RS code RS(7, 3, 3, 11)
with block interleaver assuming Nr = 7 and Nc= 3 has been
discussed for better understanding. The systematic RS encoded
data symbols are interleaved using matrix-based block inter-
leaver. After block interleaving, the data symbols are reshaped
into a matrix S of size a× b considering b=21 and 24 with
a= 3 as shown in Table V. It is to be noted that the matrix-
based block interleaver operation is carried out as shown in
Fig. 4. For simplicity without loss of generality only three rows
of the block interleaved codewords are shown considering
non-erroneous and synchronized case. From the interleaved
data stream, three complete codewords are observed in all
the three rows for the case when b= 21. It is also observed
that the data and parity symbols of three codewords in all
the rows are aligned properly in the same column. We know
that for RS code, a codeword of length n symbols depend
on k information symbols. Hence, α′ · γ · n output symbols

should depend on α′ · γ · k present input symbols. The case
study in Table V is shown by considering interleaver period
β=γ ·n=21. For the case when b=α′ ·β=21, we noted that
α′= 1 and γ= 3. Thus, α · γ · n= 21 output data symbols in
a particular row will depend on α′ · γ · k= 9 input symbols.
Otherwise, α · γ ·n data symbols will be a linear combination
of α · γ · k data symbols Since the data and parity symbols
in all the rows are aligned properly in the same column as
shown in Table V, the linear relation will be satisfied in all
the rows. Because of that there exist linear relations between
columns of S. Thus, b = 21 columns will be converted into
α · γ · k= 9 non-zero or independent columns through finite
field Gauss elimination process. As the number of independent
columns in S or non-zero columns in F indicates the rank of
the matrix, the corresponding rank value, which is equal to 9,
obtained for b=21 well agree with (4).

However, for the case when b=24, it can be observed that
the data and parity symbols are not aligned properly in the
same column. Moreover, some parity symbols in the second
row is moved to the first row. For example, the parity symbols
g13 and g16, which is generated as a linear combination of data
symbols t10, t11, and t12, are shifted to the first row. Similarly,
g25 and g28, which is generated as a linear combination of
t19, t20, and t21, are shifted to the second row unlike the
case when b= 21. Since the linear relations are not satisfied,
the data matrix S behaves like a random matrix. Thus, after
converting S into F , full rank will be observed.
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