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Lightweight Super-Resolution Using
Deep Neural Learning

Zhuqing Jiang , Honghui Zhu, Yue Lu, Guodong Ju, and Aidong Men

Abstract—There is a gap between recent development of 4K
display technologies and the short storage of 4K contents. Super-
Resolution (SR) serves as a bridge to harmonize the need
and demand. Recently, Convolutional Neural Network (CNN)
based networks have demonstrated great property in image
SR. However, most existing methods require large model capac-
ity and consume expensive computation for high performance.
Besides, most methods keep the upscaling part relatively sim-
ple compared with the feature extraction part. For feature
fusion, some methods directly concatenate the features of multi-
levels, which is suboptimal due to ignoring the importance
of different features. In this work, we propose a recursive
multi-stage upscaling network (RMUN) with multiple sub-
upscaling modules (SUMs) and a discriminative self-ensemble
module (SEM). Specifically, we extract local hierarchical fea-
tures by using a novel feature extraction module (FEM) which
is recursive to reduce the number of parameters. Then, we
construct multiple sub-upscaling modules to produce various
high-resolution features in forward propagation. This strategy
enhances the upscaling part and provides multiple error feedback
routes. Furthermore, we employ an SEM for global hierarchical
feature recalibration, which can selectively emphasize informa-
tive features and surpass less useful ones. Extensive quantitative
and qualitative evaluations on benchmark datasets show that
our proposed method performs comparable with the state-of-
the-art methods in terms of the balance of model size and model
performance.

Index Terms—Convolutional neural networks, discriminative
fusion, self-ensemble, super-resolution.
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I. INTRODUCTION

ULTRA-HIGH-DEFINITION (UHD) video is one of the
most popular and influential streaming media in broad-

casting nowadays. As we witness worldwide, increasing pop-
ulation is being covered by 4K distribution of TV programs
and games, and over half of the display devices on sale are
4K resolution.

However, the 4K content is still in short supply due to
the limited adoption of UHD video capture and production
systems, as well as large amount of low resolution archives.
Thus, there is an urgent need for the Super-Resolution (SR)
conversion that we reconstruct High-Resolution (HR) frames
from abounding Low-Resolution (LR) ones. SR aims to
recover details from an LR image to an HR image. It is a
notoriously challenging problem since a specific LR input
corresponds to a crop of possible HR images and no unique
solution exists. To tackle this ill-posed problem, many learn-
ing methods have been proposed, such as neighbor embedding
methods [1], [2], sparse coding methods [3], [4], [5] and ran-
dom forest methods [6]. Since Dong et al. firstly introduce a
Super-Resolution Convolutional Neural Network (SRCNN) [7]
to learn a nonlinear LR to HR mapping function, convolutional
neural networks (CNNs) based SR has demonstrated outperfor-
mance over the traditional methods. Recently, design of neural
networks with lightweight model size has attracted much atten-
tion for enabling edge computing with limited computation
resources.

To improve the performance of SR, some researchers
increase network depth [8] or apply recursive layers [9], [10]
with appropriate training skills. In addition, various skip-
connections have been proposed to enhance the expressiveness
of the network structure [11], [12]. Despite achieving notable
improvement, these strategies still pose some problems. Firstly,
most of them take a bicubic interpolated LR image as input,
which expands unnecessary computational cost and memory
consumption. Secondly, most methods keep the upscaling
part relatively simple compared with the feature extraction
part [13]. For instance, EDSR [14] exploits 32 residual blocks
for feature extraction, but only utilizes one upscaling mod-
ule. Thirdly, most methods stack feature extraction modules
to improve the performance but do not make full use of the
features in shallow layers. These features are wasted halfway
as the network depth increases [15]. Some methods combines
the multi-stage features equally in an element-wise summa-
tion manner or a channel-wise concatenation manner without
discrimination, which neglects the different importance among
features.
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Fig. 1. Architecture of the proposed RMUN(for ×2 SR).

Given the above-mentioned drawbacks, we propose a novel
recursive multi-stage upscaling network (RMUN) to obtain
local hierarchical features and global hierarchical features.
The network structure is illustrated in Figure 1, which
involves three modules: feature extraction module (FEM), sub-
upscaling module (SUM), and self-ensemble module (SEM).
The RMUN starts with a convolution layer that extracts fea-
tures from an input LR image. Then, several FEMs are
stacked to progressively generate multi-stage LR features.
Simultaneously, the output LR features of each FEM are sent
to a SUM to generate HR features. Finally, we discriminatively
fuse the generated HR features by an SEM for the final recon-
struction. The main contributions of our work are summarized
as follows:

A novel pattern is designed for feature extraction that fuses
local features hierarchically to obtain the multi-stage LR fea-
tures. Specifically, recursive learning is adopted to control the
model parameters while increasing the depth.

SUMs are applied to upscale the LR features, outputs of the
FEMs, to corresponding HR features. This strategy provides
shallow layer features of each stage an opportunity to gener-
ate HR features. It also offers multiple error feedback routes
through which the final loss can supervise the learning of each
sub-upscaling branch.

An SEM is employed to fuse the upscaled HR features
discriminatively. This operation makes full use of global hier-
archical features. Consequentially, the performance of our
model is prompted.

The remainder of this paper is organized as follows.
Section II reviews the popular single image SR algorithms
in detail. In Section III, we introduce the proposed algorithm.

The experiments are conducted in Section IV to verify the
capability of our approach, and the conclusions are drawn in
Section V.

II. RELATED WORK

SR has been extensively studied in the literature. In this
section, we review the recent works of SR. Besides, some
works on feature extraction are presented.

A. Image Quality Assessment for Broadcasting

Image quality assessment (IQA) in broadcasting scenario
concentrates on users’ subjective feelings more than tradi-
tional scores. There has been plenty of research on this topic.
Shishikui and Sawahata [16] conducted some subjective eval-
uations to evaluate the psychological effects of viewing UHR
images. Multiple regression was utilized to study the sense
of realness when the images are super resolved. In the con-
trast, Nafchi and Cheriet [17] contributed to the no-reference
(NR) quality assessment by illustrating that a metric based on
Minkowski distance and the entropy are able to predict the
quality for the contrast distorted images. Similar to Nafchi,
Min et al. [18] proposed a novel blind IQA that incorpo-
rates multiple pseudo reference images (MPRIs) with the
full-reference IQA framework, where the MPRIs are obtained
by degrading the already-distorted images in many ways and
to certain degrees.

B. Traditional SR Methods

The traditional SISR algorithms are divided into three cate-
gories [19]: interpolation-based methods, reconstruction-based
methods, and example-based methods. Early approaches apply
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interpolation-based methods with sampling theory, such as lin-
ear interpolation [20], bicubic interpolation [21], and Lanczos
resampling [22]. Those methods are excellent in efficiency
but limited in accuracy. Reconstruction-based methods often
exploit sophisticated prior knowledge to constrain the possible
solution space. Shengyang et al. [23] utilized an edge smooth-
ness prior knowledge to approximate the average length of
all level lines in an intensity image, which performs well in
rebuilding the detailed realistic textures. However, it is time-
consuming and vulnerable to degradation when the scaling
factor raises.

One type of example-based methods is self-example based
methods which utilize the self-similarity property and extract
example merely from the LR image across different scales.
Huang et al. [24] extended self-similarity based SR to affine
transformations. Nevertheless, this kind of methods is invalid
for the textural appearance variations in the scene. Another
type of example-based algorithms is external-example based
methods. These methods focus on analyzing statistical rela-
tionships between the LR image and its corresponding HR
image. Freeman et al. [1] employed Markov Random Field
(MRF) with abundant real-world images, which synthesized
visually pleasing image textures. Chang et al. [2] exploited
neighbor embedding to restore HR image patches with the
help of similar local geometry between the LR images and the
HR images. Despite the effectiveness they have achieved, they
are suboptimal because the extracted features and mapping
functions are not adaptive.

C. Convolutional Neural Networks Based SR Methods

Different from the traditional SR methods, the convolutional
neural network based SR methods rely on training a deep
neural network to form the mappings of LR to HR patches.
Dong et al. [7] applied a three-layers convolutional neural
network named SRCNN to SR, achieving remarkable superi-
ority over traditional SR methods at that time. To learn more
expressive representations of SR, early methods deepen neu-
ral network architectures. VDSR [8] exploited a very deep
network to obtain more hierarchical representations, which
used a relatively big initial learning rate and residual learn-
ing to ease the difficulty of training. DRCN [9] stacked 16
recursive layers to learn the mapping from the bicubic to the
residual where a multi-strategy reduces the burden of training.

Since it is hard for a plain architecture to go deeper, vari-
ous skip-connections are widely used in further deep networks
to enhance the expressiveness. Ying et al. [10] engaged
basic residual units to form a recursive block, and all the
blocks shared the same parameters as DRCN. Mao et al. [25]
introduced encoder-decoder networks and symmetric skip con-
nections into image restoration, showing that those nested skip
connections provide fast and improved convergence.

Besides, several methods focus on more effective upsam-
pling strategies. ESPCN [26] extracted features in LR space
and proposed an efficient sub-pixel convolution in the final
upsampling phase, avoiding overwhelming operations in HR
space. LapSRN [27] proposed the Laplacian pyramid structure
with Charbonnier loss to gradually estimate residual image,

striking a balance between reconstruction quality and running
time.

Considering that the combination of the shallow and deep
features can enhance the construction quality, MemNet [28]
proposed a very deep persistent memory network, tackling
the long-term dependency problem. Hui et al. [29] combined
an enhancement unit with a compression uint into a distilla-
tion block to effectively extract the local long and short-path
features, which is superior to most prior methods in terms of
accuracy and speed. MSRN [15] combines the outputs of each
feature extraction blocks for global feature fusion to solve the
problem that features disappear in the transmission process.

Even though these methods take advantage of the features
in shallow and deep layers, they treat the multi-stage features
equally and simply combine these features in an element-wise
summation or just concatenate LR features without discrim-
ination. Hence, it is suboptimal for feature integration. In
the proposed RMUN, the multiple sub-upscaling strategy is
applied for LR features upscaling and the concatenation is per-
formed on the HR features. Furthermore, we utilize an SEM
to recalibrate the HR features for better feature fusion.

D. Feature Extraction Modules

Recently, various FEMs have been proposed to extract effi-
cient features of the input image. SRDenseNet [12] employed
the DenseNet [30] structure as a FEM, where the feature maps
of each layer are propagated into all subsequent layers. It
provides an effective way to combine the shallow and deep fea-
tures. Based on ResNet [31], Lim et al. [14] stacked residual
blocks as FEMs to build a very wide network EDSR, achiev-
ing remarkable progress in SR. Moreover, Zhang et al. [32]
proposed a residual dense module for local feature extraction,
making full use of the hierarchical features. Unfortunately,
these models increase the depth of network and are extremely
difficult for training.

Different from the RDN [32] that the outputs of the
preceding RDB and each layer have direct connections to all
subsequent layers, our proposed FEM applies concatenations
only in the mid-layer and the last layer, which obtains a good
trade-off between the network complexity and performance.
The concatenations are designed between local shallow and
deep layers, which helps to fully exploit the local hierarchical
features. In addition, a 1 × 1 convolution layer is applied to
compress feature maps, which contributes to feature fusion and
reduces computation complexity. We will give a more detailed
description in Section III.

E. Upscaling Strategies

Although these methods present expressive features, their
upscaling part is relatively simple compared with the feature
extraction part. The deep learning based SR methods can be
categorized into four types as follows.

Pre-upscaling [7], [8], [9], [10]: The input LR images
are bicubic interpolated before entering the networks. The
performance is limited because this upscaling method is not
end-to-end learning and is suboptimal in terms of computa-
tional complexity [13].
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Post-upscaling [33], [26], [11], [14]: The network is divided
into two parts: the feature extraction part and the upscaling part
and the upscaling part is located at the end of the networks.

Iterative up and downsampling is proposed by DBPN [34],
which generates variants of the HR features using upsampling
layers but also projects it back to the LR spaces using down-
sampling layers. The HR features from all of the upsampling
layers are concatenated to reconstruct the HR image.

Multiple sub-upscaling is proposed by our network. We aim
at increasing the upscaling rate of LR features in different
depths and providing multiple error feedback routes. Hence,
the LR features in shallow layers are supervised under the
multiple upscaling strategy. The similarity between our RMUN
and DBPN is that we both combine the HR features from
multi-stages. However, our RMUN does not use downsampling
layers, and we apply an SEM to recalibrate the HR features
rather than directly concatenation.

III. METHOD

The technical details of the proposed RMUN is presented
in this section. We first illustrate the network structure con-
sisting of three branches and then elaborate on the essences:
the feature extraction module (FEM), the sub-upscaling mod-
ule (SUM), the self-ensemble module (SEM) and the loss
function.

A. Network Structure

Our structure employs the Laplacian pyramid frame-
work [27] to progressively predict residual images on the log2S
pyramid levels, where S is the upscaling factor. For simplicity,
Figure 1 only demonstrates the ×2 model as an example. Our
model involves three branches: (1) an identity branch, (2) a
feature extraction branch, and (3) a multi-path reconstruction
branch.

1) Identity Branch: In this branch, the low frequency com-
ponents of the LR image take a shortcut to the last layer,
whereas the rest are restored by the complex treatment of other
branches. The input LR image is bicubic interpolated instead
of deconvoluted like LapSRN [27]. This operation obtains a
pure HR image and obviates training difficulty.

2) Feature Extraction Branch: This branch extracts multi-
stage features of the input LR image and refines features of
different levels. By stacking FEM modules, we extract local
hierarchical features of different stages from shallow to deep.

3) Reconstruction Branch: LR features of each stage are
upscaled for corresponding HR features. Then we fuse the HR
features and the interpolated original image to generate a final
HR image. In this branch, SUM is engaged for hierarchical
LR features upscaling and SEM for HR features upscaling and
fusion.

B. Feature Extraction Module

FEM is the main module of the feature extraction branch
that is adopted to progressively extract features. Figure 2
displays its internal implementation. Recursion framework is
employed to extract and fuse local hierarchical features. In the
k-th FEM, we denote Fk−1, Fk ∈ R

H×W×C as the input and

Fig. 2. Feature extraction module (FEM) architecture.

Fig. 3. Self-ensemble module (SEM) architecture.

output feature maps, where H, W, and C denote the height,
width, and channel number of the feature maps. Let gi denote
a function of a convolutional layer: gi(F) = wi ∗F+bi, weight
and bias matrices are wi and bi, for i = 1, 2, 3, 4.

Firstly, shallow layer feature maps are obtained by two con-
volutional layers, and then they are concatenated with the input
Fk−1 in channel dimension to generate the F′

k:

F′
k = g2 ◦ (g1(Fk−1)) || Fk−1, (1)

where the operator ◦ denotes a function composition and ||
denotes concatenation.

Then we repeat (1) to generate deep layer feature maps and
incorporate the shallow feature maps by concatenation:

F′′
k = g4 ◦ (

g3
(
F′

k

)) || F′
k, (2)

where the parameters of g1, g2, g3, and g4 are shared in each
FEM.

Finally, we utilize a function h(F) of a 1∗1 convolution layer
to align the input dimension of each recursion. Besides, The
compressed feature maps are added to the source LR feature
maps F0 in case of the gradient vanishing problem:

Fk = h
(
F′′

k

) + F0. (3)

C. Sub-Upscaling Module

Multiple SUMs are engaged to upscale the output LR fea-
tures of each FEM, therein allowing Fk to generate the final
HR features. This approach enhances the upscaling part and
enables the network to preserve the HR features by learning
various SUMs while generating deeper features.

We denote Sk ∈ R
SH×SW×C as the output of k-th sub-

upscaling module, where S denotes the upscaling factor. The
sub-upscaling process is expressed as

Sk = Uk(Fk), k = 1, 2, . . . , n, (4)

where Uk denotes the function of k-th upscaling. Each Fk

is converted into various HR features that are regarded as
the components of the desired HR features. In this work,
we employ an LReLU activation function followed by a
deconvolution layer.
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Note that these multiple upscaling paths also serve as error
feedback routes. In the back propagation, the loss is fed back
to each FEM through multiple upscaling paths rather than one
path, preventing the gradient vanishing. Moreover, it is potent
for training deep networks because each FEM is supervised
by the losses of both SUM and its subsequent layers.

D. Self-Ensemble Module

This module fuses the HR features obtained by SUMs.
Huang et al. [30] observed that adding all features in the
same feature space may disturb the information flow. Thus
we denote the input as the concatenation of them:

R = S1 || S2 || · · · || Sn, (5)

where R ∈ R
SH×SW×nC refers to the feature maps of integra-

tion.
Moreover, we apply an one-dimension vector β =

[β1, . . . , βk, . . . , βnC] to denote the weight for each channel,
where βk represents the calibration coefficient of k-th channel,
which can selectively emphasize informative features and sur-
pass less useful ones. Since it is supervised for the learning of
β, we introduce a corp of the SENet [35] for dimension com-
pression. It is realized by a series connection of non-linearity
operations. Following the concatenation, we prepare a global
average pooling layer to extract the global information vector
α = [α1, . . . , αk, . . . , αnC] across spatial dimensions SH×SW:

αk = 1

SH × SW

SH∑

i=1

SW∑

j=1

rk(i,j), (6)

where rk ∈ R
SH×SW refers to k-th channel of R, and rk(i, j) is

the pixel value of point (i, j).
Then the composition of two fully connected layers

(denoted as FC1(·) and FC2(·)) and two non-linear func-
tions(denoted as δ and σ ) is fulfilled to generate β:

β = σ(FC2(δ(FC1(α)))), (7)

where δ and σ refer to the functions of LReLU and sigmoid
activation, respectively.

Finally, the integration features R are re-weighted by β

and we further apply a 1 × 1 convolution layer (denoted as
S(·)) to compress it, which has been adopted in many SR
methods [12], [29], [36]. This procedure is expressed as

Dhr = S(R � β), (8)

where Dhr ∈ R
SH×SW×nC represents the outputs of DFM and

� refers to channel-wise multiplication between the channel
of the feature maps rk and the calibration coefficient βk.

Let Ilr and Ihr be the input LR image and the output HR
image, where Ilr ∈ R

H×W and Ihr ∈ R
SH×SW . The global

residual image (denoted as IRr) which is obtained by com-
pressing feature dimensions of the Dhr from C to 1. On the
identity branch, the blurry HR image IBr ∈ R

SH×SW is gen-
erated by bicucic interpolation. Finally, we estimate the HR
image Ihr via an element-wise summation:

Ihr = P(Dhr) + B(Ilr) = IRr + IBr, (9)

where P(·) compressed the feature dimensions from C to 1
and B(·) denotes the function of bicubic interpolation.

E. Loss Function

Mean square error (MSE) loss favors a high PSNR in super-
resolution. Early methods applied MSE loss function as an
optimization objective. The expression is as follows:

lMSE = 1

N

N∑

i=1

∥∥
∥Ii − Îi

∥∥
∥

2

2
. (10)

While as reported in [37] that MAE loss could guide an NN
to reach a better local minimum with faster convergence, it
is believed to be more robust against MSE loss. So we adopt
MAE loss in this paper, it is formulated as follows:

lMAE = 1

N

N∑

i=1

∥
∥∥Ii − Îi

∥
∥∥

1
, (11)

where Îi denotes the predicted HR image and Ii means the
corresponding ground-truth image. N refers to the patch size.

IV. EXPERIMENTS

In this section, we first brief the training and testing datasets
used in our method. Then the details of our training setup
are presented. In addition, we evaluate the manifestation of
our method on several standard benchmark datasets. Finally,
we discuss the effect of module components of our network
respectively.

A. Datasets

For a fair comparison with the popular CNN-based meth-
ods, we select the training datasets from Lai et al. [27] for
training. Note that the training datasets include 291 images,
where 91 images are from Yang et al. (T91) [38], and the
other 200 images are from Berkeley Segmentation Dataset
(BSD200) [39]. Testing is executed on four widely applied
benchmark datasets: Set5 [40], Set14 [41], BSD100 [39], and
Urban100 [24], which involve 5, 14, 100, and 100 images,
respectively. The Set5, Set14, and BSD100 datasets com-
promise different natural scenes, and the Urban100 dataset
consists of many challenging images with details in different
frequency bands.

B. Implementation Details

First, input images are preprocessed by randomly scaling,
rotating, and flipping as [27]. Besides, all the RGB images
are converted into YCbCr color space, and only the Y-channel
is retained for training. The underlying reason is that human
vision is more sensitive to changes in brightness than the
chromatic aberration.

We employ 6 FEMs which share the same parameters in
this work. The kernel size of each convolution layer (except
the 1×1 one) is set to be 3×3 with the stride and padding of
1. Every convolution or deconvolution layer is followed by a
leaky rectified linear units (LReLU) with a negative slope of
0.2 for non-linear mapping.

As training details, we utilize a batch size of 40 and crop the
size of HR patches to 128×128. The initialization of the con-
volution filters is similar to the method of He et al. [42]. The
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TABLE I
BENCHMARK RESULTS. AVERAGE PSNR/SSIM FOR SCALE FACTOR ×2, ×3, ×4, AND ×8 ON DATASETS SET5, SET14, BSD100, AND URBAN100.

RED COLOR INDICATES THE BEST PERFORMANCE AND BLUE COLOR REFERS THE SECOND BEST

Fig. 4. SR results of “barbara” (Set14) with a scale factor ×4. The line is straightened and clear in our results and the DRRN, whereas other methods
behave a curved trend.

initial learning rate is set to be 10−5 and then decreased by half
every 150 epochs. Also, the optimization is using Stochastic
Gradient Descent (SGD) with a momentum of 0.9 and the
weight decay of 10−4. The proposed method is implemented in
MATLAB based on MatConvNet [43], and runs at an NVIDIA
GTX 1080TI GPU.

C. Comparisons With State-of-the-Art Methods

We provide quantitative and qualitative comparisons with
6 state-of-the-art SR algorithms, including Bicubic [44],
VDSR [8], LapSRN [27], DRRN [10], MemNet [28], and
IDN [29]. The public codes for VDSR, LapSRN, DRRN, and
MemNet are employed as the benchmarks. The peak signal-
to-noise ratio (PSNR) and the structure similarity (SSIM) are
adopted as evaluation metrics. Both PSNR and SSIM are the
most common and widely applied image evaluation indicators.

Table I exhibits quantitative comparisons of scale factor ×2,
×3, ×4, and ×8 over the four benchmark datasets. Results
demonstrate that our method achieves the best performance

and surpasses the prior methods by a considerable margin
for ×4 and ×8 on all testing datasets. As for ×2 SR, we
obtain relatively poor performance, which is probably owing
to the pyramid structure is more expressive for larger scale fac-
tors. Comprehensive analysis indicates that our model with the
enhanced sub-upscaling strategy and the discriminative SEM
can handle large scale SR tasks better.

We present the visual comparisons with state-of-the-art SR
methods in Figure 4, 5, and 6 for the qualitative analysis. These
images embody rich high frequency information, therefore
they are challenging for SR. In the image ‘barbara’ displayed
in Figure 4, all these methods fail to recover the stripe trend
of the read box correctly. It is possibly due to the severe loss
of high frequency information in the downsampling process
which can be inferred by the result of bicubic interpolation.
For visual perception, only our RMUN and the DRRN recover
roughly the outline of several stacked books. In other examples
of Figure 5 and 6, our method achieves the optimal results for
both the PSNR and the SSIM. Besides, our method gains clear
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Fig. 5. SR results of “8023” (BSD100) with a scale factor ×4. Our result shows unobstructed separation between stripes while in other methods, stripes are
vague.

Fig. 6. SR results of “img027” (Urban100) with scale factor ×4. Lines of the building are sharp while building edges are blurry in other methods.

contours without serious artifacts while other methods explicit
different degrees of fake information.

D. Discussion and Analysis

1) Model Parameters: We present the trade-off between the
reconstruction performance and the number of network param-
eters of CNN-based SR methods in Figure 7. For the sake
of low memory consumption, we stack multiple compact but
effective FEMs, which are recursive to reduce parameters. Our
RMUN outperform SRCNN, FSRCNN, DRRN, and VDSR.
Moreover, our RMUN performs better than LapSRN with 19%
fewer parameters on 4× upscaling. As is shown in Figure 7
that MSRN and D-DBPN outperform our RMUN. However,
our RMUN has about 89% and 93% fewer parameters than
MSRN and D-DBPN, respectively. This evidence demonstrates
that our network obtains a good trade-off between performance
and the number of parameters. This lightweight network
is applicable for edge computing with limited computation
resources.

2) Visualization of the Feature Maps: The function of the
SUM will be illustrated in this part. For better visualizing the
intermediary of the proposed model, we consider an operation
T that can transform a 3D tensor M to a flatted 2D tensor

defined over the spatial dimensions. It is formulated as follows:

T : RH×W×C → R
H×W , (12)

where H, W, and C denote the height, width, and channel
dimensions of the feature maps. Specifically, we take the mean
of the feature maps over channel dimensions to visualize the
outputs of each SUM, which is described by

Tmean(M) = 1

C

C∑

i=1

Mi, (13)

where M refers to a 3D tensor and Mi = M(i, :, :). We can
induce that the average feature map is an approximate rep-
resentation of the whole feature maps. Besides, we calculate
the corresponding average weights which are obtained by the
SEM. These average weights are marked below subfigures. As
illustrated in Figure 8, average feature maps gradually increase
the pixel values of edge texture from the Figure 8 (1) to (3).
It indicates that the FEMs in shallow layers mainly restore the
local texture details of the image. From Figure 8 (4) to (6),
we see that the pixel values are higher than those of the first
three subpictures, and they have less edge detail information.
It infers that the FEMs in deep layers mainly reserve the global
brightness information rather than texture details. According
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Fig. 7. Performance vs number of parameters. The results are evaluated with
BSD100 dataset for 4× upscaling.

Fig. 8. The average feature maps of SUMs.

TABLE II
ABLATION EXPERIMENTS OF RMUN ON SET14

to the distribution of the average weights, the values in the
last three average maps are higher than those in the first three
average maps. We infer that the feature maps in deep layers
include more beneficial information for HR image generation.
Furthermore, the difference of values between shallow and
deep layers is small, which means that both the local texture
information and global brightness information are essential for
HR reconstruction.

3) Ablation Study: As discussed in Section III, our RMUN
contains two main components including SUM and SEM.
We conduct ablation studies to verify the contributions of
the two modules in the pipeline. We remove the SUMs and
SEM as the baseline. From Table II we can validate that each

component contributes to the final reconstruction. It is worth
noted that the SUM only has one deconvolution layer, which
is relatively simple compared to the feature extraction mod-
ule. Besides, the SEM has about 0.05M parameters, which
is 7% of the network parameters. Hence, we believe that the
performance gain is mainly brought by the effectiveness of
the two components rather than the complexity. If we adopt
SEM on the basis of SUM, the network will obtain more
gain. This confirms our supposition that direct integration of
multi-stage features without discrimination may not enhance
performance. Furthermore, with the growth of scale factors,
SUM can provide multiple upscaling operations which are
especially beneficial for large scale enlargement. Overall, the
ablation study verifies the contributions of the SUM and SEM.

4) Running Time and Potential Feasibility in Broadcasting:
Our technique could be valid in the broadcasting given the
test of running time that the real-time processing time is 0.058
seconds. Thus it would be potentially feasible in broadcasting
and real-time scenario after it was revised slightly according
to a specific application.

V. CONCLUSION

In this work, we demonstrate that most existing deep learn-
ing methods with cascaded topology fail to incorporate the
shallow and deep features. Besides, most methods generate
the final HR image only using the last layer, which does not
make full use of the information of the shallow and deep lay-
ers. We propose an RMUN with discriminative self-ensemble
for boosting SR. The proposed network adopts recursive FEMs
to extract the shallow local texture information and the deep
global brightness information. Then, we provide the LR fea-
tures obtained from every FEM with an opportunity to estimate
the HR features by using SUMs. Finally, an SEM is applied
to fuse those features discriminatively for the final reconstruc-
tion. The comprehensive experiments have illustrated that our
proposed RMUN network achieves competitive performance
both in quantitative and qualitative comparisons. Particularly,
RMUN outperforms state-of-the-art methods for large factors
significantly.
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