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Fast Depth Intra Coding Based on Depth Edge
Classification Network in 3D-HEVC
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Abstract—As the extension of high efficiency video
coding (HEVC) standard, three dimensional-HEVC (3D-
HEVC) is the latest 3D video coding standard. 3D-HEVC adopts
many complicated coding algorithms to generate additional
intermediate views for 3D video representation, which result in
extremely high coding complexity. Therefore, this paper proposed
a fast depth intra coding approach to reduce the 3D-HEVC com-
plexity, which is based on convolutional neural network (CNN).
First, we established a database based on the independent view
of the depth map, which includes coding unit (CU) partition
data of the depth map. Second, we constructed a depth edge
classification CNN (DEC-CNN) framework to classify the edges
for the depth map and embedded the network into a 3D-HEVC
test platform. Finally, we utilized the pixel value of the binarized
depth image to correct the above classification results. The
experimental results demonstrated that our approach can reduce
the intra coding time by 72.5% on average under negligible
degradation of coding performance. This result outperforms the
other state-of-the-art methods to reduce the coding complexity of
3D-HEVC.

Index Terms—3D-HEVC, CNN, depth map, edge classification.

I. INTRODUCTION

W ITH the rapid development of multimedia information
technology, video television (TV) is constantly being

updated. On the one hand, video TV can support higher reso-
lutions, from standard definition (SD) to high definition (HD),
full HD (FHD), and even ultra HD (UHD) [1]. On the other
hand, video TV can support more views, from two dimen-
sional (2D) TV to three dimensional (3D) TV [2], and even
the free viewpoint television (FTV). Artificial intelligence (AI)
and the fifth generation mobile networks (5G) has not only
enhanced data computing and analysis, but also provided
data interconnection for new products and services. Under
this background, the traditional 2D video cannot bring the
enjoyment of vision, hearing, and touch. Therefore, immersive
video [3], which can reflect the 3D information of real scenes,
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provides wide viewing freedom, and gives an immersive
feeling, came into being.

In immersive video, the multi-view video (MVV) [4],
which can provide an immersive visual experience for
users, has gradually become a research hotspot in the
multimedia information industry. More views create greater
immersion, but pose a great challenge to data storage and
transmission. The multi-view video plus depth (MVD) [5]
video format only consists of a limited number of texture
videos and their corresponding depth maps. These texture
videos and depth maps can be used to synthesize multiple vir-
tual views by using depth-image-based rendering (DIBR) [6].
Therefore, MVD video format can greatly reduce the MVV
data. Based on this, MVD video format is considered to be
the most effective 3D video format. To efficiently compress
the MVD data, the Joint Collaborative Team on 3D Video
Coding Extension Development (JCT-3V) [7], which is formed
by Video Coding Expert Group (VCEG) from the International
Standard Organization (ISO) and Motion Picture Expert
Group (MPEG) from the International Telecommunication
Union (ITU), launched a new standard called 3D extension
of high efficiency video coding (3D-HEVC) [8].

As the extension of high efficiency video
coding (HEVC) [9] standard, 3D-HEVC introduces depth
map coding [10]. Theoretically, the HEVC video coding
framework can also be used to encode the depth map but the
depth map represents the distance between the object and the
camera, and the video coding framework based on HEVC is
mainly suitable for the original natural texture. Therefore, the
HEVC video coding framework cannot be perfectly applied
to the depth map. To this end, 3D-HEVC employs many
complicated coding algorithms for depth map coding, includ-
ing depth modeling mode (DMM) [11], segment-wise DC
coding (SDC) [12], motion parameter inheritance (MPI) [13],
and view synthesis optimization (VSO) [14]. Although these
coding algorithms improve the compression efficiency, they
also introduce increasing greater computational complexity.

To reduce the complexity of depth map coding, many fast
algorithms have been proposed [15]–[21]. Compared with tex-
ture video, a depth map contains large smooth areas, and
it has distinct edge. In terms of spectrums, it is differ-
ent from the uniform spectrum distribution of texture video.
The spectrum of a depth map is mainly distributed in the
low and high frequencies. Among many new depth map
coding algorithms, DMM, as a new intra prediction mode,
can better encode the edge of a depth map. However, the
introduction of DMM mode also brings huge computational
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complexity. Therefore, in order to reduce the complexity of
depth map coding, some scholars attempt to simplify the
process of intra prediction mode decision in a depth map.
The early works for selecting the intra prediction mode
are traditional methods such as edge detection, maximum
between-class variance (Otsu), and gray histogram [15]–[17].
In addition, some scholars have found that the quad-tree cod-
ing unit (CU) partition in HEVC accounts for the largest
proportion of coding time. This result can also be applied
to the CU partition in a depth map. Therefore, some schol-
ars attempt to simplify the process of CU partition in
depth maps. The early works mainly use some heuristic
methods such as skipping or terminating the CU partition
process in advance based on the features extracted manu-
ally [18]–[21]. With the rapid development of deep learning
in the past few years, it has gradually moved to the tra-
ditional field of video coding. The cross field of video
coding and deep learning has gradually become a hot research
direction. Video coding researchers are using deep learn-
ing to solve problems, which are difficult to overcome
with traditional algorithms [22]–[33]. However, some exist-
ing deep learning methods do not use the edge features of
the depth map, which leads to the quality degradation of a
depth map.

In this paper, we constructed a depth edge classi-
fication (DEC) network based on convolutional neural
network (CNN), named DEC-CNN, to reduce the complex-
ity of depth map intra coding. In addition, we used traditional
methods to correct the classification results. The combination
of deep learning and traditional methods can reduce the cod-
ing complexity of a depth map while ensuring the quality
of a depth map and synthetic views. Specifically, the main
contributions of this paper are summarized as follows.

(1) We established a database containing the intra CU of
depth map. Since 3D-HEVC adopts MVD video format, there
is a slight difference between different views (one independent
view and two non-independent views). To ensure the validity
of the data, we established a database based on the depth map
from the independent view.

(2) We constructed a depth edge classification network
named DEC-CNN for predicting intra CU partition of a depth
map. Different from texture video, a depth map has obvious
edge features. In order to realize edge complexity classification
of coding units (CUs), we divided the CUs into two categories.

(3) We used the pixel value of the binarized depth image to
correct the classification results. Different edge features have
different pixel values. We set the threshold of edge complexity
by counting the distribution of pixel values. Based on this, the
edge complexity of CUs can be classified, and the classifica-
tion results can be used as the secondary verification of the
results obtained from the DEC-CNN network.

The remainder of this paper is organized as follows.
Section II reviews the related works on 3D-HEVC com-
plexity reduction. Section III presents the motivation and
3D-HEVC coding structure for the proposed approach. The
details of the proposed coding approach are descried in
Section IV. Section V reports the experimental results. Finally,
Section VI concludes this paper.

II. RELATED WORK

In this section, two main categories of the current 3D-HEVC
complexity reduction works are reviewed. They are fast
intra prediction mode decision and fast intra CU size decision.

The first category focuses on fast intra prediction mode
decision. In traditional methods, the complex intra prediction
mode traversal can be simplified according to edge detection of
the depth map. The representative methods include [15]–[17].
Specifically, in [15], a fast intra mode decision method
to reduce the computational complexity of 3D-HEVC was
proposed based on the characteristics of the depth map. The
proposed algorithm uses the isotropic Sobel operator to detect
the texture complexity and edge direction of the PU, thereby
reducing the number of modes that need to be calculated
during the intra coding process. Li et al. [16] proposed a com-
plexity reduction scheme based on spatial correlation and the
rate-distortion (RD) cost, including the maximum depth layer
decision (MDLD) and the depth intra mode decision (FDIMD).
The MDLD is used to predict the maximum depth layer of
each coding tree unit (CTU). The FDIMD is used to skip
unnecessary prediction modes. Zhang et al. [17] proposed
a low complexity intra-mode selection algorithm, which can
reduce the number of intra-mode by detecting the flat area and
texture. When the flat region condition is satisfied, the corre-
sponding intra-prediction modes are skipped. If the flat region
condition is not satisfied, the direction of the edge is detected.

The second category focuses on fast intra CU size deci-
sion. Various heuristic methods [18]–[21] were proposed to
skip or terminate the CU partition process in advance accord-
ing to the features extracted manually. To be more specific,
Wang et al. [18] proposed an algorithm to terminate the CU
splitting process early based on the gray histogram of the cur-
rent CU. Peng et al. [19] proposed two techniques to speed up
the coding of the depth map, which includes fast intra mode
decision and fast CU size decision. Zhang et al. [20] proposed
a fast depth intra coding algorithm to speed up the quad-tree
decision based on the good feature-corner point (CP). The
proposed algorithm can adaptively extract CPs and pre-allocate
the depth level of a coding quad-tree. In [21], an early ter-
mination method for intra block partitioning was proposed.
The proposed method uses a simplified form associated with
the current block and its first sub-block to terminate the
partitioning.

Recently, several machine learning methods have been
proposed to reduce the computational complexity in 3D-HEVC
depth map coding [22]–[24]. The representative methods
include [22] and [23]. Specifically, Saldanha et al. [22] presented
a fast depth map coding for 3D-HEVC based on static deci-
sion trees. The proposed method uses data mining and machine
learning to correlate the encoder context attributes and build
the static decision trees. Each decision tree decides the par-
tition of the depth map CU. In [23], an early determination
of depth intra coding based on several Decision Trees was
proposed. The determination includes the coding stage of
Intra 2N × 2N, Intra N × N or CU Splitting for the CUs.
However, the above methods are based on probability or
judgement of manual features so lack of robustness. As a new
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Fig. 1. 3D access unit structure and coding order.

research method in recent years, many scholars have applied
CNN to the fast coding [25]–[33]. Such a solution was applied
in different video coding domains, like the previous generation
video coding standard HEVC [25], [26], the latest genera-
tion video coding standard VVC [27], [28], and the extended
video coding standard 3D-HEVC [29]–[33]. For example, to
reduce the HEVC complexity at both intra- and inter-modes,
Xu et al. [25] proposed a deep learning approach to predict
the CU partition based on CNN and long- and short-term
memory (LSTM) network. To reduce the VVC complexity at
intra mode, Tang et al. [27] presented an adaptive CU split
decision based on the pooling-variable CNN. The proposed
method targeting the various CU shapes utilizes the vari-
able pooling layer size to retain the original information. To
reduce the 3D-HEVC complexity at depth intra coding, Li and
Yang [29] proposed a fast algorithm based on edge detection
of a deep learning network. The proposed method uses a holis-
tically nested edge detection (HED) [34] network to detect the
edge of the depth map.

To reduce the 3D-HEVC complexity, our paper proposes
a fast depth intra coding approach, which is based on deep
learning, edge classification, and statistics. Our method differs
from the above methods in four aspects.

1) Compared with traditional methods [15]–[21], CNN
structure has a breakthrough in video feature extrac-
tion. Our method utilizes CNN to extract features of
a depth map. This avoids the problem of obtaining
prior information in advance and solves the problem of
judgment accuracy decreasing under complex situations.

2) Compared with machine learning methods [22]–[24],
our method can automatically extract video features

without manual extraction or complex probability
calculation. This avoids learning from a large amount
of complex data.

3) Compared with neural network methods in 3D-
HEVC [29]–[33], our proposed DEC-CNN struc-
ture combines traditional methods with deep learning
networks. This can reduce the coding complexity while
ensuring the quality of synthetic views. To the best of
our knowledge, this is the first attempt to utilize a CNN
structure, edge classification, and statistics for predicting
the CU partition.

4) To train the DEC-CNN and classify the edge complexity
of depth maps, for the first time, we construct a database
containing CUs of depth map. In contrast, other work
has never built a database for a depth map. Techniques
such as [29] rely on a trained network and do not need
the database for secondary training, while the database
in [30] is obtained by pre-coding standard sequences in
3D-HEVC.

III. 3D-HEVC CODING STRUCTURE AND MOTIVATION

A. 3D-HEVC Coding Structure

Compared with 2D video, 3D video has a different access
unit structure and coding order. Fig. 1 shows the 3D video
access unit structure and coding order based on MVD video
format. In Fig. 1, each texture video appears in a pair with
a depth map. The texture video and the depth map are encoded
according to the access unit. As shown in Fig. 1, the access
unit 0-k contains all texture videos and depth maps at the
same time point. In addition, the coding order does not need
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to be consistent with the timing of acquiring the video image.
Generally, the coding of texture video and depth map in the
current access unit can refer to the encoded texture video and
depth map in the previous access unit.

In 3D-HEVC coding structure, texture video and depth map
coding of the independent view and other views is based
on the HEVC coding structure. However, compared with
HEVC, 3D-HEVC has made technical expansion. The 3D
video, which needs to be encoded, includes texture videos of
three views and depth maps of the corresponding three views.
Fig. 1 is the 3D access unit structure and coding order under
3D-HEVC.

As shown in Fig. 1, the texture videos and depth maps of the
3D-HEVC coding structure originate from the same time, but
their positions are different. The texture video and depth map
exist in the same access unit. In the same access unit, firstly,
the texture video and depth map corresponding to the inde-
pendent view are encoded by the unmodified HEVC encoder.
Secondly, the modified HEVC encoder is used to encode tex-
ture video and the depth map corresponding to other views [7].
Specifically, in the 3D-HEVC standard, 3D video is encoded
in turns by the access unit. The texture videos and depth
maps taken at the same view position have the same view
sequence number. Because each access unit contains texture
videos and depth maps of all views at the same time, all video
frames in the same access unit have the same picture order
count (POC). The independent view is also called the main
view. This is usually called view 0. The texture video in view
0 is encoded by the original HEVC encoder. The improved
HEVC encoder is used to encode all texture videos and depth
maps in other auxiliary views (or dependent views). Generally
speaking, the texture videos in the main view and auxiliary
views are encoded before the depth map.

B. Motivation

The characteristics of a depth map mean it contains large
smooth areas and the edge is obvious, so it needs more
accurate coding. Although 3D-HEVC has added prediction
modes, coding tools and complex algorithms to preserve the
edge information in depth map, the coding time of depth
map is more time-consuming than texture video. To study
the depth map coding complexity, in the Common Test
Conditions (CTC), we test six sequences under four pairs of
Quantization Parameters (QPs). Each pair contains QP val-
ues corresponding to the texture video and depth map. The
four QP-pairs are (25, 34), (30, 39), (35, 42) and (40, 45).
The test sequences in the experiment contain two different
resolutions: 1024 × 768 and 1920 × 1088. For 1024 × 768,
it includes Balloons, Kendo, and Kendo. For 1920×1088, it
includes Poznan_Hall2, Poznan_Street, and Undo_Dancer.

Fig. 2 shows the proportion of depth map coding in the total
coding time. We can see that compared with the coding time
of texture video, the coding time of the depth map is about
3-6 times, accounting for more than 80% of the total coding
time on average. Fig. 3 shows the coding process of the depth
map. We can see that in the 3D-HEVC depth intra coding,
the corresponding PU size and the optimal prediction mode

Fig. 2. Proportion of depth intra coding time in total coding time,
(a)(b)(c) resolution: 1024×768, (d)(e)(f): resolution: 1920×1088.

TABLE I
RELATIONSHIP BETWEEN N AND PU SIZE

Fig. 3. Flowchart of 3D-HEVC depth intra coding.

of each PU need to be obtained. The specific process is as
follows:

Step 1: In rough mode decision (RMD), formula (1) to (4)
are used to calculate the SATD (Sum of Absolute Transformed
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Differences) of 35 candidate intra prediction modes, and N
modes corresponding to the minimum SATD are selected as
the initial RD-list. The corresponding relationship between N
and PU size is shown is Table I.

JpredSATD = SATD + λpred × Bpred (1)

λpred = √
λmode (2)

λmode = √
λ (3)

λ = α × Wk × 2((QP−12)/3) (4)

where JpredSATD denotes theSATD value of prediction mode
in current PU, SATD is the sum of the absolute values of
the coefficients obtained after the Hadamard transformation
of the predicted residuals, λ is Lagrange multiplier, Bpred is
rate of current prediction mode, α and Wk refers to the weight
coefficient related to coding parameters and coding structure
configuration.

Step 2: Construct RD-list by cooperating with most probable
modes (MPM) and the N prediction modes selected by using
the RMD process with the least cost ofSATD.

Step 3: For the current PU, traverse all the segmentation
process of DMMs, select the best and add it to the RD-list.

Step 4: Formula (5) and (6) are used to calculate RD cost
of each mode in the RD-list, and the mode with the minimum
RD cost is selected as the optimal intra prediction mode.

Jmode = (SSEluma + wchroma × SSEchroma) + λmode × Bmode

(5)

wchroma = 2(QP−QPchroma)/3 (6)

where Jmode denotes RD cost value, SSEluma is the sum of
squares for error under luma component, SSEchroma is the
sum of squares for error under chroma component, λmode
is Lagrange multiplier, Bmode is rate of current prediction
mode, wchroma refers to the weight coefficient related to coding
parameters and coding structure configuration.

Step 5: If the maximum depth of quad-tree is not reached 3,
divide each CU into four equal size sub CU (CU size range:
64 × 64 to 8 × 8) recursively.

Based on the above analysis, the final CTU partition struc-
ture needs to traverse the depth of 0-3. Each CU needs to
traverse 35 prediction modes through RMD and RDO process.
Taking a 64×64 CTU as an example, 11935 (1×35+4×35+
16×35+64×35+256×35 = 11935) SATD cost calculations
and 2623 (1×3+4×3+16×3+64×8+256×8 = 2623) RD
cost calculations are required to obtain the final partition
result. When the video is encoded at a higher frame rate
and higher resolution, the number of CTUs to be encoded
increases exponentially, which leads to a significant increase
in coding complexity. Therefore, in the stage of CU par-
tition, if the CU under some unnecessary depths can be
selectively skipped, the prediction process can be skipped. In
other words, we can avoid traversing all the depth to real-
ize the rapid selection of CU depth and reduce the coding
complexity.

Fig. 4. Correlation between edge complexity and CU depth.

IV. FAST DEPTH INTRA CODING BASED ON DEPTH EDGE

CLASSIFICATION NETWORK

According to the above analysis, 3D-HEVC adopts the par-
tition method based on full depth search for all CTUs in the
depth map. However, studies have shown that the depth of
CTU is highly correlated with the edge of a depth map. For
complex edge regions, large depth and small size CTU are usu-
ally used for coding. On the contrary, for simple edge areas,
small depth and large size CTU are usually used for coding.
As shown in Fig. 4, the maximum depth of the CTU in a com-
plex edge area can reach 3, whereas the CTU in a simple edge
area is only 1.

Based on this, CTU can be divided into two categories
according to the edge complexity. One is simple edge CTU,
the other is complex edge CTU. If the type of CTU can be
predicted by the edge of the depth map before coding, and
the depth range of CTU can be determined, then the coding
process of CU beyond the depth range can be skipped, and
the intra coding time of depth map can be reduced.

In view of the excellent performance of CNN in feature
extraction and the edge characteristics of the depth map, this
paper proposes a fast depth intra coding approach based on
CNN. First, we established a database based on the indepen-
dent view of depth map. Second, we constructed a DEC-CNN
network to classify the two types of edges for the depth map.
Finally, we utilized the pixel value of the binarized depth
image to correct the above classification results.

A. Database Establishment

To establish the database, the CU partition data of the depth
map from the independent view were collected.

In our database, 100 frames were selected from the
standard test sequences (Newspaper: 1024 × 768 and
Undo_Dancer: 1920 × 1088), 50 frames from Newspaper
and 50 frames from Undo_Dancer. Considering the tem-
poral correlation between video frames, frames 0-29 (2 ×
30 frames, 11,520 CTUs) were selected as a training set,
frames 260-269 (2 × 10 frames, 3,840 CTUs) as a valida-
tion set, and frames 280-289 (2 × 10 frames, 3,840 CTUs)
as a testing set. This ensures the reliability and effec-
tiveness of the dataset. Specifically, all video frames were
coded by the 3D-HEVC test platform HTM-16.0 [35]. And
four QP-pairs {(25, 34), (30, 39), (35, 42) and (40, 45)} were
applied to encode at All-Intra with the configuration file
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TABLE II
CONFIGURATION OF ESTABLISHED DATABASE

baseCfg_3view+depth_AllIntra [36]. After encoding the depth
map, the CTU structure for all the frames can be obtained.
According to the high correlation between the depth of CTU
and its edge complexity, the CTU with the maximum depth
less than 1 is defined as the simple edge CTU. Conversely,
the CTU that can reach depth 3 is defined as the complex
edge CTU. Each CTU with its corresponding binary label,
which indicates simple edge CTU or complex edge CTU, is
a sample. Based on this, as reported in Table II, there are total
76,800 samples in our database. Furthermore, each set was
equally divided into two subsets. One subset is with simple
edge, and the other set is with complex edge. As such, our
database contains video frames at different edge complexity,
which ensures sufficient training data for learning to classify
the edge and predict the CTU partition.

B. Proposed DEC-CNN Approach

Fig. 5 illustrates the framework of our DEC-CNN approach.
Specifically, our DEC-CNN approach contains pre-processing,
DEC-CNN, and post-processing. In the following, we briefly
present the details of these modules.

1) Module 1: Module 1 is the pre-processing unit, which
can process the original CTU into a CTU that can be accepted
by Module 2. In this module, first, the texture video and depth
map corresponding to the independent view are found from the
original 3D video sequence to be encoded (compared with the
dependent view, the independent view are intermediate views
in the process of view synthesis, which can provide more ref-
erence information). Second, the luma component is extracted
from the original CTU of the depth map corresponding to
the texture video in the independent view (compared with the
chroma component, the luma component contains more struc-
ture information, and can extract more texture information).

We can see from Fig. 5 that DEC-CNN is fed with an entire
CTU with the size of 64×64. We use the block-wise colorful
feature map at the right represents CTU with different edge
complexity has different feature distribution. The CTUs with
various features contribute to the edge classification with dif-
ferent significance. This makes the information with different
features reasonably used.

2) Module 2: Module 2 is the core module of the whole
framework, named DEC-CNN, which is mainly used for edge
feature extraction and classification. Compared with high-level
features such as image semantics, an edge feature is considered
as a shallow feature. Based on this, the shallow feature can
be obtained by CNN with a simple structure. Meanwhile, the
simple network structure means shorter running time, and it is
easier to meet the demand of CTU for rapid depth selection.
The details of the DEC-CNN are as follows.

The proposed DEC-CNN network consists of five convolu-
tional layers, two dense blocks, a dropout layer, and a Softmax
layer. As Fig. 5 shows, we adopt convolutional layers with the
activation function of Rectified Linear Unit (ReLU), to extract
edge features from the processed CTUs. Specifically, let Wcm

and Bcm denote the weight and bias matrices of the m-th con-
volutional layer, the expression of our convolutional layer for
the n-th processed CTU is defined as

C0(CTUn) = CTUn, (7)

Cm(CTUn) = ReLU(Wcm ∗ Cm−1(CTUn) + Bcm), 1 ≤ m ≤ M

(8)

where C represents the convolution layer and the total num-
ber of CNN layers is denoted as M. Between each convolution
layer, in order to reduce the dimensional of features and the
influence of irrelevant information, we use the max pooling
layer to reduce the dimension of features. After the convolution



LIU et al.: FAST DEPTH INTRA CODING BASED ON DEPTH EDGE CLASSIFICATION NETWORK IN 3D-HEVC 103

Fig. 5. Framework of our DEC-CNN approach.

layer, in order to realize the multiplexing and propagation of
features, two dense blocks [37] with different dimensions and
a dropout layer with probabilities of 50% are used. As shown
in Fig. 5, in the dense block, the input of each layer comes
from the output of all previous layers. Specifically, let l rep-
resents layer, xl is the output of l layer, and Hl is a nonlinear
transformation. The expression of the dense block is defined as

xl = Hl
([

x0, x1, . . . , xl−1
])

(9)

where [x0, x1, . . . , xl−1] indicates that the output features
of layer 0 to layer l−1 is concatenated. The last layer is
Softmax. The network structure using Softmax can get good
performance in single label classification task. And it is a sin-
gle label classification task to judge the complexity of CTU
edge. Finally, an edge complexity class is output to prepare
for further edge complexity class correction in Module 3.

3) Module 3: Module 3 is the post-processing unit, which
can correct the classification results from Module 2. Table III
gives several examples of CTUs with different edge features.
We can see that different edge features have different pixel
distribution. Table IV shows the classification results of edge
complexity according to Table III. The above experiments
show that we can use the pixel value of the image to determine
the edge complexity of the image.

In Module 3, in view of the excellent performance
of HED [34] network in edge detection, we first use
HED network to obtain the edge detection graph of

64×64 CTU. The expression of HED process in defined as

H = E(X;α) (10)

where X represents the input 64×64 CTU, E is the edge
detection mapping function, α is the parameter (such as scale
factor), and H is the image after detection. Second, in view of
the image obtained by the above edge detection is a probabil-
ity graph, considering that Otsu [38] algorithm is a common
method to determine the adaptive threshold, we use this algo-
rithm to binarize the image after edge detection into a more
easily processed edge graph. The expression of Otsu process
in defined as

σ 2
n = W0(U0 − U)2 + W1(U1 − U)2 (11)

where W0 represents the proportion of non-edge pixels in the
whole image, and the average gray is U0. W1 represents the
proportion of edge pixels in the whole image, and the aver-
age gray is U1. The average gray of the whole image is U,
and σ 2

n is the between-class variance. Let the pixel k in the
whole range of pixels of the image in turn to get the corre-
sponding between-class variance σ 2

n . When σ 2
n is the largest,

the corresponding k is the best threshold T. When the pixel
value of a pixel is greater than or equal to the T, it will be
determined as an edge region, otherwise, it will be determined
as a non-edge region. Then, we use Ŵ0 represents the propor-
tion of pixels in the non-edge region, and Ŵ1 represents the
proportion of pixels in the edge region. If Ŵ1 >= Ŵ0, the
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TABLE III
PIXEL VALUE OF CTUS WITH DIFFERENT EDGE FEATURES

TABLE IV
PIXEL VALUE OF CTUS WITH DIFFERENT EDGE FEATURES

current input CTU is judged as a complex CTU. Otherwise,
the current input CTU is judged as a simple CTU. Finally, the
classification results from Module 3 can be used to correct the
result from Module 2.

C. Loss Function for Training DEC-CNN Model

Since all the components of Module 2 are deep networks,
they can be jointly trained in an end-to-end manner. Here, let
ln ∈ {0, 1} indicate whether the n-CTU is simple (ln = 1)
or not (ln= 0). As such, given the processed CTUs, the
labels {ln}N

n=1 can be obtained. Then, considering that the
edge complexity classification is essentially the problem of
probability distribution of edge pixels, we consider applying
categorical_crossentropy to train our DEC-CNN network.

L = − 1

N

N∑

n=1

(ln × ln Yn + (1 − ln) × ln(1 − Yn)) (12)

where Yn is the value predicted by DEC-CNN. However, there
is a problem of over fitting in the training process. Considering
that regularization can solve the problem of over fitting, we
add regularization term to the above loss function. In addition,
considering that edge features are low dimensional and dense,
we choose the L2 regularization term, defined as

L = − 1

N

N∑

n=1

(wln × ln Yn + (1 − ln) × ln(1 − Yn)) + λ

2N

∑

w

w2

(13)

Fig. 6. Flowchart of fast depth intra coding.

where Yn is the value predicted by DEC-CNN, λ is regu-
larization parameter. And w represents the parameters in the
network, which is from the regularization term. In addition,
λ

2N

∑
w w2 is a penalty term.

D. Flowchart of Proposed Approach

Fig. 6 shows the flowchart of the proposed fast depth
intra coding.
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TABLE V
COMPARISON OF CODING TIME BETWEEN HTM-16.0 AND PROPOSED APPROACH

First, read the 3D video and then determine whether the
current coded video is a depth map. Second, read the CTU
to be encoded. For the CTU not from the depth map, utilize
original iterative CTU partition method to get the best result
of CTU partition. Otherwise, for the CTU from the depth map,
use DEC-CNN to classify the current CTU. Meanwhile, utilize
HED network to obtain the edge graph for the current CTU
and use Otsu algorithm to classify the current CTU. Then, the
classification result from Otsu is used to correct the result from
DEC-CNN. If the two results are not consistent, the result from
“HED + Otsu” is selected as the final result. Finally, the RD
cost is calculated recursively for all CU in the depth range.
And then the optimal CTU partition structure is obtained to
realize the fast depth intra coding.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented to vali-
date the effectiveness of our approach in reducing 3D-HEVC
complexity. In the first Section, the configuration of the exper-
iments and the settings of the approach are discussed. In
Section V-B, we compare the complexity reduction among
different methods. Then, we compare the RD performance
between the proposed method and the original method. Finally,

a series of ablation experiments are conducted to analyze the
impact of major components in the proposed approach.

A. Configuration and Settings

1) Configuration of Experiments: In the experiment, var-
ious types, different resolution, and frame rate of HTM
standard video test sequences, including Balloons, Kendo,
Poznan_Hall2, and Poznan_Street, were selected to evaluate
our proposed approach. We experimented on the above four
test sequences other than those used to establish the database.
We set QP as (25, 34), (30, 39), (35, 42), and (40, 45). The
final number of experimental frames is 20. In HTM-16.0,
the configuration was applied with the default configuration
file baseCfg_3view+depth_AllIntra. The remaining parame-
ters follow the prescribed conventional test conditions. We
incorporated the DEC-CNN structure into 3D-HEVC codec
to accelerate the process of 3D video depth map coding. All
the experiments were conducted on Intel Xeon CPU E31230
@ 3.20GHz, 8.00GB RAM, and the Windows 10 Enterprise
64-bit operating system. Note that a GPU was used to accel-
erate the training speed, but it was disabled when testing the
3D-HEVC complexity reduction.

2) Training Settings: As introduced in Section IV-A, the
standard test sequences (Newspaper and Undo_Dancer) were
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TABLE VI
COMPARISON OF CODING TIME BETWEEN PROPOSED APPROACH AND OTHER APPROACHES

TABLE VII
COMPARISON OF RD PERFORMANCE BETWEEN HTM-16.0 AND PROPOSED APPROACH

utilized to establish the database. We used 60 frames to
train our DEC-CNN and validate the DEC-CNN on the other
20 frames. In training the model, the hyper-parameters were
tuned on the validation sets. We used the RMSprop optimizer.
The batch size for training was 1024, initial learning rate was
0.001, and the training epoch was 2000.

B. Comparison of Complexity Reduction

First, we compare our approach with the original cod-
ing method HTM-16.0, heuristic methods [17], [21], machine
learning methods [22], [23] and CNN-based methods [29].
Table V and Table VI reports the results of complexity
reduction in � T, defined as

� T = Treference − Tproposed

Treference
× 100% (14)

where Treference and Tproposed represent the coding time of
the reference approach and the proposed approach, respec-
tively. As observed in Table V, at QP = (25, 34), (30, 39),
(35, 42), and (40, 45), our approach reduces the encod-
ing complexity by 70.9%, 73.0%, 72.5% and 73.5% on
average. Compared with HTM-16.0, the proposed approach
yields an average 72.5% encoding time. Among them,
the coding time of the Poznan_Street sequence has the
largest savings. Because the background of the Poznan_Street
sequence does not change and the object only moves in
the foreground. To further assess the complexity reduc-
tion of the proposed approach, other methods are tested
under the same test platform and coding performance eval-
uation method as this paper. From Table VI, the average

�T is 72.5%, significantly higher than the latest CNN-
based 3D-HEVC complexity reduction approach [29] (34.3%),
and the representative machine learning approaches [23]
(59.4%) and [22] (59.5%). More complexity reduction can
be obtained when comparing with the other two heuristic
approaches.

C. Comparison of RD Performance

Table VII shows the performance comparison of the
proposed approach with HTM-16.0. In Table VII, video
PSNR/video bitrate indicates the BD-rate of coded texture
views over video bitrate. Video PSNR/total bitrate indicates
the BD-rate of coded texture views over total bitrate. And
synth PSNR/total bitrate indicates the BD-rate of synthesized
views over total bitrate. It can be seen from Table VII, com-
pared with the original coding algorithm, an average −0.1%
and 8.7% BD-rate loss for coded views and synthesized views,
respectively.

Fig. 7 shows the subjective results in synthesized view
on videos Balloons at QP = (25, 34) and Poznan_Street at
QP = (35, 42). We can see that our DEC-CNN approach
is able to reduce encoding time while maintaining accept-
able coding performance. The reason for BD-rate loss is the
datasets. Since when training the network, the datasets are
made of limited video sequences. The data source is not
rich, resulting in the limitations of the DEC-CNN network.
In future experiments, some depth maps from other video
sequences will be collected to expand the dataset, improve
the network performance, and then improve the coding
performance.
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Fig. 7. Comparison of the subjective quality for the synth 1.75 (synthesized view 1.75) of the Poznan_Street and synth 0.25 (synthesized view 0.25) of the
Balloons.

Fig. 8. Training results under different regularization.

D. Ablation Study

We further analyze the effectiveness of the proposed L2
regularization and the Module 3 in the framework of our
DEC-CNN approach. Fig. 8 shows the training results under
different regularization. From Fig. 8, we can see that in terms
of accuracy and loss, regularization is better than no regular-
ization. In addition, among the three regularization options,
L2 regularization has the best performance on the validation
set. Therefore, we choose to add L2 regularization to the
categorical_crossentropy loss function.

In order to further illustrate the necessity of CTU
classification using Module 3, we do the following com-
parative experiments. The method of combining Module 1,

Module 2 and Module 3 to judge CTU category is defined
as Method A. At the same time, only the method com-
bining Module 1 and Module 2 is defined as Method B.
Fig. 9 shows the quality of the synthesized views after
3D video coding using Method A and Method B, respec-
tively. From Fig. 9, we can see that utilizing the frame-
work without Module 3 (Method B) instead of our DEC-
CNN approach (Method A) degrades the average PSNR by
0.4273dB for QP = (25, 34). The results show that the
Method A, which combines traditional method, can achieve
more accurate CTU classification, so as to obtain better
quality of the synthesized views. The above results prove
the effectiveness of the proposed L2 regularization term
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Fig. 9. Performance comparison between our DEC-CNN approach and DEC-
CNN without Module 3.

and the Module 3 in the framework of our DEC-CNN
approach.

VI. CONCLUSION

In this paper, we have proposed the DEC-CNN approach
for reducing the encoding complexity of 3D-HEVC, which
is to determine the division of CTU by learning the edge
classification of the depth map, instead of traversing the 0-
3 depth of all CTU. First, we established a database based
on the independent view of the depth map to deepen the
DEC-CNN network. Then, we proposed a depth edge clas-
sification network, DEC-CNN, to classify the edges for the
depth map for avoiding traversing all the depth to realize the
rapid selection of CTU depth and reducing the 3D-HEVC
complexity. More importantly, we proposed utilizing the pixel
value of the binarized depth image to correct the edge classi-
fication results. As such, combining traditional methods with
deep learning networks can reduce the coding complexity of
a depth map while ensuring the quality of synthetic views.
Finally, the experimental results validated that our DEC-CNN
approach can be efficiently used to reduce 3D-HEVC com-
plexity without any significant loss in RD performance for the
synthesized views.
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