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Priority-Aware Resource Allocation for 5G

mmWave Multicast Broadcast Services
Pan-Yang Su∗, Kuang-Hsun Lin†, Yi-Yun Li†, Hung-Yu Wei†

∗Electrical Engineering and Computer Sciences, University of California, Berkeley
†Graduate Institute of Communication Engineering, National Taiwan University, Taiwan

Abstract—5G Multicast Broadcast Services (MBS) are viewed
as a promising 5G New Radio (NR) application, as standardiza-
tion begins in 3GPP Release 17. With MBS, one next generation
Node B (gNB) delivers data to multiple user equipments (UE)
simultaneously, thus improving spectrum efficiency. Millimeter
wave (mmWave) beamforming further enhances system perfor-
mance by focusing signals in a dedicated direction. However,
despite the advantages, we identify three issues of multicast
with beamforming techniques. First, link directionality causes
the gNB to transmit data over the beams sequentially, resulting
in a combinatorial resource allocation problem. Confronting this
beam scheduling issue, we develop an optimization algorithm
that obtains an optimal solution in polynomial time. Second, UEs
may falsely report their valuations over beam resources to gain
more utility. Under this scenario, the gNB cannot allocate the
resources to those in need due to the lack of accurate UE infor-
mation. Therefore, we propose a Vickrey–Clarke–Groves (VCG)
auction-based mechanism to incentivize the UEs to reveal their
valuations over resources truthfully. This mechanism guarantees
solution efficiency and maximizes social welfare. Third, as 3GPP
standards allow for different priorities for different multicast
flows, and video content providers distinguish between ordinary
and premium UEs, we take UE priority into account. In this
regard, we extend the valuation-based mechanism to a multi-
priority one. Finally, the mathematical analysis validates some
desirable properties of the proposed scheme, such as incentive-
compatibility. Simulation results also justify our superior per-
formance in the 5G MBS system compared with other resource
allocation schemes.

Index Terms—Multicast Broadcast Services (MBS), millimeter
wave (mmWave), game theory, Vickrey–Clarke–Groves (VCG)
auction, resource allocation, incentive mechanism.

I. INTRODUCTION

Millimeter wave (mmWave) communication is a promising

technology in alleviating the scarcity of spectrum resources

as global data traffic increases exponentially. Ranging from

tens to hundreds of GHz, mmWave bands are not utilized

by conventional cellular systems since the transmissions over

high frequencies suffer from high path loss and are sensi-

tive to blockages. However, with the developed beamforming

technology, base stations (BS) can provide directional beams

by tuning the transmitted signal of massive antenna arrays to

compensate for the path loss. In addition, such oriented beams

cause less interference. Therefore, the mmWave communica-

tion becomes a cornerstone of 5G systems with beamforming

compensating its weak propagation characteristics, and it has

found widespread applications in the wireless networks [1]–

[4].

Corresponding Author: Hung-Yu Wei, email: hywei@ntu.edu.tw

On the other hand, Multicast and Broadcast Services (MBS)

also bring significant benefits to spectrum utilization. In in-

creasingly popular applications, such as multimedia entertain-

ment, HD live streaming, virtual reality gaming, etc., common

data are requested by multiple user equipments (UE) simulta-

neously. Therefore, multicast is critical to the improvement

of spectral efficiency by transmitting the same contents to

multiple UEs in a single transmission. As mobile video data

account for considerable spectrum usage [5], the utilization of

abundant mmWave spectrum that helps multicast transmission

appears necessary. With beamforming and substantial available

bandwidth, mmWave gNB can further enhance the transmis-

sion rate of MBS communications.

In the early version of LTE, 3GPP standardized the Mul-

timedia Broadcast Multicast Service (MBMS) to enable the

evolved Node B (eNB) to distribute multimedia contents

via broadcasting or multicasting. The UEs with multimedia

services, such as mobile TV and live video streaming, often

request the same data from the content providers. Therefore,

the MBMS can extensively enhance the system capacity. Each

UE within the coverage can receive the requested data via a

broadcast channel at once. Although 3GPP kept improving the

MBMS techniques in the following releases of LTE, it was not

widely deployed by the network service providers. To enable

the next generation Node B (gNB) to support more types of

services and satisfy the corresponding requirements for the

Quality of Service (QoS), 3GPP decided to standardize MBS

for the newly developed 5G NR systems, specifically, in the

Release 17 of the 3GPP standard [6], [7]. In the newly added

protocol layer, Service Data Adaptation Protocol (SDAP), the

traffic data for different MBS services would be mapped

to different MBS bearers so that the lower layer protocols

could handle the priority better. Several topics, including more

flexible network structure, deployment, resource usage, and

field trial, are further studied to meet the requirements for

multicast and broadcast applications in the future [8], [9].

In this paper, we examine three issues of multicast services,

such as video streaming services or smart factories’ AR

auxiliary systems [10], [11], under mmWave communication

with beamforming techniques. First, the combinatorial nature

of beam scheduling makes it difficult to develop an efficient

optimization algorithm [12]. In particular, multicasting with

beamforming transmits signals in a dedicated direction in

every timeslot. Hence, the serving sequence of different UE

groups in a period becomes an essential issue. To cope with

this beam scheduling problem, we devise an optimization
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algorithm that obtains an optimal solution in polynomial time.

Second, an incentive mechanism is required to aid the gNB in

allocating the resources suitably. Without an incentive mech-

anism, UEs may falsely report their valuation functions, and

the gNB does not know the accurate system information. The

lack of correct information may lead to some UEs obtaining a

surplus of resources while those in need are poorly served, as

shown in Fig. 1(a). In this regard, we propose a mechanism

based on a modified Vickrey–Clarke–Groves (VCG) auction

to motivate UEs to report their valuation functions truthfully.

Therefore, with the truthful pricing rule of the VCG mecha-

nism, UEs’ private valuations over resources can be obtained

correctly. This incentive mechanism guarantees the efficiency

of resource allocation outcomes, as shown in Fig. 1(b). Also,

the mechanism maximizes social welfare, a commonly used

notion to evaluate system performance by aggregating all the

UEs’ valuations. Third, UEs may have different priorities.

In 3GPP standards, priority is considered in NR MBS with

multiple flows having different QoS requirements. Also, in

video streaming service, priority is a common consideration,

such as the premium membership of Youtube or Netflix. Thus,

UE priority is an essential issue in 5G MBS, but it cannot be

characterized by valuation functions. In this regard, we further

enhance the optimization algorithm and incentive mechanism

to consider UE priority.

The main contributions of this paper are summarized as

follows.

1) To the best of our knowledge, we are the first to propose

a resource allocation mechanism in a 5G mmWave MBS

system that considers the UEs’ valuations over beam

resources.

2) We propose an incentive-compatible mechanism that

reaches a social-welfare-maximization solution in which

we optimize the efficiency of resource allocation ac-

cording to the UEs’ valuations. Moreover, the proposed

mechanism is individually rational and (weakly) budget-

balanced.

3) We take into account the premium membership in 5G

MBS as many multimedia content providers offer1. Our

scheme guarantees utility superiority of high-priority UEs

and also suggests a reasonable membership charge.

II. RELATED WORK

Early research on directional multicast scheduling problem

includes [14]–[16]. However, mmWave was not discussed,

and high-frequency characteristic was not considered then. As

mmWave systems become a key enabling technology for 5G

cellular networks, more complex beamforming issues under

mmWave systems are investigated. In [17], [18], the authors

argued that the multi-lobes beam model proposed in [15],

[16] required many radio frequency (RF) chains and was thus

expensive and not compatible with chipsets with a single RF

chain. In contrast, the single-lobe model was compatible with

both analog and digital beamforming systems. Also, Bai and

Heath justified the feasibility of the sectored antenna model

1In our preliminary conference paper [13], we only considered homoge-
neous UEs.

(a) Without UE valuation reporting.

(b) With UE valuation reporting.

Fig. 1. An example for the proposed system model. When two types of MBS
services are in the system, a gNB could serve at most one MBS service for
the UEs on one beam within one timeslot. The gNB should decide its target
MBS group to serve in every timeslot. (a) Without UE valuation reporting,
the gNB cannot cater to the UEs in need of resources. (b) With UE valuation
reporting, the gNB can better serve the UEs in need of resources.

in terms of practical resolution of antenna, radiation pattern,

boresight direction, and side-lobe effects under mmWave di-

rectional multicast service [19]. Thus, in our paper, we also

address the mmWave multicast resource allocation problem

with a beamforming antenna model as shown in Fig. 1.

So far, some work proposed strategies for multicast under

mmWave systems [12], [17], [18], [20]–[29]. Park et al. pro-

posed incremental multicast grouping scheme where adaptive

beam widths were determined according to the UE distribution

to maximize the sum of data rates [20]. The solution in [17]

was a beam-grouping algorithm approximating the minimum

group data multicast time. Specifically, beam training for an

access point (AP) to obtain per-client per-beam received signal

strength indication (RSSI) measurements for the multicast

group members was performed before grouping. In [21], a
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transmission strategy considering both packet transmission

deadline and packet loss due to low signal-to-noise ratio

(SNR) was proposed. The trade-off between serving many UEs

simultaneously and providing high SNR was studied in [12]

as the authors tried to optimize serving beam width and UE

groups. The retransmission mechanism was also considered.

In [18], reflection properties of mmWave were modeled, and

a minimum-delay approach to the corresponding mmWave

multicast problem was proposed. Chukhno et al. proposed a

radio resource management for an AP to determine the number

and the width required to serve multicast UEs [22]. Apart

from the other work, the proposed efficient resource allocation

solution considered the energy efficiency aspect in addition to

throughput enhancement. In [29], Chukhno et al. devised a

machine learning-based approach to tackle the computational

intensive resource allocation problem in multicast.

Recently, the synergy of multicast and Non-Orthogonal

Multiple Access (NOMA) was also explored [30], [31]. In

[30], subgrouping techniques and Time Division Multiple Ac-

cess (TDMA) were utilized to improve the resource allocation

outcome of a NOMA multicast system, while a joint power

allocation and subgrouping scheme was developed in [31].

Moreover, multicast can be integrated with other communi-

cation systems to boost system performance. In [23]–[26],

different scenarios of combining unicast and multicast are

discussed. Some work also considers caching in a multicast

system [27], [28]. However, they all investigated solutions that

emphasize throughput or energy-efficient aspects.

On the other hand, some work examined the applications

of MBS on video streaming service [32]–[34]. Zhang et al.

proposed a multicast scheme with NOMA and scalable video

coding (SVC) to improve the overall Quality of Experience

(QoE) [32]. Similarly, aiming to improve QoE, Li et al.

formulated the multicast adaptation problem as a minimum

dominating set problem and developed a mechanism with

QoE guarantee [33]. In addition to video quality, Guo et al.

also took power consumption into account and solved the

optimal transmission time, power allocation, and encoding rate

to maximize video quality and minimize power consumption

[34].

Unlike previous work on mmWave multicast, we consider

resource utilization efficiency based on UEs’ perspectives

and propose a social-welfare-maximization approach to the

mmWave directional multicast resource allocation problem.

Social welfare is a measure of the overall system performance

by aggregating all the UEs’ valuations of the obtained re-

sources. Maximizing social welfare is thus a desirable sys-

tem property, but a devised algorithm can only achieve this

goal with accurate knowledge of UE information. Without

a mechanism to collect UEs’ private valuations over beam

resources, the optimal solution of the optimization algorithm

proposed in the previous work may not maximize social

welfare in reality. To tackle this issue, we devise a modified

VCG mechanism to collect UEs’ valuation over the allocated

beam resources. Therefore, the service provider can obtain

UEs’ private valuations correctly, thereby guaranteeing the

resource efficiency of the optimization algorithms. Moreover,

we take prioritized services into account to cope with the

premium membership of many multimedia content providers

such as Netflix and Youtube offer. To this end, we extend the

mechanism of our preliminary conference version [13], which

assumes that all UEs are homogeneous, and provide utility

guarantees for high-priority UEs.

The rest of the paper is organized as follows. In Section III,

we describe the MBS system model. In Section IV, we

formulate the multi-priority MBS resource allocation prob-

lem and propose a mechanism as the solution. Then, some

preliminary results of a simplified model without priority are

presented in Section V. After that, we provide theoretical

analysis of the general multi-priority problem in Section VI. In

Section VII, we conduct extensive simulations to demonstrate

the superiority of the proposed mechanism. Finally, we draw

the conclusion in Section VIII.

III. MBS SYSTEM MODEL

We consider a non-standalone (NSA) 5G MBS system with

one eNB and multiple gNBs, as illustrated in Fig. 1. The eNB

provides a broad coverage area with a moderate data rate

for UEs. The gNBs with massive Multiple-Input Multiple-

Output (MIMO) antennas can beamform and deliver high-

throughput and low-latency services for specific applications,

such as video streaming. There are r UEs in the system. Under

5G MBS, gNBs utilize beamforming to transmit data, and

different data flows are transmitted in different timeslots. In

this regard, we divide the UEs into N UE groups. A UE group

is a set of UEs receiving the same data flow and in the same

beam direction. We denote the UE group i by Si, and the

UEs in UE group i by Ai = {ai,1, ai,2, ..., ai,mi
}, where mi

denotes the number of UEs in Si. We also define the UE

profile a = {ai,j |i = 1, 2, ..., N, j = 1, 2, ...,mi}.

In this paper, we examine the beam scheduling problem

of a gNB. We consider a system with the duration of a

radio frame equal to 10 ms, and there are k timeslots in

each frame. From [35], we know k could be 10, 20, 40, . . . ,

640 under different numerology settings, where 10, 20, and

40 are for sub-6GHz bands and the others are for mmWave

bands. We mainly consider the numerologies for mmWave

bands. In each timeslot, the gNB transmits data to one UE

group. Ti represents the number of timeslots allocated to

Si in a frame, and T is the resource allocation profile, i.e.,

T = {T1, T2, ..., TN}.

To illustrate, Fig. 1 is an example with one eNB and three

gNBs. The coverage area of each gNB is divided into eight

beam directions. There are two kinds of data flows, so there

are two types of UEs. The UEs that receive the same data flow

and are located in the same beam direction are clustered into

a UE group. Thus, the numbers of UE groups N in gNB 1,

gNB 2, and gNB 3 are 3, 4, and 3, respectively. gNBs transmit

data to different UE groups in different timeslots.

In the following, we describe the propagation model and

give some definitions to characterize UEs’ experienced QoS.

Also, we define a UE’s priority. Table I summarizes the

notations, and the details will be explained in Section IV.

Note that we leverage Zn to denote {1, 2, ..., n} when n is

a positive integer.
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A. Propagation Model

We follow the propagation model in 3GPP TR 36.776 and

TR 38.901 [36], [37] and use the urban macro (UMa) low

power/low tower (LPLT) network architecture. We consider

a network setting with a gNB. The channel bandwidth B is

100 MHz, the carrier frequency fc is 28 GHz, and the noise

power is n0. The gNB transmit power is P , antenna gain is

gB , and antenna height is hB . The UE antenna gain is gU and

antenna height is hU . There are two types of UEs: UEs with a

line of sight (LOS) and UEs without a line of sight (NLOS).

The probability of a UE having LOS PrLOS is given by the

following equation, where dU is the distance between the UE

and the gNB.

PrLOS(dU ) =

{

1 if dU ≤ 18,
18
dU

+ (1− 18
dU

)e−
dU
63 if 18 < dU .

(1)

The pathloss from the gNB to a UE with LOS PLLOS

(dB) is given by the following equation. Note that d3D =
√

(hB − hU )2 + d2U , d′BP = 4(hB−1)(hU−1)fc
c

(c: speed of

light), and A = (d′BP )
2 + (hB − hU )

2.

PLLOS(dU )

=











56.9 + 22 log10(d3D) if dU ≤ d′BP ,

56.9 + 40 log10(d3D)− 9 log10(A) if d′BP < dU .
(2)

The pathloss from the gNB to a UE with NLOS PLNLOS

(dB) is given by the following equation, where PLLOS is

given by (2).

PLNLOS(dU )

= max(PLLOS , 42.48 + 39.08 log10(d3D)− 0.6(hU − 1.5)).
(3)

Also, we consider a Gaussian shadow fading SF (dB) with

0 mean and σSF standard deviation.

B. UEs’ Valuation

To transmit data under the unreliable channels in a wireless

network, we adopt the generalized erasure coding to encode

the packets [38], [39]. With the generalized erasure coding,

the order of the packets does not matter. Therefore, we can

define a UE’s valuation function as follows. Note that a UE’s

valuation of the channel is the private information of the UE

and is unknown to the BS.

Definition 1 (UE’s valuation function). A UE ai,j’s valuation

function vi,j : N → {0}
⋃

R
+ is the valuation of the UE

when getting t timeslots. We assume that vi,j(t) is concavely

increasing and vi,j(0) = 0.

Since there are k timeslots in a frame, we denote a

UE ai,j’s valuation function vi,j as a k-tuple Vi,j =
(vi,j(1), vi,j(2), ..., vi,j(k)).

Definition 2 (Valuation profile). The valuation profile of all

the UEs is V = {Vi,j |i = 1, 2, ..., N, j = 1, 2, ...,mi}.

Fig. 2. Flow chart of the proposed resource allocation mechanism. When no
priority is concerned, the mechanism only performs the steps in black color.
When the system distinguishes between different priorities, the mechanism
performs all the steps.

C. UEs’ Utility

A UE will get higher utility when it obtains more timeslots

since getting more timeslots means being served for a longer

period of time. The relationship between the number of

acquired timeslots and a UE’s utility is prescribed by the

valuation function defined previously. However, UEs will also

need to pay a corresponding price to acquire the resources,

which serves as the cost of the UE. In this regard, after the

resource allocation, the gNB will charge a price pi,j for the UE

ai,j according to the modified VCG auction described later.

We define ai,j’s utility below.

Definition 3 (UE’s utility). A UE ai,j’s utility of getting t
timeslots and the bid profile being B is ui,j(t,B) = vi,j(t)−
pi,j(B), where B will be defined later.

In the following, we drop the value in the parenthesis to

simplify notation, e.g., using ui,j instead of ui,j(t,B) or pi,j
instead of pi,j(B).

D. UEs’ Priority

Definition 4 (UE’s priority). We denote pri(ai,j) as a UE

ai,j’s priority. If ai,j is a p-priority UE, pri(ai,j) = p.

With a slight abuse of notations, since a UE group consists

of UEs with the same priority, pri(Si) is used to denote the

priority of Si.

Definition 5 (p-priority timeslots). The total timeslots allo-

cated to UE groups with priority at least p is Tpri(p) =
∑

pri(Si)≥p Ti.

IV. MULTI-PRIORITY RESOURCE ALLOCATION PROBLEM

AND MECHANISM DESIGN

A. Multi-Priority Resource Allocation Problem

We consider a 5G MBS system with different UE groups

having different priorities. This happens when a content

provider wants to distinguish between different services or

ordinary UEs and premium UEs. This section considers a

network with d priorities. We assume that the packets are

transmitted over a quasi-static Rayleigh fading channel. Hence,

the UEs’ valuations are the same during each frame and
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TABLE I
NOTATIONS

Notation Definition

N Number of UE groups
r Number of UEs
d Number of priorities
k Number of timeslots per frame

Si UE group i
pri(Si) Si’s priority
mi Number of UEs in Si

ai,j UE j in Si

pri(ai,j) ai,j ’s priority
Ai Set of UEs in Si

Ai = {ai,1, ai,2, ..., ai,mi
}

a UE profile
a = {ai,j |i = 1, 2, ..., N, j = 1, 2, ...,mi}

Ti Number of timeslots allocated to Si

Tpri(p) p-priority timeslots
Tpri(p) =

∑

pri(Si)≥p Ti

kp Minimum number of p-priority timeslots
Tpri(p) ≥ kp

T Resource allocation profile
T = {T1, T2, ..., TN}

vi,j(t) ai,j ’s valuation for t timeslots
Vi,j ai,j ’s valuation function

Vi,j = (vi,j(1), vi,j(2), ..., vi,j(k))
vi(t) Si’s valuation for t timeslots

vi(t) =
∑mi

j=1 vi,j(t)
Vi Si’s valuation function

Vi = (vi(1), vi(2), ..., vi(k))
V Valuation profile

V = {Vi,j |i = 1, 2, ..., N, j = 1, 2, ...,mi}

bi,j(t) ai,j ’s bid for t timeslots
Bi,j ai,j ’s bid function

Bi,j = (bi,j(1), bi,j(2), ..., bi,j(k))
bi(t) Si’s bid for t timeslots

bi(t) =
∑mi

j=1 bi,j(t)
Bi Si’s bid function

Bi = (bi(1), bi(2), ..., bi(k))
B Bid profile

B = {Bi,j |i = 1, 2, ..., N, j = 1, 2, ...,mi}

ci,j(t) ai,j ’s marginal transformed bid for t timeslots

ci,j(t) =

{

min
1≤p≤t

(bi,j(p)− bi,j(p− 1)), t = 1, 2, ..., k

0, t = 0
Ci,j ai,j ’s marginal transformed bid function

Ci,j = (ci,j(1), ci,j(2), ..., ci,j(k))
ci(t) Si’s marginal transformed bid for t timeslots

ci(t) =
∑mi

j=1 ci,j(t)
Ci Si’s marginal transformed bid function

Ci = {ci(1), ci(2), ..., ci(k)}
C Marginal transformed bid profile

C = {ci(t)|i = 1, 2, ..., N, t = 1, 2, ..., k}

φ Social welfare

φ =
∑N

i=1

∑mi
j=1 vi,j(Ti)

W (B) Total transformed bid when the bid profile is B

W (B) =
∑N

i=1

∑mi
j=1

∑Ti(B)
t=1 ci,j(t)

pi,j(B) ai,j ’s payment when the bid profile is B
pi,j(B) = Wa−ai,j

(B −Bi,j)−Wa−ai,j
(B)

ui,j(t,B) ai,j ’s utility of getting t timeslots and the bid profile
being B
ui,j(t,B) = vi,j(t)− pi,j(B)

n0 Noise power
P gNB transmit power
gB gNB antenna gain
hB gNB antenna height
gU UE antenna gain
hU UE antenna height
B Channel bandwidth (100 MHz)
fc Carrier frequency (28 GHz)
σSF Standard deviation of Gaussian shadow fading

independent between different frames, and it is sufficient to

consider one frame.

Under the MBS system, the resources are the k timeslots

allocated to the UEs by the gNB, and we formulate the

resource allocation problem as an auction described below.

At the beginning of each frame, each UE bids a k-tuple

Bi,j , which is the UE’s bid function. Note that we consider

a typical 5G NSA architecture, which consists of eNBs and

gNBs. Therefore, UEs can transmit control messages, e.g., bid

functions, via the LTE control plane. Bid functions in the same

UE group Si are collected as a total bid Bi, which is also a k-

tuple {bi(1), bi(2), ..., bi(k)}, where i = 1, 2, ..., N . Also, we

define B as the bid profile, i.e., B = {Bi,j |i = 1, 2, ..., N, t =
1, 2, ...,mi}.

To characterize UE priority, we develop different service

guarantees for different UE group priorities. The k timeslots

are divided into d subperiods with priorities ranging from

0 to d − 1. The p-priority subperiod contains kp timeslots,

where 0 ≤ p ≤ d − 1. Also, we have k =
∑d−1

i=0 ki. The

timeslots of the p-priority subperiod can only be allocated to

the UE groups with q-priority UEs, where q ≥ p. The gNB

decides how to allocate the k timeslots to the N UE groups

based on the N total bids and the priority constraints, and

our system model can be formulated as the following social-

welfare-maximization optimization problem (P1). Note that

vi,j(t) is UEs’ private information, but the gNB only obtains

bi,j(t). Therefore, we need to devise an incentive mechanism

to motivate UEs to report truthfully, i.e., bi,j(t) = vi,j(t).

(P1) : max
T

N
∑

i=1

mi
∑

j=1

vi,j(Ti). (4)

s.t.

N
∑

i=1

Ti = k, (5)

Tpri(p) ≥ kp, ∀p ∈ Zd−1. (6)

Note that there may be no valid solution to (P1). We first

find the highest priority among all UE groups, denoted as

pmax. Then, we check whether there exists q > pmax such

that kq > 0. If so, then no valid solution exists. For example,

when d = 2, we cannot find a valid solution if the coverage

area of the gNB only contains 0-priority UEs and k1 > 0. In

this case, no allocation profile satisfies the priority constraint

because there is no 1-priority UE group. To tackle this issue,

the gNB allocates the timeslots originally belonging to the 1-

priority UE groups to the 0-priority ones by setting k1 = 0
and k0 = k. In the following, we assume that a valid solution

exists to simplify the arguments.

Thus, we can see this auction as a d-tier Stackelberg game

with high-priority UEs as leaders and low-priority UEs as

followers. Usually, a Stackelberg game is solved by backward

induction, which involves finding the optimal solution of the

d-tier game given any outcome of the (d − 1)-tier game and

then solving the optimal solution of the d-tier game. However,

solving a Stackelberg game by backward induction is time-

consuming due to the need to enumerate all the possible d-tier

solutions given the outcomes of the (d− 1)-tier game.



6

To this end, we propose the following mechanism, which

consists of three stages: bid transformation, multi-priority pop-

top algorithm, and VCG pricing. First, the gNB pre-processes

each UE’s bid. Then, the multi-priority pop-top algorithm is

proposed to solve a reformulated optimization problem of (P1).

The optimization problem is identical to (P1) when UEs report

their valuation functions honestly. In this regard, we utilize

VCG pricing to motivate each UE to bid truthfully. Fig. 2 is

the flow chart of the proposed mechanism, and the details are

described below.

B. Bid Transformation

Each UE ai,j bids a k-tuple bid function: Bi,j =
{bi,j(1), bi,j(2), ..., bi,j(k)}. Then, each Bi,j is trans-

formed to the marginal transformed bid function: Ci,j =
{ci,j(1), ci,j(2), ..., ci,j(k)}, where ci,j(t) is the marginal

transformed bid of bi,j(t), and the formula is given below.

Note that we have assumed that bi,j(0) = 0.

ci,j(t) =

{

min
1≤p≤t

(bi,j(p)− bi,j(p− 1)), t = 1, 2, ..., k

0, t = 0.
(7)

After the bid transformation of each UE in Si, the total

bid Ci = {ci(1), ci(2), ..., ci(k)} is obtained by accumu-

lating all the transformed bids of the UEs in Si. That is,

ci(t) =
∑mi

j=1 ci,j(t). Thus, Ci is the marginal transformed

bid function of Si. We also define the marginal transformed

bid profile C = {ci(t)|i = 1, 2, ..., N, t = 1, 2, ..., k}.

C. Multi-Priority Pop-Top Algorithm

After bid transformation, the gNB allocates the resources

to the UEs according to the multi-priority pop-top algorithm

described in Algorithm 1. This algorithm solves the following

optimization problem (P2), which becomes (P1) when UEs

truthfully report their valuation functions, as prescribed by

Lemma 1 given in Appendix B. We will give a formal proof

later. Note that we label the constraints in (10) by (10-1) to

(10-(d− 1)), and we call them priority constraints.

(P2) : max
T

N
∑

i=1

mi
∑

j=1

Ti
∑

t=0

ci,j(t). (8)

s.t.
N
∑

i=1

Ti = k, (9)

Tpri(p) ≥ kp, ∀p ∈ Zd−1. (10)

Design 1 (Multi-priority pop-top algorithm). The multi-

priority pop-top algorithm is specified in Algorithm 1. The

algorithm first initializes T1 to TN . Then, it allocates a timeslot

to the UE group with the highest marginal transformed bid in

each iteration. When there is a tie, we can allocate the timeslot

to UE groups with higher priority or break the tie arbitrarily.

After k iterations, the resource allocation terminates. Then,

the algorithm will check whether Tpri(p) is smaller than kp
for p = 0, 1, ..., d − 1. If so, it re-allocates the resources to

the high-priority UE groups until Tpri(p) = kp. This process

will be repeated d times until all the priority constraints are

satisfied.

Algorithm 1 Multi-Priority Pop-Top Algorithm

Input: k, k0, ..., kd−1, N,C1, C2, ..., CN

Output: T1, T2, ..., TN

Initialization :

1: Stack candidate[0], candidate[1], ...,
candidate[d− 1].

2: Stack value[0], value[1], ..., value[d− 1].
3: for i = 1 to N do

4: Ti = 0.

5: end for

Resource Allocation :

6: for i = 1 to k do

7: s = argmaxj cj(Tj + 1).
8: Ts = Ts + 1.

9: candidate[pri(Ss)].push(s).
10: value[pri(Ss)].push(cs(Ts)).
11: end for

Resource Re-Allocation :

12: for p = 1 to d− 1 do

13: while
∑d−1

j=p candidate[j].size() < kp do

14: s = argmaxj,pri(Sj)≥p cj(Tj + 1).
15: Ts = Ts + 1.

16: candidate[pri(Ss)].push(s).
17: value[pri(Ss)].push(cs(Ts)).
18: int tmp = argmin0≤j≤p−1 value[j].top().
19: int tmpid = candidate[tmp].top()
20: Ttmpid = Ttmpid − 1.

21: candidate[tmp− 1].pop().
22: value[tmp− 1].pop().
23: end while

24: end for

25: return T1, T2, ..., TN

Note that when there is a tie, we can break it arbitrarily.

However, in the following, we assume that there is no tie to

simplify the arguments, although the arguments can be easily

extended to encompass the situations when there are ties.

The multi-priority pop-top algorithm will satisfy the

constraint one by one. In the resource allocation phase,

Algorithm 1 satisfies the constraint
∑N

i=1 Ti = k. Then, at

the p-th iteration of the resource re-allocation phase, it satisfies

the constraint Tpri(p) ≥ kp while maintaining the previously

satisfied constraints. In re-allocating resources, Algorithm 1

always allocates the timeslot of the low-priority UE group with

the lowest transformed marginal bid to the high-priority UE

group with the highest one. In this way, the optimal solution

is guaranteed. We will prove this property later.

In Algorithm 1, candidate[p] stores the allocated UE

groups with priority p, and value[p] stores the marginal

transformed bid of the allocated UE groups with priority p.

There are d levels of priority, so there are 2d stacks to store

the information. We leverage these data structures to reduce

the need to traverse the whole bid profile and reduce running

time.
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D. VCG Pricing

After the resource allocation, each UE ai,j is charged a

price pi,j according to the VCG auction, which is a technique

commonly used in mechanism design. In the VCG auction,

each player pays an amount equal to the utility loss of all the

other players due to its presence. Using this payment rule, the

auctioneer, which is the gNB in our system model, incentivizes

the players to reveal their true valuations. In the following, we

give a more detailed description of VCG pricing.

First, we define the total transformed bid W as follows.

Definition 6 (Total transformed bid). The total transformed

bid of all the UEs when the bid profile is B is W (B) =
∑N

i=1

∑mi

j=1

∑Ti(B)
t=1 ci,j(t).

Note that we will use a subscript to denote the region of

summation, e.g.,Wa(B) = W (B). Also, we have the following

notation, where the resource allocation profile T = {Ts|s ∈
ZN} is based on the bid profile B = {Bs,t|s ∈ ZN , t ∈ Zmi

}.

Wa−ai,j
(B) =

∑∑

s∈ZN ,t∈Zmi

(s,t) 6=(i,j)

Ti
∑

t=0

cs,t(t). (11)

On the other hand, when ai,j is not in the system, we have

a different total transformed bid as described below, where the

resource allocation profile T′ = {T ′
s|s ∈ ZN} is based on the

bid profile B−Bi,j = {Bs,t|s ∈ ZN , t ∈ Zmi
, (i, j) 6= (s, t)}.

Wa−ai,j
(B −Bi,j) =

∑∑

s∈ZN ,t∈Zmi

(s,t) 6=(i,j)

T ′

i
∑

t=0

cs,t(t). (12)

With the above notations, we formally define the VCG

pricing rule.

Design 2 (VCG Pricing). A UE ai,j will be charged pi,j as

follows.

pi,j = Wa−ai,j
(B −Bi,j)−Wa−ai,j

(B). (13)

V. PRELIMINARY RESULTS

In this section, we demonstrate some properties of the

proposed mechanism by considering a simplified scenario

where there is no priority constraints, i.e., d = 1. This section

serves as the preliminary results of Section VI.

A. Resource Allocation Problem

Since there are no priority constraints, the gNB decides how

to allocate the k timeslots to the N UE groups based on the

N total bids, and our system model can be formulated as the

following social-welfare-maximization optimization problem

(P3).

(P3) : max
T

N
∑

i=1

mi
∑

j=1

vi,j(Ti). (14)

s.t.
N
∑

i=1

Ti = k. (15)

Thus, the mechanism is the same as the multi-priority one

with some simplification to Algorithm 1. Fig. 2 in black color

is the flow chart of the proposed mechanism.

B. Pop-Top Algorithm

When there are no priority constraints, the multi-priority

pop-top algorithm reduces to the pop-top algorithm described

in Algorithm 2 This algorithm aims to solve the following

optimization problem (P4), which becomes (P3) when UEs

truthfully report their valuation functions.

(P4) : max
T

N
∑

i=1

mi
∑

j=1

Ti
∑

t=0

ci,j(t). (16)

s.t.

N
∑

i=1

Ti = k. (17)

Algorithm 2 Pop-Top Algorithm

Input: k, N , C1, C2, ..., CN

Output: T1, T2, ..., TN

Initialization :

1: for i = 1 to N do

2: Ti = 0.

3: end for

Resource Allocation :

4: for i = 1 to k do

5: s = argmaxj cj(Tj + 1).
6: Ts = Ts + 1.

7: end for

8: return T1, T2, ..., TN

Design 3 (Pop-top algorithm). The pop-top algorithm is

specified in Algorithm 2. The algorithm first initializes T1 to

TN . Then, it allocates a timeslot to the UE group with the

highest marginal transformed bid in each iteration. After k
iterations, the allocation terminates, and each UE group Si

will be allocated Ti timeslots.

Some properties of the pop-top algorithm are given in

Appendix A.

C. Incentive-Compatibility

In this subsection, we prove that the proposed mechanism

is incentive-compatible. To maximize its utility, an UE may

falsely report its valuation function, thus reducing social

welfare. However, under the proposed incentive-compatible

mechanism, each UE can get maximum utility when it truth-

fully reports the valuation function, i.e., truthful bidding is

each UE’s dominant strategy.

Theorem 1. The proposed mechanism is incentive-compatible.

That is, truthful bidding is the dominant strategy.

Proof. This is proved in Appendix C.
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D. Social Welfare Maximization

In this subsection, we prove that the proposed mechanism

maximizes social welfare, which is the summation of all UEs’

valuations as defined below.

Definition 7 (Social welfare). Social welfare φ is defined as

follows.

φ =

N
∑

i=1

mi
∑

j=1

vi,j(Ti). (18)

Theorem 2. The proposed mechanism maximizes social wel-

fare φ.

Proof. This is proved in Appendix D.

E. Individual Rationality

In this subsection, we prove that the proposed mechanism

is individually rational. A mechanism achieves individual ra-

tionality when no player gets negative utility by participating.

Thus, all players are willing to join the auction.

Theorem 3. The proposed mechanism is individually rational.

That is, if a player ai,j is truthful, then ui,j ≥ 0.

Proof. This is proved in Appendix E.

F. Budget Balance

After proving the willingness of UEs to participate previ-

ously, we show that the gNB is also willing to be the auctioneer

because it can earn money. In particular, we demonstrate that

the proposed mechanism is (weakly) budget-balanced, i.e., the

total payment of the players is non-negative.

Theorem 4. The proposed mechanism is (weakly) budget-

balanced. That is,
∑N

i=1

∑mi

j=1 pi,j≥0.

Proof. This is proved in Appendix F.

G. Polynomial-Time Complexity

Finally, we analyze the time complexity of the proposed

mechanism and show that it runs in polynomial time in this

subsection. Different from [13], we give a tighter bound for

the mechanism by removing unnecessary operations in VCG

pricing.

Theorem 5. The proposed mechanism runs in O(Nrk), which

is polynomial-time.

Proof. This is proved in Appendix G.

VI. INCENTIVE-COMPATIBILITY AND OTHER DESIRABLE

PROPERTIES OF MULTI-PRIORITY MODEL

A. Incentive-Compatibility

In this subsection, we will prove that the multi-priority

pop-top algorithm maximizes the total transformed bid and

is incentive-compatible.

First, we consider d = 2, where we only have one pri-

ority constraint. There are two possible situations for this

optimization problem: The solution is the same without (10)

or the solution is different without (10). Here we borrow the

terminology from convex optimization [40] and discuss the

two situations.

Definition 8 (Inactive priority constraint). We say the priority

constraint in (P2) is inactive when the solution is the same

with or without the priority constraint.

Proposition 1. The multi-priority pop-top algorithm maxi-

mizes the total transformed bid if the priority constraint is

inactive.

Proof. When the priority constraint is inactive, Algorithm 1

is the same as Algorithm 2. Hence, it maximizes the total

transformed bid by Proposition 10.

Definition 9 (Active priority constraint). We say the priority

constraint in (P2) is active when the solution is different with

or without the priority constraint.

Proposition 2. If the priority constraint is active, Tpri(1) =
k1.

Proof. We will prove this by contradiction, and we suppose

that the priority constraint is active and Tpri(1) > k1. We

denote T ′
pri(1) as the total timeslots allocated to the high-

priority UE groups without the priority constraint. Since the

priority constraint is active, T ′
pri(1) ≤ k1, for otherwise, the

priority constraint is inactive.

Then, we can construct a different allocation profile by

allocating a timeslot of the high-priority UE group with the

lowest transformed marginal bid to the low-priority UE group

with the highest transformed marginal bid. The new allocation

profile still satisfies the priority constraint and has a higher

total transformed bid than the original one. This contradicts

the claim that the original allocation profile is optimal. Thus,

Tpri(1) = k1.

Note that we cannot use the relationship between Tpri(1)
and k1 to determine whether the constraint is inactive. When

Tpri(1) = k1, the constraint may be inactive or active, so our

definitions utilize the optimal solutions with or without the

constraint.

Proposition 3. The multi-priority pop-top algorithm maxi-

mizes the total transformed bid if d = 2 and the priority

constraint is active.

Proof. When the priority constraint is active, Algorithm 1

enters the resource re-allocation phase, re-allocating some

resources from low-priority UE groups to high-priority ones.

Since the the priority constraint is active, Tpri(1) = k1.

Therefore, we can allocate k1 timeslots to the high-priority

UE groups and k0 timeslots to the low priority UE groups

according to Algorithm 2. This allocation mechanism will give

the optimal solution.

In the resource re-allocation phase, Algorithm 1 allocates

the timeslots for low-priority UE groups after the k0-th largest

marginal transformed bid to the high-priority UE groups. This

is equivalent to using Algorithm 2 to allocate k0 timeslots to

low-priority UE groups and k1 timeslots to high-priority UE
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groups. Thus, the solution is optimal since Algorithm 2 gives

the optimal solutions for both low-priority and high-priority

UE groups by Proposition 10.

Proposition 4. The multi-priority pop-top algorithm maxi-

mizes the total transformed bid if d = 2.

Proof. When the priority constraint is inactive, the multi-

priority pop-top algorithm maximizes the total transformed

bid according to Proposition 1. Conversely, when the priority

constraint is active, it maximizes the total transformed bid

according to Proposition 3.

Since the priority constraint is either inactive or active, the

above results prove the proposition.

Proposition 5. The multi-priority pop-top algorithm maxi-

mizes the total transformed bid.

Proof. We will prove this by mathematical induction.

Claim: The resource allocation profile T after the p-th

iteration of the resource re-allocation phase in Algorithm 1

is the optimal solution of (P2) with priority constraints (10-1)

to (10-p).

Base Case: For p = 1, the claim holds by Proposition 4.

Inductive Step: Assume that the claim holds for p = t, and

we will prove that the claim holds for p = t+ 1.

If the resource allocation profile already satisfies priority

constraint (10-p), the claim holds for p = t+ 1.

If not, then Tpri(p) = kp after the resource re-allocation

phase, which can be proved in a similar way as that in

Algorithm 1. We denote the total timeslots allocated to the

UE groups with priorities higher than p before and after the

iteration as T ′
pri(p) and Tpri(p), respectively.

We consider the UE groups with priorities at least p. Since

the original resource allocation profile is optimal, the first

T ′
pri(p) timeslots are the same, and the rest Tpri(p)−T ′

pri(p)
timeslots are allocated to the UE groups with the highest

marginal transformed bids as Algorithm 1 does.

Then, we consider the UE groups with priorities lower than

p. Since the original resource allocation profile is optimal, the

first k−Tpri(p) timeslots are the same, and the rest T ′
pri(p)−

Tpri(p) timeslots are removed from the UE groups with the

lowest marginal transformed bids as Algorithm 1 does.

Therefore, the p-th iteration of the resource re-allocation

phase preserves optimality, thus completing the inductive step.

Theorem 6. The proposed multi-priority mechanism is

incentive-compatible.

Proof. Each UE aα,β will choose the strategy that will opti-

mize its utility as follows. We denote the number of timeslots

allocated to Si with or without aα,β by Ti and T ′
i , respectively.

max
Bα,β

uα,β = max
Bα,β

vi,j(Tα)− pα,β

= max
Bα,β

[vα,β(Tα) +
∑∑

i∈ZN ,j∈Zmi

(i,j) 6=(α,β)

Ti
∑

t=0

ci,j(t)

−
∑∑

i∈ZN ,j∈Zmi

(i,j) 6=(α,β)

T ′

i
∑

t=0

ci,j(t)]

= max
Bα,β

[vα,β(Tα) +
∑∑

i∈ZN ,j∈Zmi

(i,j) 6=(α,β)

Ti
∑

t=0

ci,j(t)]

−
∑∑

i∈ZN ,j∈Zmi

(i,j) 6=(α,β)

T ′

i
∑

t=0

ci,j(t).

(19)

Since
∑∑

i∈ZN ,j∈Zmi

(i,j) 6=(α,β)

∑T ′

i

t=0 ci,j(t) does not depend on

Bi,j , we do not need to include them in the optimization prob-

lem. Then, the optimization problem becomes the following.

max
Bα,β

[vα,β(Ti) +
∑∑

i∈ZN ,j∈Zmi

(i,j) 6=(α,β)

Ti
∑

t=0

ci,j(t)]. (20)

Also, the multi-priority pop-top algorithm solves the fol-

lowing optimization problem.

max
Bα,β

[

Ti
∑

t=0

cα,β(t) +
∑∑

i∈ZN ,j∈Zmi

(i,j) 6=(α,β)

Ti
∑

t=0

ci,j(t)]. (21)

Thus, if aα,β bids truthfully, (21) and (20) are the same.

Hence, truthful bidding is the player’s dominant strategy.

B. Social Maximization

Theorem 7. The proposed multi-priority mechanism maxi-

mizes social welfare.

Proof. By Theorem 6, the proposed mechanism is incentive-

compatible. Therefore, social welfare is equal to the sum-

mation of all winners’ marginal transformed bids, which is

the total transformed bid. Also, by Proposition 5, the multi-

priority pop-top algorithm maximizes the total transformed

bid. Therefore, the proposed mechanism maximizes social

welfare.

C. Individual Rationality

Theorem 8. The proposed multi-priority mechanism is in-

dividually rational. That is, if a player ai,j is truthful, then

ui,j ≥ 0.

Proof. If ai,j bids truthfully, ui,j can be written as follows.

ui,j = Wa(B)−Wa−ai,j
(B −Bi,j). (22)

Since B−Bi,j ⊂ B, and the multi-priority pop-top algorithm

will maximize the total transformed bid by Proposition 5.

Therefore, Wa(B) ≥ Wa−ai,j
(B −Bi,j), and ui,j ≥ 0.
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D. Budget Balance

Theorem 9. The proposed multi-priority mechanism is

(weakly) budget-balanced. That is,
∑N

i=1

∑mi

j=1 pi,j ≥ 0.

Proof. The price pi,j paid by ai,j is as follows.

pi,j = Wa−ai,j
(B −Bi,j)−Wa−ai,j

(B). (23)

We denote the resource allocation profile produced by B −
Bi,j as T′, and the resource allocation profile produced by B

as T. Also, combining Proposition 5 and Theorem 6, the pro-

posed mechanism maximizes social welfare. If Wa−ai,j
(B −

Bi,j) < Wa−ai,j
(B), T will give higher social welfare than T′

when the bid profile is B−Bi,j , contradicting with the above

claim. Therefore, Wa−ai,j
(B − Bi,j) ≥ Wa−ai,j

(B). Hence,

pi,j = Wa−ai,j
(B − Bi,j) − Wa−ai,j

(B) ≥ 0, meaning that
∑N

i=1

∑mi

j=1 pi,j ≥ 0.

E. Polynomial-Time Complexity

Theorem 10. The proposed multi-priority mechanism runs in

polynomial time.

Proof. We denote the time complexity of bid transformation,

multi-priority pop-top algorithm, and VCG pricing by γ1, γ2,

and γ3, respectively.

As in Theorem 5, γ1 = O(rk). As for the multi-priority

pop-top algorithm, we analyze the time complexity of the three

for loops. The first for loop (lines 3-5) takes O(N), and the

second for loop (lines 6-11) takes O(Nk), as in Theorem 5. As

for the third for loop (lines 12-24), we use aggregate analysis,

one of the amortized analysis techniques. The total number of

while loop is upper bounded by k since at most k timeslots

are re-allocated. Inside each iteration, line 14 and line 18 take

O(N) due to the need to traverse all UE groups. Thus, the third

for loop takes O(Nk), and γ2 = O(N)+O(Nk)+O(Nk) =
O(Nk). The VCG pricing will run the bid transformation and

the multi-priority pop-top algorithm for every winning UE.

By the same technique in Theorem 5, γ3 = O(Nrk). Thus,

γ1 + γ2 + γ3 = O(Nrk), which is polynomial-time.

F. High-Priority Superiority

In this subsection, we prove that the expected utility of a

high-priority UE is at least that of a low-priority UE. We

consider d = 2, but the arguments can be generalized to

any d. To simplify the proof, we have the following three

assumptions.

1) The UEs’ location distributions, i.e., which UE group

each UE belongs to, follow independent and identically

distributed (i.i.d.) distributions, no matter the UE priority.

2) The UEs’ valuation functions follow i.i.d. distributions,

no matter the UE priority.

3) The total number of UEs r is large.

Theorem 11. The expected value of a high-priority UE’s

utility is higher than or equal to the expected value of a

low-priority UE’s utility under the proposed multi-priority

mechanism with the assumptions specified above.

Proof. We denote the expected value of a high-priority UE’s

utility by Epri(ai,j)=1[ui,j ] and the expected value of a low-

priority UE’s utility by Epri(ai,j)=0[ui,j ].

First, we consider the situation when k1 = 0. Since there is

no difference between a high-priority UE and a low-priority

one without the priority constraint, we have the following.

Epri(ai,j)=1[ui,j ] = Epri(ai,j)=0[ui,j ]. (24)

Then, we consider k1 > 0, and we will prove that

E
′
pri(ai,j)=1[ui,j ] ≥ E

′
pri(ai,j)=0[ui,j ].

We can express ui,j as ui,j = vi,j − pi,j , where pi,j is

the social welfare lose it has incurred on other UEs when

participating.

Note that when the number of UEs is high, it is unlikely

that a single UE’s decision will change the allocation profile

significantly. Moreover, since the UEs’ valuation functions

follow i.i.d. distributions, we obtain the following relationship.

pi,j
vi,j

= O(
1

r
). (25)

Therefore, when r is large, we can ignore pi,j and focus on

vi,j . Since vi,j depends on the timeslots a high-priority UE

ai,j gets, we consider the following two situations.

First, we consider the situation when the priority constraint

is inactive. Since the priority constraint is inactive, the solution

is the same with or without the priority constraint. Thus,

Algorithm 1 reduces to Algorithm 2. Therefore, we arrive at

the following.

v′i,j = vi,j . (26)

On the other hand, when the priority constraint is active,

Algorithm 1 will allocate some timeslots from low-priority

UE groups to high-priority ones. Thus, the utility of a high-

priority UE will increase after each iteration of the resource

re-allocation phase, and we have the following.

v′i,j ≥ vi,j . (27)

Combining (26) and (27) and taking the expectation, we

have the following.

E
′
pri(ai,j)=1[vi,j ] ≥ Epri(ai,j)=1[vi,j ]. (28)

Moreover, we have (29), for otherwise, φ′ > φ, contradict-

ing Theorem 2.

E
′
pri(ai,j)=0[ui,j ] ≤ Epri(ai,j)=0[ui,j ]. (29)

Therefore, based on (24), (28), and (29), we can compare

the expected utility of a high-priority UE and a low-priority

one as follows, thus completing the proof.

E
′
pri(ai,j)=1[ui,j ] ≥ Epri(ai,j)=1[ui,j ]

= Epri(ai,j)=0[ui,j ]

≥ E
′
pri(ai,j)=0[ui,j ].

(30)
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(c) Six priorities.

Fig. 3. Incentive-compatibility: The UE’s utility with respect to different bids in systems with different numbers of priorities. The UE’s true valuation is
plotted in each subfigure with a vertical black line. When the UE’s bid equals its true valuation, the UE can get maximum utility. This means UEs are
incentivized to report their valuations truthfully, validating the incentive-compatibility of the proposed mechanism. (a) No priorities. (b) Two priorities. (c)
Six priorities.

TABLE II
PARAMETERS FOR SIMULATION

Notation Meaning Default value

N Number of UE groups 32
r Number of UEs 1000
d Number of priorities {1, 2, ..., 6}
µ Numerology setting 3

Subcarrier spacing 120 kHz
Beam number 8
Beam width 15°

k Number of timeslots per frame 80
n0 Noise power -100 dBm
P gNB transmit power 30 dBm
gB gNB antenna gain 15 dB
hB gNB antenna height 15 m
gU UE antenna gain -7.35 dB
hU UE antenna height 1.5 m
B Channel bandwidth 100 MHz
fc Carrier frequency 28 GHz
σSF Standard deviation of Gaussian

shadow fading
LOS: 4, NLOS: 6

VII. PERFORMANCE EVALUATION

A. Evaluation Methodology

In this section, we simulate the proposed resource allocation

mechanism to demonstrate its properties numerically. We

consider a network setting with a gNB, which has a coverage

radius of 500 m. All the UEs are uniformly and randomly

distributed within the coverage of the gNB, and the minimum

distance between a UE and the gNB is set to be 10 m.

We follow the propagation model in Section III-A, and the

parameters for simulation are specified in Table II. We use

the numerology set µ = 3 in our evaluation [35], where the

subcarrier spacing is 120 kHz. The beam number is 8 per

sector, and the gNB uses three sectors to serve its coverage

area. The width of each beam is 15°.

The valuation function of each UE ai,j is given below,

where SNRi,j is
P ·gB ·gU ·PL(di,j)·SF

n0

, and
∑t

p=1 Uc[0, 1]
(p)

captures the concavity of the valuation function.

vi,j(t) = B log2(1 + SNRi,j)

t
∑

p=1

Uc[0, 1]
(p). (31)

Note that we use the following notations.

• Uc[a, b] denotes the continuous uniform distribution over

[a, b].
• Uc[a, b]

(p) denotes the p-th largest element of k Uc[a, b]s.

If not specified explicitly, the simulation result of each

experiment is averaged over 100 simulations to avoid the effect

of randomness.

For the purpose of showing the advantages of our proposed

mechanism, three following schemes are used for comparison.

• GRAph-based Multicast Scheduling (GRAMS): The

graph-based multicast scheduling mechanism is from

[18]. This mechanism first allocates one timeslot to each

UE group to ensure basic needs. For the remaining

resources, it allocates the timeslots to maximize social

welfare.

• Weighted Allocation Mechanism (WAM): The

weighted allocation mechanism takes valuation into

account when distributing resources [41]. It allocates

timeslots to each UE group proportional to the sum

of the first elements of the valuation functions, i.e.,
∑mi

j=1 ci,j(1), in that direction.

• Uniform Allocation Mechanism (UAM): The uniform

allocation mechanism allocates resources from a fairness

standpoint [42]. It is a per-group uniform allocation

mechanism, allocating timeslots to all the UE groups in

a round-robin fashion.

B. Incentive-Compatibility

In this subsection, we demonstrate incentive-compatibility

of the proposed mechanism. Fig. 3(a), Fig. 3(b), and Fig. 3(c)

are a UE’s utility with respect to different bids when there

are no priorities, two priorities, and six priorities, respectively.

The number of UE groups N is 8, the priorities of different

UE groups are randomly chosen, and other parameters are in

Table II. We consider the bid function B1,1 of a UE a1,1 in

UE group S1 with different bids for the fifth timeslot b1,1(5),
while other values are the same, i.e., b1,1(t) = v1,1(t), t 6= 5.

The UE will get maximum utility if it bids truthfully, as

indicated by the vertical black line in each subfigure. When the

UE under-bids, it may get fewer timeslots, thus getting lower

utility, as indicated by the region to the left of the vertical
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Fig. 4. Social welfare comparison with different parameters. (a) Different numbers of UEs. (b) Different numbers of timeslots. (c) Different numbers of UE
groups. (d) Different numbers of priorities. (e) Different Shannon capacities.

black line. When the UE over-bids, it may get more timeslots.

While the valuation of more timeslots is higher, it has to pay

more money under the VCG pricing, thus getting lower utility,

either. Thus, the UEs are motivated to report their valuation

functions truthfully, as prescribed by Theorem 6.

C. Social Welfare Maximization

In this subsection, we present social welfare maximization

of the proposed mechanism. In Fig. 4(a), Fig. 4(b), Fig. 4(c),

and Fig. 4(d), we compare our proposed mechanism with

GRAMS, WAM, and UAM under different scenarios.

Fig. 4(a) demonstrates social welfare comparison with dif-

ferent numbers of UEs r. With the growth of r, social

welfare increases since there are more UEs. Also, the proposed

mechanism achieves higher social welfare than the other three

baselines. As demonstrated in Fig. 4(a), when the number

of UEs increases, social welfare increases nearly linearly.

Because we assume that each UE’s valuation function follows

the same distribution, which is reasonable as there are a lot of

UEs, social welfare increases when more UEs are involved.

Fig. 4(b) demonstrates social welfare comparison with dif-

ferent numbers of total timeslots k. With the increase of k,

social welfare increases since UEs can get more timeslots

and more utility in each frame. It can be seen that the

proposed mechanism achieves higher social welfare than the

other allocation schemes because the proposed mechanism

solves the optimization problem and always attains a social-

welfare-maximization solution. Moreover, note that Fig. 4(a)

and Fig. 4(b) follow similar trends in that both r and k are

positively related to social welfare.

Fig. 4(c) explores social welfare comparison with different

numbers of UE groups N . When N increases and other

parameters remain the same, each UE group contains fewer

MUs. Therefore, fewer MUs can get packets in each timeslot,

thus reducing social welfare. With the increase of N , social

welfare decreases rapidly initially but slows down when N
is high. UAM achieves the lowest social welfare no matter

the number of UE groups due to its inability to capture the

UE distribution. On the other hand, with the increase of N ,

the proposed allocation mechanism achieves the highest social

welfare because it yields an allocation profile by solving an

optimization problem aiming at maximizing social welfare.

While GRAMS and WAM can also capture the UE distri-

bution, their allocation criteria are still heuristic. Therefore,

compared to the proposed mechanism, which directly solves

the optimization problem, GRAMS and WAM get lower social

welfare.

Fig. 4(d) presents social welfare comparison with different

numbers of priorities d. We set the relative number of UE

groups with different priorities as an exponential relationship,

i.e., the number of UE groups with i-priority is twice that with

(i + 1)-priority. On the other hand, the timeslot numbers of

different subperiods are the same, i.e., k0 = k1 = ... = kd−1.

With the increase of d, more resources are concentrated on

high-priority UEs while social welfare decreases slightly due

to more constraints on the resource allocation optimization

problem. Therefore, there is a trade-off between social welfare
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Fig. 7. Utility comparison of 2-priority UEs, 1-
priority UEs, and 0-priority UEs with different k1
and k2.

and high-priority superiority. For other allocation schemes,

social welfare remains unchanged because they do not consider

priority when allocating resources. Conversely, the proposed

mechanism considers UE priority. Under priority constraints,

a small number of high-priority UEs acquire a higher number

of timeslots. However, due to the non-increasing property

of each UE’s marginal valuation function, the high-priority

UEs contribute less to social welfare when they have already

obtained abundant beam resources, resulting in a decrease in

social welfare when d increases. However, although social

welfare declines with the rise of d, it still outperforms the

other baselines because the proposed optimization algorithm

suitably re-allocates the timeslots in a way that maximizes

social welfare while satisfying priority constraints.

Finally, UEs’ utility under different channel qualities is

examined in Fig. 4(e). A UE’s utility is approximately linear

to its Shannon capacity. Therefore, when a UE has a higher

Shannon capacity, it has higher utility. As shown in Fig. 4(e),

the utility of each UE suitably reflects the channel quality.

D. Priority Comparison

In this subsection, we examine the impact of the percentage

between the high-priority subperiod timeslot number k1 and

the low-priority subperiod timeslot number k0 on the utility

of UEs with different priorities. We consider a system with 32
UE groups and two priorities. The high-priority UEs account

for about 20% of all the UEs. This percentage is similar to

the Premium subscribers’ percentage of Youtube [43]. Thus,

we set 20% of the UE groups as high-priority consisting of

high-priority UEs.

In Fig. 5, we compare the utility of UEs under different

high-priority percentages k1/k. As can be seen in Fig. 5,

high-priority UEs can get higher utility under the proposed

mechanism. Moreover, as k1/k increases, the average utility

of high-priority UEs increases. Since the percentage of high-

priority UEs is 20%, the difference in utility between high-

priority UEs and low-priority ones is not significant when

k1/k is less than 0.2. After that, high-priority UEs will get

considerably higher utility than low-priority UEs do. The

difference in utility can be set as the membership charge

of the UEs. On the other hand, the social welfare of the

proposed mechanism remains nearly the same when k1/k

is less than 0.2 and decreases slightly after that, as can be

seen from Fig. 6. Combining Fig. 5 and Fig. 6, there is a

trade-off between high-priority superiority and social welfare

maximization. Moreover, k1/k can be set as a number around

the high-priority UE percentage. As such, the system ensures

the superiority of the high-priority UEs while guaranteeing

social welfare.

Furthermore, we explore the utility of different UEs in a

three-priority system in Fig. 7. When high-priority timeslots

increase, both 2-priority UEs and 1-priority UEs get higher

utility. Moreover, when the timeslots allocated to 2-priority

UEs increase and those allocated to 1-priority UEs decrease,

the utility of 2-priority UEs goes up while that of the 1-priority

UEs goes down. However, no matter the parameters, high-

priority UEs always achieve a higher utility.

E. Latency Comparison

Besides utility comparison, we analyze UE latency and link

reliability under a 3-priority system in Fig. 8 and Fig. 9. We

assume each UE has a packet to receive, and the packet size is

denoted as δ. The timeslot duration is set as td = 1
8 ms. The

throughput of each UE ai,j is Ri,j = td×B log2(1+SNRi,j).
To capture the link reliability using the above parameters, we

set a UE’s valuation function as the following.

vi,j(t) = min(1, log2(1 +
Ri,jt

δ
)). (32)

When the UE receives no timeslot, its valuation is 0. When

the UE receives the entire packet successfully, meaning that

Ri,jt ≥ δ, its valuation is 1. The valuation between obtaining

no resources and a successful transmission is characterized by

a concave log function that captures the decreasing marginal

utility.

The gNB allocates the timeslots to different UE groups with

priority consideration. When considering priority, a UE group

with a higher priority gets beam resources earlier than another

one with a lower priority. When there is a tie, we allocate

the resources to the UE group with more UEs. The priority

consideration dictates the serving sequence in each round, and

the transmission is in a round-robin fashion between different

rounds. So, the gNB will first serve each UE group once

before serving any of them the second time, and this process
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Fig. 10. Computational efficiency comparison with different parameters. (a) Different numbers of UEs. (b) Different numbers of timeslots. (c) Different
numbers of UE groups.

continues. The latency is defined as the time at which the

transmission of the packet is complete. If the transmission

is not finished within the whole frame, the latency is set as

k × td = 10 ms.

Fig. 8 demonstrates the latency of three kinds of UEs. When

the packet size is small, the gNB can finish the transmission

in a timeslot. So, the latency is determined by the first time

a UE receives the packet. When the packet size increases,

a single timeslot is not sufficient to transmit a packet, so

the gNB needs to utilize more timeslots for transmission.

However, beam scheduling is a round-robin fashion. So, the

gap between two serving times is huge, leading to increased

latency. Finally, when the packet size is too large to transmit

with a few timeslots, the gNB cannot transmit successfully,

and all the UEs have a latency of 10 ms.

Fig. 9 explores the 95-th percentile latency of three kinds of

UEs. The 95-th percentile latency indicates a threshold under

which 95% of the UEs can finish the transmission, and this

criterion is indicative of the link reliability. Fig. 9 follows the

same trend as that in Fig. 8, but the 95-th percentile in Fig. 9

is always greater than the average latency in Fig. 8. When

the packet size is small, the gNB can guarantee successful

transmission within a short time. Thus, the reliability of links

is higher in terms of the latency guarantee. However, the 95-th

percentile latency reaches the upper limit of 10 ms even when

the average latency is lower. This phenomenon means that

while some UEs may have finished the transmission earlier due

to higher throughput, the system only guarantees a moderate

delay for the UEs with poor SNR. When the packet size is

larger than 400 Kb, all 95-th percentile latency is limited to

10 ms, the length of a radio frame, because of the resource

allocation cycle in our setting. If a UE’s latency reaches the

upper limit, it is regarded as an outage UE since it cannot

successfully receive its packet in time.

As for the comparison between different UE priorities,

Fig. 8 and Fig. 9 demonstrate that UEs with a higher priority

have lower latency because they can be served first. Combining

this result with that of Fig. 7, we observe that a higher priority

has both utility and latency advantages. Also, the links are

reliable when the packet size is small. When the packet size

is large, the latency hugely depends on the throughput of each

UE, and the links are not reliable.

F. Computational Efficiency

Finally, we demonstrate the computational efficiency of

the proposed mechanism by some simulations. Fig. 10(a),

Fig. 10(b), and Fig. 10(c) show the computational efficiency

of the proposed mechanism with respect to different numbers

of UEs r, timeslots k, and UE groups N , respectively. The

results show that the computational time of the proposed

mechanism is linear to r, k, and N , as indicated by Theorem 5.

As for the benchmark schemes, the computational time stays

almost the same. The reason for this phenomenon is that these

schemes do not consider the whole UE valuations, so they do

not traverse the UE groups to achieve a resource allocation

outcome.
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VIII. CONCLUSION

In this paper, we considered a resource allocation framework

for a 5G mmWave MBS system with beamforming techniques.

The goal was to devise a low-complexity and resource-efficient

mechanism that allocates the resources to different UE groups.

Unlike the previous work, we treated the UEs’ valuations

as their private information and formulated the optimization

problem as an auction. Moreover, as content providers provide

premium membership, we took UE priority into account and

extended the system model to a multi-priority one.

With the modified VCG-based mechanism, UEs are incen-

tivized to report their true valuations of the beam resources.

In this way, the optimization algorithms correctly reflect the

situations of the UEs, thus guaranteeing the social-welfare-

maximization outcomes in the actual system. On the other

hand, the proposed mechanism can provide higher utility and

lower latency for high-priority UEs. Besides, our mecha-

nism is individually rational, (weakly) budget-balanced, and

computationally efficient. Finally, simulation results validated

the superiority of the proposed mechanism under different

scenarios and provided insight into the premium membership

system.

APPENDIX A

PROPERTIES OF THE POP-TOP ALGORITHM

The pop-top algorithm can also be formulated as the sorting

algorithm described in Design 4. These two algorithms are

identical with different purposes. The pop-top algorithm has

lower time complexity, so we leverage it in the resource

allocation mechanism. Conversely, the sorting algorithm has a

higher time complexity, but its sorting property is useful for

the proofs in the following sections.

Definition 10 (Sorted marginal transformed bid profile). D =
(D(1),D(2), ...,D(Nk)) is the sorted marginal transformed

bid profile, where D(i) = C
(i), and C

(i) is the ith largest

element in C.

We denote the ith element of D by D(i) and {D(i),D(i +
1), ...,D(j)} by D(i : j).

Design 4. (Sorting algorithm) Sort C to get D. A UE group

Si is allocated Ti timeslots, where Ti = |Ci ∩ D(1 : k)|.

Now, we prove the equivalence of the pop-top algorithm

and the sorting algorithm.

Proposition 6. The resource allocation profile T returned

by the pop-top algorithm is equal to the resource allocation

profile T̃ returned by the sorting algorithm if the bid profile B

is the same.

Proof. This is proved in Appendix B

Fig. 11 demonstrates Proposition 6. There are three UE

groups, labeled by S1, S2, and S3. The x-axis shows the

selection order of different algorithms. Fig. 11(a) presents the

allocation procedure of the pop-top algorithm. The pop-top

algorithm allocates the first timeslot to S1 because it has the

largest marginal transformed bid. Then, the pop-top algorithm

allocates the second timeslot to S2 because it has the largest
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Fig. 11. A simple example to demonstrate Proposition 6. (a) Pop-top
algorithm. (b) Sorting algorithm.

marginal transformed bid among the unselected bids. This

process goes on until all the timeslots are fully allocated.

Fig. 11(b) presents the allocation procedure of the sorting

algorithm. The sorting algorithm first sorts all the marginal

transformed bids. Then, it allocates the timeslots according

to the order. Obviously, both the pop-top algorithm and the

sorting algorithm return the same resource allocation profile,

as demonstrated by the selection order in Fig. 11(a) and

Fig. 11(b).

APPENDIX B

PROOF OF PROPOSITION 6

First, we prove two properties of the marginal transformed

bid function.

Lemma 1. If ai,j bids truthfully (Bi,j = Vi,j), then
∑T

t=0 ci,j(t) = vi,j(T ).

Proof. If Bi,j = Vi,j , then the bid function Bi,j is concavely

increasing. Hence, we have the following relationship for t =
1, 2, ..., k.

ci,j(t) = min
1≤p≤t

(bi,j(p)− bi,j(p− 1))

= bi,j(t)− bi,j(t− 1).
(33)

Summing up ci,j(t), and using bi,j(0) = 0 and ci,j(0) = 0,

we arrive at the final result.

T
∑

t=0

ci,j(t) = bi,j(T )− bi,j(0) + ci,j(0)

= bi,j(T )

= vi,j(T ).

(34)

Lemma 2. The marginal transformed bid function Ci is non-

increasing. That is, ci(t) ≤ ci(t− 1), t = 2, 3, ..., k.

Proof. First, we prove ci,j(t) ≤ ci,j(t−1) for j = 1, 2, ...,mi.

ci,j(t) = min
1≤p≤t

(bi,j(p)− bi,j(p− 1))

≤ min
1≤p≤t−1

(bi,j(p)− bi,j(p− 1))

= ci,j(t− 1).

(35)

Then, we prove the lemma.

ci(t) =

mi
∑

j=1

ci,j(t) ≤

mi
∑

j=1

ci,j(t− 1) = ci(t− 1). (36)
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Now, we prove the proposition.

Proof. We will prove this proposition by mathematical induc-

tion.

Claim: The resource allocation profile T returned by the

pop-top algorithm is equal to the resource allocation profile T̃

returned by the sorting algorithm.

Base Case: For k = 1, we are going to show that T = T̃.

Assume that Ti = 1, and Tp = 0, p 6= i. Since the pop-

top algorithm will give the only timeslot to the UE group

with the largest marginal transformed bid at t = 1, we have

ci(1) ≥ cp(1), p 6= i. Since Ci is non-increasing by Lemma 2,

we have ci(1) ≥ cp(q), p = 1, 2, ..., N , q = 1, 2, ..., k.

ci(1) is the largest element of C, meaning that ci(1) = D(1).
Hence, the sorting algorithm will also give the only timeslot

to Si. Therefore, T = T̃ for k = 1, completing the base case.

Inductive Step: Assume that the claim holds for k = t, and

we will prove that the claim holds for k = t+ 1.

Assume that the (t + 1)th timeslot is allocated to Si by

Algorithm 2. Since Algorithm 2 gives the (t + 1)th timeslot

to the UE group with the largest marginal transformed bid, we

have ci(Ti(t) + 1) ≥ cp(Tp(t) + 1), p 6= i, where we denote

Tj(p) as the value of Tj after the pth iteration of Algorithm 2.

Since Ci is non-increasing, ci(Ti(t) + 1) ≥ cp(q), p =
1, 2, ..., N , q = Tp(t)+1, ..., k. Thus, ci(Ti(t)+1) is the largest

element of D(t+1 : Nk), meaning ci(Ti(t) + 1) = D(t+1).
Hence, the sorting algorithm gives the (t+1)th timeslot to Si.

Thus, T = T̃ for k = t+1, completing the inductive step.

APPENDIX C

PROOF OF THEOREM 1

In the following, we analyze a UE’s different bidding

strategies and show that a UE cannot get higher utility by

untruthfully reporting its valuation function. We consider a

UE aα,β in Sα to untruthfully report Vα,β , and we denote

the received number of timeslots and the utility of of aα,β
as T

′

α and u
′

α,β , respectively. Also, Tα and uα,β denote the

received number of timeslots and the utility of of aα,β when

it truthfully reports Vα,β . We will prove that u
′

α,β ≤ uα,β no

matter its reported valuation function.

Lemma 3. If T
′

α = Tα, then T
′

j = Tj , j ∈ ZN \ α.

Proof. Since Tα = T
′

α and Cj = C
′

j , j ∈ ZN \ α, D(1 :
k) \ Cα = D′(1 : k) \ C ′

α. By the sorting algorithm, Tj =
|Cj ∩ D(1 : k)| = |C ′

j ∩ D′(1 : k)| = T
′

j , j ∈ ZN \ α.

Proposition 7. If T
′

α = Tα, then u
′

α,β = uα,β .

Proof. The utility of a UE aα,β when getting T timeslots is

given by the following equation.

uα,β(T ) = vα,β(T )− pα,β

= vα,β(T )− (Wa−aα,β
(B −Bα,β)−Wa−aα,β

(B)).
(37)

Wa−aα,β
(B − Bα,β) − Wa−aα,β

(B) is the price calculated

by the VCG auction. Wa−aα,β
(B − Bα,β) is independent of

UE aα,β . Wa−aα,β
(B) is the same for the the UEs in Sα if Tα

is the same. Also, if Tα does not change, the UEs not in Sα

will get the same number of timeslots as before by Lemma 3.

Hence, Wa−aα,β
(B) is the same for the UEs not in Sα.

Moreover, vα,β depends on T and T
′

α = Tα. Thus, all the

terms in uα,β won’t change, meaning that u
′

α,β = uα,β .

Proposition 8. If T
′

α > Tα, then u
′

α,β ≤ uα,β .

Proof. The change of utility is given below.

u
′

α,β − uα,β

= [vα,β(T
′

i )− (Wa−aα,β
(B

′

−B
′

α,β)−Wa−aα,β
(B

′

))]

− [vα,β(Ti)− (Wa−aα,β
(B −Bα,β)−Wa−aα,β

(B))]

= vα,β(T
′

i )− vα,β(Ti) +Wa−aα,β
(B

′

)−Wa−aα,β
(B).

(38)

Since Sα gets more timeslots than before, the other UE

groups must get fewer timeslots than before or the same

number of timeslots as before. E = {e|e ∈ D(1 : k), e /∈
D′(1 : k)} denotes the set of such bids. Note that we have

used Proposition 6.

Also, we have e ≥ ci(t), e ∈ E, t = Tα +1, Tα +2, ..., T
′

α,

for otherwise e ∈ D′(1 : k), contradicting the definition of E.

Thus, we can write (38) as
∑T

′

α

t=Tα+1 cα(t)−
∑

e∈E e ≤ 0,

so u
′

α,β ≤ uα,β .

Proposition 9. If T
′

α < Tα, then u
′

α,β ≤ uα,β .

Proof. The change of utility is given below.

u
′

α,β − uα,β

= [vα,β(T
′

i )− (Wa−aα,β
(B

′

−B
′

α,β)−Wa−aα,β
(B

′

))]

− [vα,β(Ti)− (Wa−aα,β
(B −Bα,β)−Wa−aα,β

(B))]

= vα,β(T
′

i )− vα,β(Ti) +Wa−aα,β
(B

′

)−Wa−aα,β
(B).

(39)

Since Sα gets fewer timeslots than before, the other UE

groups must get more timeslots than before or the same

number of timeslots as before. E = {e|e /∈ D(1 : k), e ∈
D′(1 : k)} denotes the set of such bids. Note that we have

used Proposition 6.

Also, we have e ≤ cα(t), e ∈ E, t = T
′

α+1, T
′

α+2, ..., Tα,

for otherwise e ∈ D(1 : k), contradicting the definition of E.

We can write (39) as
∑

e∈E e−
∑Tα

t=T
′

α+1
cα(t) ≤ 0.

Thus, u
′

α,β ≤ uα,β .

Then, we have the proof of Theorem 1.

Proof. Theorem 1 is the direct result of Proposition 7,

Proposition 8, and Proposition 9.

APPENDIX D

PROOF OF THEOREM 2

Proposition 10. The pop-top algorithm maximizes the total

transformed bid W .

Proof. By the sorting algorithm, the pop-top algorithm allo-

cates the timeslots to the k largest marginal transformed bids,

thus maximizing the total transformed bid W .

Then, we have the proof of Theorem 2.
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Proof. By Theorem 1, the proposed mechanism is incentive-

compatible. Therefore, social welfare is equal to the summa-

tion of all winners’ marginal transformed bids, which is the

total transformed bid. Also, by Proposition 10, the pop-top

algorithm maximizes the total transformed bid. Therefore, the

proposed mechanism maximizes social welfare φ.

APPENDIX E

PROOF OF THEOREM 3

Proof. If ai,j bids truthfully, ui,j can be written as follows.

ui,j = Wa(B)−Wa−ai,j
(B −Bi,j). (40)

We denote the sorted marginal transformed bid profile pro-

duced by B−Bi,j as D′, and the sorted marginal transformed

bid profile produced by B as D. Since B−Bi,j ⊂ B, we have

ui,j =
∑k

t=1 D(t)−
∑k

t=1 D′(t) ≥ 0.

APPENDIX F

PROOF OF THEOREM 4

Proof. The price pi,j paid by ai,j is as follows.

pi,j = Wa−ai,j
(B −Bi,j)−Wa−ai,j

(B). (41)

We denote the resource allocation profile produced by B −
Bi,j as T′, and the resource allocation profile produced by

B as T. If Wa−ai,j
(B − Bi,j) < Wa−ai,j

(B), T will give

higher social welfare than T′ when the bid profile is B−Bi,j ,

contradicting with Theorem 2 that the proposed mechanism

maximizes social welfare. Therefore, Wa−ai,j
(B − Bi,j) ≥

Wa−ai,j
(B). Hence, pi,j = Wa−ai,j

(B−Bi,j)−Wa−ai,j
(B) ≥

0, meaning that
∑N

i=1

∑mi

j=1 pi,j ≥ 0.

APPENDIX G

PROOF OF THEOREM 5

Proof. We denote the time complexity of bid transformation,

pop-top algorithm, and VCG pricing by γ1, γ2, and γ3,

respectively.

Since the number of UEs is r and each UE will bid a k-

tuple, γ1 = O(rk). For the pop-top algorithm, the second for

loop has k iterations, and each iteration takes O(N) to find

the minimum marginal transformed bid by traversing all the

UE groups. Thus, γ2 = O(Nk). The naive analysis will show

that since the VCG pricing needs to run the bid transformation

and the pop-top algorithm for every winning UE, γ3 = r(γ1+
γ2) = O(Nrk + r2k). Thus, γ1 + γ2 + γ3 = O(Nrk + r2k).
However, some operations are redundant in the VCG pricing,

so we can bound the time complexity more tightly.

Note that while the VCG pricing needs to go through the bid

transformation and the pop-top algorithm for every winning

UE, the bid transformation and the pop-top algorithm do not

need to be performed repeatedly for every winning UE.

For the bid transformation of VCG pricing for a UE ai,j ,

we only need to consider the bid transformation of Si without

ai,j . Thus, the running time is not O(rk) but O(k) since only

one UE’s bid will change, and the total running time on the

bid transformation is O(rk).
Similarly, for the pop-top algorithm of VCG pricing for a

UE ai,j , we only need to re-allocate Ti timeslots since the

other timeslots will not change. Hence, the running time is

not O(Nk) but O(NTi), and the total VCG pricing running

time on the pop-top algorithm will be O(Nk × maxi mi)
since

∑N

i=1 Ti = k. While the worst-case time complexity of

O(Nkmaxi mi) is O(Nrk), the time complexity will become

O(Nk× r
N
) = O(rk) if each UE group has the same number

of UEs. Thus, γ3 = O(rk + Nrk) = O(Nrk), and the total

time complexity γ1+γ2+γ3 = O(rk+Nk+Nrk) = O(Nrk),
which is polynomial-time.
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