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Hybrid Strategies for Efficient Intra Prediction in
Spatial SHVC

Dayong Wang, Yu Sun, Weisheng Li, Member, IEEE, Lele Xie, Xin Lu, Frederic Dufaux, Fellow, IEEE,
Ce Zhu, Fellow, IEEE

Abstract—With multi-layer encoding and Inter-layer predic-
tion, Spatial Scalable High Efficiency Video Coding (SSHVC)
has extremely high coding complexity. It is very crucial to speed
up its coding to promote widespread and cost-effective SSHVC
applications. Specifically, we first reveal that the average RD
cost of Inter-layer Reference (ILR) mode is different from that
of Intra mode, but they both follow the Gaussian distribution.
Based on this discovery, we apply the classic Gaussian Mixture
Model and Expectation Maximization to determine whether ILR
mode is the best mode thus skipping Intra mode. Second, when
coding units (CUs) in enhancement layer use Intra mode, it
indicates very simple texture is presented. We investigate their
Directional Mode (DM) distribution, and divide all DMs into
three classes, and then develop different methods with respect
to classes to progressively predict the best DMs. Third, by
jointly considering rate distortion costs, residual coefficients and
neighboring CUs, we propose to employ the Conditional Random
Fields model to early terminate depth selection. Experimental
results demonstrate that the proposed algorithm can significantly
improve coding speed with negligible coding efficiency losses.

Index Terms—SHVC, Coding depth, ILR mode, Intra mode,
Directional Mode.
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V IDEO applications, such as digital TV broadcasting,
video conferencing, wireless video streaming, and smart

phone communications, are deeply embedded in our daily life.
Increasingly, more terminal devices with various spatial resolu-
tions are constantly emerging. This poses the requirements for
video streams to be adaptive to different display resolutions.
As the latest scalable video coding standard, Spatial Scalable
High Efficiency Video Coding (SSHVC) provides an efficient
solution to keep up with the requirements, which encodes
video sequences layer by layer at different spatial resolutions.
At the decoding end, appropriate layers are extracted to adapt
to various display resolutions on demand.

The bitstream generated by SSHVC consists of a base
layer (BL) and one or more enhancement layers (ELs). BL
frames are encoded using intra-layer prediction only, while the
additional inter-layer prediction tools are employed to encode
the EL frames. The intra-layer prediction process in SSHVC
is identical to that in HEVC. As the picture contents of the
BL and ELs are generated from the same video source at
different resolutions, the coding unit (CU) in the BL can be
up-sampled to predict the co-located CU in the ELs. This
prediction mechanism is denoted as Inter-layer prediction,
and the prediction mode is called Inter-layer Reference (ILR)
mode. HEVC encoder is a single layer encoder, nevertheless,
its computational complexity is quite high. As a multi-layer
encoder, SSHVC encodes video sequences at several layers.
The complexity of an SSHVC encoder is much higher than
that of an HEVC encoder. This seriously restricts the wide
application of SSHVC, especially in wireless and real-time ap-
plication environments. Consequently, it is crucial to develop
fast coding algorithms for SSHVC to speed up its encoding
process.

For this purpose, we propose efficient hybrid strategies for
Intra-prediction in SSHVC. The major novelties and contribu-
tions of the proposed algorithm include:

(1) We find that the rate distortion (RD) costs of both ILR
modes and Intra modes follow the Gaussian distribution.
However, there is a significant divergence between re-
spective RD costs. Consequently, the classical Gaussian
Mixture Model and Expectation Maximization (GMM-
EM) in machine learning are employed in our proposed
algorithm to early determine whether the ILR mode is
the best mode.

(2) We reveal a special directional mode (DM) distribution
when a CU uses Intra mode as the best mode in EL.
Based on this distribution, we propose DM Distribution-
Based Progressive DM Selection (DD-BPDS) to predict
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the best DM. More specifically, we divide all DMs
into three classes and propose different strategies for
different classes to progressively predict the best DM:
significant difference-based DM early termination, sig-
nificant difference-based DM prediction-descent direc-
tion search, and variable stepsize check-binary search.

(3) As coding depths of neighbouring CUs, residual co-
efficients, and RD costs provides prior-knowledge for
the coding depth selection, we propose a Conditional
Random Fields-Based Depth Early Termination (CRF-
BDET) algorithm. Specifically, the coding depths of
neighbouring CUs, residual coefficients, and RD costs
are considered with the CRF model in machine learning
to determine the best coding depth, thus early terminat-
ing the depth selection.

To the best of our knowledge, the three contributions above
have never been investigated. Furthermore, GMM-EM, DD-
BPDS and CRF-BDET have never been suggested for fast
video coding implementations.

The rest of this paper is organized as follows. Section
II discusses related work. Section III provides the overview
of the proposed algorithm. Section IV presents the proposed
algorithm in detail, including three fast strategies to accelerate
the encoding process. Section V discusses and analyses the
experimental results. Finally, Section VI draws the conclusions
of this research and plans for future work.

II. RELATED WORK

In SHVC [1], four coding depths from 0 to 3 are evaluated
for each CTU. The CU sizes at coding depth 0, 1 and 2
correspond to 64 × 64, 32 × 32, 16 × 16, respectively. For
coding depth 3, there are two CU sizes available, namely
8 × 8 and 4 × 4. For each CU, the encoder needs to evaluate
both the ILR modes and Intra modes which also includes
35 DMs. In order to determine the best coding parameters,
SHVC evaluates all of the depths and modes. The exhaustive
evaluation enables SHVC to achieve high coding efficiency at
the cost of significantly increased computational complexity.
However, doing so can result in a very complicated coding
process. In order to accelerate the encoding process, a number
of algorithms have been developed targeting at the mode
prediction, DM prediction and depth prediction in SHVC,
which are reviewed and discussed below.
(1) Mode prediction

As the current CU and its relevant CUs contain similar
picture contents, relevant CUs can be used to predict the
most-likely coding modes of the current CU. Tohidypour et
al. [2] predict the RD cost of the current CU by using those
of it’s relevant CUs to achieve an early termination. To reduce
the computational complexity, the algorithm proposed in [3]
adopts relevant CUs to predict the likely modes and skips
unlikely modes in EL. Based on the depth and mode of the
co-located CU in BL, the algorithm proposed in [4] first
predictes the likely modes for the current CU in EL, and then
further eliminates unlikely modes using Inter-layer and spatial
correlations. Wang et al. [5-7] first checke the ILR mode and
merge mode, and then compare the difference of their RD costs

to early terminate the mode selection process. The correlations
form the basis for the above algorithms.

Generally speaking, the residual coefficients are very small,
and follow the Laplacian distribution [9] or Gaussian dis-
tribution [10] if the mode is accurately predicted. Wang et
al. [7] first check ILR mode, and then calculate its part-zero
block based on the distribution of its residual coefficients to
early terminate mode selection. Wang et al. [8] first check
ILR mode, and then decide whether its residual coefficients
follow Gaussian distribution so as to early skip Intra mode.
Wang et al. [11] combine ILR mode probabilities with its
residual coefficients to skip Intra mode prediction. Pan et al.
[12] combine depth correlation and all-zero block to early
terminate mode selection.
(2) DM prediction

Intra mode prediction is a very time-consuming encoding
process in SSHVC. The fast DM selection algorithms that skip
the evaluations of unlikely DMs provide an effective solution
to speed up the coding process. As textural features are closely
related to DM selection, they are often used for fast DM
prediction. Zhao et al. [13] use a Sobel operator to predict
more likely DMs and skip unlikely ones to reduce encoding
time. Zhang et al. [14] obtain the average gradients in both
the horizontal (AGH) and vertical directions (AGV) and then
calculate the ratio values of AGH/AGV to predict the likely
DMs. Based on the improved pixels of CUs, neighbouring
blocks and the Sum of Absolute Hadamard Transformed
Difference (SATD) costs, the work in [15] predictes the best
DM candidate and skip some DMs to speed up the coding
process.

Hadamard Costs (HCs) are also strongly related to DM
selection and are usually used to predict candidate DMs. HC-
based progressive rough mode search is developed in [16]
to check likely DMs, thus skipping unlikely ones to speed
up the coding process. The work described in [7] integrates
textural features with the relationship between DMs and their
corresponding HC values to predict candidate DMs and skip
unlikely ones. Wang et al. [8] combine relevant CUs with DMs
and their corresponding HC values to predict candidate DMs
and skip unlikely DMs. Wang et al. [11] adopte the difference
of Hadamard Costs (HCs) of typical DMs to predict candidate
DMs, and then combine percentages of gradient amplitudes
with HCs to early terminate DM selection. Jamali et al. [17]
develop an RDO cost statistical model to predict likely DMs.
(3) Depth prediction

In order to speed up the coding process, texture features,
correlations, residual coefficients and RD costs are usually
exploited to avoid evaluations on unnecessary coding depths.

Generally speaking, CUs containing simple textures usually
use small coding depths, such as depth 0 and depth 1.
Conversely, CUs comprising complex textures usually use
large coding depths, such as depth 2 and depth 3. As textural
features are related to depth selection, using textual features to
predict candidate depths and skip unlikely coding depths is a
common practice. Wang et al. [11] integrate depth probabilities
with textural complexity to early skip unlikely depths and
early terminated depth selection. The work in [18] employs a
tunable decision model to predict candidate CU size partition
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in Versatile video coding. Lei et al. [19] use a content property
analysis to predict candidate depths, thus filtering out unlikely
depths. Based on textural features, Xu et al. [20] use deep
learning to decide whether to check the current depth for
coding speedup. These algorithms are developed based on
textural features only.

As the current CU and its relevant CUs usually contains
very similar contents, relevant CUs can be used to predict
the candidate depths and to skip unlikely depths for the
current CU. In [21], a Naive Bayesian Classifier exploites the
spatial and Inter-layer correlations to predict candidate sub-
CTU partitions for SHVC. In [22], a Support Vector Machine
uses temporal and spatial features to predict likely depths for
the current CU in EL. Wang et al. [5-8] exploite relevant CUs
and their correlation degrees to predict likely depths. The work
in [23] uses interlayer, spatio-temporal correlations and inter-
level correlations to predict candidate modes. The Inter-layer
and spatiotemporal correlations are adopted in [24] to build
two feedforwards neural network-based learning models thus
predicting candidate depths and modes. The above algorithms
are developed based on correlations only.

Both textural features and correlations are related to depth
selection. Therefore, it is a common approach to jointly
exploit them in the coding depth prediction. Lu et al. [25][26]
simultaneously use texture complexity and spatial-temporal
correlation to predict the candidate depths, and then integrate
Inter-layer correlation with temporal correlation to exclude
unlikely DMs.

Residual coefficients reflect the predictive performance and
are strongly related to depth selection. Therefore, they can
be used to early terminate the depth selection process. Tan
et al. [27] use prediction residuals statistics to prune the cod-
ing quad-trees. Commonly-used Significance Testing methods,
such as t-test [7] and F-test [8], are used to test whether
either expected values (t-test) or variances (F-test) of residual
coefficients are very similar so as to early terminate the depth
selection.

In addition, Yuan et al. [28] first checked whether a
CU is a motion-homogeneous block, ane then proposed the
corresponding early termination strategies. Yuan et al. [29]
proposed an efficient Intra prediction method for H.264/AVC
to improve coding speed.
(4) SSHVC Intra-Coding

Most of the existing fast coding algorithms are developed
for quality SHVC. The research work on Intra prediction for
SSHVC is limited. It is caused by the fact that the Inter-
layer correlation is strong, as the resolutions of BL and EL in
quality SHVC are the same. It is relatively easy to develop
fast prediction algorithms for quality SHVC. However, the
resolutions of BL and EL in SSHVC are different, i.e., 2x
or 1.5x. Consequently, the Inter-layer correlation is weaker,
which is more challenging to develop efficient fast coding
algorithms for SSHVC.

Although the above algorithms can improve the coding
speed, there are some issues to be addressed for SSHVC:

(1) Residual coefficients are often used to early terminate
the mode selection process. Generally speaking, we can
early terminate the mode selection process if residual

coefficients are small enough. However, residual coef-
ficients are not only related to the mode selection but
also closely related to the complexity of texture in the
CU. Therefore, it is unlikely to achieve the optimal
performance by using the residual coefficients only to
early terminate the mode selection.

(2) When Intra mode is selected as the best mode, its
DM distribution has never been investigated yet. Pre-
dicting candidate DMs without considering their distri-
butions might limit the potential improvement of coding
speedup.

(3) Textural features and neighboring CUs are usually
used to predict candidate depths. Actually, residual co-
efficients and RD costs can directly reflect predictive
performance and are more strongly related to depth
selection. However, they are often independently used
in depth prediction. If they can be jointly exploited,
the corresponding depth prediction performance can be
further improved.

In order to address the above issues, in this research,
we develop efficient hybrid strategies for Intra prediction of
SSHVC as follows:

(1) We investigate the relationship between RD costs and
mode selection, and then use the RD costs of ILR mode
to early terminate mode selection. We discover that RD
costs of ILR mode and Intra mode have significant
difference, and the RD costs of these two modes follow
Gaussian distribution. Based on this discovery, we pro-
pose to apply the classic GMM-EM in machine learning
to decide whether ILR mode is the best mode for the
current CU.

(2) Instead of directly predicting the best DM, when Intra
mode is used as the best mode, we first investigate DM
distribution and then develop corresponding methods to
more effectively predict the best DM.

(3) Neighboring CUs, residual coefficients and RD costs
are all strongly related to depth selection. We exploit
the Conditional Random Field (CRF) Model in machine
learning to effectively combine neighboring CUs, resid-
ual coefficients and RD costs to early terminate the depth
selection of the current CU.

III. OVERVIEW OF THE PROPOSED ALGORITHM

To improve Intra coding speed and maintain coding effi-
ciency for SSHVC, in this research work, we propose three
strategies: RD Cost of ILR Mode-Based Mode Selection
(RCIM-BMS), DM Distribution-Based Progressive DM Se-
lection (DD-BPDS), and Conditional Random Fields-Based
Depth Early Termination (CRF-BDET). The overview of the
proposed algorithm is illustrated in Fig. 1. First, we use RCIM-
BMS to determine whether ILR mode is the best mode. In the
affirmative, we can directly skip Intra prediction. Otherwise,
we use DD-BPDS to predict the best DM for Intra prediction.
After the depth has been checked, we use CRF-BDET to
determine whether the current depth can be early terminated.
In Fig. 1, the left side shows the three strategies, and the right
side presents the procedure of the proposed algorithm.
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Fig. 1: Overview of the Proposed Algorithm.

We have carried out extensive experiments to analyse the
encoding characteristics of Intra coding in SSHVC. Various
video sequences that contain different degrees of motion and
texture are employed, and they include Blue_sky, Ducks,
Park_Joy, Pedestrian, Tractor, Town and Station2. According
to the common SHM test conditions (CSTC) [30], two scal-
ability ratios, namely 2x and 1.5x are tested. In cases of 2x
and 1.5x, the ratios of the height and width of a frame in
EL to those of the corresponding frame in BL are 2 and
1.5, respectively. For each scalability ratio, we utilise one
QP set for BL: (22, 26, 30, 34), and two QP sets for EL:
(22, 26, 30, 34) and (24, 28, 32, 36). For the aforementioned
two scalability ratios and two QPs settings, their combinations
in EL can be classified into four cases: case 1 refers to the
scalability ratio of 1.5x and the QP set of (22, 26, 30, 34); case
2 indicates scalability ratio of 1.5x and the QP set of (24, 28,
32, 36); case 3 is the scalability ratio of 2x and the QP set of
(22, 26, 30, 34); and case 4 denotes the scalability ratio of 2x
and the QP set of (24, 28, 32, 36). Among these 4 cases, both
the scalability ratio and the QP difference between EL and
BL achieve their greatest values in case 4, therefore, the Inter-
layer correlation should be the weakest. Consequently, if good
encoding performance is achieved in case 4, the performances
in the other 3 cases can obtain even better performances.
Therefore, the parameter configuration for case 4 is used in our
evaluation. Based on the extensive experiments, we propose
the three fast Intra prediction strategies as shown below.

IV. RD COST OF ILR MODE-BASED MODE SELECTION
(RCIM-BMS)

The justification forming the basis of the proposed GMM-
EM-based mode selection algorithm is first discussed, and
mode implementation details are then described.

A. Justification of the proposed mode selection algorithm

Using the aforementioned condition in testing, we can
obtain the RD Costs of ILR mode and Intra mode, which
are listed in Table I. From Table I, we can observe that, from
depth 0 to 2, the average values of the RD Costs of ILR mode

TABLE I: The RD Costs of ILR mode and Intra mode in All
Depths

Sequence
Depth 0 Depth 1 Depth 2 Depth 3

ILR Intra ILR Intra ILR Intra ILR Intra
Blue_sky 49801 11074 12172 3198 3039 1523 778 946

Ducks 140109 49873 34478 13686 8701 5732 2247 2444
Park_Joy 166607 21382 41191 5616 10308 3066 1888 2621
Pedestrian 37458 26252 9333 7063 2351 2189 609 763

Tractor 57344 22816 14445 5734 3719 2433 988 1189
Town 108752 63737 27495 16467 6875 4908 1721 1981

Station2 44750 12625 11201 4611 2839 2300 742 901
Average 86403 29680 21474 8054 5405 3164 1282 1549

are significantly larger than those of Intra mode. In contrast,
for depth 3, the average value of the RD Costs of ILR mode
is smaller than that of Intra mode, but not very significantly.

This is because ILR and Intra mode use different ways in
prediction. ILR mode directly upsamples the co-located pixels
in horizontal and vertical directions in BL to predict the current
CU in EL. Intra mode uses reference pixels from 35 DMs to
predict the current CU. For large CUs, namely depth from 0 to
2, the distance between reference pixels and predicted pixels
in the current CU is very large. If the texture is very complex,
reference and predicted pixels may not be very similar, thus
using Intra mode cannot predict the current CU very well.
Hence, through upsampling the co-located pixels in BL, ILR
mode can predict the current CU better than Intra mode. If
the texture is very simple, reference and predicted pixels may
be very similar, using 35 DMs, Intra mode can predict the
current CU better than ILR mode. For small CUs with depth
3, the distance between reference and predicted pixels in the
current CU is very small. Even if the texture is very complex,
reference and the predicted pixels may still be very similar,
Intra mode using 35 DMs can predict the current CU better
than ILR mode. Thus, the average value of the RD Costs of
Intra mode is larger than that of ILR mode. If the texture
is very simple, both ILR mode and Intra mode can predict
the current CU very well, the difference of their RD costs
also should be very small. Therefore, the average difference
of their RD costs is not very significant.

In addition to the RD cost relationships of ILR mode and
Intra mode, we further investigate their RD cost distribution.
We have conducted extensive experiments on the RD cost
distribution of ILR mode and Intra mode. In Fig. 2, the
horizontal axis represents RD cost, and the vertical axis
represents the histograms, i.e., the corresponding number of
CUs in each bin. Fig. 2. (a) and Fig. 2 (b) show that the
RD cost distribution of ILR mode for sequence “Blue_sky” in
depth 2 and depth 3, respectively.

From Fig. 2, we can observe that both the RD costs of ILR
in depth 2 and depth 3 follow Gaussian distribution. We have
performed additional testing by using Kolmogorov-Smirnov
to further verify the goodness-of-fit of Gaussian distribution.
Kolmogorov-Smirnov is a non-parametric distribution esti-
mation method, which is robust and widely used in distri-
bution estimation. Statistical Product and Service Solutions
(SPSS) is commonly used statistical software. Here, we use
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(a) Depth 2                             (b) Depth 3 

Fig. 2: The RD cost distribution of ILR mode for sequence
“Blue_sky”: (a) depth 2, (b) depth 3.

Kolmogorov-Smirnov in SPSS to test the goodness-of-fit of
Gaussian distributions. The asymptotic significances of the
RD cost distribution of ILR mode for sequence “Blue_sky”
in depth 2 and depth 3 are 0. 213 and 0.237 respectively. The
commonly use significant level is 0.05. When the asymptotic
significances of a data set are greater than 0.05, these data can
be considered to follow Gaussian distributions. Therefore, the
RD cost distribution of ILR mode for sequence “Blue_sky”
in depth 2 and depth 3 follow Gaussian distribution. Our
extensive experimental results have demonstrated that the RD
cost distribution of both ILR mode and Intra mode in all
sequences follow Gaussian distribution.

In light of the above analysis, it is concluded that the
average RD cost of the ILR mode is different from that of
the Intra mode, but they both follow the Gaussian distribution
at all coding depths. To be specific, the average RD cost of
the ILR mode is greater than that of the Intra mode at coding
depths [0, 2], while less than that of the Intra mode at the
coding depth of 3. The RD cost distributions for both the ILR
mode and the Intra mode at coding depths [0, 2] and coding
depth of 3 are shown in Fig. 3 (a) and Fig. 3 (b), respectively.

f1(x|m1)
f0(x|m0)

Intra

T0
x=RD Cost

f(x|mi) ILR

(a) depths from 0 and 2

f1(x|m1)
f0(x|m0)

Intra

T1
x=RD Cost

f(x|mi) ILR

(b) depth 3

Fig. 3: RD cost distributions of ILR and Intra modes at
different depth levels.

B. GMM-EM-based Mode Selection

It is observed from Fig.3 that, despite the different average
RD costs, the distribution for the ILR mode overlaps with
that for the Intra mode. Therefore, it is impossible to directly
decide which is the better choice. GMM-EM is very suitable
for classifying the data that follow the Gaussian distribution
but have significantly different average values.

GMM-EM is a widely used machine learning algorithm
for clustering. It uses mixed Gaussian distribution as the
parametric model and utilizes Expectation Maximization (EM)

U2 U3 U4

U1 U0

U7 U8 U9

U6 U5

(a) previous frame (b) current frame

Fig. 4: The current CU and its relevant CUs

algorithm for training. Suppose we have different 𝑘 parts and
all data in each part follow Gaussian distributions, we add
them into a mixed Gaussian distribution model. Based on the
model, the probability of sample 𝑖 belonging to each part can
be derived based on the currently available mixture parameters.
Then, the mixture parameters are refined. Repeating the pro-
cess until convergence, then the probabilities of all samples
belonging to each part can be obtained. Based on Gaussian
distribution and EM algorithm, the theoretical basis of GMM-
EM is very solid and can work very efficiently to cluster data.
As mentioned above, the average value of RD costs of ILR
mode and Intra mode are different from each other and both
of them follow Gaussian distribution for all depths. Obviously,
GMM-EM can use this feature to decide which mode is the
best one based on its RD Cost. Therefore, in this research, we
propose to apply GMM-EM in mode selection for SSHVC.

Since ILR mode is much more likely to be selected as the
best mode [7-8], we encode the current CU using ILR mode
first, and then use GMM-EM to determine whether ILR mode
is the best mode based on its RD cost. In the affirmative,
we can early terminate mode selection; otherwise, we need to
further check Intra mode.

As shown in Fig. 4, 𝑈0 represents the current CU, 𝑈1, 𝑈2,
𝑈3 and 𝑈4 are its neighboring CUs, 𝑈5, 𝑈6, 𝑈7, 𝑈8 and 𝑈9
are respectively the co-located CUs of 𝑈0, 𝑈1, 𝑈2, 𝑈3 and
𝑈4 in the previous frame. Obviously, these nine CUs are most
similar to the current CU. Since there are only two parts, i.e.,
ILR mode and Intra mode, let part one represent ILR mode,
and part two indicates Intra mode. The corresponding Gaussian
Mixture Model can be written as

𝑝 (𝑟𝑑 |𝜋, `,Σ) = 𝜋1𝑁 (𝑟𝑑 |`1,Σ1) + 𝜋2𝑁 (𝑟𝑑 |`2,Σ2) , (1)

where 𝑟𝑑 is the RD cost of a CU, 𝜋1 is the probability of the
CU using ILR mode, `1 and Σ1 are respectively the expected
value and variance of the RD costs of all these CUs selecting
ILR mode as the best one; and 𝜋2 is the probability of the
CU using Intra mode, `2 and Σ2 are respectively the expected
value and variance of RD costs of all these CUs selecting Intra
mode as the best one.

In order to obtain these six parameter values, based on
Eq. (1), the corresponding maximum likelihood estimation
function is

𝑓 =
𝑀∏
𝑖=1

𝑝 (𝑟𝑑 |𝜋, `,Σ) =
𝑀∏
𝑖=1

(𝜋1𝑁 (𝑟𝑑 |`1,Σ1) + 𝜋2𝑁 (𝑟𝑑 |`2,Σ2)),
(2)

where 𝑀 is the number of the current CU and its relevant CUs.
Since there are nine relevant CUs, from 𝑈1 to 𝑈9, counting
the current CU 𝑈0 itself, 𝑀 is equal to 10.

The logarithm of the maximum likelihood function is

log ( 𝑓 ) =
𝑀∑︁
𝑖=1

log (𝜋1𝑁 (𝑟𝑑𝑖 |`1,Σ1) + 𝜋2𝑁 (𝑟𝑑𝑖 |`2,Σ2)), (3)
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where 𝜋𝑘 , `𝑘 and Σ𝑘 (𝑘=1 or 2) can be calculated by

𝜕 log ( 𝑓 )
𝜕𝜋𝑘

= 0,
𝜕 log ( 𝑓 )
𝜕`𝑘

= 0,
𝜕 log ( 𝑓 )
𝜕Σ𝑘

= 0. (4)

Then, we can derive

`𝑘 =
1
𝑁𝑘

𝑁∑︁
𝑖=1

𝛾 (𝑖, 𝑘)𝑟𝑑𝑖 ,Σ𝑘 =
1
𝑁𝑘

𝑁∑︁
𝑖=1

𝛾 (𝑖, 𝑘) (𝑟𝑑𝑖 − `𝑘 ) (𝑟𝑑𝑖 − `𝑘 ) ,

(5)

where 𝑁𝑘 =
𝑁∑
𝑖=1

𝛾 (𝑖, 𝑘), then we have

𝜋𝑘 =
𝑁𝑘

𝑁
. (6)

𝛾 (𝑖, 𝑘) is the probability that the 𝑖-th CU, denoted as 𝑈𝑖 ,
belongs to the 𝑘-th part, and it can be obtained by:

𝛾 (𝑖, 𝑘) = 𝜋𝑘𝑁 (𝑥𝑖 |`𝑘 ,Σ𝑘 )
𝜋1𝑁 (𝑥𝑖 |`1,Σ1) + 𝜋2𝑁 (𝑥𝑖 |`2,Σ2)

. (7)

By repeating (5), (6) and (7) until 𝛾 (𝑖, 𝑘) converges, the
best 𝛾 (𝑖, 𝑘) can be obtained.

As mentioned above, the current CU is 𝑈0 and ILR mode is
part one, hence 𝛾 (0, 1) denotes the probability of the current
CU selecting ILR mode as the best one. We denote the 𝑖-th
iteration of 𝛾 (0, 1) as 𝛾𝑖 (0, 1). In order to avoid unnecessary
iterations, if the absolute difference between 𝛾𝑖−1 (0, 1) and
𝛾𝑖 (0, 1) is small enough, we can terminate the iteration. We
empirically select 0.01 as the threshold, then we obtain the
early termination condition below

|𝛾𝑖 (0, 𝑘) −𝛾𝑖−1 (0, 𝑘) | ≤ 0.01. (8)

If the condition (8) is met, we can terminate the iteration and
obtain the probability of the current CU selecting ILR mode
as the best mode. Since this probability is obtained based on
𝑅𝐷 cost, we define it as the 𝑅𝐷-based ILR probability.

Obviously, the current CU and its relevant CUs are usually
very similar. Therefore, if more relevant CUs use ILR mode,
the current CU is also more likely to use ILR mode, and vice
versa. Therefore, the probability of the current CU using ILR
mode is proportional to the number of its relevant CUs using
ILR mode. As shown in Fig. 3, there are 9 relevant CUs, so we
simply set the possibility of the current CU using ILR mode as
𝑘
9 , where 𝑘 is the number of the relevant CUs using ILR mode.
Since this probability is obtained based on the number of the
relevant CUs using ILR mode, we define it as number-based
ILR probability.

Since both the RD-based ILR probability and the number-
based ILR probability strongly relate to ILR mode selection,
we combine them to further predict the probability of the
current CU using ILR mode. Let p(A) and p(B) denote the RD-
based ILR probability and the number-based ILR probability,
respectively. Since both of them are independent, we further
derive the probability of the current CU selecting ILR mode
as the best mode, 𝑝𝑟 , by

𝑝𝑟 = 𝑝 (𝐴 + 𝐵) = 𝑝(𝐴) + 𝑝(𝐵) − 𝑝(𝐴)𝑝(𝐵). (9)

Apparently, the larger the 𝑝𝑟 is, the more likely the current
CU will use ILR mode. Theoretically, if 𝑝𝑟 ≥ 0.95, the current
CU is very likely to use ILR mode. Therefore, we select 0.95
as the threshold for 𝑝𝑟 .
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Fig. 5: 35 DMs in SHVC

V. DM DISTRIBUTION-BASED PROGRESSIVE DM
SELECTION (DD-BPDS)

In order to predict the likely DMs, we first investigate
the distribution for DMs and categorise all DMs into three
classes. The corresponding DM selection approaches proposed
for each of the categories are introduced as shown below.

A. Distribution-based DM Classification

DMs in SHVC is illustrated in Fig. 5. There are 2 non-
directional modes, i.e., DC (DM0) and planar (DM1), and
33 directional modes (DM2 · · · DM34). Generally speaking,
DM0 and DM1 are very suitable for simple CUs. Similar to
HEVC, SHVC first check 35 DMs in Rough Mode Decision
to select 𝑁 DMs with the smallest HCs, and then check these
𝑁 DMs in Rate Distortion Optimization (RDO) process to
select the DM with the smallest RDO value as the best DM.
Using the above process, the best coding efficiency can be
obtained. However, checking many unnecessary DMs cost
much unnecessary computation time. Especially the Rough
Mode Decision process always check 35 DMs, which is very
time consuming. Therefore, we can skip unlikely DMs to
improve coding speed.

As mentioned before, the average RD cost of the ILR mode
is greater than that of the Intra mode at coding depths [0,
2]. In other words, if large CUs in EL use Intra mode, they
are usually very simple. Similarly, for small CUs in EL, their
texture cannot change very significantly due to small sizes, so
they are also usually very simple. Obviously, simple CUs may
have special DM features. Investigating these DM features in
EL may help improve coding speedup. Different DMs may
have different probabilities to be selected as the best DM
among all CUs. We should first obtain their probabilities,
and then investigate their distribution by grouping DMs with
similar probabilities into a class. The probability of DM 𝑖 is
calculated by

𝑝𝑖 =
𝑛𝑖

𝑚
, i = 0, · · · , 34, (10)

where 𝑛𝑖 is the number of DM 𝑖 is selected as the best DM
among all CUs, 𝑚 is the number of all CUs.

Through extensive experiments, we divide 35 DMs in EL
into three classes according to the probability: Class 0, Class 1
and Class 2. Class 0 includes DM0 and DM1; Class 1 contains
DM8, DM9, DM10, DM11, DM12, DM24, DM25, DM26,
DM27 and DM28; Class 2 includes the remaining DMs. In
addition, DMs in Class 1 is further divided into two subclasses,
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TABLE II: DM distributions among classes for large CUs and
small CUs in EL

Sequence
Large CU Small CU

Class 0 Class1 Class 2 Class 0 Class 1 Class 2
Blue_sky 68.23% 14.15% 17.62% 76.41% 7.52% 16.07%

Ducks 20.28% 70.5% 9.22% 30.37% 55.02% 14.61%
Park_Joy 66.55% 17.29% 16.16% 67.70% 14.69% 17.61%
Pedestrian 57.92% 35.16% 6.92% 69.89% 24.73% 5.38%

Tractor 38.31% 34.69% 27.0% 52.58% 29.27% 18.15%
Town 72.85% 21.95% 5.2% 61.73% 30.86% 7.41%

Station2 41.27% 29.18% 29.55% 54.74% 19.58% 25.68%
Average 52.20% 31.85% 15.95% 59.06% 25.95% 14.99%

i.e., the horizontal subclass including DM8, DM9, DM10,
DM11, DM12, and the vertical subclass including DM24,
DM25, DM26, DM27 and DM28. For the convenience of the
following descriptions, we define the DM distribution of a
Class 𝑘 , 𝐷𝑘 , is the sum of the probabilities of all DMs in this
Class. Specifically, 𝐷𝑘 can be derived by

𝐷𝑘 =
∑︁

𝑖∈class k
𝑝𝑖 , 𝑘 = 0, 1, 2. (11)

As mentioned in the above section, in our experiments, we
observe that the RD cost relationships between Intra mode and
ILR mode in large CUs and small CUs are different, their DM
distributions may also be different accordingly. Therefore, in
our experiments, we separately investigate DM distributions
among classes for large CUs and small CUs in EL. The
corresponding results are presented in Table II.

From Table II, we can find that on average more than 50%
CUs use DMs in Class 0, and about 85% CUs use DMs in
Class 0 and Class 1 together. As mentioned above, DMs in
Class 0 are very appropriate for simple CUs. In addition, DMs
in Class 1, including horizontal subclass and vertical subclass,
are also very suitable for simple CUs. Thus, DMs in both class
0 and class 1 are suitable for simple CUs. We define these DMs
in Class 0 and Class 1 as simple DMs. It reflects that CUs in
EL using Intra mode usually have very simple texture, which
is completely consistent with the above-mentioned simple CUs
using Intra mode in EL. According to the results in Table II,
we found that around 15% CUs use DMs in Class 2. These
CUs are generally complicated or irregular.

B. Class-based DM Selection
Even though there are two DMs only in Class 0, more than

half of the CUs use these two DMs. Likewise, there are up to
twelve DMs altogether in Class 0 and Class 1, but about 85%
of CUs adopt the DMs in these two classes. The majority of
DMs (23 DMs) are included in Class 2, and about 15% of the
best DMs come from Class2. Therefore, the coding speed can
be significantly improved if the best DM in Class 0 or Class 1
is determined in advance, thus terminating the DM selection.
It is observed in Table II that the DM distributions of the three
classes are quite distinct from each other. The number of DMs
in each of these three classes are also significantly different.
Targeting each of the classes, we develop different methods to
obtain the best DM, thus effectively speeding up the coding
process.

1) significant difference-based DM early termination: we
develop a significant difference-based DM early termination
approach for the DMs in Class 0. For simplicity, we denote
the HC of DM𝑖 as HC𝑖 and min() is the smaller one of the
two different HC values. DM0 and DM1 in Class 0 are non-
directional modes. DM10 and DM26 are two typical ones in
Class 1, where DM10 and DM26 represent the horizontal
and vertical directions, respectively. If HC0 and HC1 are
significantly less than HC10 and HC26, the best DM very
likely comes from Class 0. HC0 and HC1 are greatly less than
HC10 and HC26 if min (HC0, HC1) is significantly less than
min (HC10, HC26). To decide if min (HC0, HC1) and min
(HC10, HC26) are sufficiently different, their corresponding
residual coefficients are investigated. Suppose R1 and R2 are
the residuals matrixs of two DMs, the difference R between
the two matrices is [7]

𝑅 = 𝑅1 − 𝑅2. (12)

Applying Hadamard transformation to the Eq. (12), we have

𝐻𝑅𝐻 = 𝐻𝑅1𝐻 − 𝐻𝑅2𝐻, (13)

where H is a 𝑚×𝑚 Hadamard matrix and 𝑚 is the size of the
current CU. Suppose

𝑚∑
𝑖=0

𝑚∑
𝑗=0

𝐻𝑅𝐻 is the sum of the coefficients

in the matrix HRH , according to Cauchy-inequality, we can
derive

𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝐻𝑅𝐻 ≤

������ 𝑚∑︁
i=0

𝑚∑︁
𝑗=0

(
𝐻𝐻𝑇

)2
������

1
2

×

������ 𝑚∑︁
i=0

𝑚∑︁
𝑗=0

𝑟𝑖 𝑗
2

������
1
2

≤
√
𝑚

������ 𝑚∑︁
i=0

𝑚∑︁
𝑗=0

𝑟𝑖 𝑗
2

������
1
2

≤
√
𝑚

𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

��𝑟𝑖 𝑗 ��.
(14)

𝑥𝑎𝑏 denotes the value at position (𝑎, 𝑏) in HRH , and it is

𝑥𝑎𝑏 =

𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

ℎ𝑎𝑖𝑟𝑖 𝑗ℎ 𝑗𝑏 ≤
𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

��ℎ𝑎𝑖ℎ 𝑗𝑏

�� ��𝑟𝑖 𝑗 �� ≤ 𝑚∑︁
𝑘=0

𝑚∑︁
𝑝=0

��𝑟𝑖 𝑗 ��.
(15)

If the quantised values in HRH are all less than 𝑘 , R1 and
R2 are not considered to be greatly different. The following
condition is derived

𝑚∑︁
𝑘=0

𝑚∑︁
𝑝=0

��𝑟𝑘 𝑝 �� < 𝑘𝑄𝑠𝑡𝑒𝑝 . (16)

Combining Eq. (13), (14), and (16), it gives������ 𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝐻𝑅1𝐻 −
𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝐻𝑅2𝐻

������ < 𝑘
√
𝑚𝑄𝑠𝑡𝑒𝑝 . (17)

Obviously, the following inequality holds������ 𝑚∑︁𝑖=0

𝑚∑︁
𝑗=0

|𝐻𝑅1𝐻 | −
𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

|𝐻𝑅2𝐻 |

������ ≤
������ 𝑚∑︁𝑖=0

𝑚∑︁
𝑗=0

𝐻𝑅1𝐻 −
𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝐻𝑅2𝐻

������ .
(18)
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TABLE III: 𝑘 and the corresponding BDBRs

Sequence 1 2 3 4 5 6
blue_sky 0.00% 0.00% 0.00% 0.01% 0.01% 0.00%

ducks -0.01% -0.01% 0.00% -0.01% 0.00% 0.00%
park_joy -0.01% -0.03% 0.00% 0.00% 0.01% 0.01%

pedestrian -0.02% 0.00% 0.00% 0.00% 0.00% 0.01%
town -0.16% -0.11% -0.10% -0.07% -0.03% -0.02%

station2 0.16% 0.14% 0.13% 0.11% 0.08% 0.06%
tractor 0.01% 0.00% 0.01% 0.00% -0.01% -0.01%

Combining Eq. (17) and (18), we have������ 𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

|𝐻𝑅1𝐻 | −
𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

|𝐻𝑅2𝐻 |

������ < 𝑘
√
𝑚𝑄𝑠𝑡𝑒𝑝 , (19)

Eq. (19) can be rewritten as

|𝐻𝐶1 − 𝐻𝐶2 | < 𝑘
√
𝑚𝑄𝑠𝑡𝑒𝑝 , (20)

where 𝐻𝐶1 and 𝐻𝐶2 refer to sum of absolute values of
Hadamard transform values of two DMs. If Eq. (20) is
satisfied, they are not considered to be significantly different.
Similarly, if the following condition holds, 𝐻𝐶1 and 𝐻𝐶2 are
regarded to be significantly different.

|𝐻𝐶1 − 𝐻𝐶2 | > 𝑘
√
𝑚𝑄𝑠𝑡𝑒𝑝 . (21)

We denote min (HC0, HC1) and min (HC10, HC26) as
𝑀𝐶1 and 𝑀𝐶2, respectively. To ensure 𝑀𝐶1 is significantly
less than 𝑀𝐶2, Eq. (20) needs to be rewritten as

𝑀𝐶1 − 𝑀𝐶2 > 𝑘
√
𝑚𝑄𝑠𝑡𝑒𝑝 . (22)

If Eq. (22) holds, 𝑀𝐶1 is considered to be significantly less
than 𝑀𝐶2. According to the test condition, we test a series
of values, such as 1, 2, 3, etc. to obtain the best value of
𝑘 . The corresponding BDBRs[31], which measures the bitrate
difference at equal PSNR in the EL, are listed in Table III.

Table III shows a turning point when 𝑘 equals 5. If 𝑘 is
greater than or equal to 5, the corresponding BDBRs for all the
sequences are less than 0.1%. It means that 𝑘 of 5 gives very
good performance. If we choose a larger 𝑘 , the corresponding
increase in coding speed will be less significant. Therefore, 𝑘
is set to 5.

If Eq. (22) holds, min (HC0, HC1) is significantly less than
min (HC10, HC26). The best DM comes from Class 0 and
we early terminate the DM selection process. Otherwise, we
need to search for the best DM in Class 1.

2) DM prediction-descent-based direction search: As the
DMs in Class 0 and Class 1 are very likely to be the best DM,
if a DM and its two direct neighbours have been checked and
its HC is the least in all checked DMs, this DM is very Likely
the Best DM (LBD). To obtain an LBD as soon as possible,
we follow the descent direction of the HCs to search for it.
If an LBD is obtained, we early terminate the DM selection
process. Otherwise, we need to search for the best DM in
Class 2.

3) variable stepsize-binary search method: Table II shows
about 15% of the CUs use DMs in Class 2 regardless of the
size of the CU. Therefore, the probability of CUs using DMs
in Class 2 is very small but cannot completely be ignored.
If we always check all DMs in Class 2, it will cost a lot of
unnecessary time. However, if we completely skip these DMs,
the coding efficiency is significantly degraded. Therefore, it is
crucial to obtain the best DM and skip unlikely DMs. For
a DM in [DM2, DM18] or [DM18, DM34], if the distance
between this DM and DM10 or DM26 is farther, the possibility
of using this DM is smaller and the stepsize should be larger,
and vice versa. Therefore, we use a variable stepsize to search
for the best DM in Class 2. If there is a DM with the smallest
HC among all checked DMs in Class 2, we then use a binary
search to find the best DM. To be specific, we first check the
midpoint between the DM with the least HC of all checked
DMs and its nearest left checked neighbouring DM, then check
the midpoint between the DM and its nearest right checked
neighbouring DM, and finally, we select a DM with the least
HC in all checked DMs. We repeat the process until a DM
is an LBD. Since the above process includes variable stepsize
check and binary search, it is called variable stepsize check-
binary search.

VI. CONDITIONAL RANDOM FIELDS-BASED DEPTH
EARLY TERMINATION (CRF-BDET)

As we known, if the RD costs of a CU is very small,
the CU is very likely to be early terminated. The residual
coefficients of a CU are also strongly related to depth early
termination. Due to the similarity of neighboring CUs, a CU
and its neighboring CUs are usually very similar. Apparently,
the three features of a CU, RD costs, residual coefficients and
neighboring CUs, have strong relationships with its depth early
termination. Based on these three features, we propose to apply
the CRF Model in the field of machine learning to predict
whether the current CU can be early terminated.

The CRF model is a discriminant probabilistic undirected
graph model with strong probabilistic reasoning ability [32].
CRFs have been widely used for many areas, such as nat-
ural language processing and image area tagging. CRFs are
excellent at modeling the structure of sequential data and
can flexibly construct dependence between inputs and labels.
This makes CRFs suitable to predict depth early termination,
which can both exploit its characteristics on modeling se-
quential data structure and fuse the neighboring information
from data. Particularly, CRFs have the advantage of modeling
data with structured labels and simulating any features of
observed sequences. In addition, the CRF needs not make
independent assumptions on observations and can simulate
arbitrary features of observed sequences.

Therefore, we propose to use the CRF model to efficiently
simulate RD costs, residual coefficients and neighbouring CUs
to achieve the early termination of coding depth evaluation. We
first introduce the fundamentals of CRF and its application in
video coding and then propose the CRF-based depth early
termination approach as shown below.
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Fig. 6: A CRF of depth early termination

A. Fundamentals of CRF and Its Application in Video Coding

In the following, we first introduce the fundamentals of
CRF, and then discuss how to apply CRF in depth early ter-
mination for video coding. Let 𝑋 and 𝑌 represent an observed
data sequence and its corresponding labeled sequence, they
form an undirected graph. If 𝑌 is conditioned on 𝑋 and it
obeys the Markov property, then (𝑌, 𝑋) forms a CRF, which
means

𝑃 (𝑦𝑖 |𝑥𝑖 , 𝑦𝑤−𝑖) = 𝑃
(
𝑦𝑖 |𝑥𝑖 , 𝑦𝑁𝑖

)
, (23)

where 𝑥𝑖 and 𝑦𝑖 are the 𝑖-th variable and individual label of
𝑋 and 𝑌 respectively; 𝑦𝑤−𝑖 refers to the remaining labels
apart from 𝑦𝑖 , 𝑃 (𝑦𝑖 |𝑥𝑖 , 𝑦𝑤−𝑖) represents the probabilities of
𝑦𝑖 conditioned on the observed variable 𝑥𝑖 and the remaining
labels 𝑦𝑤−𝑖; 𝑦𝑁𝑖

represents the neighbors of 𝑦𝑖 , 𝑃
(
𝑦𝑖 |𝑥𝑖 , 𝑦𝑁𝑖

)
represents the probabilities of 𝑦𝑖 conditioned on the observed
variable 𝑥𝑖 and the neighbors 𝑦𝑁𝑖

.
Using CRFs to derive the probability of 𝑦𝑖 under the above

condition, Eq (23) can be rewritten as

𝑃
(
y𝑖 |x,y𝑁𝑖

)
=

1
𝑍 (𝑥) exp ©«

∑︁
𝑚∈Y

𝛼𝑚𝑈𝑚

(
𝑦𝑖 |𝑥𝑖,𝑚

)
+

∑︁
𝑛∈𝑁𝑖

𝛽𝑛 𝐼𝑛
(
𝑦𝑖 |𝑦𝑖,𝑛

)ª®¬ ,
(24)

where 𝑍 (𝑥) is a normalizing item for the conditional distri-
bution, Y is the feature value set of 𝑦𝑖 , 𝑈𝑚, 𝑥𝑖,𝑚 and 𝛼𝑚 are
the 𝑚-th unary potential, the corresponding feature value and
weighting parameters of 𝑦𝑖 respectively; 𝑁𝑖 is the neighbor
set of 𝑦𝑖 , 𝐼𝑛, 𝑦𝑖,𝑛 and 𝛽𝑛 are the 𝑛-th interaction potential,
the corresponding neighbors and weighting parameters of 𝑦𝑖
respectively. The 1𝑠𝑡 part in Eq. (24) indicates the unary
potential which refers to the local decision part without
considering neighbors to express the local characteristics. The
2𝑛𝑑 part represents the interaction potential, which denotes the
continuity between the labels and its neighbors.

In depth early termination for video coding, 𝑦𝑖 is the
label of the 𝑖-th CU. 0 and 1 for 𝑦𝑖 indicate either early
termination or split, respectively. Since unary potential express
the local characteristics of a CU, both the RD cost and
residual coefficients are actually unary potentials. As the
interaction potential denotes the continuity between the labels
of a CU and its neighbors, the neighboring CUs are obviously
interaction potentials. Based on the above analysis, we can
obtain the corresponding CRF for depth early termination in
video coding, as shown in Fig.6. 𝑥𝑖,1 and 𝑥𝑖,2 are denoted as the
RD cost and residual coefficients of the 𝑖-th CU, respectively;
while 𝑦𝑖 is the label of the 𝑖-th CU.

B. CRF-based Depth Early Termination

To effectively achieve an early termination of depth selec-
tion, we first use RD cost, residual coefficients and neigh-

(a) Top and bottom (b) Left and right

Fig. 7: The division of a CU

boring CUs to obtain their respective probabilities of depth
early termination. The gradient ascent-based CRF solution is
then subsequently developed to obtain the joint probability of
depth early termination. Finally, we propose the corresponding
optimization method. The details are described below.

1) The depth early termination probabilities for RD cost,
residual coefficients and neighboring CUs:

(a) RD cost-based depth early termination probability
As mentioned above, a CU with a smaller RD cost is

more likely to be split, and vice versa. Similar to ILR mode
prediction in RCIM-BMS, both the RD costs of non-split and
split CUs follow Gaussian distributions, and their expected
values and variances are significant different [27]. Therefore,
we can also use GMM to obtain the probability of depth early
termination, based on its RD cost.

(b) Residual coefficients-based depth early termination
probability

After the residual coefficients of a CU have been obtained,
we first divide the CU into the top part and the bottom part
(Fig.7 (a)), whose corresponding expected values are denoted
as `1 and `2. Then, we divide the CU into the left part and the
right part (Fig. 7 (b)), whose corresponding expected values
are denoted as `3 and `4. If the expected values of the residual
coefficients of the two parts in either of the above divisions,
namely `1 and `2, or `3 and `4, are significantly different, the
current CU is very likely to be further split, and vice versa.

We denote the maximum value between |`1−`2 | and
|`3−`4 | as `. The smaller the value of ` is, the current depth
is more likely to be early terminated, and vice versa. Since
the probability of depth early termination, denoted as 𝑓 (`),
ranges from 0 to 1, we adopt an exponential function with
base e to fit the relationship between ` and 𝑓 (`) as shown
below.

𝑓 (`) = exp(𝑎0 + 𝑎1` + 𝑎2`
2 + 𝑎3`

3 + · · · + 𝑎𝑏`
𝑏), (25)

where 𝑎𝑖 is the value of 𝑖-th coefficient and 𝑏 is the maximum
exponent. The key is how to obtain the best 𝑎𝑖 and 𝑏.

Using the aforementioned test condition in testing, we can
obtain ` and the corresponding termination status for all CUs
in all the above sequences. We fit the relationship using 𝑏

of 1, 2, 3, etc. to obtain its best value through MATLAB.
Theoretically, the larger the value of 𝑏 is, the better the model
can fit the relationship. However, during our experiments, we
observe that if 𝑏 is greater than or equal to 4, the differences
in the fitting results are very small. Therefore, we set 𝑏 to 4
and the corresponding model is presented below.

𝑓 (`) = exp(−3.2 × 10−4`4 + 9.4 × 10−4`3−0.085`2

−0.059` − 0.004),
(26)
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We use Eq (26) to derive the corresponding 𝑓 (`) for any
`.

(c) Neighboring CUs-based depth early termination proba-
bility

Generally, a CU and its neighbouring CUs are very similar.
Therefore, we can use its neighbouring CUs which can be
early terminated, denoted as early terminated neighbouring
CUs (ETNCUs), to predict the current CU for early termina-
tion. However, different ETNCUs may have various degrees
of correlation with the current CU. To achieve a more accurate
prediction, the degree of correlation should be taken into
consideration when predicting the probability of depth early
termination. We propose to use Pearson Correlation Coefficient
(PCC) [22] to obtain the degree of correlation between the
current CU and its ETNCUs. PCC is a commonly used method
to calculate the degree of correlation between two sets of data.
Adopting the pixel values of two neighboring CUs, we can
calculate their corresponding PCC denoteds as 𝑟 by

𝑟 =

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︂
𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥)2
√︂

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦)2
, (27)

where 𝑥𝑖 and 𝑦𝑖 are the 𝑖-th pixel values in the current CU and
one of its neighboring CUs, respectively. Since different CUs
may have various numbers of ETNCUs, for a CU with more
than one ETNCUs, we only select the one with the largest
PCC. For a CU without ETNCUs, its PCC is set to 0.

PCC is strongly correlated with the probability of depth
early termination. The larger the PCC is, the greater the
probability of depth early termination is, and vice versa.
Therefore, we can directly use PCC as the probability of depth
early termination.

2) Gradient Ascent based-CRF Solution: Through the
above process, we can obtain the RD cost-based depth early
termination probability denoted as 𝑣1, the residual coefficients-
based depth early termination probability denoted as 𝑣2 and
the neighboring CUs-based depth early termination probability
denoted as 𝑣3. Their corresponding weighting parameters are
denoted as 𝑤1, 𝑤2 and 𝑤3, respectively. Accordingly, the
probabilities of depth for further split in RD cost, residual
coefficients and neighboring CUs are 1−𝑤1, 1−𝑤2 and 1−𝑤3,
respectively. Based on Eq. (24), the joint probability of depth
early termination of a CU, 𝑝, can be obtained by

𝑝 =
𝑃

(
0|x,y𝑁𝑖

)
𝑃

(
0|x,y𝑁𝑖

)
+𝑃

(
1|x,y𝑁𝑖

) =
𝑒

3∑
𝑖=1

𝑤𝑖𝑣𝑖

𝑒

3∑
𝑖=1

𝑤𝑖𝑣𝑖
+ 𝑒

3∑
𝑖=1

𝑤𝑖 (1−𝑣𝑖)
. (28)

Obviously, the larger the 𝑝 is, the more likely the current CU
will be terminated early. Therefore, we can determine whether
a CU can be terminated early based on the maximum 𝑝. In
order to obtain the maximum 𝑝, we must obtain the best 𝑤𝑖 .
Taking the logarithm of the above formula, we obtain

𝐼𝑛(𝑝) =
3∑︁
𝑖=1

𝑤𝑖𝑣𝑖 − 𝐼𝑛

(
𝑒

3∑
𝑖=1

𝑤𝑖𝑣𝑖
+ 𝑒

3∑
𝑖=1

𝑤𝑖 (1−𝑣𝑖)
)
. (29)

Taking the partial derivative of Eq. (29) with respect to 𝑤𝑖 ,
we have

𝜕𝐼𝑛(𝑝)
𝜕𝑤𝑖

=
(2𝑣𝑖 − 1) 𝑒

3∑
𝑖=1

𝑤𝑖 (1−𝑣𝑖)

𝑒

3∑
𝑖=1

𝑤𝑖𝑣𝑖
+ 𝑒

3∑
𝑖=1

𝑤𝑖 (1−𝑣𝑖)
. (30)

Gradient ascent is a common method for calculating the
maximum value. In order to obtain the maximum 𝑝, we use
a gradient ascent in calculation of the best 𝑤𝑖 below

𝑤𝑘+1
𝑖 = 𝑤𝑘

𝑖 + 𝛼
𝜕𝐼𝑛(𝑝)
𝜕𝑤𝑖

, (31)

where 𝑘 is the number of repetitions, and 𝑤𝑘
𝑖

denotes the 𝑘-th
iteration of 𝑤𝑖 . Repeat Eq. (31) until the best 𝑤𝑖 is obtained.
To start iterations, we empirically set the initial weight 𝑤0

𝑖

to be 0 and the learning rate 𝛼 to be 0.01. In order to avoid
unnecessary iterations, if the absolute difference between 𝑤𝑘−1

𝑖

and 𝑤𝑘
𝑖

is small enough, we can terminate the iteration. We
empirically select 0.001 as the threshold, then we can obtain
the early termination condition below��𝑤𝑘−1

𝑖 −𝑤𝑘
𝑖

�� ≤ 0.001. (32)

Through the above process, we can obtain the best 𝑤𝑖 , and
then we can calculate the maximum probability of depth early
termination, 𝑝max, through Eq (28). Theoretically, if 𝑝max ≥
0.95, the current CU is very likely to be early terminated and
needs not to be further split. Therefore, we select 0.95 as its
threshold value.

3) The optimization method: For the convenience of de-
scription, 𝑤1, 𝑤2 and 𝑤3 are combined to form a vector W, and
𝑣1, 𝑣2 and 𝑣3 are combined to form a vector V. Obviously, the
best W depends on its corresponding V. In other words, V and
W have a one-to-one mapping relationship. To simplify the
above iterative processing, we first obtain the corresponding
best W through Eq. (31) and (32) for a given V. If we obtain
the same V afterwards, we can directly use the corresponding
W.

Therefore, we partition the range from 0 to 1 of each
component in V into 10 equally spaced intervals. Theoretically,
the average distance between the midpoint and other values in
an interval are the shortest. Therefore, we select the midpoint
as a representative value (RV) in each interval, and then
use Eq (31) and (32) to calculate the corresponding best
Representative Ws (RWs) and store them in an RW Table.
When encoding a new CU, we can obtain the V and its RV
based on its RD cost, residual coefficients and neigbouring
CUs, and then obtain the corresponding RW by checking the
RW Table. We use the RW as the initial value of W, and then
use Eq (31) and (32) to calculate its best W. Since V and its
RV are very similar, their corresponding RW and the best
W are also very similar. Therefore, we do not need to iterate
many times and many unnecessary iterations can be skipped.
Experiments show that if the gradient ascent is directly used
to calculate the best W, we usually need to iterate hundreds
of times for a CU. While using the proposed optimization
method, we only need to iterate a few times. Therefore, this
approach can significantly reduce the number of iterations and
improve the coding speed effectively.
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TABLE IV: Performance comparisons among different pro-
posed strategies

Sequence
RCIM-BMS (%) DD-BPDS (%) CRF-BDET (%)
BDBR TS BDBR TS BDBR TS

Traffic -0.18 64.02 -0.02 35.32 0.0 34.30
PeopleOnStreet -0.29 62.66 0.00 35.89 -0.2 34.41

Kimono -0.30 66.29 -0.09 36.80 0.0 35.39
ParkScene -0.15 65.04 -0.01 35.08 0.0 33.54

Cactus 0.41 60.33 0.31 34.84 0.0 34.08
BasketballDrive 0.96 54.42 0.39 34.29 0.1 33.39

BQTerrace 1.69 42.95 0.91 34.37 0.0 33.41
Average 0.31 59.39 0.21 35.23 -0.01 34.07

VII. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed ef-
ficient hybrid strategies for SSHVC, we use the reference
software (SHM 11.0) and test the proposed algorithm on a
server with Intel (R) 2.0 GHz CPU and 30 GB memory.
The performances of the proposed algorithms are evaluated
in terms of coding efficiency and coding speed. The coding
efficiency is indicated by BDBR. A negative or positive
BDBR represents an increase or decrease in coding efficiency
compared with the reference software, respectively. Coding
speed improvement is denoted by TS, which is the percentage
of encoding run-time savings only in EL.

As mentioned above, we have proposed three strategies:
RCIM-BMS, DD-BPDS and CRF-BDET. Since all the above
processes use the parameter configuration in Case 4, we also
use this parameter configuration for EL. The corresponding
coding performance is provided in Table IV.

It is seen in Table IV that the average TS, i.e., coding speed
improvements, in “RCIM-BMS”, “DD-BPDS” and “CRF-
BDET” are 59.39%, 35.23%, 34.07%, respectively. Their cor-
responding average BDBRs, i.e., coding efficiency losses, are
0.31%, 0.21%, -0.01%, correspondingly. All three strategies
can remarkably accelerate coding speed with negligible coding
efficiency losses. The coding process of ILR mode is very
simple, and most CUs use this mode only in mode prediction.
For RCIM-BMS, most CUs use ILR mode only without having
to check the Intra mode. Thus, the coding speed is most signifi-
cantly improved, but its BDBR also increases correspondingly.
As mentioned above, although Intra prediction includes RMD
and RDO processes, we only skip some unnecessary DMs in
RMD. Therefore, DD-BPDS achieves a relatively lower but
still significant coding speed improvement. Due to the strict
thresholds for early termination of depth selection, the coding
speed improvement achieved by “CRF-BDET” is the smallest
but its increase in BDBR is also negligible.

In order to demonstrate the overall performance of the
proposed algorithm which incorporates all the proposed strate-
gies, i.e., “RCIM-BMS”, “DD-BPDS” and “CRF-BDET”, we
compare the performance of our algorithm with PAPS [21]
and FIICA [26]. As FDMDIP [7] and EMIP[8] are developed
for quality SHVC rather than spatial SHVC, it is pointless to
compare with them. To the best of our knowledge, these two
algorithms are the state-of-the-art fast Intra coding algorithms
for SSHVC. To achieve fair comparisons, we test all algo-

TABLE V: Overall performance comparisons with case 1

Sequence
Proposed (%) PAPS (%) [21] FIICA(%) [26]
BDBR TS BDBR TS BDBR TS

Kimono -0.33 75.90 0.06 70.81 -0.21 62.35
ParkScene -0.21 74.97 0.49 66.50 -0.12 38.17

Cactus -0.13 75.17 0.10 65.37 -0.18 41.89
BasketballDrive 0.12 73.20 0.46 67.14 0.40 47.06

BQTerrace 0.16 74.20 0.39 65.32 0.41 46.27
Average -0.08 74.69 0.30 67.03 0.06 47.15

TABLE VI: Overall performance comparisons with case 2

Sequence
Proposed (%) PAPS (%) [21] FIICA(%) [26]
BDBR TS BDBR TS BDBR TS

Kimono -0.21 77.04 0.17 68.76 0.81 61.67
ParkScene -0.13 76.39 0.58 67.43 -1.22 37.46

Cactus -0.31 76.67 0.27 63.21 0.31 40.13
BasketballDrive -0.31 75.25 0.41 66.172 -0.80 44.36

BQTerrace -0.13 75.40 0.48 63.68 0.00 45.15
Average -0.22 76.15 0.38 65.85 -0.18 45.75

TABLE VII: Overall performance comparisons with case 3

Sequence
Proposed (%) PAPS (%) [21] FIICA(%) [26]
BDBR TS BDBR TS BDBR TS

Traffic -0.03 74.61 0.24 76.40 0.41 36.37
PeopleOnStreet 0.28 75.14 0.22 62.80 0.10 39.43

Kimono -0.23 75.03 0.21 73.12 -0.13 60.27
ParkScene -0.16 73.39 0.42 64.51 0.22 36.49

Cactus 1.02 71.27 0.58 70.67 0.89 37.92
BasketballDrive 1.46 66.33 1.87 67.42 0.71 41.48

BQTerrace 2.32 70.23 0.83 63.21 0.50 43.56
Average 0.67 72.28 0.62 68.30 0.38 42.22

TABLE VIII: Overall performance comparisons with case 4

Sequence
Proposed (%) PAPS (%) [21] FIICA(%) [26]
BDBR TS BDBR TS BDBR TS

Traffic -0.17 75.89 0.27 74.56 -0.30 37.89
PeopleOnStreet -0.29 76.54 0.29 61.23 -0.23 40.15

Kimono -0.3 75.55 0.28 71.25 0.19 60.18
ParkScene -0.15 74.44 0.46 61.46 0.11 38.13

Cactus 0.68 73.12 0.55 71.12 0.70 39.29
BasketballDrive 1.47 70.02 2.01 65.69 1.72 42.74

BQTerrace 2.15 72.47 0.91 61.37 0.61 44.37
Average 0.48 74.01 0.68 66.67 0.4 43.25

rithms on the same computing platform. As two scalability
ratios and two QPs settings are used in the evaluation, we
group the combinations into four cases. The corresponding
overall performance comparisons are listed in Table V (case 1),
Table VI (case 2), Table VII (case 3) and Table VIII (case 4),
respectively. According to CSTC [30], there are five sequences
only for case 1 and case 2, and seven sequences for case 3
and case 4.

In Table V (case 1), the average BDBRs of the proposed
algorithm, PAPS and FIICA are -0.08%, 0.30% and 0.06%,
respectively. While the average TS of the proposed algorithm,
PAPS and FIICA are 74.69%, 67.03% and 47.15% corre-
spondingly. In Table VI (case 2), the average BDBRs of the
proposed algorithm, PAPS and FIICA are -0.22%, 0.38% and
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TABLE IX: Overall average performance comparison of all
four cases

Case
Proposed (%) PAPS (%) [21] FIICA(%) [26]
BDBR TS BDBR TS BDBR TS

Case 1 -0.08 74.69 0.30 67.03 0.06 47.15
Case 2 -0.22 76.15 0.38 65.85 -0.18 45.75
Case 3 0.67 72.28 0.62 68.30 0.38 42.22
Case 4 0.48 74.01 0.68 66.67 0.40 43.25

Average 0.21 74.28 0.50 66.96 0.17 44.59

-0.18%, respectively. While the average TS of the proposed
algorithm, PAPS and FIICA are 76.15%, 65.85% and 45.75%
correspondingly. In the above two cases, the BDBR of the
proposed algorithm is less than those of PAPS and FIICA.
The coding speed of the proposed algorithm is significantly
faster than the other two algorithms. In Table VII (case 3), the
average BDBRs of the proposed algorithm, PAPS and FIICA
are 0.67%, 0.62% and 0.38%, respectively. While the average
TS of the proposed algorithm, PAPS and FIICA are 72.28%,
68.30% and 42.22% correspondingly. Compared with the other
two algorithms, the BDBRs of the proposed algorithm is
greater than those of PAPS and FIICA, and its coding speed is
also faster than the other two algorithms. In Table VIII (case
4), the average BDBRs of the proposed algorithm, PAPS and
FIICA are 0.48%, 0.68% and 0.40%, respectively. While the
average TS of the proposed algorithm, PAPS and FIICA are
74.01%, 66.67% and 43.25% correspondingly. The BDBR of
the proposed algorithm is less than that of PAPS and slightly
greater than that of FIICA, meanwhile, the coding speed of
the proposed algorithm is significantly faster than the other
two algorithms.

In order to further demonstrate the overall performance of
the proposed algorithm, Table IX provides the overall average
performance comparisons among these three algorithms for all
four cases.

The overall average BDBRs of the proposed algorithm,
PAPS and FIICA are 0.21%, 0.50% and 0.17%, respectively.
While the overall average TS of the proposed algorithm,
PAPS and FIICA are 74.28%, 66.96% and 44.59% corre-
spondingly. Therefore, the overall average coding speed of
the proposed algorithm is significantly faster than the other
two algorithms. Meanwhile, the overall average BDBR of the
proposed algorithm is less than that of PAPS algorithm and
slightly greater than that of FIICA algorithms. From Table
IX, we can find that the main BDBR loss comes from case
3 and case 4 (scalability ratio 2x). The main reason is that
ILR prediction in scalability ratio 2x doesn’t predict very
accurately. ILR mode interpolates a CU in BL to predict
the co-located CU in EL. In scalability ratio 2x, since the
resolution difference between BL and EL is very large, it leads
to poor interpolation and hence the prediction of ILR mode is
not very accurately accordingly. Therefore, the corresponding
BDBR loss increases significantly in scalability ratio 2x.

Here are the main reasons why the proposed algorithm can
effectively improve coding speed. First, we observe that the
RD cost of ILR mode is different from that of Intra mode in all
depths, and their distributions all follow Gaussian distribution.

These features are very suitable for adopting GMM-EM to
determine whether ILR is the best mode so as to skip Intra
prediction early. Second, we investigate DM distributions and
discover a special distribution feature: Class 0 and Class 1
only have 12 DMs, but around 85% CUs use DMs in these
2 classes. While Class 2 has 23 DMs, but only around 15%
CUs use DMs in this class. This finding is extremely effective
in coding speedup since it indicates that we have very high
probability, around 85%, to find the best DM in Class 0
and Class 1, and thus can early terminate DM selection.
Third, neighboring CUs, residual coefficients and RD costs
are strongly related to depth selection. The CRF model is
a discriminant probabilistic model with strong probabilistic
reasoning ability. Exploiting the CRF Model in the proposed
algorithm can effectively integrate neighboring CUs, residual
coefficients and RD costs to early terminate depth selection.

Generally speaking, the improvement in coding speed will
lead to an increase in BDBR, namely a decrease in coding
efficiency. However, in Tables V-IX, there are occasions that
coding efficiency increases, i.e., BDBR savings, compared
with the SHM reference software. The reason can be explained
as follows. In the Intra prediction process, CUs are predicted
by their reference pixels. For the current CU, different methods
lead to different neighbouring CUs and different reference
pixels, which in turn lead to different prediction performance.
We have analyzed the reason in detail [7].

VIII. CONCLUSION

In this paper, we fully investigate the special features for
SSHVC and propose a new mode distribution-based Intra
prediction algorithm for SSHVC, which includes the following
unique features and strategies: (1) we observe that the RD
costs between ILR mode and Intra mode are significantly
different, and both their RD costs of follow Gaussian dis-
tribution. Based on this observation, we apply GMM-EM in
machine learning to determine whether ILR mode is the best
mode so as to skip Intra prediction; (2) when CUs use Intra
mode, they are normally very simple and usually use simple
DMs. We investigate their DM distributions and divide all
DMs into three classes, and then develop their corresponding
approaches to progressively predict the best DM so as to skip
many unlikely DMs; (3) neighboring CUs, residual coefficients
and RD costs are strongly related to depth selection. We
efficiently exploited simultaneously them to early terminate
depth selection. Experimental results show that the proposed
algorithm can improve the coding speed significantly with
negligible coding efficiency losses. Deep learning has been
a hot research topic recently, we will plan to explore it to
further improve the coding speed in our future work [33].
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