An Ultra Low Energy Biomedical Signal Processing System Operating at Near-Threshold | IEEE Journals & Magazine | IEEE Xplore

An Ultra Low Energy Biomedical Signal Processing System Operating at Near-Threshold


Abstract:

This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signa...Show More

Abstract:

This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime and size, must be kept as low as possible. The proposed processing platform is an event-driven system with resources to run applications with different degrees of complexity in an energy-aware way. The architecture uses effective system partitioning to enable duty cycling, single instruction multiple data (SIMD) instructions, power gating, voltage scaling, multiple clock domains, multiple voltage domains, and extensive clock gating. It provides an alternative processing platform where the power and performance can be scaled to adapt to the application need. A case study on a continuous wavelet transform (CWT)-based heart-beat detection shows that the platform not only preserves the sensitivity and positive predictivity of the algorithm but also achieves the lowest energy/sample for ElectroCardioGram (ECG) heart-beat detection publicly reported today.
Published in: IEEE Transactions on Biomedical Circuits and Systems ( Volume: 5, Issue: 6, December 2011)
Page(s): 546 - 554
Date of Publication: 13 December 2011

ISSN Information:

PubMed ID: 23852552

Contact IEEE to Subscribe

References

References is not available for this document.