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Compact Nonlinear Model of an Implantable
Electrode Array for Spinal Cord Stimulation (SCS)

Jonathan Scott, Senior Member, IEEE, and Peter Single

Abstract—We describe the construction of a model of the
electrode-electrolyte interface and surrounding electrolyte in
the case of a platinum-electrode array intended for spinal-
cord stimulation (SCS) application. We show that a finite, two-
dimensional, resistor array provides a satisfactory model of the
bulk electrolyte, and we identify the complexity required of that
resistor array. The electrode-electrolyte interface is modelled in
a fashion suitable for commonly-available, compact simulators
using a nonlinear extension of the model of Franks et al. [4] that
incorporates diodes and a memristor. The electrode-electrolyte
interface model accounts for the nonlinear current-overpotential
characteristic and diffusion-limiting effects. We characterise a
commercial, implantable, electrode array, fit the model to it,
and show that the model successfully predicts subtle operational
characteristics.

Index Terms—Electrical stimulation, Bioelectric phenomena,
Biophysics, Bioimpedance, Biomedical electrodes, Biomedical
measurements, Implantable biomedical devices

I. INTRODUCTION

THE impedance presented by an electrode in electrolyte
is important to the operation of biological implants and

a subject of considerable interest in the literature. Merrill
et al. give a comprehensive review of the chemistry and
characteristics in [1] with the aim of establishing safe limits
for therapeutic use in humans. However, the interest is not
limited to matters of safety. A large impedance can increase
power demand and shorten implant battery life. The reactive
nature of the impedance causes pulse tails that cause stimulus-
artefact. [2] Operation outside the linear or “small-signal”
range can give rise to obscuring signal artefacts, present on
sensing electrodes, that cannot readily be removed by blanking
and subtraction. [3]

Franks et al. have presented a model of the electrode-
electrolyte interface that is valid for small variations of the
potential drop across the interface. [4] Such variations in
the half-cell voltage are referred to as the overpotential. The
model consists of a small spreading resistance in series with
the parallel combination of two elements. The first of these
elements is a so-called Constant Phase Element (C.P.E. or
CPE), otherwise known as a fractional-pole capacitor. [5] It
represents the charge-transfer contribution of ionic species in
the Helmholtz layer adjacent to the metallic surface of the
electrode. The second parallel element is approximated as
a resistor. In the model of [4] this resistor represents the

Jonathan Scott is with the School of Electronic Engineering, University of
Waikato, New Zealand, e-mail: (jonathanscott@ieee.org).

Peter Single is with the Implant Technology Group, NICTA, and Saluda
Medical, Redfern, Sydney.

Manuscript received 2013.

Faradaic reactions that take place at the electrode interface.
The approximation is valid only for overpotentials in the
millivolt range, and for short durations. Electronics Engineers
refer to models that contain such approximations as “small-
signal models”. They are extremely useful for simplifying
circuit calculations, but are not valid for larger excursions.

From an electrochemical standpoint, Brummer & Turner
have examined the platinum electrode to suggest safe charge
transfer limits, that is limits within which charge transfer
involves reversible surface processes and does not cause
evolution of gas through electrolysis. [6], [7] They relate the
amount of charge transferred per unit of Platinum electrode
area to the reactions that occur, and identify the point at which
electrolysis can be expected to onset. It is possible to interpret
the results in [7] as suggesting that reversible Faradaic surface
processes contribute to the CPE characteristic rather than the
Faradaic component that is a small-signal, dynamic resistance
in [4]. The model in this manuscript does not depend upon
knowing which of these might be correct, but the authors lean
towards the view that the reversible Faradaic surface processes
contribute to the Faradaic branch. Brummer & Turner also
note that results are less clear when the electrolyte contains
Chlorine salts, as in the case of biological saline.

From a physical standpoint Cantrell et al. present a model
of the electrode-electrolyte interface whose characteristics are
obtained by a detailed finite-element analysis implemented in
COMSOL. [8] A stated motivation is to “increase the suc-
cess for recording and stimulating targeted neural structures”,
consistent with this manuscript. Intriguingly [8] adopts an
approach where the CPE is modelled with level-dependent
parameters, after Richardot & McAdams. [9] This is intriguing
because we have not found it necessary to incorporate any
level-dependence in the CPE in the model presented here.
The statement in [9] to the effect that “the detailed physical
understanding of this impedance is still lacking” appears to
remain true. In this manuscript we will attribute all nonlinear
effects to the Faradaic branch of our model, and we tentatively
attribute these nonlinearities to a particular reaction. These
attributions seem appealing, but even if they are wrong the
validity of the model is not affected.

In neuromodulation for Spinal Cord Stimulation (SCS)
relatively large currents flow through the implanted electrodes.
This is necessary to recruit neurones in the spinal cord, as
the electrode array is normally placed in the epidural space,
outside the dura, and several millimetres may separate the elec-
trode array and the target neurones. This manuscript proposes a
medium-signal electrode model that incorporates the reversible
nonlinear processes that occur when the overpotential is no
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longer held small. [10] We reserve the term “large signal”
for operation outside the so-called “water window” where
irreversible reactions, such as electrolysis, occur.

II. BULK ELECTROLYTE MODEL

In this manuscript a model will be fitted to a commercial
SCS electrode array in 1/10 phosphate-buffered saline (PBS).
The selected array is an Octrode from St Jude Medical. [11]
This electrode array consists of a cylindrical assembly ap-
proximately 1mm in diameter with alternating conducting
and insulating spacer bands. The 8 conducting electrodes are
platinum cylindrical sections spaced 7mm apart, each 3mm
long and having a geometrical area of approximately 10 square
mm and an electrical area of approximately 14 square mm,
owing to surface roughness. Inter-electrode capacitance is in
the region of a few tens of picofarads for adjacent electrodes,
varying with the details of the connection electronics. PBS
is a buffer solution commonly used in biological research.
[12] Ten-percent concentration PBS, or “1/10 PBS”, was used
as it is a reasonable approximation to the combination of
cerebrospinal fluid, bone, nervous tissue, etc., in which SCS
arrays normally operate in vivo, and is repeatable.

Figure 1 depicts a section of the electrode array and a set
of resistors to represent the electrolyte. We propose to model
the bulk electrolyte as a 2-dimensional array of resistors,
owing to the rotational symmetry. Consider the cylindrical
array to be surrounded by a series of annular zones. Each
zone extends from a radius ri to a larger radius ri+1, starting
at the boundary of the electrode. The resistance values can be
estimated by finding the radial and longitudinal resistances
of annular sections. A radial resistor associated with the
electrolyte surrounding an electrode section will take on the
value determined by computing the resistance between the
inner and outer cylindrical walls of the annular cylinder of
electrolyte. Similarly for radial resistors corresponding to in-
sulating sections. These electrode and spacer radial resistances
will differ if the electrodes and insulators are of unequal
length, as in our case. The longitudinal resistors take the value
found for the resistance between the upper and lower annular
surfaces of the notional sections of radii ri and ri+1 and whose
height is half the sum of the heights of an electrode and an
insulating segment. Taking a series of annular rings whose
radial thickness doubles with each step outward, ri+1

ri
= 2. The

resistivity, ρ, of 1/10 PBS is about 11620Ωmm, le = 3mm,
ls = 4mm. Some algebra proves that

Reri =
ρ

2πle
ln
ri+1

ri
≈ 427Ω (1)

Rsri =
ρ

2πls
ln
ri+1

ri
≈ 321Ω (2)

and

Rli = ρ
le + ls

2
/
[
π
(
r2i+1 − r2i

)]
=

ρ

2π

le + ls
r2i+1 − r2i

(3)

where Reri is the resistance corresponding to the ith layer sur-
rounding an electrode in the radial direction, Rsri is the resis-
tance corresponding to the ith layer surrounding an insulating
spacer in the radial direction, Rli is the longitudinal resistance

Fig. 1. Geometry of a section of the cylindrical electrode array showing two
electrodes (shaded) and an insulating segment with a snippet of the resistor
mesh to be derived from the conducting electrolyte that surrounds the electrode
array.

between the centrelines of an electrode and a spacer, le is the
longitudinal length of an electrode, and ls is the longitudinal
length of an insulating spacer. Note that all the radial resistors
will have the same values, while the longitudinal resistors will
reduce in value by a factor of four for each step outward.1 The
commencing value for our dimensions is 1100Ω, descending
to 275Ω, 69Ω, etc. After some number of meshes, the network
is terminated in a star network representing the saline bath “at
infinity”.

Figure 2 depicts the topology proposed to model the bulk
electrolyte in which the electrode resides. The mesh of resis-
tors model the electrolyte, taking on values in accordance with
the calculations above. Previous models of the bulk electrolyte
have represented it with a single-layer ladder network. [3]

We suggest two experiments to provide data against which
predictions of the model can be tested. Each consists of driving
one electrode of the array with a current and using a second
electrode for the return current. The voltage dropped across
the (potentially nonlinear) interface region is not known.
However, voltages measured between pairs of the six other
electrodes can be used. If a suitably high-impedance voltage
measurement instrument is used, the ac voltage between the
metal electrodes may be assumed to be equal to the ac
voltage between points in the electrolyte immediately adjacent
to the electrodes; this is the case because a negligible ac
voltage will be dropped across the interface branch. It is
possible to measure the voltage between pairs of electrodes,
other than the two carrying the stimulus current, and obtain
the transresistance. If the current is fed into electrode 1
and returned through electrode 8, the five voltages V 1,8

i,j for
2 ≤ i, j ≤ 7 and i 6= j yield five transresistances of the form
R1,8
ij = V 1,8

i,j /I1. Similarly, if the current is fed into electrode 1
and returned through electrode 2, the five transresistances

1The factor of 4 reduction with each step is a consequence of our choice to
consider annular sections whose radial dimensions double each step outward.
Other choices are possible. Note that our choice leads to a resistor array
having constant radial but geometrically varying longitudinal resistances.
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Fig. 2. Schematic of the model of the 8-electrode array in electrolyte. The
interface properties are modelled by the branches marked “interface”.

R1,2
ij = V 1,2

i,j /I1 for 3 ≤ i, j ≤ 8 and i 6= j are obtained.
These 10 values have been measured for our electrode array
in 1/10 PBS.2 The measurements were carried out using
a TPS2014B oscilloscope with 10MΩ input resistance and
20pF input capacitance at a current of 3mA peak and at a
frequency of 10Hz to make capacitances negligible. Current
and voltage signals remained undistorted and in phase for all
measurements, confirming that the saline produces resistive
impedances. The measured data are plotted in figure 3. The
figure also presents values simulated using the calculated re-
sistance parameter values presented above, and after the three
resistance values are manually trimmed to improve the fit.
The agreement is remarkably good for the directly-calculated
values, suggesting that the approach is sound. The fit can be
slightly improved, presumably compensating for errors arising
from the discrete nature of the approximation. Experiments
suggest that a mesh 5 layers deep and with 3 layers on each
edge is more than sufficiently detailed: Increasing these has
no impact on the numerical results, decreasing them had no
significant impact on simulation speed.

It is worth noting that SPICE calculates the voltages across

2There are actually only 8 independent data gathered in these experiments
since of course, V p,q

i,j and V p,q
j,i are the same voltage, and symmetry requires

that V 1,8
3,4 = V 1,8

5,6 and V 1,8
2,3 = V 1,8

6,7 .

Fig. 3. Measured and simulated transimpedances of the bulk electrolyte.
Measured data are represented by triangles, simulated data by circles or
dots. The circles are values derived from resistances calculated from physical
considerations, the dots from values after optimisation. The parabolic group
are measured with signal current applied on electrode 1 and current returned
via electrode 8, the hyperbolic group with current applied on electrode 1 and
current returned via electrode 2. The x-axis identifies the pair of electrodes
across which voltage is measured, the y-axis the measured voltage divided by
the current flowing in electrode 1.

all the branches in the network representing the saline. Related
through the geometrical model, this is equivalent to knowing
the field in the fluid surrounding the electrode, should that
information be of importance.

III. THE ELECTRODE-ELECTROLYTE INTERFACE

As noted above, two mechanisms occur to facilitate current
flow across an electrode-electrolyte interface. One mechanism
is a ‘displacement’ current flow in the so-called Helmholtz
layer, a double-layer of charge. The displacement current
corresponds to the time-derivative of electric displacement
field term in Maxwell’s current equation. This capacitor-like
phenomenon is often modelled as a pure electrical capacitance,
often called the ‘double layer capacitance’. [4], [10] More
accurately it is described as a Constant Phase Element or more
rigorously as a fractional-pole element. [5]

The second mechanism is associated with movement of
charged species in the electrolyte and exchange of charge
across the boundary between electrode and electrolyte. This
is termed a ‘Faradaic’ current. When very small it can be
modelled as a simple resistor. [4] The task now is to translate
these descriptions into an electrical equivalent circuit that can
be entered into compact simulators.

A. The Displacement Part

Fractional-pole capacitors are not supported in time-domain
compact circuit simulators such as the ubiquitous SPICE, since
a non-integral power of the complex frequency variable s
corresponds to an infinite sum of exponentials in the time
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Fig. 4. Infinite-RC-series model of a constant-phase element, after [19]. The
counter i ranges such that the time constant τ of the first and last branch
span the required bandwidth. The parameter k is chosen to set the “density”
of branches which is related to the accuracy of the approximation.

domain.3 A number of methods of representation have been
investigated, as their importance in both pure electronic and
biological systems was recognised many decades ago. [18]
Although not particularly efficient either to enter or compute,
this work will use a lumped-RC approximation, suitable for di-
rect implementation in compact circuit simulators, attributed to
Morrison. [19] Each constant-phase element (CPE) is replaced
with a set of series-RC branches in parallel. The circuit appears
in figure 4. The number of branches is theoretically infinite, but
given a required phase tolerance and a finite frequency range
over which the approximation must hold, Morrison has done
the very considerable amount of “tedious algebra” to provide
equations that yield the number of branches and the values of
the resistor and capacitor in each branch. These equations are
readily evaluated in a script that produces a subcircuit suitable
for inclusion in a circuit simulator.

From [19] we introduce two pairs of equations,

|Y ′θ | ≈
(wRC)

1
m

R
yθ (4)

where |Y ′θ | is the magnitude of the approximation Y ′θ to the
CPE admittance Yθ, R and C are the values of resistance
and capacitance in the equivalent circuit of figure 4, ω is the
radian angular frequency as usual, 1 ≤ m ≤ ∞ is a parameter
reflecting the value of the constant phase of the element, and

yθ =
π

m ln k
sec

1

2
π

(
1− 2

m

)
(5)

3The vast majority of computer simulation of electrical circuits is carried out
using a program called SPICE. [14] Throughout much of the 1980s and 1990s
proprietary versions called ‘HSPICE’ and ‘PSPICE’ dominated the industry.
Dozens of textbooks appeared to help students use PSPICE, for example
see [15] and [16]. Today SPICE is available free of charge on all common
platforms. All versions support a common kernel of input and output formats,
and all versions work similarly. The method is essentially nodal analysis with
iterative numerical solution of the first-order differential equations that yields
node voltages and branch currents as a function of time. Thus SPICE is limited
to impedances and transimpedances whose constitutive relationships can be
expressed with finite equations relating instantaneous voltage, current and
their derivatives. As such, it is not readily able to incorporate fractional-order
elements. There exists another type of simulator that employs the “harmonic
balance” (HB) technique, substantially through the work of Kundert. [17]
Rather than solving Kirchoff’s equations at discrete points in time, the HB
solver operates in the frequency domain, and achieves an energy balance
considering periodic signals at a finite, predefined set of frequencies. It is
possible to represent fractional-order elements in HB simulators. However,
simulators with an HB solver such as Agilent’s ADS and AWR’s Microwave
Office are tailored for the RF community, and are not free.

where k > 1 is a parameter controlling the multiplicity
or “density” of branches with respect to frequency, in the
equivalent circuit4; also from [19] comes

∠Y ′θ ≈
π

2m
− θp sin

[
2π lnωRC

m ln k
− 1

2
π

(
1− 2

m

)]
(6)

where ∠Y ′θ is the argument of the approximation Y ′θ , and

θp ≈
m ln k

π

cosh π2

m ln k

cosh 2π2

m ln k

cos
1

2
π

(
1− 2

m

)
. (7)

In dealing with these equations, note that yθ given by (5)
and θp given by (7) are purely functions of m, k, and
natural constants. Equation (4) provides the magnitude of the
admittance of the CPE with a scaling factor provided by
equation (5), while equation (6) provides the phase of the CPE
including a periodic error governed by equation (7).

The problem of modelling the displacement component now
reduces to finding values of m, k, R, C, and the multiplicity of
branches in the equivalent circuit in order to generate a lumped
subcircuit to approximate the CPE in an electrode model over a
specified frequency range. Measurements of impedance phase
angle and impedance magnitude as a function of frequency
constitute the measured data by means of which the fitting
may be executed.

Looking at (6) the first term provides the substantive rela-
tionship between the constant phase and the parameter m so
that one may determine m using

m =
π

2θCPE
(8)

where θCPE is the constant phase value determined from
measurement. Thence equations (6) and (7) above provide a
means to relate a required phase accuracy of the approximation
to the multiplicity factor k. Rather than trying to relate phase
accuracy to simulation accuracy, it proves easier simply to
make k sufficiently close to 1 that simulation results do not
change; in other words we will simply reduce k “far enough”
towards 1. Given values for m and k, a measure of |Yθ| at
a frequency ω = ω0 permits determination of one pair of
values for R and C using equation (4). Finally the number of
branches is determined given the bandwidth over which the
network is expected to operate by suitable truncation of the
infinite series of RC pairs. In the case of SCS this is typically
10–10,000 Hz or less, often 40–2,000 Hz.

B. The Faradaic Part

The best available theory for the Faradaic current across the
boundary describes it by the more general form of the Butler-
Volmer equation, sometimes called the current-overpotential
equation: [1]

inet = i0

{
[O](0,t)

[O]∞
e−αcnfη −

[R](0,t)

[R]∞
e(1−αc)nfη

}
(9)

where inet is the net Faradaic current across the interface,
i0 is the exchange current density, [O](0,t) and [R](0,t) are

4Morrison’s parameter k should not be confused with Boltzmann’s constant
k that appears in the discussion of Faradaic effects.
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the concentrations of oxidising species and reducing species
at the electrode surface (x = 0) as functions of time, [O]∞
and [R]∞ are the bulk concentrations of oxidising species and
reducing species in the electrolyte, αc ≈ 1

2 is the cathodic
transfer coefficient, n is as usual the number of moles of
electrons per mole of reactant oxidised, f , F

RT where
F ≈ 96, 485 C/mol is Faraday’s constant, R ≈ 8.314 J/mol/K
is the gas constant, T is the absolute temperature, and η is the
overpotential. It should be noted that this equation is associated
with a single given oxidation reaction. Several candidates are
identified in [1], and in general there might be multiple similar
terms of the form of the right-side of (9) if multiple species
are involved simultaneously.

It has been observed before that there is a resemblance
between each exponential term of this equation and the diode
equation: [10]

iD = IS

(
e

VD
nIVT − 1

)
≈ ISe

VD
nIVT (10)

where iD is the diode current, VD is the voltage drop across
the diode junction, IS is the saturation current, nI ≈ 1 is
the ideality factor5, and VT , kT

q where k ≈ 1.38 × 10−23

is Boltzmann’s constant, T is the absolute temperature, and
q ≈ 1.60 × 10−19 is the charge on the electron. Since the
charge of a mole of electrons, qNA, is Faraday’s constant, F ,
and the gas constant, R, is the product of Avogadro’s number
and Boltzmann’s constant, NAk,

F

R
=
q

k
(11)

and it becomes straightforward to break out each term in
equation (9) in the form of the diode equation. The saturation
current is replaced by the concentration terms multiplied by
the exchange current density, so that

ISO :∼ i0
[O](0,t)

[O]∞
(12)

and

ISR :∼ i0
[R](0,t)

[R]∞
(13)

where the sub-subscripts O and R refer to the oxidation and
reduction parts of the equation.

Now we may rewrite equation (9) as

inet = ISOe

(
η

nOVT

)
− ISRe

(
η

nRVT

)
(14)

where the ideality constants nO = 1
nαc

and nR = 1
n(1−αc) ,

and η has its sign changed on one half to allow for the reverse
orientation of the second diode. This equation corresponds
to a circuit consisting of a pair of back-to-back diodes.
Close to equilibrium, where the concentrations of species
at the electrode surface equal those in the bulk electrolyte
ISR = ISO = i0.

As eloquently explained by Merrill et al., the concen-
tration of species at the electrode surface will decline as
the net transferred charge increases. [1] This will have the

5The usual symbol for the ideality factor in equation (10) is simply n, but
in order to avoid confusion with the ratio of moles of electrons to moles of
reactant in equation (9) the symbol nI will be used herein.

Fig. 5. Proposed model of the electrode-electrolyte interface, containing a
constant-phase element, two diodes, two memristors, and a series resistance.

effect of reducing the current conducted in response to the
amount of charge transferred. This characteristic—variation
of conductance with the sum of charge conducted—is that
of a memristor. [13] We now postulate an extension of the
linear model, drawn in figure 5. RS is the ohmic spreading
resistance and is expected to be in the order of Reri. The CPE
represents the double layer as in the model of Franks et al.,
to be discussed in more detail below. The Faradaic pathway
comprises the two diodes with their associated memristors.
Note that this model ignores the dc contribution of the half-
cell potential, ∆φ, as this is of no interest in our situation. [1]

One complication arises, in that the accumulated charge
associated with the two memristors is “shared”. The shared
memristor charge can be understood by considering the chem-
istry at work. Suppose for example we consider one of the
possible reversible reactions that can occur with Pt electrodes,
that of hydrogen atom plating (refer [1], equations 1.4 and
1.6).6 Then using this as en example, the plating reaction is:

Pt+H+ + e− ←→ Pt—H (15)

As the reaction goes to the right H+ is consumed, and Pt—H
produced, and vice versa. The concentrations [O](0,t) and
[R](0,t) are constrained for t small, such that one rises as the
other falls, since their sum is fixed. In other words, the model
must track the charge transferred through the pair of branches
representing the Faradaic contribution, and adjust the diode
conduction accordingly.

As elements with a dependence upon accumulated charge
are not natively supported in any contemporary circuit simu-
lators, the memristor-diode branches will be modelled using
current-controlled current sources. Figure 6 depicts the sub-
circuit that implements the macromodel. The capacitor CM
accumulates the charge transferred through both branches,
and is the memory of the memristors. Since Q = CV , the
voltage VM becomes the control variable for the memristor

6There is some dispute as to what reactions give rise to the measured
data, presented below, and to which we fit this model. For the purpose of
this manuscript the exact reaction is of no interest, since some reaction is
responsible for the observed data, and the model is fitted to those particular
data. However, from an electrochemical standpoint it is desirable to identify
the reaction. This may be addressed in future work.
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Fig. 6. The subcircuit used to implement the diode-memristor branches.
IDM1 and IDM2 represent the two terms of equation (14), evaluated using
(16) and (17). Charge conducted through the two diode-memristor branches is
accumulated in capacitor CM , giving rise to voltage VM that is subsequently
used to calculate IDM1 and IDM2.

characteristic with VM = 0 at equilibrium. The two halves of
equation (14) are implemented using

ISO = i0(1− VM ) (16)

and
ISR = i0(1 + VM ) (17)

with VM ranging −1 ≤ VM ≤ +1 where the extrema ±1
represent the complete depletion of oxidating and reducing
species at the electrode surface. The capacitor CM is then
the scaling factor selected to fit the model to the physical
dimensions, species concentrations, etc. The parallel resistor
RM introduces a time constant for the diffusion of species
towards equilibrium.

C. Model Fitting

The aim in this section is to describe a sequence of measure-
ments and calculations that lead to a set of model parameters
and that are readily automated or repeated. Measurements for
frequencies above 5Hz have been made with an HP4192A
vector impedance meter. At lower frequencies a Tektronix
TPS2014B oscilloscope and an Agilent 33220A arbitrary
function generator were used. All instruments were controlled
via an E5810A GPIB interface with software written in C,
Python, AWK, etc.

1) Displacement Branch Parameters: Consider the mea-
surements presented in figure 7. The impedance plotted was
calculated by measuring the current injected into electrode 2
and returned via electrode 7, and dividing that into the voltage
measured between electrode 7 and electrode 6. We used 2 and
7 to avoid end effects. The voltage on electrode 6 will be
close to the voltage at the solution side of electrode 7, but
results in an impedance that is increased by a small resistance
contributed by the saline, represented by the resistor grid
previously determined.

For small currents and adequately large frequencies, vir-
tually all current through an electrode is carried by the CPE

Fig. 7. Magnitude and phase versus frequency of the small-signal impedance
from stimulated electrode to an adjacent electrode, representing electrode
impedance plus a small contribution from the resistor grid. Measured data
are marked with triangles, simulated data with circles.

branch because its impedance is relatively low and the voltage
across the CPE is small enough for the Faradaic branch to
hardly conduct at all. We expect the value greater than RS
to be found for higher frequencies, where XCPE → 0. The
characteristics of the CPE will dominate for lower frequencies
as XCPE � RS . It is observed that RS ≤ 950Ω from the
asymptotic behaviour above 1 kHz. The exact value of RS
is found by comparison of simulated values with measured
values for frequencies above 1 kHz, by adjusting the value
fed into a SPICE simulation until the results agree. For our
electrode RS = 504Ω. As expected, the value is slightly larger
than Reri.

At frequencies below 1Hz, XCPE dominates and RS can
be ignored. Unfortunately, in order for the signal to remain
small enough for the Faradaic contribution to be negligible,
the stimulus current must be kept quite small and noise
affects measurement accuracy, so there is a tradeoff. We used
increasing time-domain averaging and Fourier processing to
recover data as frequency dropped. The phase data in the plot
becomes uncertain faster than the magnitude, and it is wiser
to extract the CPE angle from the slope of the magnitude-
frequency plot in the region where this describes a straight
line on log-log scales, 0.01 ≤ f ≤ 1Hz, where ω = 2πf . So

θCPE =
π

2

∆ log(Z)

∆ log(f)
≈ 60o (18)

Using (8)

m =
∆ log(f)

∆ log(Z)
≈ 1.50 (19)

and from (5)
yθ ≈

π

1.50 ln k
(20)

At this point a value is guessed for k. We have used k = 1.2.
Phase deviation was only visible for values above k ≈ 1.8,
but the computational cost of the lower value was negligible.
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Fig. 8. Voltage across versus current through an electrode pair stimulated
with a medium-signal, 20mHz, triangle wave. Symbols are measured data, the
continuous line represents simulated data.

Next, equation (4) leads to a relationship between R and
C. One of these may be chosen arbitrarily and the other is
found using a |Yθ| value on the line of best fit to the region
where θCPE dominates. This leads to the infinite sequence of
values as depicted in figure 4. The series is then truncated
by incorporating only the RC pairs whose time constants
fall within or close to the bandwidth to be covered by the
model. For operational simulations we will use the range
10 ≤ f ≤ 10, 000Hz, but for purposes of comparison with
measured values used to fit the model this range is extended to
0.001 ≤ f ≤ 100, 000Hz, again because it is computationally
easy to do so.

2) Faradaic Branch Parameters: The Faradaic model re-
quires values for three parameters, i0, CM , and RM .

Figure 8 plots current against voltage across electrodes 2
and 7 with a triangle-wave stimulus. A triangle wave stimulus
is used because it has a constant derivative and allows the
contributions of the displacement and Faradaic branches to
be separated easily. The observed hysteresis curve consists
of an exponential component added to a linear component.
The linear component can be thought of as a parallelogram-
wave-shaped current that flows in the CPE, and is manifest
by itself in the straight-line section of the trace, before the
diodes turn on. The exponential current characteristic results
from the diodes turning on, one in each of the two electrode
interfaces in each opposite-polarity half of the triangular cycle.
The simulated data plotted in the figure have the memristor
functions disabled in order to allow the i0 parameter to be
fitted first. A value of i0 ≈ 500pA for an n = 1 process, such
as hydrogen plating, produces the best agreement at the first
onset of the exponential characteristic.

Next we turn to figure 9 that plots current and charge
conducted against time in response to a similar ramp voltage
stimulus. The onset of diode conduction is visible as before—
the difference between the electrode current and the dashed

Fig. 9. Current conducted through an electrode pair in still PBS subjected
to a ramp voltage stimulus (solid joined dots) is plotted along with the same
in agitated solution (scattered symbols). The potential difference across the
electrode is 0.7V at time zero with a slope of 0.17V/sec. Also shown is
the linear extrapolation of the portion before the diodes turn on (dashed
line). Finally the net Faradaic charge conducted through the diode-memristor
combination (solid line).

straight-line extrapolation of its linear part—up to a point
beyond which the current starts to fall. The fall is a response to
the depletion of the species being reduced in one electrode and
oxidised in the other. At this point it is tempting to determine
a value for CM off the charge axis of the plot, but it turns out
for 1/10 PBS that so low a frequency is required to reveal the
Faradaic current above the displacement current that diffusion
processes compete in the measurement, and values of CM
and RM must be selected together. It is clear that a good
starting value for CM will be in the order of a few hundred
µF, and RM will be in the order required to conduct 100µA
for a potential of 1V, or about 10kΩ. Manual optimisation is
all that is required to achieve reasonable agreement between
measurement and simulation as shown in figure 10. The final
values are RM ≈ 15kΩ and CM ≈ 200µF.

It is worth noting that the memristor’s effect is highly
dependent upon the physical supply of species. This is starkly
demonstrated by comparison of the still-fluid measurement
with a parallel measurement taken while the saline bath is
mixed, shown as the scattered-point trace in figure 9. Prag-
matically, this dependence upon activity in the fluid makes
any effort to accurately fit this part of the model something
of a waste of effort. It is also interesting to note the up-turn
of the current-voltage characteristic visible in measured data
traces in figures 9 and 10. We attribute this to the onset of
another diffusion-choked diode characteristic. We have chosen
not to pursue this as it should never come into play in normal
operation of SCS systems, and our model concentrates upon
the medium-signal regime. However, there would seem to be
no reason in principle why further diode-memristor branches
should not be included in the model to address reactions
that commence at higher interface voltages. Typical model
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Fig. 10. Measured and simulated Faradaic current conducted through an elec-
trode pair in still PBS subjected to a ramp voltage stimulus. Measured data,
marked with triangle symbols, was obtained by subtracting the parallelogram-
wave current obtained from a straight-line extrapolation of low-voltage (CPE)
current from total current, as introduced in figure 9.

Parameter Value Units
Reri 430 Ω
Rsri 320 Ω
Rli 1100 Ω
RS 504 Ω

mesh depth 5 # layers
edge depth 3 # layers

m 1.5
k 1.2

ω/|Z| 0.63/18300 rad/sec & Ω

i0 500×10−12 Amperes
CM 200×10−6 Farads
RM 15,000 Ω

TABLE I
MODEL PARAMETER VALUES.

parameters for our implantable electrode array are summarised
in table I.

IV. MODEL VERIFICATION

The most rigorous test of a model is to predict measure-
ments quite separate from those used to fit the parameters.
Figure 11 shows measurements and simulations with a 4mA
biphasic pulse of 400µs per phase, typical of SCS therapy,
delivering about 12µC/cm2 through the electrode. The pulse
was applied to electrode 2 of an Octrode with electrode 7
grounded. There is remarkable agreement between simulated
and measured data, especially with respect to the long tail
following the stimulus—the so-called stimulus artefact [3]—
shown as an inset in the figure.

At the other extreme of subtlety, figure 12 presents the plot
of dc current that is induced when a well-matched biphasic
pulse of 6mA peak amplitude is applied to electrodes in 1/10
PBS. The measurements are made by means of a 100kΩ
resistor in parallel with a 100µF capacitor, both in series with
the generator. This measurement is remarkable in that it shows
the model is able to predict nonoampere rectified currents
that arise as a result of characteristics of the electrode when

Fig. 11. Measured and simulated voltage between electrode 3 and ground,
with electrode 7 grounded and a 4mA biphasic stimulus pulse applied to
electrode 2. The inset magnifies the artefact at the tail of the last stimulus
pulse. The measured data points exhibit a slewing phenomenon whose effect
upon pulse edges should be disregarded; it arises in the 24-bit digitiser that
has a maximum sample rate of 30kHz and a ≈ 30µs aperture and so fails to
capture the pulse edges faithfully.

Fig. 12. Measured (triangles) and simulated dc current that flows when a
6mA biphasic pair of pulses with 50µs spacing and varying width are applied
between electrodes 2 and 7 on an Octrode.

the system is subjected to several-volt, microsecond-duration,
milliampere-sized, current pulses with 100Hz pulse repetition
frequency (PRF). This represents prediction of charge flows
over several decades of dynamic range. We consider this to
be a significant indicator of the value of the model, allowing
confirmation that a stimulus regime will remain within patient
safety limits before it is physically tested or indeed before any
prospective hardware has been constructed.
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V. CONCLUSION

We present a nonlinear model for an electrode in saline elec-
trolyte that is suitable for use in the common electrical sim-
ulator. We have fitted that model to an electrode intended for
human implantation. We verify the accuracy of the model by
prediction of characteristics different from those used to fit the
model, and using waveforms whose magnitude and impulsive
nature are very different from the small, slow, regular stimulus
signals used for the original parameter extraction. We consider
this to be a very rigorous proof of the model’s applicability.
The verification signals are representative of signals present in
pain relief application of Spinal Cord Stimulation. This model
can provide insight into the operation of the electronics in
implanted systems that is not available by any other means.
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