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Abstract

Cellular signaling circuitry in eukaryotes can be studied by analyzing the regulation of protein 

phosphorylation and its impact on downstream mechanisms leading to a pheno-type. A primary 

role of phosphorylation is to act as a switch to turn “on” or “off” a protein activity or a cellular 

pathway. Specifically, protein phosphorylation is a major leit motif for transducing molecular 

signals inside the cell. Errors in transferring cellular information can alter the normal function and 

may lead to diseases such as cancer; an accurate reconstruction of the “true” signaling network is 

essential for understanding the molecular machinery involved in normal and pathological function. 

In this study, we have developed a novel framework for time-dependent reconstruction of 

signaling networks involved in the activation of macrophage cells leading to an inflammatory 

response. Several signaling pathways have been identified in macrophage cells, but the time-

varying causal relationship that can produce a dynamic directed graph of these molecules has not 

been explored in detail. Here, we use the notion of Granger causality, and apply a vector 

autoregressive model to phosphoprotein time-course data in RAW 264.7 macrophage cells. 

Through the reconstruction of the phosphoprotein network, we were able to estimate the 

directionality and the dynamics of information flow. Significant interactions were selected through 

statistical hypothesis testing (t-test) of the coefficients of a linear model and were used to 

reconstruct the phosphoprotein signaling network. Our approach results in a three-stage 

phosphoprotein network that represents the evolution of the causal interactions in the intracellular 

signaling pathways.
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I. Introduction

The understanding of cellular function at the molecular level involves the study of 

intracellular signaling, metabolic pathways and gene regulatory networks, through “omics” 

measurements on biological systems. Protein phosphorylation is one of the main steps in 

intracellular signaling from the activated proteins located at the plasma membrane to the 

cytosolic space and nucleus. Phosphorylation is one of the most studied post-translational 

modification of proteins since is it vital for many protein interactions that regulate cellular 

processes such as cell growth, cell differentiation and development to cell cycle control and 

metabolism [1]. Phosphorylation is a key reversible modification with the combined 

involvement of protein kinases and phosphatases to activate and deactivate proteins [2]. 

Phosphorylation mainly occurs on serine, threonine and tyrosine residues that can regulate 

enzymatic activity, subcellular localization, complex formation and degradation of proteins. 

Activation of proteins through phosphorylation serves as the flux in the signaling pathways. 

Several signaling pathways such as the nuclear factor kappa B (NF-κB), mitogen-activated 

protein kinases (MAPK), and signal transducer and activator of transcription (STAT) play 

essential roles in transmitting signals that trigger the release of cytokines, which are central 

to the processes of inflammation and modulation of immune function [3]. The signaling 

pathways act as modules to regulate the transcription and release of various cytokines, some 

of which are involved in the pathogenesis of many diseases, e.g., chronic inflammatory 

diseases, autoimmunity and cancer. Thus, reconstructing protein networks from “omics” 

measurements can help us not only understand and model cellular signaling pathways but 

also assist in uncovering the mechanisms of disease progression. Since knowledge of 

protein-protein interaction is sparse, it is difficult to simultaneously analyze the dynamics of 

various proteins in vitro or in vivo. High-throughput technologies, such as nextgen 

sequencing, DNA microarray expression profiling, phosphoproteomics, metabolomics and 

high-content imaging, have made it possible to make concurrent quantitative measurements 

of various components of the cell, including mRNA levels, protein phosphorylation and 

metabolites, enabling the reconstruction of large-scale cellular networks. Complexities such 

as feedback and feed-forward loops and the cross-talk between different signaling pathways 

have hindered the problem of developing reliable mathematical approaches within an 

integrative framework, taking into account the dynamics of signaling networks [3].

During the last decade, the application of mathematical and statistical approaches to high-

throughput biological data has been used extensively to decipher the relationship between 

different components in the cell to partially reconstruct intra-cellular networks. With the 

availability of large-scale omics data, computational systems biology has made substantial 

progress towards modeling and reconstruction of data-driven networks using (1) input/

output-based models such as Partial Least Squares (PLS) [4] and Principal Component 

Regression (PCR) [5], (2) probabilistic graphical models such as Bayesian network-based 
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models [6]–[8], probabilistic Boolean network models [9], [10], and (3) information theory-

based methods such as integrated correlation and transfer entropy based approach [11] and 

C3NET [12], [13]. Other approaches using differential equations [14], structural equation 

methods [15] and state-space models [16] have also been proposed during the past few 

years.

Biological systems evolve through time and it is important to study the dynamic behavior of 

the topology of the signaling pathways/networks themselves [16]. Thus, we allow the 

network topology (the set of connections/edges present in the network) to evolve with time. 

Our objective in this study is to derive a time-varying model for the phosphoprotein network 

to understand the dynamics of signaling pathways using the notion of Granger causality. 

Causality can be determined by prior biological information. However, in many cases, no “a 

priori” knowledge is available to provide causal relationships in network reconstruction. 

Furthermore, it is appealing to discover new causal relationships, rather than already known 

ones. In the present work, we have applied the notion of Granger causality and statistical 

hypothesis testing to estimate causal relationships between different phosphoproteins using 

time-series data. According to Granger’s definition of causality, it is said that signal X(t) 

causes signal Y(t), if future values of Y(t) can be better predicted using the past values of 

X(t) and Y(t) than only using the past of itself [17].

Due to the fact that intracellular networks are not static, we use time series data in order to 

determine these dynamic changes in the network topology. In the present work, we use a 

vector autoregressive (VAR) model to infer relationships of Granger causality among 

phosphoproteins by analyzing the time-varying fold changes of phosphoproteins in response 

to single and double ligand stimuli. The quantitative levels of phosphoproteins were 

measured through western blot experiments by the Alliance for cellular Signaling (AfCS) 

[18] in RAW 264.7 macrophage cells. We infer the topology of the phosphoprotein 

networks in three distinct time intervals.

II. Approach

A. Granger Causality

Granger causality was first introduced by the Noble prize-winning economist, Clive 

Granger, and has proven useful for analyzing the relationships and influences among 

macroeconomic time series (e.g., income, exchange rate, etc.) [17]. We note that Granger 

causality is not meant to be equivalent to the true causality, but is intended to provide useful 

information regarding causation and the direction of information flow. Formally, a time 

series xt is said to Granger-cause a time series yt, if the future value of yt can be predicted 

given the past values of yt and xt, (yt−1, yt−2, …, xt−1, xt−2, …), better than predicting the 

future of yt given only the past values of yt (yt−1, yt−2, …). Commonly, Granger causality is 

identified by VAR models [19]. A VAR model of p-order and k-dimensional time series is 

given by

(1)
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where yt = (y1t, y2t, …, ykt)′ is a (k × 1) random vector, yit is the measurement at time t of the 

ith random variable, Al is a (k × k) autoregressive coefficient matrix, v is a (k × 1) vector of 

intercepts and εt = (ε1t, ε2t, …, εkt)′ is a k-dimensional error vector of random variables with 

zero mean and covariance matrix Σ.

The optimal order of the VAR model can be found through approaches such as Minimum 

Description Length [20] which requires many samples in time. In the present work, since 

there are only three original samples in time, we consider the following first order VAR 

model:

(2)

VAR allows identification of Granger causality for linear relationships. In order to find 

causal relationships, we analyze the elements of matrix A1. An important outcome of this 

approach is that the series yjt is not the cause of yit if and only if the ijth entry of matrix A1 is 

zero, aij = 0. Therefore, it is sufficient to estimate the autoregressive coefficient matrix of 

the VAR model in order to identify the direction of Granger causality.

This approach can be applied to the analysis of phosphoprotein time-course data to interpret 

functional connectivity between phosphoproteins to reconstruct their underlying network by 

testing the statistical significance of the estimated components of A1. Considering the time 

series (y1,…, yT) for each of the k variables, the first-order VAR model in (2) can be written 

in the following matrix form [21]:

(3)

where Y = (y1,…, yT)′ is a (T × k) matrix whose columns are time series for each of the k 

random variables with sample size T, B = (v,A1)′ is a ((k + 1) × k) matrix, X = (X0,…,XT−1)′ 

is a (T × (k + 1)) matrix with Xt = (1; yt), and ε = (ε1,…, εT)′ is a (T × k) matrix. For each of 

the k columns of matrices Y, B, and ε, we can write the following linear regression model:

(4)

where vector Yi represents the ith column of matrix Y, vector Bi is the ith column of matrix B 

and vector εi is the ith column of matrix ε. In this linear model, we seek to estimate the 

unknown coefficients in matrix B. We can use least squares (LS) estimation method in order 

to compute the unknown parameters/coefficients. Therefore, each column of matrix B is 

estimated through the LS estimation shown below

(5)

After estimating the coefficient vectors for each of the outputs, they can be concatenated to 

construct the estimated matrix B̂, and therefore, the autoregressive coefficient matrix A1 can 

be computed. The proposed VAR model analyzes causality between different variables in 

terms of how the future of a variable can be predicted using the past values of itself and 

other variables. According to this model, as stated earlier, variable j is said to Granger-cause 
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variable i, if the ijth entry of matrix A1 is nonzero. However, the least squares criteria favors 

solutions with many nonzero entries, which is contrary to the goal of finding purely zero 

entries to identify whether or not causations between pairs of variables exist. Hence, we 

need to apply statistical significance test to examine the significance of the estimated 

parameters. We know that LS estimation minimizes the root mean squared error (RMSE), 

and by computing the RMSE, we can perform a two-tailed t-test on the coefficients. The 

RMSE is computed as follows:

(6)

where Ŷi is the estimation of Yi

(7)

1) Significant Connections—The standard-deviation of the model parameters are 

estimated as

(8)

where T is the length of the time series, k is the number of variables, and υ is defined as the 

degrees of freedom. Then the ratio rji = B̂
ji/σb,LS is computed for the jth entry of the ith 

column of the estimated matrix B̂ and |rji| is compared against R = tinv(1 - α/2, υ), where 

tinv(.) denotes the inverse of the cumulative t-distribution and α = 0.01 (two-tailed) for a 

confidence interval of 99%. The estimated coefficients are considered statistically 

significant if their corresponding ratios are greater than R and insignificant otherwise (t-test 

on the model coefficients). We also computed the p-value and false-discovery rate (FDR) 

using the Benjamini-Hochberg (BH) method [22] for the connections retained. As presented 

in the Results section, the Benjamini-Hochberg FDR for the connections retained is less than 

0.026.

2) Performance Metrics—Type I error, Type II error, and accuracy of the network is 

computed [23] as follows using the False Positives (FP), False Negatives (FN), True 

Positives (TP) and True Negatives (TN) in the network identified:

(9)

(10)

(11)
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B. Application of VAR Model to Phosphoproteomic Data

We applied this method to time-course data on the level of phosphorylation of proteins in 

RAW 264.7 macrophages in response to stimuli, provided by the Alliance for Cellular 

Signaling (AfCS) [18]. This data set consists of fold changes of 21 phosphoproteins at 4 

time points; i.e., data at 1,3,10 and 30 minutes, in response to treatments with 22 single 

ligands and their double ligand combinations measured using the western blot method. The 

fold changes of the phosphoproteins are determined by dividing the volume of each 

phosphoprotein band for the ligand-treated samples by the average volume of the 

corresponding bands for the untreated samples (volume is the sum of the image pixel values 

within the area of the band). The replicates for the experiments with unique combination of 

ligand(s) for each phosphoprotein were averaged. Out of 327 unique ligand combinations, 

the number of combinations with 1, 2, 3, 4 and more than 4 replicates was 68, 68, 123, 37 

and 31, respectively. Thus, most ligand combinations have three replicates, hence resulting 

in only a small bias due to the difference in the number of replicates.

Due to the fact that the time intervals are not equal, we interpolated the data using linear 

interpolation with steps of one minute. Other interpolation methods (e.g., cubic) may result 

in large deviations at the intermediate time points, and this may not be close to the real 

variation of the fold change of the phosphoproteins in the biological system. We excluded 

the last sample in the original data, since it was taken 20 minutes after the previous one, 

which is considered to be too large an interval for accurate interpolation. In these 

experiments, we had missing data for 4 of the 21 phosphoproteins, signal transducer and 

activator of transcription (STAT) 3, STAT5, c-Jun N-terminal kinases (JNK) long (JNKL) 

and JNK short (JNKS). Therefore, we excluded these variables from further analysis. We 

assumed that at a given time, the underlying phosphoprotein network that represents the 

structure or the topology of the biological system is the same across all experiments, i.e., the 

topology of the phosphoprotein network representing the behavior of the biological system 

remains unchanged regardless of which ligand(s) is stimulating the system. Thus, to deal 

with the problem of rank deficiency of matrix X in (4), we stacked the data from multiple 

experiments for both the output data in matrix Y (data related to present) and the input data 

in matrix X (data related to the past). This ensures that matrix X will have full column rank 

and there will be a unique solution to the least squares problem. Fig. 1 shows a schematic of 

how the input and output data from multiple experiments were stacked. Before 

implementing the VAR model, the data in matrix X was normalized and matrix Y was mean-

centered for each variable.

In addition to implementing the VAR model, the correlation between the past and present 

values for each pair of variables was studied and the correlation matrix between the input 

and output variables was computed. Fig. 2 visualizes the correlation matrix as a heat-map, 

where the rows and columns of the heat-map are the input (at time t − 1) and the output 

variables (at time t) for the whole time-series data, respectively.

In order to investigate how the underlying topology of the network is changing, we partition 

the time series for all the variables into three segments and then apply the VAR model for 

each segment separately. Since we are considering the time-course data for 1 to 10 minutes, 
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and the granularity of the measurements is not fine, three overlapping segments, [1]–[4], 

[3]–[7] and [6]–[10] minutes were considered using interpolated data. Next, in order to 

investigate how the causal relationships are evolving with time, we estimate the causality 

coefficients and perform a statistical significance test (t-test) for each segment separately. 

We also compute the correlation matrix for each segment independently. It is expected that 

the results based on the interpolated data in the [3]–[7] minute interval are more affected by 

the actual experimental value at 3 minute, whereas those based on [6]–[10] minute interval 

are more affected by the actual experimental value at 10 minute. Among the statistically 

significant causal relationships that were estimated through the VAR model, only those with 

high correlation coefficients (≥ 0.4; p-value is quite significant since the number of rows in 

the matrices X and Y, 2943, is very large) were selected to reconstruct the final network for 

each time interval. Therefore, the network identified contains likely causal connections 

which also exhibit high correlation.

It can be noted that since we are considering three separate time intervals to study the 

temporal evolution of the network, we expect that the information provided in the time 

series data may differ from stage to stage. Therefore, a causal relationship A → B that exists 

at an earlier stage need not exist at the following stage, i.e., the past value of A may no 

longer contribute to predicting the future value of B at the following stage. Thus, according 

to Granger’s definition of causality, there will be no causal relationship at the following 

stage. This implies that the weights of edges (resulting in fluxes through connections) 

change though time. For example, if the weight of a connection decreases and the 

corresponding p-value becomes more than the threshold of 0.01 (for a confidence interval of 

99%), we no longer consider that connection to exist as a strong causal relationship even 

though we may observe the connection in the underlying network.

III. Results and Discussion

A. Graphical Network Reconstruction

We have reconstructed the phosphoprotein signaling network that represents the underlying 

network corresponding to the full time series data shown in Fig. 3. In this network, out of 

17×17 possible connections, only 35 were significant, many of which have negative 

coefficients in matrix A1. Connections with negative coefficients are considered as 

inhibitory relationships shown in Fig. 3. Important inhibitory edges include AKT → 

GSKα/β [24]–[26], ERK1/2 → RSK [27], [28]. Different edge-widths are used to indicate 

edges with low, medium or high correlation.

To test the robustness of our model to the choice of α and correlation threshold, we used 

different correlation thresholds and confidence intervals (for the two tailed t-test) to 

reconstruct the underlying network. To evaluate the performance of each trial, we compared 

the significant connections identified for the underlying network to the true connections 

from the literature.

Table I implies that by increasing α from 0.01 to 0.02 and 0.05, i.e., reducing the confidence 

interval from 99% to 98% and to 95%, the number of False Positives increase and thus, 

Type I error increases. We also tested the results for different correlation thresholds that 
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result in further trimming of the parameters. The optimal correlation threshold for which 

Type I and Type II errors are both minimized, is C = 0.4.

We also studied the effect of more fine time-intervals. If we interpolate with steps of half a 

minute instead of one minute, the accuracy of the model does not change significantly. With 

a sample time of one minute, accuracy is 0.86, and with that of half a minute, accuracy is 

0.87. We found that by using the cubic interpolation rather than linear interpolation, Type II 

error increases, justifying the use of linear interpolation.

Many of the connections found using our approach (underlying network, Fig. 3) were also 

identified using a PLS-based approach [4]. There are some differences between our network 

and the network obtained using the PLS approach. The connections p38 ↔ p65, p65 → 

ERK1/2 and GSKα → RSK are found in our network (Fig. 3), but not in the PLS-based 

network. However, the connections PKCD → EZR, MOE/EZR → RSK and p38 → AKT 

are found using the PLS approach, but are absent in our network.

The correlation coefficients with their corresponding p-values, along with the Benjamini-

Hochberg FDR and p-values based on the t-test on the model coefficients for the 

connections retained in the underlying network (Fig. 3) are listed in Table II. It can be noted, 

that the Benjamini-Hochberg FDR for all these connections/edges are less than 0.026. The 

distribution of the p-values (t-test on the model coefficients) from all 17 × 17 possible 

connections for the underlying network is shown in Fig. 4 (implicitly used to calculate 

FDR).

We also present the dynamic evolution of the network in three temporal stages shown in Fig. 

5. The topology of the phosphoprotein network changes through time. Fig. 5(a) corresponds 

to the reconstructed network in the first stage of the network development. Fig. 5(b) and (c) 

correspond to the reconstructed phosphoprotein networks for the second and third stages of 

the network evolution, respectively. The inhibitory edges such as AKT → GSKα/β are 

shown in Fig. 5.

1) Effect of Single-Ligand Data versus Double-Ligand Data—To evaluate the 

consistency of the data across experiments involving different ligand combinations, we 

applied the VAR model to single ligand experiments (22 experiments). According to our 

results, the reconstructed network based on only single ligand experiments has higher Type I 

and Type II error. We also used only the double ligand experiments to model the network, 

and as we anticipated, the performance does not change significantly. It can be noted that the 

double ligand combinations result in activation of the signaling pathway in ways that are 

functionally distinct from single ligand experiments. Furthermore, as an estimate of the 

differences in the variability for different phosphoproteins across time and treatment, we 

computed the ratio of the standard deviation of the standard deviation (std) to the mean of 

the std of every phosphoprotein (std is computed at every time for every treatment, using the 

replicate data), and found that this measure is of the same order (about 1) for all 

phosphoproteins across experiments.
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B. Temporal Evolution of the Phosphoprotein Network

In this subsection, we discuss the dynamic nature of the phosphoprotein network evolving in 

three successive temporal stages. For the sake of simplicity in our discussions, we treat each 

phosphoprotein as a node and each regulatory interaction as an edge in the network analysis.

Stage 1 [Fig. 5(a)] shows the initiation of interactions among phosphoproteins. Since this 

network captures the early phase of the response of the system to the ligands, there are very 

few interactions taking place in the network. Extracellular signal-regulated kinase (ERK) 

plays a crucial role in the regulation and phosphorylation of most of the proteins that are 

present in the first stage of the network including p38 MAP Kinase (p38), p90 ribosomal S6 

kinase (RSK), glycogen synthase kinase-3 (GSK), and protein kinase C (PKC) D. 

Ribosomal protein S6 (S6) affects ERK1 and ERK2. There is also a regulatory interaction 

between Nuclear Factor Kappa B (NF-κB p65) and p38. In addition, it is evident that 

Moesin (MOE) and Ezrin/Radixin (EZR) are part of the same pathway since a bidirectional 

link exists between them. As the network progresses to stage 2, several other interactions 

emerge. Fig. 5(b) shows that protein kinase B (AKT) arises in stage 2 and regulates the 

phosphorylation of GSKα/β. The signal transducer and activator of transcription 1 A and B 

(STAT1A/B, also ST1A/B for short) pairs are variants of the same protein and are expected 

to be activating one another. Indeed, they show a bidirectional relationship. PKCD that was 

regulated by ERK2 in stage 1, now promotes the phosphorylation of EZR and mother 

against decapentaplegic homolog 2 (SMD2), as well as mutually regulating neutrophil 

cytosolic factor 4 (p40). In stage 2, PKCM also appears and plays role in the regulation of 

RSK, S6 and ERK1/2, while being activated by p38. Role of S6 almost stays unchanged; 

i.e., it continues to regulate ERK1/2, except that as a result of the network progression from 

stage 1 to stage 2, we also see its interaction with RSK. This progression also brings about 

the phosphorylation of GSKα/β by RSK. In stage 1, p38 was activated by p65 and ERK2, 

whereas in the second stage, p38 regulates ERK1/2 along PKCM and gets involved in a 

mutual regulatory relationship with p65. p65 also affects ERK1/2 as well as RSK.

The evolution of the network to stage 3 provides not only most of the links that existed in 

stage 2, but also includes some new interactions. For instance, AKT proceeds to 

phosphorylate GSKα/β, while other nodes such as p65, RSK and p38 start to have causal 

influences on the activation of GSKα/β. Furthermore, in this phase, PKCD is regulated with 

the activation of PKCM, p40, SMD2 and EZR. Another interesting change is that p65 takes 

part in the activation of PKCM and ERK1/2. Moreover, AKT, broadly known for the 

activation of GSK, gets involved in the activation of S6, while being activated by ERK2.

Upon careful investigation of the time-dependent cascade of the network, we realize that 

there are very few stableinteractions that exist in all three stages. Moreover, the well-known 

signaling pathways such as the MAPK, STAT1A/B, AKT/GSK and NF-κB pathways 

emerge only in the last two stages and not in stage 1. The few causal interactions that persist 

throughout the temporal progression of the network are S6 → ERK1/2, EZR → MOE, p38 

→ RSK and p65 → p38. The time-varying succession of the significant interactions along 

with the related literature which validates some of these connections is shown in Table III.
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C. Summary of Results

We have used a linear-model structure, least-squares regression and statistical hypothesis 

testing (t-test) on the coefficients of the linear model to identify significant edges in the 

network. Two types of networks have been identified, (1) based on the entire (interpolated) 

time-course data during [1–10] min, referred to as the underlying network (Fig. 3), and (2) 

temporally evolving network, in three-stages, based on three overlapping temporal regimes 

(Fig. 5). There is considerable overlap between our networks and a network obtained by a 

PLS-based approach published in the literature [4]. The temporally-evolving network of Fig. 

5(a) shows the initiation of interactions among the phosphoproteins in stage 1 (e.g., ERK → 

p38/RSK,/GSK/ PKCD and S6 → ERK1/2), and the addition (e.g., AKT → GSKα/β and 

PKCM → RSK,/S6/ ERK1/2 during stage 1 → stage 2) or deletion (ERK2 → PKCD during 

stage 1 → stage 2) of specific connections with progress to stages 2 and 3. Persistent 

connections throughout the temporal progression of the network are S6 → ERK1/2, EZR → 

MOE, p38 → RSK and p65 → p38. We also found that the reconstructed network based on 

only single ligand experiments has higher Type I and Type II error as compared to using 

both single- and double-ligand data.

D. Validation of Results and Discussion

The results shown above are acquired through data-driven reconstruction of the network 

with no a priori information about the behavior of the underlying biological system. Here, 

we inspect our results and compare them with the existing information in the biology 

literature. In Table III, every causal relationship between pairs of phosphoproteins is shown 

by a directed arrow, and each mutual interaction is shown by a bi-directed arrow.

1) Role of AKT/GSK—GSK mediates protein phosphorylation and is involved in various 

intracellular pathways, metabolism and cancer. In mammalian cells GSK is encoded by two 

genes GSKα and GSKβ, with similar biochemical and substrate properties. GSK targets 

proteins that are involved in Alzheimer’s disease and neurological disorders. AKT is broadly 

known for activation and inhibition of GSK phosphorylation in HEK293 (Human 

Embryonic Kidney 293) cells, zebrafish and xenopus embryo [24]–[26]. We can readily see 

that the relatronships AKT → GSKα and AKT → GSK/3, representing phosphorylation of 

GSKα and GSKβ by AKT, are captured in our model. Our results also indicate that the 

bidirectional connection AKT ↔ GSKβ exists in second and third stages. In addition to 

AKT, recent studies show that RSK plays a role in modulating the activity of GSK in 

cerebral granule neurons, xenopus development and intracellular neural signaling systems 

[29]–[31]. There is also indication that the activation of RSK is responsible for the 

phosphorylation of GSKβ induced by epidermal growth factor (EGF) in human epidermoid 

A431 cells [32], and that GSKβ expressed in HeLa cells (from human cervical cancer cell 

line) is phosphorylated on Ser-9 by activation of p90Rsk [33]. Our model suggests the 

connection RSK → GSKα/β in stages 2 and 3, and the reverse connection GSKα → RSK in 

the underlying network. In previous studies it has been discovered in vitro that GSK is 

differentially regulated by the stimulation of PKC in rabbit skeletal muscle cells, Sf9 cells 

and HEK293 cells [34]–[36].

Masnadi-Shirazi et al. Page 10

IEEE Trans Biomed Circuits Syst. Author manuscript; available in PMC 2015 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Another phosphoprotein involved in the regulation of GSK is p38. Recent studies indicate 

that p38 induces GSK phosphorylation in brain, thymocytes and human breast cancer cells 

(MDA-MB-231 cells) [37], [38] which is detected in the last two stages in our network. 

Furthermore, ERK activates GSK through phosphorylation in Hep-G2 cells and myocardial 

tissue cells in mice [39], [40]. We detect this relationship in the first two stages. Moreover, 

the existing knowledge illustrates that GSK is involved in the activation of p65 in 

hepatocytes from mice and HeLa cells [41], [42] while our model captures the reverse 

connection p65 → GSKα/β in stage 3.

2) EZR and MOE—EZR and MOE are part of the same pathway, called Ezrin/radixin/

moesin (ERM) protein pathway. The ERM proteins regulate actin cytoskeleton and are 

involved in signaling, transport, and structural functions of the cell [43], [44]. As we can see 

in Fig. 2, the heat-map shows high correlation between these variables. In addition, the pairs 

ERK1/2 and STAT1A/B are variants of the same protein and are expected to be regulated 

similarly. Thus, as expected, high correlations and bidirectional causal relationships are 

observed between the members of each pair in Figs. 3 and 5. Despite the fact that the heat-

map in Fig. 2 shows very high correlation between GSKα and β in all stages, we observe the 

connection GSKβ → GSKα only in stage 2. This is an interesting result confirming the fact 

that “correlation does not imply causality” in the sense that the two variables may be highly 

correlated but there is no information in the past of one of them that can be used to predict 

the future of the other. The same result was found for PKCD/M. The connection PKCM → 

PKCD was found only in stage 3.

3) S6 and RSK—Ribosomal protein S6, which is involved in cell growth and regulation of 

cellular translation, is phosphorylated at several serine residues with mitogen stimulation by 

activation of one or more protein kinase cascades. It is well known that in mammalian cells, 

phosphorylation of ribosomal protein S6 in vitro and in vivo is regulated by the activation of 

RSK [18], [28], while our results indicate the existence of a bidirectional connection S6 ↔ 

RSK. RSK is involved in receptor-mediated signal transduction. Phosphorylation of RSK, 

which promotes cell survival and proliferation, lies at the end of the signaling cascade 

mediated by ERK and is regulated through the activation of ERK subfamily of MAP kinases 

[27], [28]. We observed this relationship in the first and second stages. Furthermore, our 

network suggests that RSK can be activated by p38 through the connection p38 → RSK in 

stages 1 and 2 and p38 ↔ RSK in stage 3. In current literature there is some evidence 

confirming this interaction in HEK293 cells [45]. Protein kinase C (PKC) is a family of fatty 

acid-activated protein kinase enzymes that is involved in regulating cell growth, learning 

and memory, transcription and mediating immune response. PKC which exists in various 

isoforms, is known to be involved in the activation of ERK in FJEK293 cells [46], which 

then results in the activation of RSK through the MAP kinase pathway [28]. Therefore it is 

anticipated that RSK and PKC have a hidden indirect relationship that was captured in our 

model where the connection PKCM → RSK is found in stage 3 and the underlying network 

and the connection PKCM ↔ RSK is found in stage 2. Our model still captured this 

connection by considering a faster time step (half a minute) in the model. In addition, PKC 

mediates the phosphorylation of S6 in vivo in HEK 293 cells [47]. PKCM → S6 can be 

found in stage 2 and the underlying network and PKCD → S6 in stage 3.
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4) ERK and P38 (MAPK)—There are three distinct subfamilies of MAPK pathway: 

ERK1/2, INK and p38 MAP kinases that have substantial impact on mediating various 

cellular signaling functions and physiological processes. These three enzymes are part of a 

phosphorylation system in which they regulate and phosphorylate one another [48]. In this 

study we do not analyze the role of JNK in the signaling pathway, and we focus on the role 

of ERK1/2 and p38 in regulation and phosphorylation of one another and other 

phosphoproteins. The activation or inhibition of p38 potentiates the activation of ERK [49]–

[51]. Unlike other pathways that appear only in the last two stages in our results, the 

crosstalk between ERK and p38 is found in all three stages. The activation of NF-kappa B 

(p65) can be triggered by the phosphorylation of ERK1/2 and recent research affirms the 

existence of cross-talk between ERK and p65 and between p65 and p38 [52]–[54] that can 

be seen in Fig. 5. p38 MAPK plays a critical role as downstream effector of PKC enzymes 

in LNCaP human prostate cancer cells and SK-Hep-1 hepatocellular carcinoma cells [55], 

[56]. Our results indicate the connections p38 ↔ PKCM in stage 3 and the underlying 

network, and p38 → PKCM in stage 2. Furthermore, p38 modulates the phosphorylation of 

subfamilies of RSK such as 70 kDa ribosomal S6 kinase (p70S6K) and ribosomal S6 kinase 

1 (S6K1) [37], [69]. We also know that RSK’s target substrate is S6 [18], [28]. This implies 

that p38 may indirectly play a role in the phosphorylation of S6. Our findings indicate that 

the connection p38 → S6 exists in stage 3 and the underlying network. There is no evidence 

in the existing literature confirming this relationship. The correlation coefficients for these 

edges are close to the correlation threshold. With a faster time step in the model, this 

connection is no longer significant. Hence, this interaction can be considered as false 

positive in our results. Moreover, phosphorylation of ribosomal protein S6 is known to be 

dependent upon the activation of ERK in HeLa cells and in mouse dentate gyms [28], [65] 

whereas our model captured the reverse connection.

Recent evidence implies that stimulation of PKC activates ERK1 and ERK2 in myocardial 

cells of rabbit, glomeruli of diabetic rats and glomerular mesangial cell cultures under high 

glucose conditions and in human neutrophil cells [57]–[59]. In our results, this relationship 

arises in the last two stages.

5) p65—Nuclear Factor Kappa B (NF-κB) exists in almost all animal cell types and is 

involved in mRNA transcription, regulation of inflammation, apoptosis and immune 

responses. There is some evidence that p65 NF-κB exists in the cytoplasm of unstimulated 

cells in an inactive form, and that it can be activated by exposure to PKC in human YT cells 

[62]–[64], whereas our results captured the reverse connection p65 → PKCM. It is 

interesting that previous computational methods such as those in [4] also captured the same 

reverse connection. Furthermore, there is some evidence that activation of NF-κB requires 

RSK-dependent p65 phosphorylation in vascular smooth muscle cells [67], [68] but 

extended analysis is needed to thoroughly understand the role of p65 in the biological 

function of RSK [66]. Our model estimated the opposite relationship p65 → RSK in stages 

2, 3 and in the underlying network. Interestingly, in our analysis, the coefficient for RSK → 

p65 is just below the threshold and hence is not included in the network.
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6) Other Pathways—Recent studies show evidence that activation of AKT inhibits the 

activation of the ERK pathway in C2C12 mouse myoblast cells [71] and that specific drugs 

unravel the crosstalk between the AKT and ERK pathways in neural stem cells [70]. In fact, 

we found the connection ERK2 → AKT in stage 3. SMD2 relays extracellular signals from 

transforming growth factor beta (TGF-β) ligands to the nucleus [78], [79]. There is some 

evidence that activation of SMAD (SMAD2, also SMD2) is modulated by protein kinase C 

in NIH-3T3 cells [72], [73], while the connection PKCD → SMD2 in stage 2 and the 

underlying network and PKCD ↔ SMD2 in stage 3 is captured in our networks. Some 

evidence provide affirmation that phosphorylation of ezr/radixin/moesin (ERM) is 

dependent upon catalytic function of PKC in MCF-7 breast cancer cells and in endothelial 

cells [60], [61]. Our network reconstruction captures PKCD → EZR in stage 2, PKCD ↔ 

EZR and the reverse connection, MOE → PKCD, in stage 3.

The current knowledge confirms that p40 is phosphorylated in vitro by protein kinase C in 

HL-60 cells and human neutrophils [74]–[76]. The bidirectional connection PKCD ↔ p40 

was found in stage 2 and 3 of our reconstructed network. Our model also captures the 

connection p40 → SMD2 in stage 2.

AKT → S6 appears in stage 3 of our networks. It is known that protein kinase B (AKT) 

plays a role in the phosphorylation of RSK in human 293 cells [77] and ribosomal protein 

S6 (S6) is a substrate of RSK [18], [28]. Thus, it can be anticipated that AKT is capable of 

having an indirect impact on the phosphorylation of S6. This connection is statistically 

significant even with a faster time step in the model. Another potential novel connection is 

the crosstalk between GSK and ezrin/radixin/moesin (ERM), GSK → ERM [4].

7) Relationship of Signaling Pathways With Diseases—Some of these pathways 

such as p38 and NF-κB regulate the transcription of the cytokine tumor necrosis factor α 

(TNFα) which is a target for rheumatoid arthritis [80]. NF-κB is involved in the regulation 

of pro-inflammatory chemokines and cytokines in meningitis [81]. Furthermore, deviations 

in the levels of MAPKs from their normal cellular levels have been implicated in the 

development of cancer [82].

IV. Conclusion

We have applied the notion of Granger causality through the vector autoregressive model to 

develop a novel framework for reconstructing dynamic networks from large-scale multi-

experiment multivariate high-throughput data sets. We used an approach based on a linear-

model template and statistical hypothesis testing (t-test) of the coefficients of the model to 

find significant or potentially causal connections. We have applied this methodology to 

phosphoprotein time-course data generated by the Alliance for Cellular Signaling (AfCS) in 

RAW 264.7 macrophage cells in single and double ligand experiments. We were able to 

predict connectivity, causality and dynamics of information flow in the progression of the 

phosphoprotein network. We also found that the reconstructed network based on only single 

ligand data has higher Type I and Type II error as compared to using both single- and 

double-ligand data.
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Since the intracellular networks have a dynamic nature and their topology changes with 

time, in this work, our main goal was to investigate the temporal evolution of the 

phosphoprotein network. During the early stage, ERK plays an important role in regulating 

p38, RSK, PKCD and GSK, while ERK itself is regulated by S6. As the network evolves to 

the second and third stages, the well-known signaling pathways such as the MAPK, 

STAT1A/B, AKT/GSK and NF-κB pathways appear to play role in the network. These 

results have enhanced our knowledge about the important signaling pathways that activate 

macrophage cells and play an essential role in the secretion of cytokines during an 

inflammatory response, and may contribute to finding novel targets for inflammation-related 

diseases.

The method we have developed and applied here provides a strategy for reconstructing and 

analyzing dynamical networks in biological systems. In addition to providing networks in 

the temporal context, our method provides the directionality and potential causality of 

molecular interactions. We note that we built our methodology based on the notion of 

Granger causality, which is not meant to be equivalent to the true causality.
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Appendix: Abbreviation for the Names of the Phosphoproteins

c-Jun N-terminal Kinases lg (JNK lg), c-Jun N-terminal Kinases sh (JNK sh); Extracellular-

signal Regulated Kinases (ERK) 1 (ERK1) and ERK 2 (ERK2); Ezrin [Ezr]/Radixin [Rdx]

(Ezr/Rdx); Glycogen Synthase Kinase 3 (GSK) α (GSKα) and β (GSKβ); Membrane-

organizing Extension Spike Protein (Moesin or MSN); Nuclear Factor Kappa-light-chain-

enhancer of activated B cells p65 (NF-κB p65); Protein kinase B (AKT); Protein Kinase C 

(PKC) δ (PKCD) and PKC µ (PKCM); Ribosomal Protein S6 (S6); Ribosomal S6 kinase 

(RSK); Signal Transducers and Activator of Transcription (STAT) 1α (STAT1A, ST1A), 

STAT1β (STAT1B, ST1B), STAT3 and STAT5, Sma and Mad related proteins (SMAD) 2 

(SMAD2, SMD2).
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Fig. 1. 
Schematic to show the stacking of the data matrices. Each column corresponds to the time 

series data of each of the k variables.
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Fig. 2. 
Heat-map of the correlation matrix between the input and output variables. This matrix 

contains the pairwise correlation coefficient between columns of matrix X and Y for the 

whole time series [1–10] minutes.
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Fig. 3. 
The reconstructed network for the underlying signaling network in RAW 264.7 

macrophages. This network represents the cross-talk between phosphoproteins considering 

the whole time-series for [1]–[10] minute period. The pink connections are common edges 

in the underlying network and the timevarying network (Fig. 5). Different edge-widths are 

used to represent low (0.4 ≤ r < 0.5), medium (0.5 ≤ r < 0.75) and high (r ≥ 0.75) correlation 

coefficients corresponding to the edges. Inhibitory connections are shown with a blunt end 

instead of an arrow.
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Fig. 4. 
Histogram of the p-values (t-test on the model coefficients) for the underlying network 

generated from 17×17 p-value numbers.
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Fig. 5. 
Time-dependent cascade of the phosphoprotein signaling network in RAW 264.7 

macrophages in three stages, (a) Reconstructed network in stage 1 related to [1]–[4] minute 

interval. (b) Reconstructed network in stage 2 related to [3]–[7] minute interval, (c) 

Reconstructed network in stage 3 related to [6]–[10] minute interval. The pink connections 

are common to all the three networks as well as the underlying network (Fig. 3). Different 

edge-widths are used to represent low (0.4 ≤ r < 0.5), medium (0.5 ≤ r < 0.75) and high (r ≥ 

0.75) correlation coefficients corresponding to the edges. Inhibitory connections are shown 

with a blunt end instead of an arrow.
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TABLE I

Robustness of Results of the Underlying Network to the Choice of Different Thresholds

Correlation
Threshold

α Type I
Error

Type II
Error

Accuracy

C=0.4 0.01 0.07 0.56 0.86

C=0.5 0.05 0.05 0.66 0.86

C=0.4 0.02 0.07 0.53 0.86

C=0.4 0.05 0.10 0.48 0.84

C=0.6 0.01 0.02 0.79 0.87

C=0.7 0.01 0.02 0.84 0.86
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TABLE III

Comparison of Our Results With the Current Literature

Correlated
pairs

Stage 1 Stage 2 Stage 3 Underlying
network

Current
knowledge

References

(GSK, AKT) — AKT → GSKα/β AKT → GSKα/β AKT → GSKα/β AKT → GSK [24–26]

(GSK, RSK) — RSK → GSKα/β RSK → GSKα/β GSKα → RSK RSK → GSK [32, 33]

(GSK, P38) — P38 → GSKα P38 → GSKα/ β P38 ↔ GSKα P38→ GSK [37, 38]

(GSK, ERK) ERK2/1 → GSKα/β ERK2 ↔ GSKβ — — ERK → GSK [39,40]

(GSK, P65) — — P65 → GSKα/β — GSK → P65 [41,42]

(RSK, S6) — S6 ↔ RSK S6 ↔ RSK S6 ↔ RSK RSK → S6 [18,28]

(RSK, ERK) ERK2 → RSK RSK → ERK 1/2 — ERK 1/2 → RSK ERK → RSK [27,28]

(RSK, P38) p38 → RSK P38 → RSK P38 ↔ RSK P38 → RSK P38 → RSK [45]

(PKC, S6) — PKCM → S6 PKCD → S6 PKCM → S6 PKC → S6 [47]

(PKC, P38) — P38 → PKCM P38 ↔ PKCM P38 ↔ PKCM P38 → PKCM [55, 56]

(PKC,ERK) — PKCM → ERK1/2 PKCM → ERKl/2 PKCM → ERKl/2 PKCM → ERK [57–59]

(PKC, EZR) — PKCD → EZR PKCD ↔ EZR — PKC → EZR [60, 61]

(PKC, MOE) — — MOE → PKCD — PKC → MOE [60,61]

(PKC, P65) — — P65 → PKCM P65 → PKCM PKC → P65 [62–64]

(PKC, RSK) — PKCM ↔ RSK PKCM → RSK PKCM ↔ RSK PKC → ERK → 
RSK

[28,46]

(S6, ERK) S6 → ERK1/2 S6 → ERK1/2 S6 → ERK1/2 S6 → ERK1/2 ERK → S6 [28, 65]

(P65, RSK) — P65 → RSK P65 → RSK P65 → RSK RSK → P65 [66–68]

(P65, ERK) — P65 → ERK1/2 ERK1 → P65 P65 → ERK1/2 P65 → ERK [52–54]

(P65, P38) P65 → P38 P65 ↔P38 P65 ↔P38 P65 ↔P38 P65 → P38 [52–54]

(P38, ERK) ERK2 → P38 P38 → ERK1/2 P38 → ERK2 P38 ↔ 
ERK1

P38 → ERK1/2 P38 → ERK [49–51]

(P38, S6) — — P38 → S6 P38 → S6 P38 → RSK → S6 [37, 69]

(AKT, ERK) — — ERK2→ AKT — AKT → ERK [70,71]

(SMD, PKC) — PKCD → SMD2 PKCD ↔ SMD2 PKCD → SMD2 PKC → SMD [72, 73]

(SMD, P40) — P40 → SMD2 — — — —

(P40, PKC) — PKCD ↔ P40 PKCD ↔ P40 — PKC → P40 [74–76]

(AKT, S6) — — AKT → S6 — AKT → RSK → 
S6

[18,28,77]

(GSK, ERM) — GSKα → MOE GSK → EZR GSK → MOE — —
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