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Abstract—A switched-capacitor (SC) neuromorphic system for
closed-loop neural coupling in 28 nm CMOS is presented,
occupying 600 um by 600 um. It offers 128 input channels (i.e.
presynaptic terminals), 8192 synapses and 64 output channels
(i.e. neurons). Biologically realistic neuron and synapsedynam-
ics are achieved via a faithful translation of the behavioural
equations to SC circuits. As leakage currents significantlyaffect
circuit behaviour at this technology node, dedicated compensation
techniques are employed to achieve biological-realtime operation,
with faithful reproduction of time constants of several 100ms at
room temperature. Power draw of the overall system is 1.9 mW.

Keywords: biological-realtime neuromorphic system,
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I. I NTRODUCTION

There has been significant recent success in using neuro-
morphic circuits and/or neural network simulations in brain-
machine interfaces. Examples include central pattern gener-
ators for spinal cord prostheses [1] or neural network based
decoding filters for arm prostheses [2]. In order to achieve
the millisecond to second time constants necessary for inter-
facing these neuromorphic circuits to biological circuits[1]
or to realtime sensor/motor interfaces [3]–[6], most analog
implementations of neuromorphic circuits rely on so-called
subthreshold circuits [7].

However, subthreshold circuits are hard to port to advanced
CMOS techologies, since leakage currents rapidly increase
with down-scaling, reaching the range of the desired signal
currents. This is why even recent neuromorphic systems have
been manufactured in quite old technologies [8], [9]. Thus,
with the exception of fully digital implementations [10], [11],
current neuromorphic systems are not able to participate in
the technological advances and especially the system scaling
offered by deep submicron processes.

These problems can be largely circumvented by using
switched capacitor (SC) circuits [12]–[14], which rely on

charges and voltages to perform computation, not on currents.
By replacing continuously flowing very small currents with
their equivalent accumulated charge, equivalent signal levels
are higher (and hence more controllable) and robust charge-
based signal transmission and computation can be utilized.

We present a neuromorphic system realized in SC circuit
technique in a Super Low Power 28 nm CMOS technology,
operating with a 1 V supply. The system is targeted at a
closed loop interface to in-vitro cortical neuron cultures. This
necessitates mimicking the memory and short-term decision
making dynamics of the cortical network [15], [16], with
timescales on the order of several 100 ms [1], [17]. We
implement the model of short term dynamics presented in [18],
with transistor-level SC circuits derived from the high-level
building blocks introduced in [18]. The logical organisation
of the synaptic matrix was adapted from [19].

Although the SC technique is inherently more robust to
current and voltage noise than subthreshold circuits, on the
timescales referred to above, stored charge signals can still
be affected by the leakage currents of switching transistors.
This effectively limits biological-realtime operation. Thus,
we use a simplified version of the circuit techniques in
[20], [21] to reduce leakage currents to achieve longer time
constants. Compared to conventional biological interfacing
solutions, [22], [23], no digital processing chain is necessary.
The behavioural models that allow the system to couple into
biological dynamics are directly implemented as discrete-time
analog state circuitry, driven by incoming action potentials
(i.e. spikes). At the same time, the SC approach makes the
systems’ behaviour widely digitally configurable. The use of
28nm CMOS eases integration with low-power digital systems.

The remainder of the paper is structured as follows. First, we
introduce the overall system, followed by its digital and analog
building blocks. We show how biologically realistic neuron
and synapse behaviour as well as biological-realtime operation
is achieved with SC CMOS circuit techniques. We then give
detailed measurement results on the overall system and its
individual components. Lastly, we discuss the significanceof
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Fig. 1. Overview of the neuromorphic system including the synaptic matrix
and the other neuromorphic mixed signal SC blocks, digital control, synaptic
weight RAM, biasing digital-analog converter (DAC), phase-locked loop
(PLL) clock input and serial packet input/output (I/O).

the results.

II. I MPLEMENTATION

A. Overall System

Fig. 1 gives an overview of the system. 128 input circuits on
the left side implement presynaptic short term dynamics for
their respective row in the synaptic matrix [18], while the 64
Leaky Integrate and Fire (LIAF) neurons shown on the bottom
are driven by their respective column, providing the output(i.e.
stimulation) signal as a function of the 8192 synapses in the
matrix coupling presynaptic inputs to the neurons. Synaptic
weights are stored in a RAM block on the side of the matrix.

The entire driving circuitry of presynapses, synapses and
neurons is situated on the left hand side of the matrix.
In real-time operation, a state machine cycles through the
columns of the synaptic matrix in 0.62 ms. At the start
of the cycle, the input pulses that were registered during
the last cycle are forwarded to the driver circuits and the
corresponding presynaptic adaptation state is computed. Then,
each synaptic column and its corresponding output neuron is
activated sequentially, weighting the presynaptic pulsesby the
corresponding synapse state and synaptic weight, integrating
them on the postsynaptic neuron and applying the leaky decay
term to the neuron. Details on the cycle process can be found
in Sec. II-D. In effect, the switched capacitor neuron and
synapse matrix behaves as a fixed-timestep neural simulator
with a 0.62 ms time resolution, with neuron and synapse states
stored in the matrix and updates to the states carried out via
the active driver circuits on the left side of the matrix [19],
[24].

Fig. 2. 28 nm die picture with location of neuromorphic system outlined and
the corresponding layout. The overall IC is 1.5 mm by 3 mm, with various
test structures in addition to the neuromorphic system. Thelayout view shows
detailed placement of the single building blocks of the neuromorphic system
(see Fig. 1).

A picture of the manufactured IC is shown in Fig.2.
The circuit design utilizes core devices of the SLP 28 nm
technology only. In contrast to the current biasing usually
employed in neuromorphic ICs [25], the neuromorphic SC
circuits are governed by voltages for amplitude settings and
digital configuration for time constants. Correspondingly, there
is a multi-output R-ladder based digital to analog converter
(DAC) situated below the matrix in Fig.2. It provides the bias
voltages for e.g. postsynaptic current (PSC) scaling, neuron
thresholds or reset voltages. To reduce the area of the DAC,
neuromorphic elements have been assigned to groups sharing
the same bias voltages. Group size is 16, so that neurons 0
to 15 share their biases, and synapse drivers and presynaptic
adaptation 0 to 15 also share their biases, etc.

Time constants are set via counters that govern the switching
cycles of the SC circuits. Thus, scaling of the clock frequency
effectively scales the speed of the system, keeping the 0.62ms
resolution relative to the chosen time base. The neuromorphic
system was designed for speeds from biological realtime up
to an acceleration of 100. As the time constants scale with
the clock and the DAC amplitude settings are independent of
clock speed, the same configuration for all parameters can be
used irrespective of the speed-up, nominally giving the same
results.

Communication with the system is provided by a joint
test action group (JTAG) interface, implementing a generic
packet-based protocol for both pulse and configuration data.
Additionally, two configurable test outputs allow for moni-
toring analog voltages, such as membrane potentials. With its
minimal interface, using only six signal pins and two bias pins
(one bias current and one pin for common mode voltage), the
neuromorphic system can be easily integrated into a multi-core
system.

B. Digital System Design

Similar to the communication setup in [26], [27], the
neuromorphic system employs a unified packet-based interface
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for configuration and incoming/outgoing pulse data. Data
exchange is realized via an input first-in-first-out (FIFO) buffer
and an output FIFO buffer. For system integration, only a write
and read interface to these FIFOs has to be provided, which
is done via JTAG in the current implementation. Each data
packet has a 32 bit payload and a 16 bit header. For input
data, the header includes 4 bits of type and 12 bits of address
information. For output data, the header only contains a 5 bit
type identifier.

Input spikes are sent to the neuromorphic system as ad-
dresses of 7 bits and one enable bit, so that four spikes fit in
one data packet. Output spikes are collected over one matrix
cycle and stored as one bit per neuron. If at least one neuron
spiked in the current cycle, the 64 bit spike vector over all
neurons is sent to the output FIFO, forming two separate
entries. Similar to the grouping for the analog parameters,the
digital parameters are also shared among groups of 16 each
for presynaptic circuits and neurons, which reduces the digital
configuration space.

All digital components and the SC circuits are clocked
by an on-chip phase-locked loop (PLL) [28]. It produces an
internal fixed frequency of 2 GHz that is downscaled to a
330 MHz output. The neuromorphic system employs an 8 bit
configurable clock divider that allows for further downscaling
of the clock frequency. Biological-realtime operation corre-
sponds to a divider value of 100, i.e. a clock frequency of
3.3 MHz for the state machine of the neuromorphic system
and a matrix update cycle of0.62ms, as mentioned in Sec.
II-A . For the maximum speed-up factor of 100, the divider
value is 1, resulting in a clock frequency of 330 MHz and
a matrix update cycle of6.2µs. With respect to the update
frequency of the matrix, the clock is somewhat high, which is
due to the fact that non-overlapping switching signals for the
SC-components are derived from it, see also the signal edges
in Fig. 8. The maximum speed-up factor is partially limited by
the high clock frequency needed for the digital components,
but the actual limit is due to the RC time constants of the SC
circuits, as explained later.

C. Presynaptic Adaptation and Synaptic Long-Term Plasticity

The presynaptic adaptation circuit (see Fig.3) implements
the model of synaptic dynamics proposed in [18], which is
derived from biological measurements [29]. It is capable of
reproducing depression, facilitation and combinations ofboth
mechanisms. The circuit produces an output voltageVpsc,
which represents the waveform of exponentially decaying
PSCs:

Vpsc(t) = V̂psc,n · exp(−
t

τpsc
) , (1)

whereV̂psc,n is the amplitude of the n-th PSC. Since the short-
term adapation circuitry makes use of SC circuits, the resulting
PSC voltage trace is time discrete. The time constantτpsc of
the PSC decay, as well as the time constants for depression
τR and facilitation τu, can be adjusted. The impact of the
facilitation and depression mechanisms can be controlled by
the digital parametersU andα, respectively. For details, please

Fig. 3. Overview of the presynaptic adaptation circuit. Thecombination
of facilitation and depression mechanisms modulates the amplitude of the
PSC traces. Each subcircuit holds the corresponding model variable which is
updated at incoming presynaptic spikes and decays between spikes.

TABLE I
L IST OF PARAMETERS FOR SHORT-TERM ADAPTATION AND NEURON

CIRCUIT.

Parameter Description Range1

U Utilization of syn. efficacy [18], [29] 0–0.98
α Strength of depression [18] 0–0.98
τu Facilitation time constant 9.6–605ms, inf.
τR Depression time constant 9.6–605ms, inf.
τPSC PSC time constant 1.2–74.5ms, inf.
Vreset Reset potential of LIAF Neuron -250 to 250 mV
Vthresh Firing threshold of LIAF neuron -250 to 250 mV
τm Membrane time constant 1.2–74.5ms, inf.
S Speed-up factor 1–100
1 Voltages are set digitally with 7 bit precision using digital-to-analog

converters. Time constants are configurable via 6 bit counter registers.
All time constants are given for biological-realtime operation and can be
scaled according to the speed-up factorS, e.g. τ̃u = τu/S. The resting
voltage of the LIAF neuron is fixed at0V.

refer to [18]. For a list of configurable parameters and their
tuning range see Tab.I.

The long term plasticity model chosen for this neuromorphic
system is the stochastic stop learning synapse of [30]. It is
based on modifying the synaptic state as a function of the
presynaptic spike and the postsynaptic membrane voltage. In
our implementation of the rule, when a column gets activated
during the matrix cycle, the analog synaptic state held in the
corresponding synaptic capacitance in the synaptic matrixis
read out. It is then modified according to the equations in
[30], with appropriate configurable parameters. As this paper
focuses on the overall neuromorphic system and its static
operation, the reader is referred to the companion paper [31]
for an in-depth circuit description and detailed measurements
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Fig. 4. Weight scaling circuit with digital control and binary-weighted
capacitors.

of long- and short term plasticity in this neuromorphic system.
Based on the synapse state, the PSC amplitude is then

modified by a weight scaling circuit. There is one of these per
synapse row, located in the presynaptic adaptation circuit. As
can be seen in Fig.4, all synapses are addressed sequentially
by a state machine (see Fig.8 for the timing diagram, which
also shows the entire matrix cycle in relation to the synapse
and neuron driver signals). Corresponding to the synapse
address, 4 bit long-term potentation (LTP) and long-term
depression (LTD) weight valuesWLTP andWLTD are read
from a RAM. To scale the presynaptically computed PSC
by the long term plasticity, the synapse state is collapsed
into a binary state value, which can be either potentiated or
depressed [30]. Depending on this synapse state, the 4 bit
LTP or LTD weight is then selected by a multiplexer. The
switches at the four binary-weighted capacitors are closed
according to the given weight value. After selecting a synapse,
the weight capacitors CW are initially reset to0V. In the
following integration phase the differential PSC voltageVpsc

is applied to the input of the weight scaling circuit. The charge
is then transmitted by the capacitors to the neuron circuit (see
Sec.II-D). Additionally, the weight scaling circuit offers the
possibility to configure the synapses as either inhibitory or
excitatory. This configuration bit is also stored in RAM.

While presynaptic drivers for almost all synapses are ac-
tivated by an incoming pulse, synapse row 127 is always
active, with a constant charge. This charge can be modulated
indvidually for each neuron by setting the synaptic weight of
row 127 and the column corresponding to the neuron. This
way, a constant background current with a 4bit weight and
inhibitory or excitatory effect can be set.

D. Switched Capacitor Neuron

The neuron circuit implements an LIAF neuron model:

dVmem

dt
= −

Vmem

τm
+

Isyn

Cmem

, (2)

with membrane potentialVmem, membrane capacitanceCmem

and membrane time constantτm. Isyn is the sum of all PSCs.

Fig. 5. Neuron circuit. A detailed diagram of the membrane circuit can be
found in Fig.7c.

Fig. 6. Fully-differential opamp used in the neuron circuit.

If Vmem reaches the firing thresholdVthresh a spike is emitted
and the membrane is reset toVreset. The parameters of the
LIAF neuron and their tuning ranges are listed in Tab.I.
As can be seen in Fig.5, the 64 fully-differential membrane
circuits are located on one row and share one driver circuit.
The membrane circuits are sequentially switched to active and
the PSC output of all 128 weight scaling circuits (Fig.4) are
summed on nodeVcollect as a charge. The charge on the global
summing nodeVcollect is integrated on the currently selected
membrane capacitance by the driver circuit, which is basically
an SC integrator.

The integrator’s opamp circuit is shown in Fig.6. A two-
stage architecture has been chosen to overcome the difficulties
of stacking transistors at very low supply voltages. In order
to enhance the opamp’s gain, a boosting technique has been
applied [32], where the load of the first stage has been split into
cross-coupled transistors, providing partial positive feedback.
Stability is derived by Miller compensation and the common-
mode voltage of the output stage is controlled by an SC
common-mode feedback circuit. Slew rate performance is
enhanced by additional source followers at the output, which
is required at high speed-up factors. The bias current scales
well with the speed-up, so that the opamp consumes300nW
at biological realtime and30µW at a speed-up of 100.

For biological-realtime operation, large membrane time
constants in the order of100ms are required. Since leakage
currents heavily increase when scaling technologies down
below 100nm [33], a dedicated low-leakage switch similar
to those in [20] and [21] has been used (see Fig.7a), which
operates as follows. If the membrane circuit is inactive the
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membrane capacitance is fully decoupled from the rest of the
circuit by turning off M1 and M2. The middle nodeVM of the
T-switch is set to the common-mode voltageVcm. This reduces
the drain-source voltage over M2, which in turn reduces the
subthreshold current flowing through the channel (seeI1 in
Fig. 7b). In order to decrease junction leakage (I2), minimally
sized source/drain areas have been used. While this sizing aids
in real-time operation of the matrix, it also defines the upper
limit of the speed-up compared to biological realtime (i.e.the
factor 100 mentioned in Sec.II-A ), as the switch resistance
determines the RC time constant of the SC circuits, limiting
the charge transfer speed.

A further advantage of the low-leakage switch is that the
decoupling via the middle node makes the leakage currents
independent of the opamp output (Vmem+,Vmem−

). Gate
leakage (I3) has no impact in the off-state of the switch and
simulations have shown that the effect in the short on-states
is negligible. In contrast to the complimentary transmission
gates of [20], [21], the voltage range chosen here allows to
use NMOS devices only, reducing leakage currents and circuit
complexity. Regular Vth transistors from the core library were
used, rather than dedicated low-Vth devices as in [21]. Com-
pared to [20], the middle node is held atVcm to reduceVDS-
caused channel leakage. The presynaptic adaptation circuit of
Sec.II-C also employs this low leakage switch to achieve its
time constants.

While the circuit combats undesired leakage currents, it is
also used to implement an intentional, configurable leakage
mechanism to complete the LIAF neuron model. This is
directly implemented in the individual membrane circuits (see
Fig. 7c). A small capacitanceCleak = 5 fF is discharged and
then shunted to the membrane capacitanceCmem = 75 fF,
leading to a charge equalization. This process is triggered
periodically and thus lets the membrane voltage decay ex-
ponentially towards0V differential voltage when no synaptic
input is applied. The membrane time constantτm is controlled
by the switching frequency, alternatively expressed as the
periodTleak between leakage events:

Tleak = −τm · ln(
Cmem

Cmem + Cleak

) . (3)

SinceTleak is derived from the system clock, the membrane
time constant and all other time constants generated by SC
circuits on the chip are proportional to the speed-up factor.
Fig. 8 shows the four control signals used by the membrane
circuit of column 0.

In order to avoid a permanent integration of the opamp’s
offset voltage generated by device mismatch, an offset com-
pensation technique has been applied [34]. In the reset phase
Φreset, unity gain feedback is applied to the opamp. Thus,
the output offset voltage is visible at the input. SinceVcollect

is reset toVcm at this time, the opamp offset is sampled on
the compensation capacitanceCc. In the following integration
phaseΦintegrate, i.e. the phase where the PSC charges are
transferred to the membrane, the opamp offset is substracted
from the input voltage.

In the comparison phaseΦcompare, the membrane voltage is
compared against the firing threshold. The comparator circuit

Fig. 7. (a) Low-leakage switch configuration. (b) Cross-section of MOS
Transistor M2 with denoted subthreshold leakage (I1), junction leakage (I2)
and gate leakage (I3). (c) Membrane circuit with low-leakage switches (grey
boxes) and SC leakage generation.

Fig. 8. Timing diagram of the matrix cycle (top), sequence ofloading
synaptic weights and integration on the neuron membrane (middle) and timing
diagram of switching phases and control signals for the membrane circuits
(bottom). The dashed lines indicate whether switches are onor off when
a leakage event occurs. Shifted clock edges denote digitally-generated non-
overlapping switch signals required by the SC circuits.

consists of an offset compensated preamplifier and a dynamic
latch. IfVmem+−Vmem−

> Vthresh−Vcm, a spike is detected
and the membrane voltage is reset. Due to the single-ended
nature of the biasing voltagesVreset and Vthresh, the reset
is done in an asymmetric fashion, but is compensated by the
opamp’s common-mode feedback.

III. R ESULTS

As detailed in Sec.II-B, the entire system is ratiometric
with respect to the clock frequency. That is, the system clock
can be scaled so that the system operates anywhere from
biological realtime up to a factor of 100 faster. Realtime
operation was used for the measurements in this paper, as
the effectiveness of the leakage current techniques becomes
most evident there. In addition, operation in biological realtime
is the most interesting regime in terms of computation, as
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Fig. 9. Measurement (blue curves) of the PSC (top) and PSP (bottom)
waveforms for parametersτPSC = τmem = 12 ms. The nominal curves
with the same time constants and fitted amplitude are shown asdashed green
lines: PSC curve following Eq.1, PSP according toα-shape withV (t) ∼

t/τ · exp(−t/τ).

it allows interfacing with e.g. neuromorphic image sensors
in real time. The IC and its board are operated at ambient
temperature, i.e. no special measures are undertaken to cool
the IC.

A. Measurement of the Presynaptic Adaptation

For measuring the presynaptic adaptation circuits, the two
analog test outputs were captured using an oscilloscope, al-
lowing the simultaneous measurement of the PSC voltage of
the first presynaptic circuit and the membrane voltage of one
neuron. The aquired data was averaged over time bins of 0.1-
0.3ms to reduce the effect of noise.

Figure9 shows an example of a single postsynaptic potential
(PSP). Compared to the expectedα-shaped curve, the mea-
surement shows a slightly sharper onset, indicating a mismatch
in the actual time constants from the nominal values. The
corresponding PSC waveform matches with the nominal time
constant well (see upper plot in Fig.9). Thus, the mismatch
can be attributed to a mismatch in the membrane leakage. As
the leakage mechanisms and capacitance sizes are the same in
both cases, we attribute the additional leakage in the membrane
to the 128 connected PSC outputs.

To evaluate the presynaptic adaptation performance, we
stimulated a presynaptic circuit with a regular spike train,
choosing various parameter settings to mimic different adap-
tation types. Results are shown in Figs.10 and 11. The
measurements agree well with the nominal time courses even
without calibrating any parameters (note that for the nominal
curves, only the offset of the read-out amplifier was fitted).
They differ mainly in the adaptation strength, i.e. in the ratio
between highest and lowest PSC amplitude, which is smaller
in the measured curves. This effect is most prominent for
the depressing synapse. Also, for the synapse with combined
facilitation and depression, the total amplitude is maybe 20%
too small, see lower half of Fig.11. These effects may be
caused by charge injection effects, resulting in voltage offsets
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Fig. 10. PSC voltage traces of a depressing synapse with parameters:
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α = 0.5. Top: Synapse stimulated with 10 spikes at 50 Hz rate (green). The
nominal time course for the PSC voltage with these parameters and fitted offset
is drawn in red. Bottom: Same initial stimulation, but adaptation switched off
after 10 spikes (α = 0), so that the synapse relaxes with depression time
constantτR. Nominal decay withτR = 490 ms drawn as a dashed line.
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Fig. 11. Plot of measured PSC waveforms (green). Top: Facilitating
synapse with parameters:τu = 490ms, τR = 10ms, τPSC = 13ms,
U = 0.13, α = 0.86. Bottom: Simultaneously acting facilitation and
depression; parameters:τu = 300ms, τR = 300ms, τPSC = 10ms,
U = 0.29, α = 0.5. Same stimulation as in Fig.10 (10 spikes at 50Hz).
PSC curves with nominal parameters and fitted offset are shown in red.

during updates of the adaptation variables at incoming spikes.
Part of the effects may also be explained by the effective time
constants being too small. To distinguish between these two
effects, we measured the relaxation of a depressed synapse
when adaptation was turned off, see lower plot in Fig.10. The
PSC amplitudes should progress according to an exponential
with the depression time constantτR in this case. This
resembles the measurements well. From this, we infer that the
mismatch seen for the depressing synapse is mainly caused by
deviating update amplitudes of the depression variable.

Overall, the measurement results show that leakage, charge
injection and capacitance mismatch only have a minor impact
on the time course of the state variables, showing faithful
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Fig. 12. Transfer function over all neurons, with the leaky term of the
neurons switched off. The input rate is applied in parallel to 5 synapses of
a neuron. Error bars denote the standard deviation over all 64 neurons. The
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reproduction of time constants on the order of several hundred
milliseconds.

B. Characterization of the LIAF Neuron

We measured the transfer functions of the LIAF neurons in
order to characterize variations between neurons and perfor-
mance of the leakage circuit. Single neurons were stimulated
with regular spike trains at different rates and their output rates
were measured over a period of 10 seconds.

Fig. 12 shows results for all 64 neurons of one chip with
leakage switched off. As expected, the curve increases linearly
at low rates, while saturating at high rates, which is causedby
saturation of the PSC voltage of the presynaptic circuits. The
overall variation between neurons is quite low. A few neurons
generally exhibit a lower output frequency. This is especially
the case for neuron 0, which may be affected by additional
parasitic capacitance at the border of the synaptic matrix.

Fig. 13 summarizes measurements for different membrane
time constants. As shown in the upper graph, the onset of
the transfer functions varies with the time constant setting,
as expected for a LIAF neuron. Ideally, the onset frequency
should be inversely proportional to the membrane time con-
stant. We used this relationship to compare the effective time
constant with the configured settings. The onset frequency was
determined for each transfer function by performing a linear fit
in the output frequency range of 50 Hz to 150 Hz, not taking
onset and saturation effects into account. Results are shown
in the lower graph of Fig.13. Note that this method is less
accurate at larger time constants, where the onset frequency is
close to zero, so that small absolute deviations in frequency
result in high deviations in the final result. The effective time
constants follow the nominal setting linearly for low values,
while the slope of the curve decreases at higher values. This
effect may be caused by leakage, but may as well be due to
a systematic offset in the transfer functions.
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Fig. 13. Top: Transfer function of one neuron for different settings of the
membrane time constant. The input rate is applied in parallel to 5 synapses
of the neuron. Bottom: Neuron time constantτmem extracted from the onset
frequencyfon of the transfer function for the different time constant settings.
The proportionality factor between time constant and onsetfrequency was
chosen asτmem · fon = 200ms ·Hz to fit the results.

C. Characterization of the Synaptic Transfer Function

In order to characterize the synaptic transfer function, a
fixed-rate pulse train is applied to a single synapse and the
resulting firing rate of the postsynaptic neuron is measured.
The neuron is configured for integrate-and-fire behaviour (with
τmem set to infinity) to achieve a linear relation between input
and output firing rate. As can be seen in Fig.14, the individual
curves show a smooth progression in output firing rate for
an increase in input rate. Due to the PSC saturation effect
mentioned in Sec.III-B , the relation between input and output
firing rate declines to below linear for high input rates.

As can be seen from the curve intercept on the output
frequency axis, a constant background current is applied to
the neuron (via synapse row 127, compare Sec.II-C) that sets
its unstimulated firing rate at circa 80-105 Hz. From Fig.13,
it can be seen that the neuron reacts well to very low rates
of synaptic input even without background current. However,
if the neuron intrinsically fires at a low rate for low input
firing rates, charge injection and other small-signal detrimental
effects partially mask the effect of a synaptic weight increase.
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Fig. 14. Transfer function of one neuron for different synaptic weight
settings, input stimulus applied to one synapse.

Thus, this background current is applied to set the intrinsic
neuron firing to a high rate, enabling the analysis of the
synaptic weight on a 4 bit resolution level.

When sweeping the synaptic weight in Fig.14, the curves
exhibit a linear progression in slope, showing the 4 bit accu-
racy of the synaptic weight scaling capacitances in Fig.4. For
the plots in Fig.15, the slopes of the curves in Fig.14 are
derived by fitting a linear function to the data points from 0
to 100 Hz input frequency. The blue dashed line shows the
slopes derived for the synapse in Fig.14. This weight sweep
was carried out for 20 synapses of one neuron on a single chip.
As can be seen from the sample curve, the slope progression
across synaptic weights is actually far better behaved than
could be implied by the error bars in Fig.15. The large spread
of curves is mainly due to the scaling error of VPSC (compare
Fig. 4). This error tends to even out when using several PSC
circuits, as for the measurements in Sec.III-B , which use
several PSC inputs and thus do not show such a large spread.
VPSC can also be calibrated to some extent via the individual
DAC settings. However, this was not carried out for the above
characterization, as we wanted to obtain an estimate for the
typical spread that can be expected on a single chip between
the individual synapses when used without calibration.

Note that this spread of transfer functions due to the
presynaptic mismatch is not necessarily detrimental; it could
be exploited in the context of e.g. liquid computing [35] or
in the Neural Engineering Framework (NEF) [36], which both
rely on random projections via synaptic and neuronal mis-
match. However, both need well-controlled readout weights
to collapse the random projections. Thus, the 4 bit weight
resolution as shown in Fig.15 together with the ability to set
each synapse excitatory or inhibitory could be applied in the
NEF to sophisticated population-based signal processing [37].

D. Overall Results

The characterization results reported in the previous sections
show that all components of the system, such as presynaptic
adaptation, synapses and neurons are fully functional. Table
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a sample curve of a sweep of one synapse as derived from the data in Fig.
14. The black curve represents the mean of 20 randomly chosen synapses of
one neuron. Error bars denote the standard deviation over the 20 synapses,
the gray area shows the range of all weight transfer functions.

II gives a comparison with state-of-the-art conventional neu-
romorphic systems and those targeted at biological interfaces.

Using the mixed-signal SC approach, we could aggressively
scale down the neuromorphic system, taking full advantage of
technology shrink. As synapse area is a major determinant of
overall system size for neuromorphic systems [38], we have
included synapse area in the comparison. As expected, our im-
plementation exhibits full technology shrink when compared
with for example the synapse area of [39].

Conventional neuromorphic systems based on subthreshold
circuits [39] usually do not scale that well, as transistors need
to be a certain minimum size to control mismatch [40], [41].
There are efforts to overcome this barrier by implementing
synapses using analog floating gate storage [42], which is
largely immune to mismatch. It could be worthwhile to explore
this approach in advanced technology nodes, as floating gates
continue to be scaled. However, it is not clear whether the
precise storage of analog values required for this approach
scales to deep submicron technologies. Current examples of
this technique are still implemented in nodes around 350 nm
[43], so absolute synapse sizes are still a factor of 10 larger
than in our implementation [38]. The neuromorphic system
of [11] in 45 nm only contains externally-programmable 1-bit
synapses in the same overall area and power budget. Thus,
even compared to a purely digital neuromorphic system in
deep-submicron, our SC system delivers the same or better
computational density at a competitive power consumption,
see tableII .

As shown in Fig.16, the power consumption of the dig-
ital circuit parts dominates overall power draw in real-time
operation (speed-up factor 1 in the diagram). Note that the
design was not primarily optimized for low power, meaning
that all the digital components of the whole IC (not just
the neuromorphic system) are permanently connected to the
digital supply voltage (with only the clock of the neuromorphic
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factor. The power consumption is largely independent of theinput or output
spike rates.

system being switched on), which results in a static power
draw of approximately 1.1mW at nominal supply voltage of
1 V. Furthermore, the design was not optimized for aggressive
supply voltage scaling, as done in [11]. Therefore, the lowest
digital supply voltage where the digital parts operate without
errors is 0.75 V. We thus performed measurements both at
0.75V and at the nominal supply voltage of 1.0 V. As expected,
the lower supply voltage reduces digital power draw by almost
a factor of two. As described in Sec.II-A , our neuromorphic
system can be scaled in speed by varying the clock frequency,
so that experiments can be performed either in realtime
for interfacing to real-world sensors, or in accelerated time
for reducing simulation time. When moving to accelerated
simulations, contributions to the power budget change, as can
be seen in Fig.16. Both dynamic digital and analog power
increase approximately linear with the speed-up factor, the
latter because of the increasing required bandwidth of the
opamps in the analog part. As a consequence, analog power
dominates for high speed-up factors. This power draw could be
reduced by switching off the opamps during switching phases
when their outputs are not used. The static power draw of the
PLL could be reduced if instead of the current fixed-frequency
PLL and subsequent clock divider, a variable-frequency PLL
such as that in [44] was used, where power consumption scales
with the output clock frequency.

If power consumption is normalized with respect to the
speed-up of the simulation, effective power consumption re-
duces from 1.9 mW in realtime operation to approximately
15 mW/100=0.15 mW for an speed-up factor of 100. In other
words, the energy required for emulating a spiking neural
network for one second reduces from 1.9 mJ to 0.15 mJ.
This is mainly due to reduced influence of static power.
Thus, accelerated simulations could be used for increasing
energy efficiency for applications that do not require real-

time operation. When assuming that all neurons fire with their
maximum frequency of 1 kHz in real-time operation (resulting
in 100 kHz at a speed-up factor of 100), the above values cor-
respond to 30 nJ/spike in real time operation and 2.3 nJ/spike
at an speed-up factor of 100. This number is well within
the range otherwise reported for power-optimized subthreshold
architectures, see tableII . The value given for [11] counts only
the incremental increase in power consumption per additional
spike. If the metric of our system (overall power consumption
divided by cumulative spike rate) is applied, the energy per
spike would be 19 nJ [45].

In contrast to a fully addressable synaptic matrix [39],
our architecture inherently relies on feeding all synapsesof
a given row with the same presynaptic input. In this way,
all components of the synapse circuit that depend solely
on the input spikes are shared between synapses, thus they
are implemented only once per row, which greatly reduces
overall circuit area compared to a fully adressable synaptic
matrix. Memristive arrays [46], [47] inherently use the same
architecture, as the employed implementation as a crossbar
does not allow for individual presynaptic circuits inside the
synaptic matrix.

Driving all the synapses of a row with the same presynaptic
input poses constraints on the realizable connection topolo-
gies. Networks that employ all-to-all connectivity or similar
topologies with high local connection density can be realized
efficiently, whereas for topologies with low connection density,
only a fraction of the synapses in the matrix are used. Dedi-
cated mapping algorithms can partially compensate for these
restrictions [10], [48]. Increasing the number of presynaptic
circuits and letting individual synapses choose between several
(e.g. two) inputs also greatly reduces the imposed constraints
and makes the architecture well-suited even for topologies
with low connection density, as demonstrated in [19]. At the
same time, this concept retains the original approach of shared
presynaptic circuits, so that the implementation presented in
this paper could be easily extended in this way.

In terms of interfacing to biological tissue, our approach is
similar to [1], i.e. it concentrates on the behavioural dynamics,
while using conventional lab equipment to detect and record
biological spikes and convert spikes of the SC neurons back
into stimulation signals. A reasonable level of versimilitude in
the reproduction of physiological behaviour is needed in an
interface to neural tissue [1]. The chosen short term plasticity
has a firm grounding in biological measurements [29]. The
long term plasticity rule chosen for this implementation has a
more theoretical background, with only limited support from
biological evidence [30]. However, our SC implementation
is by no means restricted to this single plasticity rule. In
particular, the faithful reproduction of pre- and postsynaptic
waveforms (evident for example in Fig.11 and Fig.9) could
also be employed by a plasticity rule based on neuronal
waveforms such as that in [24], which aims at the replication
of a wide range of biological plasticity experiments [16].

IV. CONCLUSION

We have constructed a mixed-signal neuromorphic system
implemented in the 28 nm node. The usage of switched capac-
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TABLE II
COMPARISON OF THE PRESENTED NEUROMORPHIC NEURAL INTERFACE WITH OTHER GENERAL-PURPOSE NEUROMORPHIC WORK(UPPER PART) AND

NEUROMORPHIC CIRCUITS TARGETED AT BIOLOGICAL INTERFACES(LOWER PART).

Comparison Ref. Techn. System
area

Synapse
area

Supply
voltage

Power Energy/
spike

Number
of input
channels

Number
of output
channels

Special features

Conventional
neuromorphic
systems

[11],
[45]

45 nm 4.2 mm2 1.6 µm2 0.53 V 5 mW 45 pJ – 256 64k 1-bit synapses, set ex-
ternally

[39] 800 nm 1.6 mm2 4495µm2 – 1.9 mW1 900 pJ-
1µJ

256 32 Long- and short term plas-
ticity, neuronal adaptation

This
work

28 nm 0.36 mm2 13 µm2 1 V
(analog)
0.75 V
(digital)

1.9 mW2 2.3nJ-
30nJ

128 64 Short-Term & Long-Term
Plasticity, 8k Synapses for
High-Dimensional Closed
Loop Processing

Biologically-
targeted
neuromorphic
systems

[1] 500 nm 7.26 mm2 0.032 mm2 3.3 V 8.3 mW – 19 10 Central pattern generator
with 190 synapse process-
ing for closed loop BMI

1 The power for [39] includes only neuron circuits, not pulse handling and synapses.
2 Measured power consumption is for the entire system of Fig. 1.

itor circuit techniques together with dedicated low-leakage op-
timization allows us to achieve biological-realtime operation.
The SC implementation in 28 nm enables a very agressive
area scaling without compromising analog performance (see
Sec. III ). As can be seen from tableII , its power budget
is competitive with recent power-optimized digital or analog
neuromorphic systems [11], [39].

In terms of neural recording and stimulation, the high-
density system integration in a 28 nm technology, the re-
alistic synaptic and neuronal dynamics and moderate power
dissipation make our system a good candidate for future
implanted closed loop interfaces (when enhanced by amplifiers
and spike detectors). Compared to the biologically targeted
neuromorphic system presented in [1], which is optimized
for application as a spinal cord central pattern generator,
our system contains significantly more neurons and various
adaptation mechanisms, which are widely configurable. In
collaboration with the group of S. Marom, one of the target
uses of our system is replicating the experiment described in
[17] with one of the biological networks in the chain replaced
by a hardware network. Overall, our system fits very well with
this intended usage in the context of biological interfaces.

However, the presented neuromorphic system is by no
means restricted to biological interfaces. The versatility and
configurability of the implemented neuron and synapse circuits
can be used in general neuromorphic processing comparable
to [8], [9]. One interesting use may be in an integrated
adaptive vision system [6] that directly incorporates the high-
density neuromorphic processing with deep-submicron pixel
cells [49]. The configurable-timescale waveform generation
shown for example in Fig.9 or 10 could also be used as a
high-density driver for nanoscale memristive arrays [47], [50],
[51].
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communication SoC for a waferscale neuromorphic system,”Integration,
the VLSI Journal, vol. 45, no. 1, pp. 61–75, 2011.
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