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Abstract—A switched-capacitor (SC) neuromorphic system for charges and voltages to perform computation, not on cugrent
closed-loop neural coupling in 28 nm CMOS is presented, By replacing continuously flowing very small currents with
occupying 600 um by 600 um. It offers 128 input channels (i.e. yneir equivalent accumulated charge, equivalent signadide
presynaptic terminals), 8192 synapses and 64 output chanise .

(i.e. neurons). Biologically realistic neuron and synapselynam- &€ hlgh_er (and henpe_more controllable) and robust.(.:harge-
ics are achieved via a faithful translation of the behavioual based signal transmission and computation can be utilized.
equations to SC circuits. As leakage currents significanthaffect We present a neuromorphic system realized in SC circuit
circuit behaviour at this technology node, dedicated compesation  technique in a Super Low Power 28 nm CMOS technology,
te_chnlques are employed to achleve biological-realtime @pation, operating with a 1 V supply. The system is targeted at a
with faithful reproduction of time constants of several 100ms at . N . .
room temperature. Power draw of the overall system is 1.9 mW. closed _Ioop |ntgrf§1C(e_ to in-vitro cortical neuron culturﬁbls_ .
necessitates mimicking the memory and short-term decision
) ) _ . making dynamics of the cortical networklq], [16], with

Keywords:  biological-realtime neuromorphic = Systemy;ascales on the order of several 100 m3, [17]. We
switched capamtor nguromorphlc qrcwts, biohybrid n‘ﬁee_z, implement the model of short term dynamics presentedsh [
deep _subm|cron switched capacitor, low leakage SW'tChﬁﬁth transistor-level SC circuits derived from the higlvdé
capacitor building blocks introduced in1[8]. The logical organisation

of the synaptic matrix was adapted frod9].
l. INTRODUCTION Although the SC technique is inherently more robust to

There has been significant recent success in using neworrent and voltage noise than subthreshold circuits, en th
morphic circuits and/or neural network simulations in brai timescales referred to above, stored charge signals clhn sti
machine interfaces. Examples include central patternrgenkee affected by the leakage currents of switching transistor
ators for spinal cord prosthesef [or neural network based This effectively limits biological-realtime operation.his,
decoding filters for arm prosthese2].[In order to achieve we use a simplified version of the circuit techniques in
the millisecond to second time constants necessary for-intg20], [21] to reduce leakage currents to achieve longer time
facing these neuromorphic circuits to biological circUil§ constants. Compared to conventional biological interfgci
or to realtime sensor/motor interface3]{[6], most analog solutions, R2], [23], no digital processing chain is necessary.
implementations of neuromorphic circuits rely on so-ahlleThe behavioural models that allow the system to couple into
subthreshold circuits7]. biological dynamics are directly implemented as disctite

However, subthreshold circuits are hard to port to advancadalog state circuitry, driven by incoming action potelstia
CMOS techologies, since leakage currents rapidly increaée. spikes). At the same time, the SC approach makes the
with down-scaling, reaching the range of the desired sigmalstems’ behaviour widely digitally configurable. The use o
currents. This is why even recent neuromorphic systems h&&nm CMOS eases integration with low-power digital systems
been manufactured in quite old technologi&§ [9]. Thus, The remainder of the paper is structured as follows. First, w
with the exception of fully digital implementation&(], [11], introduce the overall system, followed by its digital andleag
current neuromorphic systems are not able to participate buoilding blocks. We show how biologically realistic neuron
the technological advances and especially the systermgcakand synapse behaviour as well as biological-realtime dipara
offered by deep submicron processes. is achieved with SC CMOS circuit techniques. We then give

These problems can be largely circumvented by usimtgtailed measurement results on the overall system and its
switched capacitor (SC) circuitsl?]—[14], which rely on individual components. Lastly, we discuss the significaoce
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A picture of the manufactured IC is shown in Fig.
Fig. 1. Overview of the neuromorphic system including thaaptic matrix - The cjrcuit design utilizes core devices of the SLP 28 nm
and the other neuromorphic mixed signal SC blocks, digitaitrol, synaptic .
weight RAM, biasing digital-analog converter (DAC), phdseked loop t€Chnology only. In contrast to the current biasing usually
(PLL) clock input and serial packet input/output (1/O). employed in neuromorphic IC29], the neuromorphic SC
circuits are governed by voltages for amplitude settings an
digital configuration for time constants. Correspondintiigre
the results. is a multi-output R-ladder based digital to analog converte
(DAC) situated below the matrix in Fi@. It provides the bias
voltages for e.g. postsynaptic current (PSC) scaling, areur
thresholds or reset voltages. To reduce the area of the DAC,
A. Overall System neuromorphic elements have been assigned to groups sharing
the same bias voltages. Group size is 16, so that neurons O

Fig. 1 gives an overview of the system. 128 input circuits o N ) )
the left side implement presynaptic short term dynamics fg? 15 share their biases, and synapse drivers and presynapt

their respective row in the synaptic matrikg, while the 64 ddaptation 0 to 15 also share their biases, etc.

Leaky Integrate and Fire (LIAF) neurons shown on the bottom Time constants are §et via counters that govern the swgchin
. . . L . cycles of the SC circuits. Thus, scaling of the clock frequen
are driven by their respective column, providing the outpat

stimulation) signal as a function of the 8192 synapses in tﬁffectlvely scales the speed of the system, keeping ther0s62

. ) o solution relative to the chosen time base. The neuronorph
matrix coupling presynaptic inputs to the neurons. Syrapti . ) ) .
: : . .System was designed for speeds from biological realtime up
weights are stored in a RAM block on the side of the matrix; . : )
10, an acceleration of 100. As the time constants scale with

The en-t|re _(:rlv;ng C|rcut|:]ry ?fﬂprﬁsygap%es, ?y?ﬁpses ta.ﬂge clock and the DAC amplitude settings are independent of
heurons 1S situated on the 1€t hand side ot the matrlx, . speed, the same configuration for all parameters can be

In real-time operation, a state machine cycles through tfie | irrespective of the speed-up, nominally giving theesam
columns of the synaptic matrix in 0.62 ms. At the staresults

of the cycle, the input pulses that were registered duringCOmmunication with the system is provided by a joint

the last cycle are forwarded to the driver circuits and tr}gst action group (JTAG) interface, implementing a generic

correspondmg presynaptic adaptatlon statg is computezh, T r]packet—based protocol for both pulse and configuration. data
each synaptic column and its corresponding output neuron,i

tivated tiall iahting th i Eh Aaditionally, two configurable test outputs allow for moni-
activated sequentially, weighting the presynaptic p”“?e € toring analog voltages, such as membrane potentials. \fgith i
corresponding synapse state and synaptic weight, integra

. _ tminimal interface, using only six signal pins and two bi i
them on the postsynaptic neuron and applying the leaky de e bias current and gne gin for gomn?on mode voltaag‘;;), the

Ferm o the neuron. Details on t_he cycle process can be fo éLromorphic system can be easily integrated into a mait-c
in Sec. lI-D. In effect, the switched capacitor neuron an stem

synapse matrix behaves as a fixed-timestep neural simulat%r
with a 0.62 ms time resolution, with neuron and synapsestate _
stored in the matrix and updates to the states carried out HaDPigital System Design

the active driver circuits on the left side of the matritd], Similar to the communication setup ir2q], [27], the
[24]. neuromorphic system employs a unified packet-based icterfa

Il. IMPLEMENTATION



for configuration and incoming/outgoing pulse data. Data Presynaptic
. . . . ¥ . Input Spikes
exchange is realized via an input first-in-first-out (FIFQjfer

and an output FIFO buffer. For system integration, only dewri *

and read interface to these FIFOs has to be provided, which —— Depression

is done via JTAG in the current implementation. Each data Facilitation u ) #epenes o pepression R
packet has a 32 bit payload and a 16 bit header. For input value

data, the header includes 4 bits of type and 12 bits of address o Ty - ;ﬂ

information. For output data, the header only contains at5 bi Exponential Decay
type identifier.
Input spikes are sent to the neuromorphic system as ad- Difference of
dresses of 7 bits and one enable bit, so that four spikes fit in i PEC it
one data packet. Output spikes are collected over one matrix

cycle and stored as one bit per neuron. If at least one neuron
spiked in the current cycle, the 64 bit spike vector over all

Current PSC

Postsynaptic
neurons is sent to the output FIFO, forming two separatéodel of
entries. Similar to the grouping for the analog parametées, f::#;‘;;itter ' ”H”“” T
digital parameters are also shared among groups of 16 eaclease (. . Psc

for presynaptic circuits and neurons, which reduces thitadlig
configuration space.
All digital components and the SC circuits are clocked .
Resulting

to neurons
by an on-chip phase-locked loop (PLL2{]. It produces an Postsynaptic \ \ \_ NeUrons
internal fixed frequency of 2 GHz that is downscaled to aCurrent
330 MHz output. The neuromorphic system employs an 8 bit
configurable clock divider that allows for further downsegl Fig. 3. Overview of the presynaptic adaptation circuit. Trwnbination
of the clock frequency. Biological-realtime operation rear of facilitation and depression mechanisms modulates thplitue of the
sponds to a divider value of 100, i.e. a clock frequency (ﬁ’ﬁéttégc:ts'in'iﬁﬁqhinsg”t")‘?gg;ga*;‘t’i'gi;?fegoggzsg‘éggysgbrgm’?'b”es‘”h'c“ is
3.3 MHz for the state machine of the neuromorphic system
and a matrix update cycle @f.62ms, as mentioned in Sec. TABLE |
11-A. For the maximum speed-up factor of 100, the divider LIST OF PARAMETERS FOR SHORTERM ADAPTATION AND NEURON

value is 1, resulting in a clock frequency of 330 MHz and CIRCUIT.

Weight scaling
and transmission

a matrix update cycle 06.2ps. With respect to the updatepsarameter| Description Rangd
frequency of the matrix, the clock is somewhat high, which isT Utilization of syn. efficacy 18], [29] | 0-0.98
due to the fact that non-overlapping switching signals Far t | @ Strength of depressiorLg] 0-0.98 _
. . . 7 Facilitation time constant 9.6-605 ms, inf.
SC-components are derived from it, see also the signal edges, Depression time constant 9.6-605 ms, inf.
in Fig. 8. The maximum speed-up factor is partially limited by 755¢ PSC time constant 1.2-74.5ms, inf.
the high clock frequency needed for the digital components,Vreset Reset potential of LIAF Neuron ~250 to 250 mV
L . hresh Firing threshold of LIAF neuron -250 to 250 mV
but the actual limit is due to the RC time constants of the SC_" Membrane time constant 1.2-74.5ms, inf.
circuits, as explained later. S Speed-up factor 1-100

1\oltages are set digitally with 7 bit precision using ditjia-analog

. . . .. converters. Time constants are configurable via 6 bit courgisters.
C. Presynaptic Adaptation and Synaptic Long-Term Plasticity All time constants are given for biological-realtime opima and can be

The presynaptic adaptation circuit (see F3jy.implements 38?:5&??;3”&%? r‘]*;i rf)%egd;&zdfagfe-gfu = 7y/S. The resting
the model of synaptic dynamics proposed &8][ which is
derived from biological measurement®9]. It is capable of

reproducing depression, facilitation and combinationsath  yefer 1o [1g]. For a list of configurable parameters and their
mechanisms. The circuit produces an output voltage., tuning range see Tab.

which represents the waveform of exponentially decaying the jong term plasticity model chosen for this neuromorphic

PSCs: system is the stochastic stop learning synapse36F. [It is
R " based on modifying the synaptic state as a function of the
Vpse(t) = Vpsen 'eXP(—T ) s 1) presynaptic spike and the postsynaptic membrane voltage. |
psc

our implementation of the rule, when a column gets activated
wheref/psm is the amplitude of the n-th PSC. Since the shorturing the matrix cycle, the analog synaptic state held @& th
term adapation circuitry makes use of SC circuits, the tesul corresponding synaptic capacitance in the synaptic matrix
PSC voltage trace is time discrete. The time constgntof read out. It is then modified according to the equations in
the PSC decay, as well as the time constants for depresdi8@], with appropriate configurable parameters. As this paper
Tr and facilitationr,, can be adjusted. The impact of thdocuses on the overall neuromorphic system and its static
facilitation and depression mechanisms can be controlfed bperation, the reader is referred to the companion pa&3Br [
the digital parameter§ anda, respectively. For details, pleasefor an in-depth circuit description and detailed measurgse
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of long- and short term plasticity in this neuromorphic syst }_[\]V‘”"O—I M Ma |_°Vi”'[|]_{
Based on the synapse state, the PSC amplitude is théfuf]

modified by a weight scaling circuit. There is one of these per Mg M1o

synapse row, located in the presynaptic adaptation cirésgit M13 —|E/|Ia I\E}—><—Eﬂ‘e My |— E\AM

can be seen in Figl, all synapses are addressed sequentially

by a state machine (see Figfor the timing diagram, which

also shows the entire matrix cycle in relation to the synapgg. 6. Fully-differential opamp used in the neuron circuit

and neuron driver signals). Corresponding to the synapse

address, 4 bit long-term potentation (LTP) and long-term

depression (LTD) weight value®’;,-p and Wyrp are read If V,,.,, reaches the firing thresholdy,..», a spike is emitted

from a RAM. To scale the presynaptically computed PSé@nd the membrane is reset ¥@...;. The parameters of the

by the long term plasticity, the synapse state is collapsetAF neuron and their tuning ranges are listed in Tab.

into a binary state value, which can be either potentiated As can be seen in Fid, the 64 fully-differential membrane

depressedd0]. Depending on this synapse state, the 4 bdircuits are located on one row and share one driver circuit.

LTP or LTD weight is then selected by a multiplexer. Th&@he membrane circuits are sequentially switched to actink a

switches at the four binary-weighted capacitors are closgte PSC output of all 128 weight scaling circuits (F4&).are

according to the given weight value. After selecting a syweap summed on nod&.,;..: as a charge. The charge on the global

the weight capacitors ¢ are initially reset toOV. In the summing nodé’. ;.. is integrated on the currently selected

following integration phase the differential PSC voltagge. membrane capacitance by the driver circuit, which is bégica

is applied to the input of the weight scaling circuit. Thergga an SC integrator.

is then transmitted by the capacitors to the neuron cirsgi¢(  The integrator's opamp circuit is shown in Fi§. A two-

Sec.ll-D). Additionally, the weight scaling circuit offers thestage architecture has been chosen to overcome the diéfult

possibility to configure the synapses as either inhibitory of stacking transistors at very low supply voltages. In orde

excitatory. This configuration bit is also stored in RAM. to enhance the opamp’s gain, a boosting technique has been
While presynaptic drivers for almost all synapses are aapplied B2], where the load of the first stage has been split into

tivated by an incoming pulse, synapse row 127 is alwaysoss-coupled transistors, providing partial positivedigack.

active, with a constant charge. This charge can be modula@dbility is derived by Miller compensation and the common-

indvidually for each neuron by setting the synaptic weight anode voltage of the output stage is controlled by an SC

row 127 and the column corresponding to the neuron. Thiemmon-mode feedback circuit. Slew rate performance is

way, a constant background current with a 4bit weight arehhanced by additional source followers at the output, whic

inhibitory or excitatory effect can be set. is required at high speed-up factors. The bias current scale
well with the speed-up, so that the opamp consuBt€¥nW
D. Switched Capacitor Neuron at biological realtime ang0 uW at a speed-up of 100.

For biological-realtime operation, large membrane time
constants in the order afdOms are required. Since leakage
dVinem - _ Vinem + Lsyn 7 (2) currents heavily increase when scaling technologies down
dt Tm Crmem below 100 nm [33], a dedicated low-leakage switch similar
with membrane potentidl,,.,,, membrane capacitan€g,.,,, to those in R0] and [21] has been used (see Figa), which
and membrane time constany. I, is the sum of all PSCs. operates as follows. If the membrane circuit is inactive the

The neuron circuit implements an LIAF neuron model:




c)

membrane capacitance is fully decoupled from the rest of th&
circuit by turning off M1 and M2. The middle nodé,; of the Vem

T-switch is set to the common-mode voltage,. This reduces [T S10—
the drain-source voltage over M2, which in turn reduces thé—" SLL°—| -
subthreshold current flowing through the channel (fgén —“L-so—t=—7T —_

Fig. 7b). In order to decrease junction leakadg)( minimally vao g L ¥ %20

sized source/drain areas have been used. While this silag a /

in real-time operation of the matrix, it also defines the uppen) s v

limit of the speed-up compared to biological realtime (ite ,_T: Myz_i_bl ,_T:

factor 100 mentioned in Sedl-A), as the switch resistance —w——R_—w _| Mo
determines the RC time constant of the SC circuits, limiting p A

the charge transfer speed. Voolleot-/+

A further advantage of the low-leakage switch is that the

; ; ; 7. (a) Low-leakage switch configuration. (b) Crosstisecof MOS
decoupllng via the middle node makes the Ieakage Curreﬁ%ﬂsistor M2 with denoted subthreshold leakagg),(junction leakage )

independent of the opamp outpuV,(cm+,Vinem—). Gaté and gate leakagel{). (c) Membrane circuit with low-leakage switches (grey
leakage {3) has no impact in the off-state of the switch an#oxes) and SC leakage generation.

simulations have shown that the effect in the short on-state
is negligible. In contrast to the complimentary transnuBesi Matrix Cycle | o samtn 205omy |

Register Input and
gates of 0], [2_1], the voltage range chosen here aIIows_ to_ Output Spikes,
use NMOS devices only, reducing leakage currents and tircui Column [0[1[2]+--l630[1[2[++ 630 caicylate Short-term
complexity. Regular V, transistors from the core library were _ Adaptation
used, rather than dedicated lows\devices as in41]. Com- (gg';;{:mncf?,jgtg; Column 1 active
pared to 0], the middle node is held at.,,, to reducelpg- Load Weights |
caused channel leakage. The tic adaptationtaifcui oA %
ge. presynaptic adaptationtaicul e synapse state (LTDILTP) ===

Sec.1I-C also employs this low leakage switch to achieve itSintegrate Weighted PSCs on Neuron | N
time constants. Dreset 11 1

While the circuit combats undesired leakage currents, it is ®compare - — U4 [ 1
also used to implement an intentional, configurable leakage S;”L%gfte -
mechanism to complete the LIAF neuron model. This is gp.0n | /f 1 F
directly implemented in the individual membrane circuged s3<0> | LTS I
Fig. 7c). A small capacitanc€.., = 5fF is discharged and ~ S4<0> [/ AN

i _ Connect Membrane Leakage of Neuron

then. shunted to the memprang capaqtaﬁt;eem . 75 f.F’ Capacitance Low-leakage Switching
leading to a charge equalization. This process is triggered
periodically and thus lets the membrane voltage decay ex- t

ponentially toward$) V differential voltage when no synaptic _

; ; ; : : Fig. 8. Timing diagram of the matrix cycle (top), sequencelazding
input is applied. The membrane time constaptis controlled synaptic weights and integration on the neuron membrangéd(g)iand timing

by the switching frequency, alternatively expressed as thagram of switching phases and control signals for the nmane circuits

periodT}..;. between leakage events: (bottom). The dashed lines indicate whether switches arerooff when
a leakage event occurs. Shifted clock edges denote djggatierated non-
Crnem overlapping switch signals required by the SC circuits.
7jleak = —Tm " hl(i (3)
Cmem + Cleak

SinceTicqx is derived from the system clock, the membrangynsists of an offset compensated preamplifier and a dynamic
time constant and all other time constants generated by S¢eh 1f1/ LV > Vinresh — Vo, @ spike is detected

. . . . . mem mem— Tes cma
circuits on the chip are proportional to the speed-up factqf,g the membrane voltage is reset. Due to the single-ended
Fig. 8 shows the four control signals used by the membragedture of the biasing voltage...; and Vin,csn, the reset

circuit of column 0. . . is done in an asymmetric fashion, but is compensated by the
In order to avoid a permanent integration of the opamp(’§pampys common-mode feedback.

offset voltage generated by device mismatch, an offset com-
pensation technique has been applidd].[In the reset phase
D,..set, UNity gain feedback is applied to the opamp. Thus,
the output offset voltage is visible at the input. Sif¢gec: As detailed in Secll-B, the entire system is ratiometric

is reset toV,,, at this time, the opamp offset is sampled omith respect to the clock frequency. That is, the systemkcloc
the compensation capacitanCg. In the following integration can be scaled so that the system operates anywhere from
phase®;,cqrate, i.€. the phase where the PSC charges abiological realtime up to a factor of 100 faster. Realtime
transferred to the membrane, the opamp offset is substractperation was used for the measurements in this paper, as
from the input voltage. the effectiveness of the leakage current techniques bexome

In the comparison phask.. .., the membrane voltage is most evident there. In addition, operation in biologicalltiene

compared against the firing threshold. The comparatoritircis the most interesting regime in terms of computation, as

IIl. RESULTS
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Fig. 9. Measurement (blue curves) of the PSC (top) and PSiofbp Fig. 10. PSC voltage traces of a depressing synapse witthmptees:
waveforms for parameterspsc = Tmem = 12 ms. The nominal curves 7, = 10 ms,7g = 490 ms, 7psc = 13 MS, Tmem = 1.2 ms, U = 0.96,
with the same time constants and fitted amplitude are shovdastsed green « = 0.5. Top: Synapse stimulated with 10 spikes at 50 Hz rate (greEm
lines: PSC curve following Eql, PSP according ta-shape withV(¢) ~  nominal time course for the PSC voltage with these parametet fitted offset
t/T - exp(—t/T). is drawn in red. Bottom: Same initial stimulation, but a@dioin switched off
after 10 spikes ¢ = 0), so that the synapse relaxes with depression time
constantriz. Nominal decay withrgp = 490 ms drawn as a dashed line.

it allows interfacing with e.g. neuromorphic image sensors

in real time. The IC and its board are operated at ambient 036 hominal curve
temperature, i.e. no special measures are undertaken to cg@o 034 1 ——— measurement ]
the IC. © 0.32
£ 03
g o028
A. Measurement of the Presynaptic Adaptation § 0.26

For measuring the presynaptic adaptation circuits, the two 0.24 ‘  facilitating synapse ‘

analog test outputs were captured using an oscilloscope, al
lowing the simultaneous measurement of the PSC voltage Ef
the first presynaptic circuit and the membrane voltage of ong o0.28
neuron. The aquired data was averaged over time bins of 0d-
0.3ms to reduce the effect of noise. Q

Figure9 shows an example of a single postsynaptic potenti&i o024 | combined facilitation/depression
(PSP). Compared to the expecteeshaped curve, the mea- ‘ ‘ :
surement shows a slightly sharper onset, indicating a nidma
in the actual time constants from the nominal values. The
corresponding PSC waveform matches with the nominal tinrg. 11. Plot of measured PSC waveforms (green). Top: Feataily
constant well (see upper plot in Fi§). Thus, the mismatch Synapse with parameters;, = 490ms, 7z = 10ms, 7psc = 13ms,

. . . = 0.13, « = 0.86. Bottom: Simultaneously acting facilitation and

can be attributed to a mismatch in the membrane leakage. S cssion. parameterss, — 300ms, 7 — 300ms. Tpsc = 10ms,
the leakage mechanisms and capacitance sizes are the same=n0.29, « = 0.5. Same stimulation as in Figl0 (10 spikes at 50Hz).
both cases, we attribute the additional Ieakage in the mamebr PSC curves with nominal parameters and fitted offset are sliowed.
to the 128 connected PSC outputs.

To evaluate the presynaptic adaptation performance, we
stimulated a presynaptic circuit with a regular spike traigluring updates of the adaptation variables at incomingespik
choosing various parameter settings to mimic differenpadaPart of the effects may also be explained by the effective tim
tation types. Results are shown in Figk) and 11. The constants being too small. To distinguish between these two
measurements agree well with the nominal time courses ewffects, we measured the relaxation of a depressed synapse
without calibrating any parameters (note that for the nahinwhen adaptation was turned off, see lower plot in Bi@.The
curves, only the offset of the read-out amplifier was fittedP?SC amplitudes should progress according to an exponential
They differ mainly in the adaptation strength, i.e. in théara With the depression time constani; in this case. This
between highest and lowest PSC amplitude, which is smalfésembles the measurements well. From this, we infer tieat th
in the measured curves. This effect is most prominent fetismatch seen for the depressing synapse is mainly caused by
the depressing synapse. Also, for the synapse with combirigyiating update amplitudes of the depression variable.
facilitation and depression, the total amplitude is mayb&?2 Overall, the measurement results show that leakage, charge
too small, see lower half of Figll. These effects may beinjection and capacitance mismatch only have a minor impact
caused by charge injection effects, resulting in voltagset¢ on the time course of the state variables, showing faithful
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B. Characterization of the LIAF Neuron 9 &
% 10r + 1
. 0 +
We measured the transfer functions of the LIAF neurons in )
order to characterize va}riat?ons_ between neurons an_d perfo %, 10 20 30 40 50 60 70 80
mance of the leakage circuit. Single neurons were stimdilate nominal membrane time constant, ms
with regular spike trains at different rates and their outptes
were measured over a period of 10 seconds. Fig. 13.  Top: Transfer function of one neuron for differeettimgs of the

. . .. ,membrane time constant. The input rate is applied in paral® synapses
Fig. 12 shows results for all 64 neurons of one chip Witlaf the neuron. Bottom: Neuron time constamten extracted from the onset

leakage switched off. As expected, the curve increasearline frequencyfoy of the transfer function for the different time constantiags.
at low rates, while saturating at high rates, which is callu;ed The proportionality factor between tim_e constant and offi={uency was
. .. . chosen a%mem - fon = 200ms - Hz to fit the results.

saturation of the PSC voltage of the presynaptic circuitee T
overall variation between neurons is quite low. A few nesron

enerally exhibit a lower output frequency. This is esplgcia o . .
tghe casg for neuron 0, Whin] mayqbe af)f/ected by adljc%(t:ion%l Characterization of the Synaptic Transfer Function
parasitic capacitance at the border of the synaptic matrix.  In order to characterize the synaptic transfer function, a

Fig. 13 summarizes measurements for different membrafiged-rate pulse train is applied to a single synapse and the
time constants. As shown in the upper graph, the onset resulting firing rate of the postsynaptic neuron is measured
the transfer functions varies with the time constant sgitinThe neuron is configured for integrate-and-fire behaviouth(w
as expected for a LIAF neuron. Ideally, the onset frequencyem Set to infinity) to achieve a linear relation between input
should be inversely proportional to the membrane time coand output firing rate. As can be seen in Fig, the individual
stant. We used this relationship to compare the effective ti curves show a smooth progression in output firing rate for
constant with the configured settings. The onset frequersy wan increase in input rate. Due to the PSC saturation effect
determined for each transfer function by performing a lirféa mentioned in Sedll-B, the relation between input and output
in the output frequency range of 50 Hz to 150 Hz, not takining rate declines to below linear for high input rates.
onset and saturation effects into account. Results arershowAs can be seen from the curve intercept on the output
in the lower graph of Figl3. Note that this method is lessfrequency axis, a constant background current is applied to
accurate at larger time constants, where the onset freguencthe neuron (via synapse row 127, compare $eC) that sets
close to zero, so that small absolute deviations in frequenits unstimulated firing rate at circa 80-105 Hz. From H§,
result in high deviations in the final result. The effectirmeé it can be seen that the neuron reacts well to very low rates
constants follow the nominal setting linearly for low vadie of synaptic input even without background current. Howgver
while the slope of the curve decreases at higher values. THishe neuron intrinsically fires at a low rate for low input
effect may be caused by leakage, but may as well be duefiting rates, charge injection and other small-signal detrital
a systematic offset in the transfer functions. effects partially mask the effect of a synaptic weight isce
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Fig. 14. Transfer function of one neuron for different sytapveight Fig. 15. Frequency gain factor (i.e. slopes of the curvesdnH) of neuron
settings, input stimulus applied to one synapse. transfer functions over synaptic weight setting. The btisshed curve shows

a sample curve of a sweep of one synapse as derived from thand&ig.
14. The black curve represents the mean of 20 randomly chosepsgs of
. . . .. one neuron. Error bars denote the standard deviation oeeR@hsynapses,
Thus, this background current is applied to set the infinshe gray area shows the range of all weight transfer funstion

neuron firing to a high rate, enabling the analysis of the
synaptic weight on a 4 bit resolution level.

When sweeping the synaptic weight in FItd, the curves | gives a comparison with state-of-the-art conventionalneu
exhibit a linear progression in slope, showing the 4 bit aCClymorphic systems and those targeted at biological intega

racy of the synaptic weight scaling capacitances in &ig-or : . . .
ST N Using the mixed-signal SC approach, we could aggressively
the_plots n .F.'g'15’ t.he slopes .Of the curves in F.'g'4 are  ccale down the neuromorphic system, taking full advantdge o
derived by fitting a linear function to the data points from qechnology shrink. As synapse area is a major determinant of
to 100 Hz input frequency. The blue dashed line shows thé '

. . . . overall system size for neuromorphic syster88§][ we have
slopes derived for the synapse in Figi. This weight sweep included synapse area in the comparison. As expected, eur im

was carried out for 20 synapses of one neuron on a single ChIP. ; o :
ementation exhibits full technology shrink when compiare
As can be seen from the sample curve, the slope progress?oH1 for example the synapse area GBJ

: . . Wi
across synaptic weights is actually far better behaved than , )

d Conventional neuromorphic systems based on subthreshold
circuits [39] usually do not scale that well, as transistors need

could be implied by the error bars in Figj5. The large sprea
of curves is mainly due to the scaling error ofd& (compare SHey X ;
Fig. 4). This error tends to even out when using several PS@ P€ @ certain minimum size to control mismateil [41].
circuits, as for the measurements in S#&B, which use There are efforts to overcome this barrier by implementing
several PSC inputs and thus do not show such a large Spre%(&aps_es using anglog floating gate storadd, [_Wh'Ch IS
Vpsc: can also be calibrated to some extent via the individu@r9€ly immune to mismatch. It could be worthwhile to exlor
DAC settings. However, this was not carried out for the aboVBIS @Pproach in advanced technology nodes, as floating gate
characterization, as we wanted to obtain an estimate for fntinue to be scaled. However, it is not clear whether the
typical spread that can be expected on a single chip betwdBfcise storage of ar_lalog values reqwred for this approach
the individual synapses when used without calibration. sgales to _deep subn_uc_ron technolog|es. Current examples of
Q|s technique are still implemented in nodes around 350 nm

Note that this spread of transfer functions due to tt{ : .
presynaptic mismatch is not necessarily detrimental; iticco 43, SO absglute Synapse sizes are still a factor_of 10 larger
be exploited in the context of e.g. liquid computir@] or than in our implementation38]. The neuromorphic system

in the Neural Engineering Framework (NERg], which both of [11] in 45 nm only contains externally-programmable 1-bit
rely on random projections via synaptic and neuronal mi§YNapses in the same overall area and power budget. Thus,
match. However, both need well-controlled readout weigh®/€n compared to a purely digital neuromorphic system in

to collapse the random projections. Thus, the 4 bit weigAfeP-submicron, our SC system delivers the same or better
resolution as shown in Fidl5 together with the ability to set computational density at a competitive power consumption,

each synapse excitatory or inhibitory could be applied m tyee tabld!.

NEF to sophisticated population-based signal proces@idg [ AS Shown in Fig.16, the power consumption of the dig-
ital circuit parts dominates overall power draw in realdim

operation (speed-up factor 1 in the diagram). Note that the
D. Overall Results design was not primarily optimized for low power, meaning
The characterization results reported in the previousmsest that all the digital components of the whole IC (not just
show that all components of the system, such as presynaptie neuromorphic system) are permanently connected to the
adaptation, synapses and neurons are fully functionalleTalligital supply voltage (with only the clock of the neurombig



— time operation. When assuming that all neurons fire withrthei
—o— digital, 1.0V . . . . .
—o-- digital, 075V maximum frequency of 1 kHz in real-time operation (resgtin
op == anad ov - in 100 kHz at a speed-up factor of 100), the above values cor-
- total, 0.75V - respond to 30 nJ/spike in real time operation and 2.3 n#spik

------------ at an speed-up factor of 100. This number is well within
KT e e the range otherwise reported for power-optimized subtioiels
----------- architectures, see tablle The value given for11] counts only
the incremental increase in power consumption per addition
PLL analog spike. If the metric of our system (overall power consumptio
= divided by cumulative spike rate) is applied, the energy per
spike would be 19 nJMp).
In contrast to a fully addressable synaptic matrB9[

‘ our architecture inherently relies on feeding all synapses
1 10 100 a given row with the same presynaptic input. In this way,
speed-up factor all components of the synapse circuit that depend solely

o 16 P s for the different el _ on the input spikes are shared between synapses, thus they
16, Poer messurements oy e dfernt upply VTN VIS5 are implemented only once per fow, which greatly reduces
proportional to the speed-up factor, such that the resuliock frequency overall circuit area compared to a fully adressable synapti
ank?d iinséglyt;\/ghothi ;psegéuep S(ZEED f‘dﬁlirTg)ieargzllogi;JSOVgSrfrgr:?va; matrix. Memristive arrays46], [47] inherently use the same
cﬁc@gﬁ iuchythat thrt)a sygtem was still .operational at thetedlespeed-up architecture, as the. employed |mpleme.nta_t|on. as_ a.crossbar
factor. The power consumption is largely independent ofitipeit or output does not allow for individual presynaptic circuits insideet
spike rates. synaptic matrix.
Driving all the synapses of a row with the same presynaptic
input poses constraints on the realizable connection tepol
system being switched on), which results in a static powgies. Networks that employ all-to-all connectivity or siami
draw of approximately 1.1mW at nominal supply voltage abpologies with high local connection density can be realiz
1 V. Furthermore, the design was not optimized for aggressigfficiently, whereas for topologies with low connection gigy
supply voltage scaling, as done ihl]. Therefore, the lowest only a fraction of the synapses in the matrix are used. Dedi-
digital supply voltage where the digital parts operate with cated mapping algorithms can partially compensate forethes
errors is 0.75 V. We thus performed measurements bothrastrictions 0], [48]. Increasing the number of presynaptic
0.75V and at the nominal supply voltage of 1.0 V. As expectedircuits and letting individual synapses choose betweeeraé
the lower supply voltage reduces digital power draw by almog.g. two) inputs also greatly reduces the imposed conssrai
a factor of two. As described in Seld-A, our neuromorphic and makes the architecture well-suited even for topologies
system can be scaled in speed by varying the clock frequenajth low connection density, as demonstrated 19][ At the
so that experiments can be performed either in realtirgame time, this concept retains the original approach afsha
for interfacing to real-world sensors, or in acceleratedeti presynaptic circuits, so that the implementation preskirie
for reducing simulation time. When moving to accelerateithis paper could be easily extended in this way.
simulations, contributions to the power budget changeaas ¢ In terms of interfacing to biological tissue, our approagh i
be seen in Figl6. Both dynamic digital and analog powersimilar to [1], i.e. it concentrates on the behavioural dynamics,
increase approximately linear with the speed-up factce, thvhile using conventional lab equipment to detect and record
latter because of the increasing required bandwidth of thélogical spikes and convert spikes of the SC neurons back
opamps in the analog part. As a consequence, analog poiméns stimulation signals. A reasonable level of versimiié in
dominates for high speed-up factors. This power draw coeld the reproduction of physiological behaviour is needed in an
reduced by switching off the opamps during switching phasegerface to neural tissud]. The chosen short term plasticity
when their outputs are not used. The static power draw of thas a firm grounding in biological measuremerf28][ The
PLL could be reduced if instead of the current fixed-freqyendong term plasticity rule chosen for this implementatiors laa
PLL and subsequent clock divider, a variable-frequency Plrhore theoretical background, with only limited supportnfro
such as that in44] was used, where power consumption scaldsiological evidence 30]. However, our SC implementation
with the output clock frequency. is by no means restricted to this single plasticity rule. In
If power consumption is normalized with respect to thparticular, the faithful reproduction of pre- and postgytia
speed-up of the simulation, effective power consumption reraveforms (evident for example in Figl and Fig.9) could
duces from 1.9 mW in realtime operation to approximatelso be employed by a plasticity rule based on neuronal
15 mW/106=0.15 mW for an speed-up factor of 100. In othewaveforms such as that ir24], which aims at the replication
words, the energy required for emulating a spiking neuraf a wide range of biological plasticity experimenis].
network for one second reduces from 1.9 mJ to 0.15 mJ.
This is mainly due to reduced influence of static power. IV.  CONCLUSION
Thus, accelerated simulations could be used for increasingMe have constructed a mixed-signal neuromorphic system
energy efficiency for applications that do not require realmplemented in the 28 nm node. The usage of switched capac-

power, mW

0.1



TABLE Il

10

COMPARISON OF THE PRESENTED NEUROMORPHIC NEURAL INTERFACEITWH OTHER GENERAL-PURPOSE NEUROMORPHIC WORKUPPER PART AND

NEUROMORPHIC CIRCUITS TARGETED AT BIOLOGICAL INTERFACE$LOWER PART).

Comparison Ref. Techn. System Synapse Supply Power Energy/ | Number | Number Special features
area area voltage spike of input | of output
channels | channels
Conventional [17], 45 nm 4.2 mn? 1.6 um? 0.53V 5 mw 45 pJ - 256 64k 1-bit synapses, set e
neuromorphic [45] ternally
systems
[39 800 nm 1.6 mn? 4495 um? | — 1.9 mW | 900 pJ- | 256 32 Long- and short term plas
1pd ticity, neuronal adaptation|
This 28 nm 036 mn? | 13 um? 1 V | 1.9 mW | 2.3nJ- 128 64 Short-Term & Long-Term
work (analog) 30nJ Plasticity, 8k Synapses fo
0.75 V High-Dimensional Closed
(digital) Loop Processing
Biologically- [1] 500 nm 7.26 mn? | 0.032 mn? | 3.3V 8.3 mwW | — 19 10 Central pattern generato|
targeted with 190 synapse procesg
neuromorphic ing for closed loop BMI
systems
1 The power for 89] includes only neuron circuits, not pulse handling and pges.
2 Measured power consumption is for the entire system of Fig. 1
itor circuit techniques together with dedicated low-legd&ap- REFERENCES

timization allows us to achieve biological-realtime opi&na. [0
The SC implementation in 28 nm enables a very agressive
area scaling without compromising analog performance (see
Sec. lll). As can be seen from tabld, its power budget (2]
is competitive with recent power-optimized digital or aogl
neuromorphic systemd{], [39].

In terms of neural recording and stimulation, the highl3]
density system integration in a 28 nm technology, the re-
alistic synaptic and neuronal dynamics and moderate powéil
dissipation make our system a good candidate for future
implanted closed loop interfaces (when enhanced by amglifie
and spike detectors). Compared to the biologically tadjetels]
neuromorphic system presented itj,[which is optimized
for application as a spinal cord central pattern generator,
our system contains significantly more neurons and various]
adaptation mechanisms, which are widely configurable. In
collaboration with the group of S. Marom, one of the targety
uses of our system is replicating the experiment described i
[17] with one of the biological networks in the chain replaced[sl
by a hardware network. Overall, our system fits very well with
this intended usage in the context of biological interfaces [9]

However, the presented neuromorphic system is by no
means restricted to biological interfaces. The versatdind |10
configurability of the implemented neuron and synapse itgcu

can be used in general neuromorphic processing comparable

to [8], [9]. One interesting use may be in an integrategd
adaptive vision systen®] that directly incorporates the high-
density neuromorphic processing with deep-submicronlpi ?2]
cells [49]. The configurable-timescale waveform generatio
shown for example in Fig9 or 10 could also be used as a
high-density driver for nanoscale memristive arrag/g[[50], (3]
[51].

ACKNOWLEDGEMENTS [14]

This work is partly supported by 'Cool Silicon’, the 'Cen-
ter for Advancing Electronics Dresden’ and the European
Union 7th framework program, project 'CORONET’ (gran{15
no. 269459).

] R. Vogelstein, F. Tenore, L. Guevremont, R. Etienne-@unys, and

V. Mushawar, “A silicon central pattern generator contrllsomotion
in vivo,” |EEE Trans. Biomed. Circuits Syst., vol. 2, pp. 212—-221, 2008.
J. Dethier, P. Nuyujukian, S. I. Ryu, K. V. Shenoy, and KodBen,
“Design and validation of a real-time spiking-neural-netkv decoder
for brain—-machine interfaces,Journal of neural engineering, vol. 10,
no. 3, p. 036008, 2013.

P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfief, “Real-
time classification and sensor fusion with a spiking deefgbeétwork,”
Frontiers in neuroscience, vol. 7, 2013.

A. Kbnig, C. Mayr, T. Bormann, and C. Klug, “Dedicated pemen-
tation of embedded vision systems employing low-power ivels
parallel feature computation,” iProc. of the 3rd VIVA-Workshop on
Low-Power Information Processing, 2002, pp. 1-8.

C. Mayr and R. Schiffny, “Neighborhood rank order cagliior robust
texture analysis and feature extraction,1EEE Computer Society, Proc.
7th International Conference on Hybrid Intelligent Systems HIS 07,
2007, pp. 290—-295.

C. Mayr, A. Heittmann, and R. Schiffny, “Gabor-like igm filtering
using a neural microcircuit,]JEEE Transactions on Neural Networks,
vol. 18, pp. 955-959, 2007.

C. Bartolozzi and G. Indiveri, “Synaptic Dynamics in Aog VLSI,”
Neural Computation, vol. 19, no. 10, pp. 2581-2603, 2007.

G. Indiveri, F. Stefanini, and E. Chicca, “Spike-basedrhing with a
generalized integrate and fire silicon neuron,"T8CAS. IEEE, 2010,
pp. 1951-1954.

S. Moradi and G. Indiveri, “An event-based neural netwarchitecture
with an asynchronous programmable synaptic memadr{bCAS, pp.
1-10, March 2013.

F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Planaj & Furber, “A
hierachical configuration system for a massively parakelral hardware
platform,” in Proceedings of the 9th conference on Computing Frontiers.
ACM, 2012, pp. 183-192.

J. Seoet al.,, “A 45nm CMOS neuromorphic chip with a scalable
architecture for learning in networks of spiking neuroris,Proceedings
IEEE CICC, 2011, pp. 1-4.

R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. @aanberghs,
“Dynamically reconfigurable silicon array of spiking neoso with
conductance-based synapsd&EE TNN, vol. 18, no. 1, pp. 253-265,
2007.

F. Folowosele, R. Etienne-Cummings, and T. HamiltoA, CMOS
switched capacitor implementation of the Mihalas-Niebeunon,” in
BioCAS, 2009, pp. 105 —-108.

M. Noack, M. Krause, C. Mayr, J. Partzsch, and R. SahiffVLSI
implementation of a conductance-based multi-synapsegusivitched-
capacitor circuits,” inlnternational Symposium on Circuits and Systems
ISCAS 2014, 2014.

] E. T. Rolls, L. Dempere-Marco, and G. Deco, “Holding tiple items

in short term memory: A neural mechanisn®loS one, vol. 8, no. 4,
p. €61078, 2013.



[16] C. Mayr and J. Partzsch, “Rate and pulse based plastigiverned
by local synaptic state variablesFrontiers in Synaptic Neuroscience,

vol. 2, no. 33, p. 28, 2010.

O. Levy, N. Ziv, and S. Marom, “Enhancement of neuralresygntation
capacity by modular architecture in networks of corticalunoas,”
European J. Neuros., vol. 35, pp. 1753-1760, 2012.

M. Noack, C. Mayr, J. Partzsch, M. Schultz, and R. Sthif“A

switched-capacitor implementation of short-term syragjinamics,” in
Proceedings MIXDES, 2012, pp. 214-218.

M. Noack, J. Partzsch, C. Mayr, and R. Schiffny, “Bmpfederived
synaptic dynamics and optimized system architecture faramorphic
hardware,” in17th International Conference on Mixed Design of Inte-

grated Circuits and Systems MIXDES 2010, 2010, pp. 219-224.

G. Ellguth, C. Mayr, S. Henker, R. Schiffny, and U. Raimer, “Design

[17]

(18]

[19]

[20]

[37]

(38]

[39]

[40]

[41]

techniques for deep submicron CMOS / Case study Delta-Sigm@2]

Modulator,” Dresdner Arbeitstagung Schaltungs- und Systementwurf, pp.
35-40, 2006.

K. Ishida, K. Kanda, A. Tamtrakarn, H. Kawaguchi, and Sakurai,
“Managing subthreshold leakage in charge-based analegitsirwith
low-vth transistors by analog T- switch (AT-switch) and suput-off
CMOS (SCCMOS),"olid-Sate Circuits, |IEEE Journal of, vol. 41,
no. 4, pp. 859-867, April 2006.

[21]

[22]
prosthetic SoC for real-time epileptic seizure controhy’|BSCC Dig.
Tech. Papers,, 2013, pp. 286—288.

[23]

neural probe,” inlSSCC Dig. Tech. Papers,, 2013, pp. 288-290.

C. Mayr, M. Noack, J. Partzsch, and R. Schuffny, “Regqling ex-

perimental spike and rate based neural learning in CMOS/ERE

International Symposium on Circuits and Systems ISCAS 2010, 2010,

pp. 105-108.

M. Yang, S.-C. Liu, C. Li, and T. Delbruck, “Addressabtairrent

reference array with 170 dB dynamic range,” @ircuits and Systems

(ISCAS), 2012 IEEE International Symposium on. |EEE, 2012, pp.

3110-3113.

S. Hartmann, S. Schiefer, S. Scholze, J. Partzsch, @r,M&a Henker,

and R. Schuffny, “Highly integrated packet-based AER camitation

infrastructure with 3Gevent/s throughput,” Rroceedings of |IEEE In-
ternational Conference on Electronics, Circuits, and Systems |CECSLO,

2010, pp. 952-955.

S. Scholze, H. Eisenreich, S. Hoppner, G. Ellguth, 8nkér, M. Ander,

[24]

[25]

[26]

[27]

W. Chen et al., “A fully integrated 8-channel closed-loop neural-

[43]

[44]

C. Lopezet al., “An implantable 455-active-electrode 52-channel CMO$45]

[46]

[47]

(48]

S. Hanzsche, J. Partzsch, C. Mayr, and R. Schiffny, “A 32t/6B [49]

communication SoC for a waferscale neuromorphic systémtggration,
the VLS Journal, vol. 45, no. 1, pp. 61-75, 2011.

[28]
R. Schiffny, “A fast-locking ADPLL with instantaneous tad capa-

bility in 28-nm CMOS technology,’TEEE TCAS II, no. 99, pp. 1-5,

2013.

[29] H. Markram, Y. Wang, and M. Tsodyks, “Differential siglng via the

same axon of neocortical pyramidal neuroaAS vol. 95, pp. 5323—

5328, 1998.

J. Brader, W. Senn, and S. Fusi, “Learning real-worithsti in a neural
network with spike-driven synaptic dynamics\eural Computation,
vol. 19, pp. 2881-2912, 2007.

(30]

[31]
G. Ellguth, and R. Schiffny, “Switched-capacitor redii@a of short-
and long-term synaptic plasticity in 28 nm CMOStontiers in Neu-

roscience, 2014, submitted.

M. Dessouky and A. Kaiser, “Very low-voltage fully défential am-
plifier for switched-capacitor applications,” i€ircuits and Systems,

2000. Proceedings. 1SCAS 2000 Geneva. The 2000 IEEE International

Symposium on, vol. 5, 2000, pp. 441-444 vol.5.

(32]

[33]
age current mechanisms and leakage reduction techniquetedp-
submicrometer CMOS circuitsProceedings of the IEEE, vol. 91, no. 2,
pp. 305-327, Feb 2003.

C. Enz and G. Temes, “Circuit techniques for reducing #ffects
of op-amp imperfections: autozeroing, correlated doublaming, and

(34]

chopper stabilization,Proceedings of the IEEE, vol. 84, no. 11, pp.

1584-1614, Nov 1996.

[35] W. Maass, T. Natschlager, and H. Markram, “Real-timamputing

without stable states: A new framework for neural compatatbased
on perturbations,Neural computation, vol. 14, no. 11, pp. 2531-2560,

2002.
C. Eliasmith and C. C. H. AndersoNeural engineering: Computation,
representation, and dynamics in neurobiological systems. MIT Press,
2004.

[36]

S. Hoppner, S. Hanzsche, G. Ellguth, D. Walter, H.eBieich, and

M. Noack, J. Partzsch, C. Mayr, S. Hantzsche, S. Sehdz Hoppner,

K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “kea

[50]

[51]

11

C. Mayr, J. Partzsch, M. Noack, and R. Schiffny, “Counfaple analog-
digital conversion using the neural engineering framewdfkontiers in
Neuroscience, vol. 8, no. 201, p. 16, 2014.

J. Hasler and B. Marr, “Finding a roadmap to achieve danguromor-
phic hardware systemsFrontiers in neuroscience, vol. 7, 2013.

G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array aiw-power
spiking neurons and bistable synapses with spike-timingedéent
plasticity,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp.
211-221, 2006.

J. Pineda de Gyvez and H. Tuinhout, “Threshold voltagenmtch and
intra-die leakage current in digital CMOS circuit&dlid-Sate Circuits,
IEEE Journal of, vol. 39, no. 1, pp. 157 — 168, jan. 2004.

P. R. Kinget, “Device mismatch and tradeoffs in the dasof analog
circuits,” IEEE_J_JSSC, vol. 40, no. 6, pp. 1212-1224, 2005.

A. Basu, S. Ramakrishnan, C. Petre, S. Koziol, S. Briakd P. E.
Hasler, “Neural dynamics in reconfigurable silicoBjbmedical Circuits
and Systems, |EEE Transactions on, vol. 4, no. 5, pp. 311-319, 2010.
S. Brink, S. Nease, P. Hasler, S. Ramakrishnan, R. WiiodeA. Basu,
and B. Degnan, “A learning-enabled neuron array IC basedn upo
transistor channel models of biological phenomeBigmedical Circuits
and Systems, |IEEE Transactions on, vol. 7, no. 1, pp. 71-81, 2013.
H. Eisenreich, C. Mayr, S. Henker, M. Wickert, and R. Sy,
“A novel ADPLL design using successive approximation freogy
control,” Elsevier Microelectronics Journal, vol. 40, no. 11, pp. 1613-
1622, 2009.

P. Merollaet al., “A digital neurosynaptic core using embedded crossbar
memory with 45 pJ per spike in 45 nm,” iRroceedings IEEE CICC,
2011, pp. 1-4.

F. Alibart, S. Pleutin, O. Bichler, C. Gamrat, T. Semwan
Gotarredona, B. Linares-Barranco, and D. Vuillaume, “A mistive
nanoparticle/organic hybrid synapstor for neuroinspiamputing,”
Advanced Functional Materials, vol. 22, no. 3, pp. 609-616, 2012.
[Online]. Available: http://dx.doi.org/10.1002/adfm.201101935

C. Mayr, P. Starke, J. Partzsch, L. Cederstroem, Rilfdcy) Y. Shuai,
N. Du, and H. Schmidt, “Waveform driven plasticity in BiFe@3m-
ristive devices: Model and implementation,” ikdvances in Neural
Information Processing Systems 25, 2012, pp. 1700-1708.

C. Mayr, M. Ehrlich, S. Henker, K. Wendt, and R. SchiffiMapping
complex, large-scale spiking networks on neural VL3hternational
Journal of Applied Science, Engineering and Technology, vol. 4, no. 1,
pp. 37-42, 2007.

S. Henker, C. Mayr, J.-U. SchluBler, R. Schiffny, UarRacher,
and A. Heittmann, “Active pixel sensor arrays in 90/65nm C®O
technologies with vertically stacked photodiodes,” Rnoc. |IEEE In-
ternational Image Sensor Workshop 1107, 2007, pp. 16-19.

Y. Shuai, X. Ou, W. Luo, N. Du, C. Wu, W. Zhang, D. Burger, [@ayr,
R. Schuffny, S. Zhou, M. Helm, and H. Schmidt, “Nonvolatileltievel
resistive switching in Ar+ irradiated BiFeO3 thin flmdEEE Electron
Device Letters, vol. 34, no. 1, pp. 54-56, 2013.

T. You, Y. Shuai, W. Luo, N. Du, D. Burger, |. Skorupa, Rilbner,
S. Henker, C. Mayr, R. Schuffny, T. Mikolajick, O. Schmidand
H. Schmidt, “Exploiting memristive BiFeO3 bilayer struots for com-
pact sequential logicsAdvanced Functional Materials, 2014.



