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Abstract—Homeostatic plasticity is a stabilizing mechanism
commonly observed in real neural systems that allows neurons to
maintain their activity around a functional operating point. This
phenomenon can be used in neuromorphic systems to compensate
for slowly changing conditions or chronic shifts in the system con-
figuration. However, to avoid interference with other adaptation or
learning processes active in the neuromorphic system, it is impor-
tant that the homeostatic plasticity mechanism operates on time
scales that are much longer than conventional synaptic plasticity
ones. In this paper we present an ultralow leakage circuit, inte-
grated into an automatic gain control scheme, that can implement
the synaptic scaling homeostatic process over extremely long time
scales. Synaptic scaling consists in globally scaling the synaptic
weights of all synapses impinging onto a neuron maintaining their
relative differences, to preserve the effects of learning. The scheme
we propose controls the global gain of analog log-domain synapse
circuits to keep the neuron’s average firing rate constant around a
set operating point, over extremely long time scales. To validate the
proposed scheme, we implemented the ultralow leakage synaptic
scaling homeostatic plasticity circuit in a standard 0.18 µm com-
plementary metal-oxide-semiconductor process, and integrated it
in an array of dynamic synapses connected to an adaptive inte-
grate and fire neuron. The circuit occupies a silicon area of 84 µm
× 22 µm and consumes approximately 10.8 nW with a 1.8 V sup-
ply voltage. We present experimental results from the homeostatic
circuit and demonstrate how it can be configured to exhibit time
scales of up to 100 ks, thanks to a controllable leakage current that
can be scaled down to 0.45 aA (2.8 electrons per second).

Index Terms—Neuromorphic, long-term potentiation (LTP),
long-term depression (LTD), spike-timing dependent plasticity
(STDP), intrinsic plasticity, homeostatic, spiking neural network
(SNN).

I. INTRODUCTION

ONE of the most remarkable properties of nervous systems
is their ability of adapting to the changes in the environ-
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ment, in order to achieve and maintain robust neural computa-
tion. This ability is mediated by multiple forms of plasticity, act-
ing on a wide range of different time scales [1]. The modification
of synaptic weights over very short temporal windows (i.e., in
the order of milliseconds) is believed to attain selectivity to tran-
sient stimuli and contrast adaptation [2]. Post-synaptic long term
plasticity mechanisms (e.g., that settle in tens to hundreds of mil-
liseconds) such as Spike-Timing Dependent Plasticity (STDP),
mediate classical neural network learning processes [3]. Longer
term changes in synaptic transmission and intrinsic excitability
of the neurons (e.g., that settle over minutes to days) have been
shown to mediate homeostatic control that keeps the neuron’s
activity within functional bounds [4].

In engineering terms, homeostatic plasticity is a form of au-
tomatic gain control that counteracts the effect of long lasting
drifts of the neurons activity due to changes in external condi-
tions, in input activity levels, due to temperature variations or
to changes in internal connectivity. This mechanism is therefore
extremely valuable for the effective deployment of hardware
implementations of spiking neural networks, as it increases ro-
bustness to long-lasting changes in the operating conditions of
the system by automatically tuning the network internal pa-
rameters. Despite its crucial role for the design of large scale
spiking neural networks, only few works have been devoted to
the implementation of homeostatic plasticity, mostly due to the
difficulty in achieving the necessary long time constants on sil-
icon. With the exception of [5], that acts on neural excitability,
the work proposed so far focused on a specific form of synaptic
plasticity, known as synaptic scaling, that modulates a neuron’s
activity by modifying its total synaptic drive [6]. This form of
homeostatic control scales the strength of the synapses con-
nected to a single neuron when its activity chronically changes.
This global gain tuning preserves the relative differences be-
tween individual synapses, and does not disrupt the effect of
activity dependent learning mediated by forms of Hebbian or
Spike-Timing Dependent Plasticity mechanisms [7].

Long time scales in plasticity circuits have been obtained in
the past thanks to the use of floating gate transistors [5], [8],
or by resorting to the use of hybrid systems where the con-
trol is implemented in software with digital hardware in the
loop, requiring external memory and conventional computing
architectures [9]. In this work, we extend a previous proof-of-
concept implementation [10] and show how it is possible to
achieve extremely long time scales by exploiting an ultra-low
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Fig. 1. Block diagram of a neuron with its input synaptic array. The DPI
synapse is a linear integrator that adds input from different sources, each with
two independent parameters for tuning the synaptic efficacy: “g” is used to
globally scale of the synapses impinging of the same neuron, “wi ” is modified
individually in each synapse by local short term and spike-based forms of
plasticity. The homeostatic control loop reads out the total synaptic drive of
the neuron, that in absence of current injected in the membrane capacitance
corresponds to the total spiking activity of the neuron.

leakage cell [10]–[12] implemented on standard Complemen-
tary Metal-Oxide-Semiconductor (CMOS) technology within a
novel auto-gain synaptic scaling circuit. The novelty associated
with this work lies mainly in the new CMOS circuit design that
can exhibit longer time scales and provide better control of the
leakage currents. The synaptic scaling mechanism we propose
is tailored to neuromorphic computing architectures that em-
ploy the Differential Pair Integrator (DPI) circuit[13], [14] as
a current-mode filter to emulate synaptic dynamics. The DPI
circuit has a gain that depends on two independent parameters
which can be used to represent a global synaptic scaling gain
(e.g., controlled via a homeostatic control circuit), and a local
synaptic weight (e.g., modified via local spike-based learning
circuits).

This manuscript describes in detail the circuits for the gain
control loop and for the ultra-low leakage CMOS cell that con-
trol the global synaptic scaling gain term. A detailed character-
ization performed on a test circuit implemented on a standard
0.18 μm CMOS process shows that the proposed circuit can
modulate the total synaptic drive of a single neuron with ex-
tremely long time scales (up to 100 kilo-seconds) while main-
taining unaltered the relative weight ratios among individual
synapses obtained with spike-based plasticity circuits.

II. THE HOMEOSTATIC AUTOMATIC GAIN CONTROL LOOP

Typical neuromorphic computing architectures comprise ar-
rays of silicon neurons each receiving input from a large number
of input synapses (see Fig. 1) [14], [16]. In these systems, it is
possible to maintain neuron’s overall spiking activity within
given operating boundaries, without interfering with the net-
work’s signal processing and learning mechanisms, by adopt-
ing automatic gain control mechanisms that globally scale the
synaptic weights of the synapse circuits afferent to their cor-
responding neuron over very long time periods. The DPI log
domain integrator features two independently tunable parame-

Fig. 2. Block diagram of proposed homeostatic AGC loop. The output current
of the DPI block Isyn is scaled automatically over long time scales, by up- or
down-regulating the VT H R control voltage. Ms1-Msn are switched by input
synaptic pulses for generating synaptic pulse currents, while Mw1-Mwn are
gated by weight voltages Vw1-Vwn in each synapses for particular weight current
amplitude. A Test branch is added to supply a DC input current IDC with
amplitude tuned by VDC . It is applied as a synaptic input current into the
circuit’s DPI block to simplify the test. Mg is a virtual PMOS gated by VT H R
for representing the current term Igain expressed in (2).

ters (Igain and Iw) for the control of the synaptic efficacy [13]. If
all the synapses afferent to the neuron share the same temporal
dynamics, it is possible to use one single integrator circuit per
neuron with a single Igain parameter and use the temporal super-
position principle to combine the output of multiple branches,
with multiple independent synaptic plasticity parameters Iwi

that represent multiple synaptic inputs. It is therefore possible
to control the global synaptic efficacy by using one single global
scaling term, and multiple independent synaptic weight terms
(e.g., see the multiple Iwi currents in both Figs. 1 and 2). It
has been shown that the circuit has first-order linear dynam-
ics (see [14] for an analysis based on the translinear principle
and [13] for a time-domain analysis).

In particular, if we consider the DPI circuit shown in the top
part of Fig. 2, and assume that κn = κp and Isyn � Igain, then
we can express its transfer function as:

τs
d

dt
Isyn + Isyn = Iw Igain

Iτ
(1)

where the term τs is defined as (CD P I UT )/(κ Iτ ), with UT rep-
resenting the thermal voltage, and κ the sub-threshold slope
coefficient [17]. The current Iτ is a bias current that sets the
integrator time constant. The current Iw corresponds to the sum
of the individual synapse currents Iw = ∑

i Iwi , set by their cor-
responding synaptic weight bias voltages Vwi . The current Igain

represents an extra independent term which is defined as:

Igain = I0e
κ(Vdd −VT H R )

UT (2)

By adjusting the control voltage VT H R , the current Igain can
be tuned so as to increase or decrease the steady state value of
Isyn , independent of Iw (which can be tuned by a regular learn-
ing process). A copy of the DPI output current Isyn is eventually
injected into the silicon neuron, which will then produce out-
put spikes at a firing rate proportional to its amplitude. Fig. 2
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Fig. 3. Circuit implementation of the LLC used in the AGC loop.

shows how the full Automatic Gain Control (AGC) homeostatic
control loop is used to modulate the voltage VT H R in order to
maintain the current Isyn around a set reference current IRE F .
In this loop, the Isyn current is fed into a high-gain voltage
comparator that compares the voltages that set the Isyn and Ire f

currents. Depending on the outcome of this comparison, the
output voltage SW of this comparator is set to either ground or
VDD . This digital signal is then used to gate the control signals
of a Low Leakage Cell (LLC) circuit which slowly adjusts VT H R

to up-regulate or down-regulate Isyn accordingly.

III. THE ULTRA-LOW LEAKAGE CELL

To achieve long biological realistic time-scales that do not
interfere with signal transmission and learning, it is necessary
to develop circuits with time scales that range from seconds to
hours. In order to optimize the circuit’s area to allow the dense
integration of thousands of synapses and neurons on a single
chip, the capacitance of the homeostatic control circuits must
be small, therefore long time scales can only be achieved by
extremely small currents. An example of such a circuit is the
ultra-low leakage cell shown in Fig. 3. This circuit increases or
decreases its output voltage VT H R by controlling the direction
of a very small current across the channel of the LLC p-FET
to slowly charge or discharge the capacitor CF . As in our LLC
circuit implementation the capacitance CF is set to 1 pF, the
currents required to obtain time scales in the order of thousands
of seconds have to be of the order of 1 fA, which is usually one
hundred times smaller than channel off-state leakage current of
transistors, for a standard 0.18 μm CMOS process used.

Ultra-low ranges of currents can be obtained by minimizing
the leakage currents across LLC p-FET with isolated N-well. In
particular, the drain-to-bulk diode leakage current IDB of Fig. 3
can be minimized by biasing VDB to be zero [11]; this condition
can be met by using a feedback Operational Transconductance
Amplifier (OTA) with large enough gain (see OTA2 in Fig. 3).
Minority carrier diffusion between the source and drain under
the accumulation charge layer is reduced by applying very small
VDS (normally several mV) across the p-FET. An isolated well
for the p-FET is used to limit the number of junctions that can

Fig. 4. Timing diagram of internal signals in AGC loop. RST is used to
initilaize the AGC loop to an initial condition. After resetting, VDS will be set to
VRE F M − VRE F H for SW = 1 and VRE F M − VRE F L for SW = 0 to decide
direction of leakage current IDS for discharging/charging integrate capacitor
CF . Slope of VT H R is then IDS/CF .

diffusively interact with drain-to-bulk junction. Also, a zero-bias
(VB = VD ≈ VS) is used to minimized diffusive currents [11].
Furthermore, to get ultra-small leakage current from node D of
the LLC p-FET, it is necessary to minimize the gate leakage
currents IDG and IDG2: the gate leakage current density nor-
mally is exponentially related to the thickness of gate oxide and
strongly depends on gate bias [18]. For a standard 0.18 μm pro-
cess with a gate oxide thickness of 4.6 nm, it is reasonable to
assume that the gate leakage current density with gate bias of
0.5 V to be smaller than 10−8 A/m2. To minimize these currents
we designed the low leakage transistor with a W/L ratio of
0.5 μm/1 μm and the p-FET input transistors of the OTA2 with
a W/L ratio of 8 μm/1 μm. Therefore the total gate leakage
current is estimated to be smaller than 0.1 aA. By minimizing
other leakage currents, a tunable subthreshold current IDS (tuned
by VG) is used to charge/discharge the capacitor CF While the
OTA2 amplifier is used to implement a high-gain negative feed-
back loop to keep the potential of VD as close as possible to
VRE F M , the OTA1 amplifier is used to clamp the voltage VS

of the LLC p-FET to one of the two VRE F L , VRE F H reference
voltages. The detailed circuit schematic diagram of the OTA1
and OTA2 amplifiers is shown in the top-left inset of Fig. 3. To
ensure high-gain and rail-to-rail output range, while minimizing
power, we adopted a two stage pseudo-cascode split-transistor
sub-threshold technique [19].

Fig. 4 shows signal waveform of proposed AGC loop.Given
these small currents, At the beginning of an experiment it is
necessary to quickly initialize the AGC control loop to a proper
initial condition, such as VT H R = VD = VRE F M . This can be
done by enabling the digital control signal RST to high, and
resetting it to ground shortly after. At this point the direction of
the current across the LLC p-FET of Fig. 3 will be set by the
digital control signal SW , produced by the comparator of Fig. 2.
If SW is high, then the VDS of the LLC p-FET will correspond
to VRE F M − VRE F L , otherwise it will correspond to VRE F M −
VRE F H . By appropriately setting these reference voltages such
that VRE F L < VRE F M < VRE F H , and by properly tuning the
LLC p-FET’s gate voltage VG , it is possible to precisely control
both direction and amplitude of the LLC p-FET IDS current.

The AGC loop of Fig. 3 implements a “bang-bang” control
strategy: during normal operation, if the total synaptic drive
Isyn increases above the reference current IRE F , the comparator
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Fig. 5. Die photo of test chip implemented using a standard 0.18 μm CMOS
process. The proposed DPI-based very long time scale automatic gain control
synaptic scaling circuits are embedded in the Neuron/Synapse Array #1, and
circled in blue. The whole chip occupies an area of 3.96 mm × 2.29 mm, and
the synaptic scaling circuits occupy an area of 84 μm × 22 μm.

will set the digital signal SW to high. Since this enables the
signal VRE F L as input to the OTA1 amplifier, the current will
slowly discharge CF and cause an increase in VT H R . This will
in turn downscale the value of Igain of (2), effectively reducing
the synaptic current Isyn injected into neuron, and compensating
for the initial change. Conversely, as Isyn decreases below IRE F ,
the comparator will enable VRE F H as input to OTA1. This
will cause the LLC p-FET current to slowly charge the CF

capacitor, thereby decreasing VT H R and increasing Igain. This
will counteract the source of the disturbance that caused the
initial decrease of Isyn , and increase it back, until it reaches
again the reference level IRE F .

IV. EXPERIMENTAL RESULTS

To characterize the response properties of the proposed cir-
cuits, we designed a prototype test chip in standard 0.18 μm
CMOS process comprising a small array of neurons and
synapses with embedded synaptic scaling circuits. Fig. 5 shows
the die-photo of the fabricated chip, with the synaptic scaling
circuits highlighted in neuron #1 (with its synaptic input array).
An on-chip programmable bias generator [15] is implemented
to generate all gate voltages.

In Fig. 6 we show the response of the circuit to a DC change
in the input current IDC applied as synaptic weight input current
into the circuit’s DPI block (see also Fig. 2).

In this experiment we set IDC to start at 0.3 nA, the reference
current IRE F to be 20 nA, and the parameters of the silicon
neuron (e.g., gain, time scales and refectory period) in a way to
obtain a firing rate of approximately 100 Hz. VRE F H , VRE F M

and VRE F L are set to 1.384 V, 1.382 V and 1.380 V, respec-
tively. By setting the VG bias voltage of Fig. 3 to 1.42 V, we
achieved adaptation time scales of approximately 60 seconds. In
these conditions, the AGC loop of Fig. 2 clamps VT H R to a value
around 1.46 V, and VSY N around 1.4 V, thus maintaining the neu-
ron’s firing rate stable at its initial value. After 20 seconds IDC

changes from 0.3 to 0.6 nA. As expected, this increased the DPI
output current Isyn , decreased the VSY N voltage accordingly, and
increased the neuron’s firing rate from 100 to about 180 Hz. The

Fig. 6. Synaptic homeostasis measurements in response to step changes of
the DPI input current. (Top): The voltage traces VT H R and VSY N ; (Middle): the
comparator output digital signal SW; (Bottom): Neuron’s instantaneous firing
rate and its input DC current.

synaptic scaling homeostatic circuits turn on and slowly scale
down the total synaptic current Isyn being injected in the neuron,
which in turn starts to slowly decrease its output firing rate. This
is done by increasing the VT H R signal, which is shared by all in-
put synapses afferent to the same neuron, and which modulates
the Igain current. After approximately 60 seconds Isyn and the
firing rate of the neuron are both restored to their initial values.
At around t = 120 s IDC changes back from 0.6 to 0.3 nA. In
this case, the neuron’s firing rate drops below its original value
and the AGC loop is activated in the opposite direction, such that
after about 60 seconds, the neuron’s firing rate is restored back
to its original value. Due to the bang-bang nature of the AGC
control loop, when the neuron’s firing rate is close to the refer-
ence the homeostatic circuits keep on alternating the SW signal
from high to low, in order to keep the Isyn current around the
IRE F reference current (see “locked” regions in Fig. 6). The con-
tinuous switching of SW in the “locked” regions is kept at slow
rates of several Hz to tens Hz (see zoomed-in area in the inset
of Fig. 6) by limiting the feedback current flowing through LLC
to charge/discharge the capacitor CF . The continuous switch
frequency of SW during “locked” regions is normally very slow
(from several Hz to tens Hz) because of the ultra low loop band-
width. This results in very low power consumption, also in this
condition.

Figs. 7 and 8 show the effect of changing the recovery rate,
that can be achieved by appropriately changing the VG bias
voltage of LLC p-FET, which sets the amplitude of the IDS

current on Fig. 3, and by modulating the difference between
VRE F M , and VRE F L/VRE F H , which control the voltage drop
across the LLC p-FET channel. In Fig. 7, the target neuron is
initially stable at a firing rate of 150 Hz and is abruptly changed
to 475 Hz (at t = 60 s) by applying a step current of 2.5 nA. The
step change in firing rate activates the homeostatic mechanism
that slowly adapts the neuron’s output to recover the original
activity, with time scale of 75 s and 150 s, respectively.

Fig. 8 shows that it is possible to get longer time constants and
that the control is symmetrical, working both for increase and
decrease of the neuron’s firing rate away from its equilibrium.
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Fig. 7. Neuron’s firing rate modulated by the homeostatic mechanism with
different time scales.

Fig. 8. Neuron’s firing rate modulated by the homeostatic mechanism, tuned
to respond with different time scales. The bottom red curve represents the DPI’s
input current IDC .

Fig. 9. Measured charge/discharge slope of VT H R with controllable leakage
current from LLC. VRE F H , VRE F M and VRE F L are set to 1.384 V, 1.382 V
and 1.380 V, respectively, and VG is swept from 1.3 V to 1.72 V.

In each condition the AGC succeeds in restoring the neuron’s
activity to the 100 Hz rate defined as target point.

In order to exploit the achievable time scales of proposed
AGC, we measured slope of VT H R when charging/discharging
the 1 pF CF with controllable leakage from LLC. In this
experiment, VRE F H , VRE F M and VRE F L are set to 1.384 V,
1.382 V and 1.380 V, respectively, and VG is swept from
1.3 V to 1.72 V. As is shown in Fig. 9, Up/Down slope decays
exponentially for an increasing VG . For a VG > 1.5 V, Up/Down
slope starts to be different for a discharge/charge leakage

Fig. 10. Neuron’s firing rate modulated by the homeostatic mechanism, tuned
to produce the longest time scales.

current smaller than 100 aA. The slope will be significantly
different for VG > 1.62 V when the discharge/charge leakage
current is smaller than 10 aA. This asymmetrical maybe caused
by diffusion current between the drain-to-bulk diode and
leakage current from gate leakage as analysed in Section III. At
VG = 1.72 V, the Up/Down Slope is 1.5 μV/s and 0.45 μV/s
with a leakage current of 1.5 aA and 0.45 aA, equivalent to 9.4
Electrons/second and 2.8 Electrons/second, respectively.

Fig. 10 shows the response of neuron’s firing rate with time
scales of around 75 ks and 144 ks. In this experiment, VRE F H ,
VRE F M and VRE F L are set to 1.384 V, 1.382 V and 1.380 V,
respectively. VG is tuned to be 1.7 V and 1.72 V for achieving
these long time scales. The observed peak on neuron’s firing
rate curve with time scale of 144 ks is caused by sudden temper-
ature drifts at noon during the experiment which led to transient
changes of biases generated by on-chip bias generator [15].

While the first characterization of the homeostatic control
was obtained by artificially changing the neuron drive with an
externally injected current, Figs. 11 and 12 show that the con-
trol is effective when the total neuron drive changes after its
synaptic drive changes due to the effect of spike-based learning,
which leads to synaptic potentiation. The homeostatic plasticity
mechanism employed in this context is useful for avoiding the
risk of runaway potentiation.

In Fig. 11, we show a neuron that receives input on six af-
ferent synapses, which feed currents to the target neuron that
are proportional to their synaptic weights. The analog weights
of the synapses are represented by Iwi The synapse circuits in-
clude spike-based learning mechanisms that can potentiate the
synapse (i.e., increase it’s Iwi ) or depress it, depending if in-
put and output firing rates are correlated or not (see [16] for
a detailed description of the learning circuits and behavior).
We drive the neuron with an external signal and stimulate the
synapses with input signals in a way to trigger the learning
mechanism to potentiate or depress the weights of the synapses
being stimulates. Specifically, at the beginning of the experi-
ments we set all synapses to the depressed state, and we provide
a teacher current to the neuron to maintain its firing rate to
around 80 Hz. Fig. 11(a) shows what happens when at time
t1 = 70 s, t2 = 105 s and t3 = 140 s, 2/4/6 synapses are se-
quentially potentiated, and then stimulated by a spike train with
Poisson distribution around a mean rate of 100 Hz. Eventually,
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Fig. 11. Homeostatic control effect after spike-based synaptic potentiation.
(a) Initially all synaptic weights are set to non-potentiated, at times t1,2,3 two
synapses are potentiated, while applying poisson input events with mean rate of
100 Hz. And weights of all synapses are reset to low at time t4. (b) A teacher
current is injected to neuron to maintain its firing rate to around 80 Hz, the firing
rate is then changed by the synaptic input and restored to its initial level by the
homeostatic control.

Fig. 12. Homeostatic control effect after spike-based synaptic potentiation.
The experiment is the same as in Fig. 11 but for a different number of synaptic
inputs.

the weights of all synapses are reset to low at time t4. Fig. 11(b)
shows the response of the neuron, that adjusts its firing rate
thanks to the homeostatic control that acts on Igain. Initially
Igain is big and the effect of a single input spike is high on the
neuron’s membrane potential. The potentiation of the synapses
has a first effect of changing the mean output firing rate of the
neuron for the same input spike train, however, the homeostatic
mechanism decreases Igain such that the effect of a single spike
provokes a smaller change on the membrane potential of the
neuron. Fig. 12 confirms the qualitative behavior of the control
with a different number of active synapses.

TABLE I
CURRENT LEAKAGE COMPARISON

[10] This work

Technology 0.18 μm 0.18 μm
Power supply 1.8 V 1.8 V
Area 83 μm × 42 μm 84 μm × 22 μm
Power consumption 100 nW 10.8 nW
Time scale ms-400 s ms-144 ks
Leakage slope (1 pF) - 1.5 μV/s / 0.45 μV/s
Leakage 210 aA 1.5 aA / 0.45 aA
Electrons per second 131 e−/s 4.9 e−/s / 2.8 e−/s

Table I shows a direct comparison of the proposed homeo-
static plasticity circuit with state of the art circuits described in
the introduction in terms of current leakage performance and
general circuit performance indicators, respectively, showing
that the proposed implementation outperforms them in circuit
area, power consumption and leakage current, achieving the
highest possible time constants.

V. CONCLUSIONS

In our previous work, we presented the DPI as a neuro-
morphic synapse circuit that implements biologically realistic
synaptic dynamics while supporting both spike-driven learning
mechanisms and synaptic scaling homeostatic plasticity mech-
anisms [13], [14]. In this paper, we proposed a homeostatic
plasticity circuit that exploits the features of the DPI to im-
plement synaptic scaling homeostasis. The circuit we proposed
here globally scales the weights of all synapses impinging on
the same post-synaptic neuron, with time scales that can range
from milliseconds to days. The ability to globally scale synap-
tic weights on very long time scales and without affecting with
their ratios is important, as it allows the system to compensate
for global and slow changes in both the input signals and the sys-
tem properties without interfering with the spike-based learning
mechanisms that change the weights depending on the statistics
of the input signals. However, the ability to precisely control
the temporal scale of the homeostatic process, and to set faster
time constants in the homeostatic control loop is also important,
as it has been recently shown that the interaction of these types
of homeostatic processes with the conventional learning mech-
anisms produce hetero-synaptic competition that improves the
ability of the network to generalize and to maximize its memory
storage capacity [1], [7].

To validate the proposed circuit design, we fabricated and
tested an ultra-low leakage cell that allowed us to obtain ex-
tremely long time constants in a controllable way. We measured
the low leakage currents obtained from well-biased single p-
FET device and demonstrated how, with a 1 pF capacitor, it is
possible to control leakage currents as small as 0.45 aA (i.e., less
than 3 electrons per second) and reach time scales as large as
144 k seconds (i.e., more than 40 hours). The proposed circuits
occupies an area of 84 μm × 22 μm in a standard 0.18 μm
process, and consumes 10.8 nW with 1.8 V supply power dur-
ing normal operation. In comparison to previously proposed
designs, this circuit does not require additional floating gate
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devices or off-chip methods. This makes it suitable for dense
integration with other low-power neuromorphic circuits in the
next generation of neuromorphic computing platforms.
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