
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

 

Abstract — Over many millions of years of evolution, nature has 

developed some of the most adaptable sensors and sensory systems 

possible, capable of sensing, conditioning and processing signals in 

a very power- and size-effective manner. By looking into biological 

sensors and systems as a source of inspiration, this paper presents 

the study of a bio-inspired concept of signal processing at the 

sensor level. By exploiting a feedback control mechanism between 

a front-end acoustic receiver and back-end neuronal based 

computation, a nonlinear amplification with hysteretic behavior is 

created. Moreover, the transient response of the front-end acoustic 

receiver can also be controlled and enhanced. A theoretical model 

is proposed and the concept is prototyped experimentally through 

an embedded system setup that can provide dynamic adaptations 

of a sensory system comprising a MEMS microphone placed in a 

closed-loop feedback system. It faithfully mimics the mosquito’s 

active hearing response as a function of the input sound intensity. 

This is an adaptive acoustic sensor system concept that can be 

exploit by sensor and system designers within acoustics and 

ultrasonic engineering fields.  

 
Index Terms— bio-inspired acoustics; adaptive sensor system; 

active hearing; nonlinear amplification; compressive gain; 

feedback computation; real-time embedded signal processing; 

prototyping. 

I. INTRODUCTION 

UDITORY receptors have evolved to be adaptable using 

feedback mechanisms between mechanical and electrical 

systems that greatly empower the ability to perceive sounds. 

Nature has the capacity to exploit and gain awareness of the 

surrounding environment through the sense of hearing. For 

instance, some animals use their hearing abilities as a 

fundamental resource for communication such as humans; bats 

use it as part of a sophisticated hunting system to locate prey 

such as moths which counteract against that with adaptive ears 

that can predict the bats echolocation calls [1]; among other 

examples [2]. Both vertebrates and invertebrates have followed 

different evolutionarily pathways, however they share some 

similarities in respect to the active phenomena of hearing [3]. 

Generally, amplification and sharp frequency selectivity are 

considered to be the most important functions taking place at 

the initial stages of signal conditioning performed by an 

auditory system. The ability to amplify and tune at specific 
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frequencies can benefit such a sensory system to separate 

desired but sometimes weak signals from undesired background 

noises. Studies based on the vertebrate inner ear report that a 

healthy hearing system can provide gains up to 40-60 dB [4]. 

That is thought to be a consequence of energy injection 

provided by electromotile cells, so called mechanoreceptors, 

which putatively increase the magnitude of their mechanical 

inputs in a sort of positive-feedback mechanism. Moreover, the 

hearing system is more likely to amplify low level sounds and 

can be less responsive, proportionally, as they become louder. 

This function is generally known as the compressive 

nonlinearity that can be achieved by a hearing organ, and is a 

fundamental mechanism that greatly enhances overall dynamic 

range. For instance, in humans the dynamic range can be up to 

120 dB when preserved in a healthy condition [5]. Hearing 

research has also been conducted using insects as an animal 

model, again providing evidence that their acoustic sensors, 

neuronal circuits and systems have evolved many interesting 

properties in terms of power-efficiency, robustness to noise and 

size-adapted sensor and signal processing mechanisms that best 

suit their needs [6-7]. Recently, engineers have looked into 

some insects’ ears for inspiration, and a new design trend of 

acoustic sensors and systems has emerged, exploiting novel 

directional [8-10] and adaptive sensing capabilities [11].  

By following a similar premise, this paper aims to present an 

adaptive concept of signal processing applied to acoustics 

performed at the sensor level; an unconventional method to 

amplify sound. Signals can be amplified in a nonlinear fashion 

by exploiting a positive-feedback control technique between the 

front-end acoustic receiver and a back-end computational 

system, and produce a hysteretic acoustic response result as 

similarly seen in the mosquito’s hearing system thought to be 

parametric amplification [12].  

The assumption is that the active hearing responsiveness to 

sound is greatly enhanced by synchronized neuronal cells 

pumping additional energy entrained with a front-end acoustic 

receiver (antenna) through a positive-feedback system [13-14]. 

It seems to be an unconventional but advantageous technique to 

adapt the sensory responsiveness to a desired input stimuli. 

Therefore, tuning, nonlinear compressive gain, and a hysteretic 

response of such a sensory system can result [13-14]. 
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Concurrently, other studies using engineered resonant sensors, 

circuits and systems, likewise support the use of positive-

feedback control techniques, which also enable adaptive 

nonlinearities in low-powered filtering applications [15], 

hysteretic behavior applied to speech in noise applications [16], 

and that the Q factor of sensors can be enhanced exploiting the 

feedback control technique so-called parametric amplification, 

for instance, used in atomic force microscopy [17-18]. 

Therefore, this work aims to exploit the use of an analogous 

positive-feedback technique at the sensor level - a front-end 

acoustic receiver that is controlled by a back-end neuronal 

computational process. 

This adaptive sensory system concept may have applications 

within acoustic and ultrasonic fields, which may require 

adaptive amplification in a nonlinear fashion. The concept is 

described using a theoretical model, validated through 

simulation, and it is prototyped using an experimental setup that 

enables results in real-time as a proof of concept. This paper is 

organized as follows: Section II introduces some background 

knowledge related to the mosquito auditory system that 

includes sound reception and neuronal processing; Section III 

describes some background regarding acoustic receivers with 

emphasis on their physical properties and trade-offs that are set 

by their design specifications; Section IV and V introduce the 

concept of an adaptive acoustic sensor system through a 

theoretical model, respectively; Section VI highlights the 

simulated and experimental results; and finally Section VII 

summarizes the main conclusions and outcomes of the study. 

II. THE MOSQUITO HEARING SYSTEM 

Mosquitoes exhibit remarkable hearing mechanisms for 

sound perception. Their ears evolved to be very sensitive 

sensors to detect the particle velocity component of sound, 

achieving acute neuronal sensitivities at the base of their front-

end receivers [19]. These acoustic receivers are composed of 

antenna-like structures which can detect sound through the 

motion of air particles that viscously drags the mechanical 

structures. Those protrude from an auditory receptor organ 

where thousands of force sensitive cells also called 

mechanoreceptor cells reside [20]. When stimulated, the 

mechanoreceptors can convert the mechanical energy into 

electrical signaling in a form of spike-type neuronal responses 

commonly called action potentials. Mosquitoes rely on their 

hearing system to increase their mating successes. 

Preferentially, males can detect the sound particle 

displacements generated by a flying female of 3.5 nm from a 

distance of 10 cm away, within the frequency range of 350-450 

Hz [21]. Intuitively, for a male mosquito to detect and pursue a 

flying target, its sound receptors may need to transit between 

two modes of operation: (i) a fast transient time response which 

allows the sensory system to quickly detect a close by target; 

(ii) a frequency-selective sensing mode which enhances the 

intelligibility of sounds generated by a selected/targeted source. 

A dynamic transition between these two modes of operation 

might not be achieved by a conventional passive acoustic 

sensory system. Studies based on the mosquito hearing system 

report that the presence of a positive-feedback mechanism 

using an ensemble of synchronized neurons pumping additional 

energy entrained with the acousto-mechanical response of the 

front-end acoustic receiver (antenna) to dynamically adapt the 

overall response of the hearing system, according to an input 

stimulus presented [13-14], as illustrated in Fig. 1. 

This method of sensory adaptation can be very attractive 

from the engineering point of view for two reasons: firstly 

exploiting the use of feedback processing at the sensor level 

might be a reliable technique to allow sensory adaptation [11]; 

secondly, the process of encoding sound in a form of action 

potentials (e.g. spike-type signals) might be a simple form of 

computation with low power requirements [22-25]. 

Nevertheless, to apply a mechanism to encode sound in a form 

of action potentials, and the use of a positive-feedback control 

technique to enhance signal conditioning at the sensor level, 

first require a clear understanding of, and methods to model 

those processes. 

 

 
Fig. 1 – Nonlinear response of the mosquito’s hearing. Antennal response 

showing amplification and hysterisis. ∆𝐸 is the rational energy of oscillation 

between the hysteretically amplified and the initial nonamplified response. 

(Inset) envelop of an amplitude modulated single-tone sound stimuli used 

to test the nonlinearities in the antenna’s response - increasing (red) and 

decreasing (black) intensity. Adapted from [13]. 

A. Neuronal Computation 

Electrical signaling is a fundamental mechanism that 

underlies many aspects of signal processing and 

communication between neurons. Biological cells consume 

energy in order to establish a potential gradient between 

intracellular and extracellular fluids. Neurons have evolved 

interesting mechanisms (passive and active) to exploit the 

electrochemical potential. For instance, neurons can generate 

electrical signals through ionic influx and efflux of molecules 

(e.g. sodium (Na+), potassium (K+), chloride (Cl-) and calcium 

(Ca2+)) across their cell membrane. Different concentrations of 

ions establish potential gradients between the inside and outside 

of the cell. Generally, at the equilibrium state (i.e. resting 

potential) a neuron is able to be stimulated electrically or 

chemically (i.e. depending on their type and function). Cellular 

stimulations may alter the ionic gradients across the cell 

membrane and therefore the cell can hyperpolarize or 

depolarize. Hyperpolarization occurs when the cell potential 

becomes more negative than its resting state (negative 

potential). Depolarization is the opposite response, occurring 

when the cell increases its potential. These dynamics are 

normally called the “passive” responses happening at the 

cellular level. However, when strongly stimulated 
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(depolarized), neurons can also become “active” generators of 

electrical signals, so called action potentials. These are spike-

type signals that occur every time the cell potential reaches a 

certain voltage threshold. After crossing this threshold, a 

cascade of electrochemical dynamics occurs, resulting in a 

sudden increase of its potential level, followed by the cellular 

machinery counteracting that by imposing an automatic control 

mechanism to discharge (i.e. repolarize) and reset the cell, 

towards its equilibrium state (resting potential). A neuron can 

spontaneously generate electrical pulses repetitively as often as 

input stimuli are presented, however, the cell normally requires 

a refractory period. That is the time spent by the cell machinery 

to recover after firing an action potential. Recalibration of the 

ionic equilibrium is required until the neuron is able to fire 

again. The action potential is induced by depolarization of the 

cell, and is sometimes a spontaneous event, in which the 

duration can vary based upon many factors differing between 

cell type and function. Typically, firing rates are within the 

millisecond range. Motivated by these biological mechanisms 

of signal processing, neuroscientists have developed some 

mathematical methods which help to study them, leading to the 

creation of neuronal computational models such as the “Leaky 

Integrate-and-Fire” (LIF neuron) model [26]. The LIF is a 

simplified model that resembles the behavior of a single neuron. 

It ignores the conductances of Na+ and K+ responsible for the 

action potential generation which are normally included in 

more complete neuronal models such as the Hodgkin-Huxley 

[27]. Instead, the LIF model replaces that by assuming an 

equivalent membrane’s capacitance (C) and resistance (R), and 

evolving the membrane’s voltage potential over time according 

to the differential equation presented in (1). 

 

𝐶
𝑑𝑉𝑚

𝑑𝑡
= −

𝑉𝑚

𝑅
+ 𝐼,           𝑡 > 0         (1) 

 

Solving the equation, by applying the Euler method which 

considers the approximation: 𝑉𝑚(𝑡𝑛+1) − 𝑉𝑚(𝑡𝑛) ≈ ℎ (
𝑑𝑉𝑚

𝑑𝑡
), 

where ℎ = 𝑑𝑡 (i.e. step size), thus: 

 

𝑉𝑚(𝑡𝑛+1) = 𝑉𝑚(𝑡𝑛). (1 −
𝑑𝑡

𝜏
) + 𝑅. 𝐼(𝑡𝑛+1). (

𝑑𝑡

𝜏
)               (2) 

 

𝜏 = R.C represents the membrane’s time constant; 𝑉𝑚 represents 

the membrane’s voltage potential, I is the input stimulus which 

might be associated to any input current reaching the cell body 

(i.e. soma). By computing (2) over time (𝑡𝑛), an action potential 

can be fired when a voltage threshold is reached. Typically, real 

neurons hold some time before they are capable to fire again. 

This refractoriness is normally composed of two periods: a hard 

(absolute) and a soft (relative) period. A hard refractory period 

is a time in which a neuron cannot fire absolutely, whereas a 

soft refractory period is a time during which the threshold is 

generally more elevated than its steady-state value such that an 

action potential may not be likely to occur. Overall in a LIF 

model, an absolute refractory period can generally be set by a 

constant time whereas a relative refractoriness can be set by a 

sudden increase (i.e. arbitrarily) of the threshold value, which 

may decay over time towards its steady-state after each firing. 

It is shown that the mathematical implementation of the LIF 

neuron using the Euler method can be very efficient in terms of 

its computational cost when compared with other methods to 

compute neuronal models. Refer to [25] for a comparative study 

of methods to compute neuronal models, including the LIF, 

Hodgkin-Huxley [27] and Izhikevich [28] models. 

B. On-Off Controller 

How can we visualize and perhaps implement this bio-

mechanism using control-systems theory? The simplest and 

most well-known control mechanism is the On-Off controller. 

This method of control is based on a continuous comparison 

between a defined threshold with the input that is presented to 

the system, which may result in a switching output response. At 

some degree this might reflect the “all-or-none” behavior of a 

neuron. However, the response exhibited by a neuron is more 

sophisticated than purely a switching mechanism. Its dynamics 

can be self-controlled showing a sort of oscillatory behavior as 

a consequence of: (i) a growth of some quantity; (ii) until 

reaching a threshold; (iii) followed by a self-reset. The process 

can repeat itself in a form of a continuous sequence of cycles 

being produced by the system. These kind of responses are 

commonly exhibited by relaxation oscillators that describe 

many phenomena across different disciplines [29]. 

 

 
Fig. 2 – Simplified diagram overview of the LIF system, where 𝜏 represents 

the integrator constant, T is the refractory time (delay) that is used to reset 

the leaky integrator. 𝑉𝑚 is the membrane’s voltage potential. 𝑉𝑡ℎ is the 

comparator threshold which for the purposes of this study it only assumes a 

positive value. The output signal of the comparator is composed of square 

pulses with amplitude K and positive polarity, which can also be referred as 

the feedback signal to be injected to the front-end acoustic receiver as 

described in the following sections of this paper. Adapted from [12]. 

 

A diagram overview of a LIF system is faithfully represented 

by Fig. 2. The system is composed of a leaky integrator (linear 

or not), a comparator (with static or variable threshold) and a 

reset time delay (constant or not) in the feedback pathway. For 

instance, by tuning the system for a defined function, pulses can 

be generated according to the phase of the input signal that is 

presented to the system. Therefore, the LIF system can then be 

considered as a smart generator of pulses and perhaps be 

exploited as a control mechanism for an adaptable sensory 

system as further described in this paper. A system generator of 

pulses can also be expressed in Laplace form as described in 

(3), where s represents the Laplace term (𝑠 = 𝑖𝜔). 

 

𝐿𝐼𝐹(𝑠) =
𝐾.𝑒−(𝜏.𝑑𝑡).𝑠

𝜏𝑟 .𝑠+1
−

𝐾.𝑒−(𝑊+𝜏.𝑑𝑡).𝑠

𝜏𝑟.𝑠+1
                            (3) 

 

K represents the amplitude of the pulse, 𝜏. 𝑑𝑡 is the time delay 
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before a pulse be generated (e.g. time spent by the integrator 

function), 𝜏𝑟 is the constant time associated to the rising of the 

output signal (i.e. pulses generated by a non-ideal driver 

circuitry) which should be much smaller than W (𝜏𝑟 ≪ 𝑊) in 

order to provide a reliable square-shaped pulse, and W is the 

pulse width (duration). 

III. A PASSIVE ACOUSTIC RECEIVER 

Conventionally, the resonant response exhibited by a front-

end acoustic receiver resembles the one given by a driven 

damped harmonic oscillator [30], which for the purposes of this 

work can simply be expressed by the transfer function in (4). 

 𝐻(𝑠) =
𝑠

𝜔0
𝑄

𝑠2+𝑠
𝜔0
𝑄

+𝜔0
2
 

This kind of signal detector can be characterized either by 

structural mechanical properties such as stiffness (k), mass (m) 

and dissipation, or by physical properties such as resonance 

frequency (𝜔0 = √𝑘 𝑚⁄ = 2𝜋𝑓0) and quality factor (Q 

= 𝜔0 𝛾⁄ ), where 𝛾 represents the damping coefficient. The Q 

factor expresses how quickly the energy supplied to the sensor 

can be dissipated in it. It means that an underdamped system 

(high-Q sensor) exhibits a slower temporal resolution compared 

to an overdamped one (low-Q sensor) that may achieve a faster 

temporal responsiveness when subject to an applied acoustic 

stimuli. Additionally, a passive sensor of this kind exhibits 

linear sensitivity and its bandwidth can be expressed by the 

ratio between resonance frequency and quality factor, ∆𝜔 =
𝜔0 𝑄⁄ . Therefore, that sets a design trade-off between time 

versus frequency responsiveness of an acoustic sensor, as 

summarized in Table I. 

 
Table I – Summary of time vs frequency resolution/response of a resonant 

acoustic sensor. 

 Temporal 

resolution/response 

Frequency 

resolution/response 

low-Q sensor high/fast low/wide 

high-Q sensor low/slow high/narrow 

IV. BIO-INSPIRED ADAPTIVE NONLINEAR AMPLIFICATION 

A bio-inspired concept for sensory signal conditioning that 

exploits feedback computation at the sensor level is proposed 

and described as follows. It faithfully describes an active 

process that is inspired by the possible physical basis for the 

mosquito hearing. From the engineering point of view, this 

concept can be illustrated by the closed-loop diagram presented 

in Fig. 3 and its transfer function is expressed by (5). 

 

 
Fig. 3 – Diagram overview of the closed-loop feedback system used to 

model the concept of active nonlinear amplification. H(s) represents the 

transfer function of a front-end acoustic receiver (e.g. microphone) and the 

LIF(s) is the transfer function of a pulse generator (e.g. microcontroller) that 

is placed in a positive-feedback fashion. Input(s) represent mechanical 

vibrations due to acoustic energy coupled with the sound receiver structures 

(e.g. microphone diaphragm) and Output(s) is the signal readout from the 

acoustic sensor (e.g. signal resulted from the transduction method used, for 

instance optical readout using laser can be used to measure the diaphragm 

displacements). 

 

                               
𝑂𝑢𝑡𝑝𝑢𝑡(𝑠) 

𝐼𝑛𝑝𝑢𝑡(𝑠)
=

𝐻(𝑠)

1−𝐿𝐼𝐹(𝑠).𝐻(𝑠)
                            (5) 

 

The concept is based on a feedback system considering two 

fundamental elements: a front-end acoustic receiver which has 

the role to detect sound, performing the first stage of signal 

detection and conditioning (mechanical filtering and 

transduction of energy from mechanical to an electrical form); 

and a back-end computational system, which assists in the 

process to further enhance the sensor responsiveness to a 

targeted stimulus. The overall response of the sensory system is 

greatly dependent on the coupling between these two elements 

(front-end acoustic receiver + back-end computation), which 

once combined can result in a nonlinear amplification with a 

hysteretic behavior. 

 

 
Fig. 4 – Example of the 1:1 resonance entrainment of the input signal (blue 

graph) with pulses (black graph). Pulses are generated after the integration 

reaches a defined threshold level. Overall, the coupling of both signals result 

in an amplified and mechanically filtered output response (red graph) 

performed at the transducer level. 

 

Theoretically, if the damping of the front-end receiver can be 

changed dynamically, that might have a consequent effect on 

its sensitivity to sound (i.e. Q is altered). This principle can be 

performed through the entrainment of pulsatile energy, a form 

of squared pulses that are injected to the front-end acoustic 

receiver in a synchronized and cycle-by-cycle manner 

exploiting 1:1 resonance as illustrated in Fig. 4. It means that 

pulses are entrained with the input signal at the same frequency. 

Therefore, an amplified and filtered response can likely result 

from an in-phase summation of signals that are mechanically 

coupled by the front-end acoustic sensor. For instance in a real 

system, it means that the mechanical vibrations induced by the 

input sound waves into a microphone’s diaphragm are likely 

added to the vibrations generated by the pulsatile actuation 

imposed by a feedback system mechanism (e.g. 

microcontroller). Therefore, the summation of signals is done 

at the mechanical level of the microphone itself (refer to our 
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experimental setup in Section VI B for a practical 

implementation of this concept). Additionally, under certain 

conditions it may behave like a critical acoustic sensor – an 

active system that operates near the oscillatory instability [29]. 

This behavior has been reported from within several studies on 

biological sensors, and has also been included within state-of-

the-art auditory models [31]. 

V. THEORETICAL MODEL 

This section summarizes the theoretical model of the 

purposed sensory system that is simulated through a numerical 

approach using MatLab R2014b. In order to better understand 

the system’s dynamics, a model using a front-end acoustic 

receiver described by (4) is placed within a positive-feedback 

loop controlled by a computational function given by (2) and 

exploiting the On-Off mechanism presented in Fig. 2. This 

modelling approach is directly derived from the mathematical 

implementation of (2) and (4) computed in a recursive way as a 

closed-loop system. It is important to note that, (4) is mapped 

from the analog-to-digital domain using bilinear transformation 

and implemented as an IIR filter using a biquadratic topology. 

The concept is tested using noise-free synthetic signals with 

𝑑𝑡 =1 μs that is the time-step resolution. The resonant 

frequency of the system is 𝑓0 = 3.3 kHz and the LIF model 

features include: T = 0.303 ms, 𝜏 = 10 ms and W = 20 𝜇s. 

A. Stability 

An evident consequence of using a control mechanism 

imposing pulses in a positive-feedback with a resonant sensor 

is how the stability of this system can vary under certain 

conditions. A system is found stable if its output tends to 

converge to an equilibrium state (LIF(s).H(s) < 1). It becomes 

unstable if the output appears to diverge without bound 

(LIF(s).H(s) = 1). A system can also be classified as critically 

stable when the output converges to a continuous and endless 

oscillatory state (LIF(s).H(s) > 1). Testing the system’s stability 

is then a preliminary task in order to understand the nature of 

its behavior under certain conditions.  

 

 
Fig. 5 – Stability diagram of the sensor system obtained by numerical 

simulation (using an impulse response analysis). Q represents the quality 

factor of the front-end acoustic receiver and K is the feedback signal gain. 

 

Fig. 5 shows the stability diagram calculated from numerical 

implementation of the closed-loop system presented in Fig. 3 

while varying Q, K and 𝑉𝑡ℎ. As previously described, the Q 

factor expresses how quickly the energy can be dissipated by 

the front-end acoustic receiver, meaning that a sensor with a 

high-Q may start to oscillate by itself when a high feedback 

signal gain (K) configuration is applied to it, whereas a low-Q 

sensor may show a higher level of convergence under the same 

K conditions. Additionally, 𝑉𝑡ℎ represents the threshold that 

sets the feedback operation, which can also play a key role in 

the system’s stability, since it can determine the position where 

the stability curve is located (Fig. 5).  

In order to have a better characterization of a given system’s 

operating point, Fig. 6 shows the bifurcation diagram obtained 

from a test while varying K, which sets the amplitude of the 

pulses, assuming a front-end acoustic receiver with Q = 30 (i.e. 

for our custom-built MEMS microphone [32] used in the 

experimental setup as presented in later sections) and feedback 

threshold, 𝑉𝑡ℎ = 0.25 V. The simulated system presents a Hopf 

bifurcation around the β = 19 point. Briefly, the Hopf 

bifurcation is defined as the critical region or point (β) where 

the system transits from a stable to an oscillating unstable or 

critically stable operating regime (refer to [4] for further details 

about the Hopf bifurcation related to hearing research). To 

ensure a stable system operation, it should function under the 

left side of the β point, and therefore the K chosen should obey 

that condition for a defined 𝑉𝑡ℎ. 

 

 
Fig. 6 – Bifurcation diagram of the sensor system obtained by numerical 

simulation using an impulse response analysis within the following 

conditions: Q = 30, 𝑉𝑡ℎ = 0.25 V and varying K. 

B. Nonlinear Compressive Gain 

One of the advantages of the feedback technique exploited in 

this study is the fact that it can provide a nonlinear compressive 

gain to the overall sensor response. For instance, when K value 

is higher than the input signal itself, the contribution of the 

energy added to the system dynamics, from the pulsatile 

feedback signal, is higher than the reverse situation - the input 

amplitude is higher than the feedback energy injected, therefore 

the system can exhibit a nonlinear compressive gain as 

illustrated in Fig. 7. 

 

 
Fig. 7 – Example of the nonlinear compressive gain that can be provided 

from the sensor system using the following conditions: input signal 

frequency 𝑓𝑖𝑛 = 𝑓0 = 3.3 kHz, Q = 30, 𝑉𝑡ℎ = 0.25 V for K = 1, 5, 10 and 15. 

 

The system is operated within its stable regime using a 1:1 
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resonance mode (refer to Fig. 4), hence the feedback signal gain 

should obey K < 19, when Q = 30 and 𝑉𝑡ℎ = 0.25 V. Assuming 

K = 15, then a stable operation of the system is ensured that 

results in a peak-gain given by the system of about 6.2 dB at 

1.76 V of the input amplitude (refer to Fig. 7). Therefore, the 

feedback contribution to the overall gain (Vout/Vin) is seen as 

nonlinear and it is also dependent on the input signal amplitude 

following an experimentally determined exponential 

relationship expressed by (6), where x represents the input 

signal amplitude (V), δ is the peak-gain (dB), θ is defined as the 

input amplitude for an achieved peak-gain (δ), and 𝛼 = 1- 

(maxGain/minGain) gives the gain compression rate factor. 

 

𝐺𝑎𝑖𝑛[𝑑𝐵] = {
         𝛿 × 𝑒−𝛼(𝑥−𝜃)         , 𝑥 ≥  𝜃
                    0                   , 𝑥 <  𝜃

                    (6) 

 

This is a simplified equation used as a fitting curve to express 

the gain after a threshold, which follows an exponential decay 

when the input amplitude is increased, and vice-versa. It is 

important to note that Vout is equal to Vin when the system is 

without feedback operation as such Gain = 0 dB. Table II 

summarizes some of the gain features using different feedback 

thresholds. It can be seen that the system while operated under 

the stable region can achieve a peak-gain of 7.03 dB when K = 

35 and 𝑉𝑡ℎ = 0.5. However, the maximum compression rate 

factor is 𝛼 = 0.31 obtained when the feedback signal gain and 

threshold are reduced to K = 5 and 𝑉𝑡ℎ = 0.1, respectively. It 

highlights that the feedback contribution to the overall gain has 

a bigger impact at low levels of the input stimuli, as the 

compression of the gain response arises. 𝑉𝑡ℎ can also influence 

the overall gain given by the system, since it affects the timing 

of the pulses entrained with a given input signal. For instance, 

when 𝑉𝑡ℎ = 0.5, the system is more likely to fire pulses closer 

to the end of the input cycle, since it takes more time for 

integration to reach the threshold level, than for 𝑉𝑡ℎ = 0.1, which 

is more likely to set the firing at the beginning of the input cycle, 

for the same given K. However, a perfect locking appears when 

the pulses are entrained at the middle of the input cycle, thus 

the contribution to the overall gain can be maximized. It means 

that each configuration (𝑉𝑡ℎ and K) has its own “best” input 

amplitude for which it maximizes the system’s response.  

  
Table II – Summary of the gain factors obtain under different feedback 

operations. 

𝑉𝑡ℎ(V) K (V) 𝜃 (V) 𝛼 𝛿 (dB) 

0.1 5 0.69 0.31 5.28 

0.25 15 1.76 0.20 6.20 

0.5 35 3.41 0.13 7.03 

 

C. Rise time 

Another important property of the positive-feedback 

technique exploited in this study is related to the fact that it can 

alter the effective time response of the overall system when 

subject to a step input stimulus. The rise time without feedback 

operation is 18.2 ms, measured at 98% of the peak amplitude 

for an acoustic receiver with Q = 30. Table III presents a 

summary of the rise times of the system when operated under 

the influence of feedback computation, where ∆ represents the 

minimum rise time that can be achieved by the system 

(milliseconds) and 𝜎 is the input amplitude (V) that is 

maximized in terms of the rise time under the defined system 

configuration set by 𝑉𝑡ℎ and K. Therefore, if a threshold 

detection method is required by a given application, the use of 

the positive-feedback process can provide a faster 

responsiveness (~ 4.5x) under these operating conditions. 

 
Table III –Summary of the rise time for different feedback operations. 

𝑉𝑡ℎ(V) K (V) 𝜎 (V) ∆ (ms) 

0.1 5 1.6 4.2 

0.25 15 3.9 3.9 

0.5 35 8.2 3.6 

D. Hysteretic response 

The input-output relationship of the studied sensory system 

follows a distinct nonlinear response, dependent on whether the 

input amplitude is increasing or decreasing. A system showing 

this kind of behavior is said to have a hysteretic output response. 

Hysteresis commonly originates due to the on-off feedback 

control mechanism applied to a system. It can be seen that the 

feedback operation imposes a switching behavior to the overall 

system response, which is mainly dependent on the threshold 

value 𝑉𝑡ℎ, used. Therefore, a hysteretic behavior is likely to 

appear as a direct consequence of the control mechanism 

exploited in this work. The control process is a threshold based 

computation that can lead to a bistable behavior of the overall 

sensory system. Sensors that show hysteresis are nonlinear 

systems. For the purposes of this study it is assumed that 

hysteresis is a consequent feature of the purposed concept, 

which may or may not be exploited for a given application, and 

it is not seen as a drawback of the concept. Biological sensors 

also show hysteresis, which is exploited as a useful feature, 

such that it can be seen as a synonym of intrinsic residual 

memory of the sensory system to a previous targeted signal and 

perhaps can provide immunity to noise [1]. 

VI. EXPERIMENTAL RESULTS  

This section presents the system’s output response obtained 

from the implementation of the theoretical model, as used to 

characterize and test the behavior of the sensory system while 

applying standard signals. It can be used to further validate the 

response of the concept obtained from a physical prototyped 

implementation of this system obtained experimentally.  

A. Overall response of the system using numerical simulation 

Fig. 8 shows the dynamic adaptations of the overall sensor 

system response under the following test conditions: 𝑓𝑖𝑛 = 𝑓0 = 

3.3 kHz, Q = 30, 𝑉𝑡ℎ = 0.25 V, T = 0.303 ms, 𝜏 = 𝑑𝑡 = 20 𝜇s, K 

= 10 and W = 20 𝜇s. That provides a gain of about 1.52 (gain = 

3.63 dB) under active feedback computation (A2 & B2). Fig. 9 

shows the hysteretic response of the overall sensory system - 

when the input stimulus follows a different amplitude tendency 

(increased and decreased). 
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Fig. 8 – Example of an amplified response of the sensory system obtained 

by simulation. Time and frequency response of a single-tone input (blue); 

output response of the sensory system (red) without- (A1 & B1) and with -

(A2 & B2) phase-locked pulses (black). The black signal trace in A2 is 

rescaled for the sake of clarity. 

 

 

 
Fig. 9 – Example of the hysteretic response of the sensory system obtained 

by simulation using an amplitude modulated input signal, (A) without and 

(B) with feedback control; (C) linear vs nonlinear response of the sensor 

system. The black signal trace in B is rescaled for the sake of clarity. 

B. Response of the sensor system obtain from the 

experimental setup 

The concept is also prototyped using a custom-built 

experimental setup presented in Fig. 10, which can perform 

real-time computation and provide a proof of concept of this 

parametric amplification applied to a MEMS microphone. That 

is meant to be a direct implementation of the theoretical model 

presented in Section IV and V in a practical manner. The system 

is prototyped using an electromechanical setup as following 

described: firstly, the function (H(s)) of a front-end acoustic 

receiver is performed by a MEMS microphone. The design and 

characterization of this device can be accessed in [32], where 

results of finite element modeling and practical experimentation 

are reported. Some of the device’s main features include: its 

resonance frequency around 3.3 kHz and the Q factor of 30; 

secondly, the element of feedback computation and control 

(LIF(s)) is implemented through an embedded system setup. By 

computing a software routine of the method described 

previously by (2), the embedded system (e.g. microcontroller) 

is able to generate pulses to be in-phase with a targeted input 

stimuli reaching the microphone’s diaphragm. Feedback 

signals (e.g. pulses) are driven to the capacitive port of the 

MEMS microphone. 

 
Fig. 10 – Schematic of the custom-built embedded system used to enable 

the experimental setup. A more complete description of circuits and systems 

can be found in [11], and refer to [32] for details about the MEMS 

microphone design used in this experimental setup). 

 

Highlights of the embedded system setup features include: an 

optical readout from the microphone’s diaphragm 

displacements, signals are additionally conditioned using a 

custom-built analog circuit, and acquired and processed using a 

digital computational unit based on the STM32F4 micro-

controller (refer to [11] for further details about the 

experimental setup). The purpose-built sensor system is then 

tested by experimentation using the parameters that are 

configured as follows: input acoustic signals with frequency 

𝑓𝑖𝑛= 𝑓0 = 3.3 kHz are played by a speaker; and 𝑉𝑡ℎ = 0.25 V, T 

= 0.303 ms, 𝜏 = 10 ms, dt = 20 𝜇s, K < 7 V and W = 20 𝜇s.  

 

 
Fig. 11 – Adaptive response of the purpose-built sensor system setup. Time 

and frequency response of the system for a single-tone acoustic input at 3.3 

kHz (blue); output response of the sensor system (red) without- (A1, B1) and 

with- (A2, B2) feedback contribution (black) with K = 5 V @ 𝑉𝑡ℎ = 0.25 V. 

The black signal trace is rescaled for the sake of clarity. Adapted from [12]. 

 

Fig. 11 presents the response of the sensory system setup 

showing an output amplification (A2 and B2) of about 2.2 

greater (gain = 6.85 dB), and the system’s responsiveness to a 

step input stimuli is also enhanced (with rise time measured: Δ 

= 5.5 ms), when compared with its passive response (A1 and B1 

- with rise time measured: Δ = 16.7 ms); Fig. 12 shows the 

response of the system to an amplitude modulated input signal 

with sound level being increased and decreased consecutively; 
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with- (B) and without- (A) feedback control operation, 

respectively. When the pulses are in-phase with the input signal, 

the output response shows amplification as predicted by the 

theoretical model and simulation, and also exhibits similar 

behavior to that reported for the mosquito’s hearing system 

response [13]. Refer to Fig. 9 for comparisons with the results 

from the simulation, and Fig. 1 for visual comparisons with the 

mosquito’s hearing response. 

 

 
Fig. 12 – Hysteretic response of the purpose-built sensor system setup. The 

sound level at 3.3 kHz (blue) is increased and decreased consecutively: (A) 

showing linear response – without feedback; and (B) showing hysteretic 

nonlinear response with feedback K = 3 V @ 𝑉𝑡ℎ = 0.25 V; (C) linear vs 

nonlinear response of the sensory system showing the amplification and the 

hysteretic behavior of the system. The black signal trace in B is rescaled for 

the sake of clarity. Adapted from [12]. 

 

During the experimental tests, the system’s operating regime is 

located within the stable zone. However, it is important to note 

that the stable region of the overall setup is found after 

experimentation by tuning the feedback signal gain. 

Experimentally, the critical region/point of the purpose-built 

system is reached when K is approximately 7 V at 𝑉𝑡ℎ = 0.25V. 

Therefore, in practical terms the critical region/point is reached 

at smaller K amplitudes when compared to what is predicted by 

simulation (K = 19 at 𝑉𝑡ℎ = 0.25). In practice, the critical point 

is expected to be shifted since the positive-feedback system 

used is greatly affected by the background noise surrounding 

the experimental setup. It means that, noise can affect the 

system dynamics in several ways. For instance, noise within the 

system may impose some jitter to the feedback operation likely 

seen at the transitory states, as seen in Fig. 11 A2 – the pulse 

train (black trace) is kept active for a longer time at the 

downward slope of the system’s response, which is not seen in 

a noise-free simulation - Fig. 8 A2. Additionally, when the 

system is operating near its threshold voltage, noise can make 

the system transition between the on-off states momentarily 

(Fig. 12 B - black trace). This may result in intermediate output 

fluctuations as the system jumps between the two states (Fig. 

12 C, black trace onset). There is evidence that this is a separate 

state, which appears to be at the junction of stability between 

the two states. 

VII. CONCLUSIONS 

The sensitivity of a passive acoustic sensor is greatest when 

operated at the resonance frequency, and that is also 

proportionally dependent on the Q factor. Physical constraints 

are imposed by the sensor’s design on the Q factor that can be 

achieved, such that one might not have much flexibility and 

control over these parameters when and after designing an 

acoustic sensor. Therefore, this paper presents a method to 

provide adaptive nonlinear amplification capabilities at the 

sensor level. The concept is theoretically described through a 

model and it is validated experimentally through simulation and 

physically prototyped using a custom-built setup as a proof of 

concept. It is clear that the positive-feedback mechanism 

exploited in this study can enhance signal conditioning at the 

sensor level, namely amplification and fast sensory 

responsiveness to sound when the sensor is subject to a step 

input stimulus. However, in a real scenario this type of system 

dynamics can be highly influenced by the noise surrounding the 

setup. Future investigations can address this issue, for instance 

by adding noise at the simulation level in order to have a better 

prediction of the system’s dynamics in the presence of different 

types of noise (random noise or any competitive signals that can 

be generated by electrical or acoustic sources). Moreover, the 

biological reports [13-14] that inspired this work describe the 

mosquito hearing response as greatly enhanced due to the 

“synchrony through twice-frequency forcing” – 2:1 resonance 

mode. It should be noted that this study only explored the use 

of 1:1 resonance mode (one pulse per cycle with positive 

polarity), however, one might hypothesize about the response 

of the proposed sensory system if configured at 2:1 resonance 

mode (entrainment at twice per cycle – one pulse phase-locked 

in the positive cycle of the input signal and another pulse phase-

locked in its negative cycle with compatible polarity, 

respectively): (a) it might drag the β point towards a lower value 

of K, for the same given threshold value as used with 1:1 mode, 

meaning that the system might enter in a self-oscillatory 

condition quicker and at lower feedback signal gain used; (b) 

the overall performance would benefit from the 2:1 mode in 

terms of the gain and time response/resolution that can be 

achieved, since the feedback path can then supply twice the 

energy per cycle when compared with 1:1 mode. Future 

investigations can address this modality further, which may add 

another level of versatility to the system outcomes. 

Additionally, one may hypothesize that the feedback 

parameters such as 𝑉𝑡ℎ and K, which were kept as constant 

values in this study, can assume variable conditions (e.g. be 

adaptive), for instance, evolving dynamically to put the system 

operating point “always” at its best signal-to-noise ratio 

condition as natural sensors and systems do. This work aims to 

support the positive cross-disciplinary synergy between biology 

and engineering based on previous and ongoing bio-inspired 

research studies. It provides a proof of concept of a bio-inspired 

acoustic sensor system that can potentially be exploited by both 

the sensors and the circuits-and-systems communities. The 

electronics embedded in this prototyped sensor-system are 

generic and they are mostly based on discrete-level 

components, therefore, future developments of this work might 

include bio-inspired electronics based on ultra-low-power IC 

design techniques [33]. In the near future, one might predict that 
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acoustics and ultrasonic engineering are the most likely 

domains to get this concept through a more advanced and 

matured stage of implementation, when requirements for 

adaptation are needed of a sensor, featuring enhanced 

sensitivity and faster responsiveness to target signals of interest. 
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