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Gesture Control
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Abstract—The tracking of eye gesture movements using wear-
able technologies can undoubtedly improve quality of life for peo-
ple with mobility and physical impairments by using spintronic
sensors based on the tunnel magnetoresistance (TMR) effect in a
human—machine interface. Our design involves integrating three
TMR sensors on an eyeglass frame for detecting relative movement
between the sensor and tiny magnets embedded in an in-house
fabricated contact lens. Using TMR sensors with the sensitivity
of 11 mV/V/Oe and ten <1 mm® embedded magnets within a
lens, an eye gesture system was implemented with a sampling
frequency of up to 28 Hz. Three discrete eye movements were
successfully classified when a participant looked up, right or left
using a threshold-based classifier. Moreover, our proof-of-concept
real-time interaction system was tested on 13 participants, who
played a simplified Tetris game using their eye movements. Our
results show that all participants were successful in completing the
game with an average accuracy of 90.8%.

Index Terms—Eye movement control, human-machine
interaction, spintronics, tunnelling magnetoresistance sensor.

1. INTRODUCTION

HE studies of eye movements and gestures is of interest
T to clinical ophthalmologists and psycholinguists [1], [2].
Eye gesture recording enables researchers to study potential eye
disorders while performing various dynamic tasks. In 1981, Bolt
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was among the first to demonstrate the use of eye movements
in human-computer interaction [3], [4]. Eye movement tracking
is considered a robust method for gesture control, since these
movements do not deteriorate with age, as those of other body
parts do [1], [5]. Consequently, wearable devices that rely on
tracking and classifying eye gestures have increasing utility in
communication and control for people with high levels of physi-
cal or communicative disabilities. For example, individuals with
physical disabilities can use wearable devices to control their
wheelchairs using eye gestures [6], [7]. Eye-computer-based
interaction provides an effective alternative to joystick-based
control of mobility scooters for people who cannot functionally
use their upper limbs [8]-[10]. It represents a novel approach
for human-machine interaction and assisted living [11]-[15]. In
addition, eye tracking provides an additional hands-free level
of control for non-disabled people during fast, cognitively de-
manding tasks such as driving or flying. Furthermore, clinical
ophthalmology research aims to resolve eye disorders by finding
links between eye movement and other activities such as sports,
mental attention and sleep [16]-[18].

Traditionally, eye movement detectors have used near-
infrared (NIR) light transmitters and cameras to produce bright-
dark contrast for pupil detection [19], [20]. Although not all
eye types and NIR wavelengths produce the desired effect
from corneal reflection, the relative distance between pupil and
corneal reflection can provide useful gesture information [21].
However, mobile NIR devices typically cost around $10,000
and their desktop counterparts cost $5,000 [16]. Such high
costs impede further market penetration by eye interface-based
systems. Although alternative methods using web cameras are
considerably cheaper, their dependence on lighting conditions
makes such systems prone to errors induced by light interfer-
ence [8], [22]. Likewise, infrared cameras are prone to infrared
light interference [23] and both image-based and infrared-based
cameras are susceptible to problems due to the top eyelid ob-
structing the iris, and head movement causing location error
[16]. Additionally, desktop-based web cameras or NIR-based
systems require participants to remain stationary, at a distance
of around 70 cm from the camera or screen [8], [23]. This limits
the applicability of eye gesture detectors.

Other approaches involving cameras include blink detectors,
where blinking either with the right, left or both eyes trigger
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Fig. 1.

Developed contact lens with embedded magnets that are detected and monitored by the TMR sensors within the glasses frame. Gestures are detected

when the user gestures either up, left, or right, towards the sensors on the edge of the frame. Gestures are classified when amplitude thresholds are met. This system

allows user to control systems such as wheelchairs.

different commands. However, it is difficult to differentiate
between casual involuntary blinking and intentional user-evoked
blinking [24]. The former is particularly pronounced under
fatigue, causing the person to blink more often [25], requiring
focus and stamina, which are often compromised in patient
populations, to prevent unintentional blinking [26]. Therefore,
the activation command/procedure should be used to allow the
user to activate or deactivate the cameras on-demand for either
blink or eye gesture detection.

Electrooculography, electromyography and electroen-
cephalography can be used for human-computer interaction
[27], [28]. However, these techniques are either too expensive,
or too uncomfortable for the wearer, particularly if requiring
multiple electrodes to be attached to the face [16], [29].

In contrast to the above, a novel eye gesture detection system
is proposed that is highly reliable yet wearable and unobtrusive
to the user. The sensing system employs thin-film spintronic
sensors based on the tunnel magnetoresistance (TMR) effect
integrated into a wearable eyeglasses platform. We demonstrate
this proof-of-concept (Fig. 1) using ten <1 mm? cylinder-
shaped magnets embedded within a contact lens and tested
on an animatronic artificial eye model. This lens produces a
changing magnetic field around a custom-built frame in the
form of eyeglasses. By using sensitive magnetic sensors located
on the frame, these magnetic differences can be captured and
used to translate eye movements into a set of commands. This
eyeglasses technology concept will be 3D-printed, as individuals
have different head/face shape and will ensure almost similar
performance compared to the experiment within this study.
This customisation is essential, as when the magnetic sensor to
contact lens separation is increased, the likelihood of magnetic
field detection will decrease.

TMR sensors have greater sensitivity than other thin-film
magnetic sensors, such as anisotropic magnetoresistance (AMR)

sensors, giant magnetoresistance (GMR) or Hall-effect sensors
[30]. It is noteworthy that TMR sensors are generally between 10
and 100 times more sensitive [31]. Furthermore, their lower bias
current and comparably lower sensor size make TMR sensors a
viable choice for wearable sensing technologies [32].

Another advantage of using a TMR sensor for eye gesture
detection is its inability to detect ultra-low fields from skeletal
muscles [33]. This is the case because the sensor is not attached
to the face to detect weak magnetic fields, unlike in electroocu-
lography, where artefacts generated by eyelid movement, blink-
ing and facial muscle activation have been shown to interfere
with eye movement recordings [34].

TMR sensors are based on a promising technology in spin-
tronic research, in which conventional electronics make use of
charge carrier mobility for either information or power transfer
[35], [36]. Spintronics uses an extra degree of freedom from
electrons, commonly referred to as ‘spin’, where electrons in-
trinsically spin upon their axis in either a clockwise (spin-up) or
anti-clockwise (spin down) direction [37].

During stable operation, the TMR sensor’s output signal is
generated by altering its resistance. This is achieved by enabling
or restricting the electron’s quantum tunnelling probability.
Specifically, resistance will vary depending on the free layer’s
orientation with respect to the pinned layer [38]. If both are paral-
lel, higher tunnelling probability is achieved, which translates to
lower resistance. Similarly, an anti-parallel alignment will result
in a higher resistance, since more electron spin is reflected prior
to the tunnel barrier due to spin-dependent scattering [35], [37].

In this paper, novel approaches are explored for eye gesture
classification. In the next section, we provide a description of our
methods for sensor development, followed by a discussion on the
contact lens platform, TMR sensor integration, circuit design,
the animatronic eye model, as well as the signal processing and
decision-making process. In section 3, the experimental setup
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Fig. 2. (a) Permanent magnets are added to the 3D-printed, surface smoothed

mould; (b) PDMS liquid is added to the magnets; (c) air bubbles are removed by
vacuum pump to ensure a wearable lens; (d) the mould is added to the oven to
solidify the liquid PDMS; (e) when the PDMS has solidified, the lens is peeled
from mould and ready for use.

is described. In section 4, results, and experimental verification
of 13 participants are presented. Finally, concluding remarks in
section 5 are provided.

II. MATERIALS AND METHODS
A. Contact Lens Fabrication

For the eye-gesture based system shown in Fig. 1, the
magnets-embedded soft contact lens was fabricated. The N42
Neodymium (F305-100, first4magnets) permanent magnets
were added into a 3D printed mould with polydimethylsiloxane
(PDMS). The magnets were positioned off-centre to ensure the
centre is as thin as possible for clear vision through the pupil
and fit the mould. Each of the ten magnets was cylinder-shaped
with 1 mm diameter and thickness providing less than 1 mm? in
volume each. As shown in Fig. 2, the PDMS material and curing
agent were mixed and then slowly poured into the mould with
the magnets to ensure equal distribution. The fabricated material
was placed in a vacuum chamber for one hour to prevent air
bubbles from forming around the magnets and within the PDMS
material. To accelerate the drying process, the mould was placed
in an oven at 60 °C for 24 hours.

The 3D-printed mould was made from PolySmooth™ print-
ing filament, and the rough surface was smoothed with alcohol
vapour gas using a PolySher™ machine. An exposure time of 15
mins provided the best results when using 100% infill from the
PolySmooth™ filament. The smoothness of the mould increases
with an increased exposure time, but over-exposure may cause
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its dimensions to alter, since the 3D-printed mould was based on
the eye’s real curvature, over-exposure will degrade the contact
lens’ wearability [39]. Use of 3D moulds has been reported in
the literature, and the rough surfaces resulting from 3D-printing
found to be problematic [40], causing user discomfort due to
friction from the contact lens surface [41]. Therefore, alcohol
vapour was used to smooth the 3D mould, while the use of PDMS
ensured the lens was both soft and biocompatible to provide user
comfort [42]-[44].

B. Tunnelling Magnetoresistive Sensor

The TMR sensors were fabricated with a nominal resistance of
1.75 k€2, obtaining a measured sensitivity of 11 mV/V/Oe (Oer-
sted) at 1 Volt(V) bias [45]. Increasing the bias voltage lowers
the magnetoresistance (MR) ratio, which adversely affects the
sensitivity of the device [35], [46], [47]. With zero bias voltage,
the sensor’s MR ratio was found to be 133%, and was expected to
slightly decrease with increased voltage. Therefore, to maintain
both high sensitivity and a large amplitude for the TMR sensor,
the circuit was 5 V bias limited.

The selected TMR sensor that can detect the magnetic field of
115 pT at 196 Hz [45] was developed with a double pinned stack
linearised in bulk with the three annealing strategy, increasing
the sensor’s linear response by post-deposition annealing at
different temperatures [48]. Where the first annealing step was
at 330 C with a bias field of 1 T applied for 2 hours. The second
step at 270 C, applying 1 T perpendicular to the first annealing
field direction for 2 hours. And the third step at 150 C with a
field of 0.02 T parallel to the first annealing direction for 1 hour.
Further details are available from Paz er al. [48]. Hence, with
a linear response from the sensor allows the signal from each
gesture to be reliably compared as an output voltage when the
field strength from the contact lens is unknown [49].

Each of the three TMR sensor chips comprised 1102 TMR
circular pillars of 100 pum diameter, connected in series to
increase the area for magnetic sensing, since signal-to-noise ratio
(SNR) is inversely proportional to the sensing area. Increasing
the sensing area improved the likelihood of detecting magnetic
fields originating from the contact lens, thereby improving the
available signal output. Sensor placement is important since
fields perpendicular to the top layer are less likely to be detected.
This is because the sensor detects in-plane fields found within the
free layer. As shown in Fig. 3, the magnetisation vector of the free
layer with respect to the pinned layer determines the measurable
resistance [50]. Therefore, if the TMR sensors were placed
on eyeglasses, they would be located on the frames to detect
in-plane fields. The sensors were placed flat on the 3D-printed
frame at three locations, representing the top, left and right side
of the spectacle frames, an area surrounding the glass lenses to
prevent vision obstruction. Measured from centre of each sensor,
the right and left sensors are 5.7 cm apart (horizontal), whilst the
top (up) sensor is in between i.e. 2.85 cm (horizontal) and has a
vertical separation height of 2.2 cm from the right/left sensors,
this is to account for smaller vertical eye movements and designs
seen from eyeglasses such as the Ray-Ban Wayfarers (RB2140)
[16]. The vertical height of the right/left sensors is 4.7 cm from
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Fabricated TMR sensor that varies resistance depending on the direction of the external field (magnetic eye lens) with respect to the pinned layer. The

circuit is connected to a computer wirelessly via Bluetooth and classifies the signal from the wearable unit PCB into eye gesture commands.

the ground. The eye model was placed in between the right/left
sensor and will be 2 cm away from the frame.

To produce a signal output, the TMR sensor needs to be
current-biased and in series with a nominal resistance-matching
resistor. For this study, a single TMR sensor alongside a 1.75 k2
resistor was used for each of the three gesture directions. This
method is susceptible to thermal drift, with a DC offset output
equivalent to half the voltage bias (2.5 V), and must be filtered to
enable amplification without saturation [51]. To reduce thermal
drift and provide greater output with a measured sensitivity at
190 mV/V/Oe, a full bridge sensor configuration should be used.
However, in this study, that was not feasible due to limited space.
Each of the three sensors in this study consisted of a single TMR
Sensor.

The system was designed to obtain, top, right and left binary
movements. It was previously mentioned in the literature that
eyeball movement in the y-direction (vertical) is small and
harder to differentiate, relative to when a subject is initially
looking straight ahead [16]. Consequently, two directions along
the x-axis (left and right) and only one vertical direction (up)
were discriminated, with respect to looking straight i.e. centred
position of a subject’s eyeball gaze.

C. Circuit Design

To improve signal quality, a robust front-end circuit was
required to remove external noise and improve the SNR, as
shown in Fig. 3.

1) Bias Circuit: The readout from each TMR sensor was
obtained via a front-end circuit and was powered by a single
shared &+ 5 V power supply unit. Each TMR sensor was matched
with its nominal equivalent value resistor to create a voltage
divider circuit, such that the front-end circuit measured the

voltage change at the nominal resistor. Since the magnetic field
was a few micro-Tesla at a 2 cm distance between the lens and
TMR sensor, the magnetic field fell within the linear region of
the TMR sensor (see the graph of resistance vs external field
strength in Fig. 3). The output voltage was small and required
amplification. Additionally, the sensor and the resistor were
nominally matched, a large 2.5V DC offset was present.

2) High-Pass Filter: To remove the large DC offset before
amplification, a first-order high-pass filter at C1 and R2 with
a cut-off frequency of 0.5 Hz was used. Also, at C6 and R9
having the same cut-off frequency was based on data from the
literature suggesting the minimum frequency for eye movements
caused by eye fixation to be greater than 0.15 Hz [52]. Baseline
drift filters are typically set to remove frequencies below 0.8 Hz
coming from various sources, such as slow varying environmen-
tal magnetic fields [53] or the thermal drift of the TMR sensor
itself [54] that could interfere with the circuit [55]-[57]. This
is advantageous for noise reduction since frequencies <0.8 Hz
are somewhat attenuated when the 3-dB point is set at 0.5 Hz,
without effecting the eye gesture signals found at frequencies
>0.8 Hz.

3) Amplification: During initial testing, the signal amplitude
from a moving contact lens was found to be smaller than 50 mV
and thus required further amplification to reduce the influence of
electronic noise from filters and the input noise of the microcon-
troller (Bluno Beetle); better SNR also improves classification
accuracy. An operational amplifier (Texas Instrument OPA4227)
with very low noise input 3 nV/+/Hz and a closed loop gain of
400 was used. This ensured an output signal in the volts range,
which was sufficiently high for an amplitude threshold-type
classifier.

4) Low Pass Filter: The typical sampling frequency range
of mobile eye-tracking systems is between 25-60 Hz [17].
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A two-stage 4" order Butterworth active low pass filter was
therefore designed with a cut-off frequency of 28 Hz and a
sampling frequency of 60 Hz. High-frequency micro eye move-
ments (micro-saccades), which can reach up to 1000 Hz [1],
were thus attenuated to avoid interfering with the eye gesture
recordings. In addition, the filter attenuated 50 Hz powerline
and other high-frequency magnetic field noise found within the
environment [53].

5) Analogue-to-Digital Conversion (ADC), Protection and
Transmission: The ‘DFROBOT Bluno Beetle’ was used, as it is
capable of both Bluetooth transmission and multichannel ADC.
The built-in ATmega328p chip can convert analogue-to-digital
signals at 10-bits (0 to 1023 steps) with a voltage range of 0-5
V. This voltage was within the allowed supply voltage range
(-0.6-5.6 V) for the ADC pins. Additionally, using a difference
amplifier configuration, a DC offset of 2.5 V was added to the
final output. This allowed the signal to swing to the midpoint of
the voltage supply, such that the output signal could reflect field
polarity changes.

The signal was then transferred via Bluetooth to a computer
for data processing and classification using a voltage threshold
classifier. The signal amplitude increased, creating a positive
peak, during a gesture that moved the eyeball towards the senor,
and produced a negative peak when gesturing away from the
sensor. The time-delay from the eye model’s gesture movement
to the PC classifier, via the analogue front-end of the TMR sensor
was determined to be up to 1 second. This delay was a result of
the circuit delay, mainly from filters, as well as communication
delay between the PC and microcontroller circuit.

D. Animatronic Eye Model

Before performing an on-body human test, our proof-of-
concept system was non-invasively validated using a custom-
built gaze following system (GFS), as shown in the supple-
mentary (2). Stringent test is required for a contact lens, as
discomfort and risk of eye infection must be mitigated before
being considered for human use [58]. Alternative methods, as
found in research on electrical contact lenses, were tested on
animals either in-vitro [59] or in-vivo [60]. However, the animals
cannot perform an on-demand eye command and interface with
a computer. In the proposed system, a mimicking eye model
was created to reduce lag-time by safely testing the feasibility
of the proposed magnetic sensor and front-end circuit before a
validated wearable lens design.

During the experiment, the user’s gaze direction was mapped
onto an artificial animatronic eye model wearing a magnetic
contact lens. The magnetic contact lens was attached to the eye
model and used two servo motors to control its movements. The
animatronic mechanism moved the eyeball by mimicking eye
movement from a human volunteer via an optical camera. In the
GFS, the relative coordinates between the centre of the eye and
pupil were extracted from the video data using image processing
and gaze tracking algorithms. By controlling the servo motors,
the eye model was able to follow the user’s eye movement with
less than 100 milliseconds (ms) delay. Volunteers were requested

1303

to move their eyeball to discrete locations by looking up, left and
right.

A commercial eye (OEMI-7) matching the dimensions of
a typical human eyeball was used. A single servo-controlled
movement in the x-axis (horizontal), and another in the y-axis
(vertical). The eyeball was approximately 24 mm in diameter,
with a pupil diameter of around 7 mm. The model was sur-
rounded by an outer protection holder, expanding the diameter
to 35 mm, and adding both size and weight to the animatronic
eye model.

To overcome this challenge, the animatronic mechanism was
3D-printed, and the eye model was attached to the 3D structure
via a nickel-coated iron universal joint. The joint was 7 cm
from the sensor and 5 cm from the lens. When initially tested
within a shielded environment, the metallic joint was found
not to disrupt the magnetic field sensed at the TMR sensor
and when compared to a 3D-printed plastic joint movement,
it was found to be more fluid. The joint allowed the eyeball
to be pulled into different positions by the 9-gram servo motor
using rigid metallic wires with low friction. Due to the design
of the eye model such as the OEMI-7, the centre of the eyeball
could not be accessed therefore, the centre of eyeball rotation
(CER) had to be outside the eyeball and the eye’s centre-of-
mass point was no longer at a fixed position. The universal
joint was placed behind the model and was the new centre of
rotation. The eye model moved unnaturally, as for each degree
of movement detected by the webcam, the eye model moved
more. To mitigate this issue as much as possible, calibration
of the servo motors was required when mapping each gesture
position. The control of the two servo motors was programmed
with a high-speed microcontroller. The GFS software applica-
tion converted eye movements from the optical camera into a
pulse-width-modulation signal for controlling servo motors. The
GFS software coded with LabVIEW ™ was able to transmit eye
positions viaa USB 2.0 cable, this allowed interface between the
PC and the microcontroller, and process the signal transmitted
from the Bluetooth enabled front-end circuit. The restricted
motor movements were proportional to the range of movement
of a human eyeball, allowing rotation in the horizontal direction
for 180 degrees from corner to corner of the eyelid, and for 130
degrees in the vertical direction, to replicate the limitations of a
real eye [20]. This may still result in slightly larger than lifelike
movements [61], and for a real-life scenario would mean the
source magnetic field will be reduced per gesture. To mitigate
such problems in real-life, solutions can be employed such
as improved sensor’s sensitivity (or detectivity) levels, custom
eyewear design (to reduce sensor and lens separation) or signal
amplification. However, signal amplification is depended on the
system’s signal-to-noise ratio (SNR) and hence system’s SNR
improvements techniques would also be employed.

E. Signal Post-Processing and Decision Making

In the current system, a signal corresponding to eye move-
ment is post-processed before being sent to a decision-making
algorithm to reconstruct the eye movement. There are four steps
in the software’s built-in signal processing [62].
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1) Eye Movement Signal: Fig. 4(a), shows an example of the
signal received via wireless readout circuit in response to differ-
ent eye movement. Flow charts depicting signal post-processing
and decision-making are presented in Fig. 4(b) and Fig. 4(c),
respectively. Generally, a higher peak-to-peak signal occurred,
as the eye and contact lens got closer to the sensor. For example,
the left sensor returned a higher value when the eye looked to the
left, while the signals from the sensor located to the right and up
remained low. The opposite occurred when the eye looked to the
right. When the eye looked upwards all three sensors produced
high amplitude signals, but that was the only condition in which
the “upwards” sensor produced a high amplitude signal. In this
study, movement of the left eye was tracked, although the right
eye can be used, as well.

2) Filtering and Amplification: To remove DC drift, a 2™
order Butterworth high-pass filter with a cut-off frequency of
0.5 Hz was applied. To amplify the difference between each eye
movement and noise peaks, the signal was taken to the fourth
power.

50 () = [t (n) ,0)" (1)
where the u,,(n) and s,,(n) represents the input and output of
m'" sensor respectively (in the current design m = {1, 2, 3}),
f(x) is the filter function, c is the coefficient of the DC removal
filter. The corresponding signal is illustrated in Fig. 4(a). After
filtering and amplifying the signal, the response of the movement
was enhanced, and the artefact was attenuated. This operation
facilitated signal thresholding in the next step.

3) Amplitude and Time Thresholding: Afterwards, amplitude
thresholds were determined heuristically and set independently

for signals coming from each of the three sensors independently.

To separate the real signal from fluctuating noise and other un-
expected movements, the number of samples that exceeded the
amplitude thresholds was calculated in a sliding window of 100
samples (approximately 1 second). If we define a thresholding
function as:

[ 1lforz >ty
g () = {0 otherwise )
The operation of this step can be described as:
Y () =ha [ Y ha(sm () 3)
i=n—L

where L denotes the length of the sliding window (L = 100),
the y.,(n) is the event occurrence flag of the m'" sensor that
will be sent to the next step. There were two threshold val-
ues, t; and to, in the h; (amplitude threshold) and hs (time
threshold), respectively. Both values were empirical numbers
obtained during system development. Where time threshold
ensures an event was captured, only when the spiking signal
existed longer than a certain period. The amplitude threshold
captured the spike generated by a changing magnetic field while,
the time threshold evaluated the spike width for distinguishing
eye movement signal peaks and other fluctuating noise, such
as head movement. Afterwards, the threshold triggered an eye
movement event for the next step, decision-making.

4) Decision Making: As explained above, when participants
looked upwards, an increase in signal amplitude was noticeable
with all three sensors, while for looking left and right, only the
corresponding sensors closest to the iris were responsive. As
shown in Fig. 4(c), the algorithm first investigated the signal
from the top sensor. If the amplitude was above the threshold
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for a predefined period, this event was labelled as ‘up’, irre-
spective of the condition of signals from the other two sensors.
If the signal from the top sensor remained under the threshold,
signals from the left and right sensors were analysed to detect
the direction of eyeball movement. After receiving an event,
the system stopped detecting upcoming events for another 100
samples to avoid activation by unintentional movements such as
e.g. a saccade, when a person typically briefly looks from left to
right or vice versa.

III. EXPERIMENTAL SETUP
A. Participants and Experimental Procedures

Thirteen participants took part in the study. There were 11
males and 2 females. Their mean age was 27.7 years, with &
std. 4.5. The minimum age of the participants was 24 years,
and the maximum was 38 years old. All participants signed
a consent form prior to taking part in the study, which was
approved by the University’s ethical committee. To test the eye
gesture system, participants were invited to play a custom-built
eye gesture-based game, inspired by Tetris [63]. Participants sat
approximately 70 cm from a 15- inch computer screen. Prior
to taking part in the experiments, participants completed a brief
5-minute familiarisation session in which they learned how to
play the game and tested each gesture at least once. Also, each
user would need to have little or no head movement to reduce
gaze-tracking error for the eye model via the web camera [20],
wherein some users may feel it to be unnatural or tiresome and
need time for system familiarisation.

The objective of the game was to complete a row of four
blocks. Each block was moved down by the participant looking
up. The block moved to the right when the participant looked
right, and to the left when they looked left. Once a block reached
the bottom, the participant needed to provide an ‘up’ command
to lock the box and bring down a new block from the top of the
game. When the final block was placed, the participant had to
look up one more time to complete the game. The purpose of
the game was to allow participants to determine the movements
on their own, but the objective of the game was the same for all
participants. For that reason, the total number of movements, and
the number of movements in left, right and up directions varied
among participants. The Tetris game can be completed with 24
correct commands using four blocks. Whereby based on early
feedback, the four blocks were sufficient to induce some fatigue,
as users were continually sitting upright to face the camera
and maintaining focus to determine their next move. Therefore,
the experiment required limited commands, as using five or
more blocks began to disengage users from the experiment with
fatigue.

An advantage of using live participants is that the mimicking
eye model may detect unique eye movements given that each
user playing a game may produce incorrect commands and
later would self-correct with the online interface system. The
unwanted commands could either come from false classification
or human decision error. Therefore, pre-recorded eye model
movements are not used to test the proof-of-concept system,
considering each eye gesture may be different when used for a
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real-life application and provided that each user will have the
option to promptly self-correct after every incorrect command.

B. Test Setup

Fig. 5 shows the GFS software and hardware, along with the
built-in wireless data acquisition and real-time signal processing
systems. The participant’s eyes were focused on the Tetris game
window placed 1 cm below the top-centre corner in the 15-inch
computer screen and 3 cm below the web camera. The game
window was 3 cm?. The participant had both eyes on the window
and was free to move them within the window to assess the game.

To monitor the movement of the eye model, the experiment
was recorded using a video camera. After each classification,
an audible sound was generated. Three different sounds were
used, identifying which sensor was activated. This allowed the
experimenter to compare the sensor activated with the gesture
made by the eye model, to determine the accuracy of the system.

IV. RESULTS AND DISCUSSION

As shown in Fig. 6(a), the mean number of total moves
to complete the game was 32 =+ std. 7.1, and the total mean
correct commands was 29 £ 5.8. Five participants with the
fastest times (< 1 min) for game completion finished the game in
under 26.6 + 0.9 moves, whereas the slower participants (1-4
mins) finished them in 35.9 4+ 7.6 moves. The classification
accuracy of each sensor from the 13 participants and the overall
accuracy from the ‘Tetris’ game is illustrated in Fig. 6(b) The
average mean accuracy was 90.8% =+ 5.9%. The highest average
individual accuracy was 96% and the lowest was 80%. For
individual classification labels, the results show that, except
with participant 10, the top sensor was classified with 100%
accuracy, but it also had a high false positive rate. No user
was able to achieve 100% accuracy concurrently for both the
right and left sensors. For example, when an upward gesture
was made, the left or right sensors incorrectly met the gesture
threshold. This was partly caused by a camera error, which
resulted in the eye model looking off-centre. Consequently,
when an upward command appeared, the closest left or right
sensors were incorrectly activated. A second potential cause
was participants not looking perfectly to the centre; since the eye
model was mimicking the gesture, this meant that the eyeball was
also facing off-centre. This caused the closest sensor to trigger
first before triggering the user’s desired sensor. For example,
since participant 2 was facing slightly left from the centre, an
‘up’ gesture was incorrectly triggered by the left sensor first.
This resulted in the left sensor being 50% incorrectly classified
for participant 2.

To further analyse the system can be achieved by measur-
ing the information transfer rate (ITR) or also referred as bi-
trate, where the bitrate equation found in [64], [65], provides
system performance of the human-computer interface in bits-
per-minute. From the 13 participants, the mean group average
bitrate (bits/min) is 26.7 &£ std. 17. As the group’s minimum,
the bitrate of the slowest player to complete the trail (3 min 55
sec with 45 commands) was 6.5 bits/min whilst, for the fastest
player (36 secs with 26 commands) the ITR was 56.8 bits/ min.
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(a) Webcam Game

(b)

Eye Recording

Contact Lens

1.Participant

Eye Model 3.Video Recorder 4.Eye Model System

Fig. 5.
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Tetris.exe — [

Score:0 Speed:1

Tetris Game

2.PC/Webcam

(a) Illustration of a participant undertaking eye movement recording by playing the ‘Tetris’ based game via a webcam; (b) A screenshot of the “Tetris’

graphical interface that allows data recording; (c) The front of a GES (gaze following system) with the magnetic embedded lens placed on the eye model; (d) the
experimental setup of a participant undertaking eye movement recording by playing the ‘Tetris’ game, with the GFS mimicking eye movements.

The fastest four of the thirteen players have ITR greater than
40 bits/min. To account for the standard deviation of 17, the
ITR number is shown to be affected by the nature of the Tetris
game interface, where each trial was a self-paced open task and
hence the duration of each trial and number of total commands
varied between each player. To compare with other modalities,
such as brain computer interfacing with electroencephalography,
bit rate of 190 bits/min was recently achieved [66]. The bitrate
is relatively higher and maybe attributed to the high number of
target commands (48) whilst maintaining a similar accuracy of
90.3%, compared to our system accuracy at 90.8%. Additionally,
each eye gesture movement speed from a user’s voluntary action
maybe slower than the speeds found when detecting electrical
potentials from the brain and may account for the slower bitrates,
as the trial time is prolonged further.

As a group mean average, the total commands used at each
gesture direction were as follows: Left 9 4 3.62, Right 4 4-2.08,
Up 16 £ 1.41. The commands per direction are not comparable
as the Tetris game starting position was at the centre right-hand
side and hence right command was the least used, where a
maximum of eight right gesture commands was employed from
two of the thirteen participants. This would also be the case, if
the starting position were at the left-hand side and left command

would be the least tested, hence a trade-off within a 4 block Tetris
interface test. The up command was used more than the left/right
command, as this command was needed to bring the block down
from the top row and once placed in the last row, it would lock the
current block and bring the next block. This repetition accounts
for the larger gesture direction mean average.

A. State-Of-The-Art Comparison

Table I shows a comparison between our results with other
eye gesture-based systems during the past 5 years. The aver-
age accuracy of the other systems was greater than 90% with
ITR greater than 56 bits/min. Some of these methods deliver
a very high accuracy at a high transfer rate, but are too large
and immobile for realistic wearable applications [67]-[72]. The
system demonstrated by Graybill ef al. [73] involved developing
smaller, more mobile, light insensitive and more inexpensive
solutions. Their system was based on eye blinking, which may be
difficult or tiring for some participants. However, our approach
is different. In our design, with the omission of the bottom
sensor, a user can easily rest between gestures by looking down
or blinking, without affecting sensor detection. The user can
have more control of the device, as a gesture is only registered
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(a) Results from 13 participants. The amount of correct commands is highlighted in green and the total in magenta. The blue bar shows the time each

participant took to complete the same Tetris-based game; (b) the system’s accuracy in classifying eye movement from the animatronic eye model, showing results
for the left (magenta), top (green), and right (blue) sensors were classified. The top sensor achieved near perfect results. The average accuracy (yellow) indicates

the highest average accuracy achieved by an individual was 96%.

when the eyeball moves from the centre and then towards one
of the three sensors at a speed greater than 1 Hz. Therefore,
slowly looking towards a sensor will not trigger it. This is an im-
portant distinction between eye gesture and blink gesture-based
systems, since some participants may have conditions such as
blepharospasm, which cause unwanted blinking or twitching.
Whilst healthy participants can be affected by other unwanted
eye lid movements such as a simple breeze of wind, which may
cause the eyelid to shut. Compared with systems based on eye
blinking, the advantage of our proposed solution is that resulting
facial expression was less striking or noticeable by other people
when compared to individuals making multiple (left or right)
blinks with intent. Hence with eyeblink systems the user’s face
was found to animate more per gesture when interfacing with a
device.

Our system has three inputs translating to three commands
(up, left, right) that can be expanded to more commands de-
pending on sequence and speed. For example, Graybill ez al. [73]
demonstrated that the three input eye gestures, which are the left

(L) wink, right (R) wink or both (B) blinks, can be combined
within a fixed time window to increase the total number of
possible commands to eight, such as L, LL, LR, LB, R, RL, RR,
and RB. Therefore, our system can also be expanded in a similar
method using the ‘up’ gesture, instead of the ‘both’ blink gesture
by Graybill et al. [73] Adding another TMR sensor in our system
would not only increase the number of inputs, but it further
increases the total combination of commands beyond eight.

B. Limitations

A limitation of the current solution, which is based on contact
lenses is that it increases a setup time in comparison to solutions
requiring glasses only, particularly if a disabled user needs to
have the contact lens fitted by a caregiver. In addition, some users
might be intolerant to wearing contact lenses as for the current
version, the contact lens contains multiple <1 mm? magnets, the
thickness, weight or size of these magnets may make it difficult
to shut the eye or cause discomfort and obstruct vision. However,
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TABLE I
PERFORMANCE SUMMARY AND COMPARISON TABLE OF THIS WORK WITH THE STATE-OF-THE-ART

Measured Sensor Sensor Light - # User Input #Test Users Mean ITR
LS O Target Technology package Sensitive LigaTsy Actions — Accuracy (bits/min)
Fathi et al. | Visual blink | 720P Web PC based 2 (slow & fast| Camera (£20) . o Not
2015 [67] detection camera camera setup Yes Very Low blink) excluding PC 30 (Offline) 97% Available
. Camera .
Sato et al. Visual eye PC based 3 (involuntary, £60 o Not
2017 [68] blink (610(?;);); camera setup Yes Very Low slow & fast) | excluding PC 10 95% Available
. PC based £500
You et al. Visual eye . 3 (very slow, . . o Not
2017 [69] blink Infrared Video| Infrared No Very Low slow & fast) excluding | 200 (offline) 91.6% Available
camera setup PC
Singh et al. | Visual eye 720P Web PC based 3 (left, right &| Camera (£20) o Not
2018 [70] blink camera camera setup Yes Very Low both eyes) |excluding PC 10 89% Available
Kowalezyk et Visual Two Infrared Medi 2 (left and Estimated Not
owalczyk ei| - VISUal eye 1. gared Video Comeras No cdium right eye £1000 30 99.68% O
al. 2018 [71] blink mounted on mobility . . Auvailable
blinks) excluding PC
glasses
Electrode . EOG
. Electro- . Medium, . -
Huang et al. | Eye blink oculography processing No requires 3 (left, right & estimated 3 96.7% 573
2018 [72] (EOG) box on wheelchair both eyes) £1250
Wheelchair excluding PC
. Wearable .
Graybilletal| g pink | Inductive | glasses & coil|  No High | (leftright & Unknown 6 96.3% 56.1
2019 [73] . both eyes) | (“low cost”)
on eyelid
TMR Sensor Medium
. on eyewear |No, (exceptit| . Do . £37.50
This Work 16 balll Wilgisitte frame & requires eye b i el gt el Excluding 13 90.8% 26.7
B sensor contact lens model camera) cygmodel up) PC
camera)
on eye model

in cases where the non-disabled user is exposed to fast changes
of illumination conditions such as during driving or flying, the
proposed system (Fig. 1) is clearly advantageous as compared
to systems sensitive to light interference. In contrast, the system
tested in this study needs to use a webcam and make gestures via
an eye model and therefore light interference was found to be an
issue. Where in this study, individuals with prescription glasses
were not tested, as light interference may cause an issue when
detecting and tracking the eye. Also, individuals with eye disease
did not participate in this study, as they may have reduced control
over their eye movements when testing for human-machine
interface, even though the camera might be able to detect their
eye movements.

Another limitation of this current system compared to a
real eye is of their fluid eye movements, where extraocular
muscles provide faster and more precise movements. The GFS
resolution of movements is limited by the resolution of the PC
computer/microcontroller to the servo motors and as such the
eye model is not a replacement of a real eye. The eye model
may still make faster (jerkier) motion than a real eye movement
even though its rate of change falls below <28 Hz, even after
being mapped during experiment design to ensure matched
movements. Hence, to ensure a more realistic eye movement
from the animatronic system, the centre of rotation needs to be
centred within the eye model, then remeasured and remapped
to ensure matched smooth movements. Therefore, the system
would have to be upgraded and validated to ensure lifelike eye
movements.

Additionally, the front-end system is insensitive to slow, sub-
tle eyeball gesture movements and it was also found it works
best when users focus their gaze. As previously explained,
frequencies less than 1 Hz are attenuated by the high-pass filter.
Therefore, participants must move their eyeball slightly faster

than they might be accustomed to. For the sensor to detect a
strong magnetic field, some participants needed to move towards
the corners of their eye to move the lens closer to the magnetic
sensors. Repeating this process can be fatiguing for participants.
This might be problematic for patients with limited control
of eyeball muscles, such as those suffering from amyotrophic
lateral sclerosis that can have voluntary eye movements but may
still feel fatigued overtime therefore, the system would require
further development before being fully applicable to patients.

The results from the experiment were limited by the fact pre-
determined moves were not used, rather the task was open. As it
allowed the user to self-determine strategies to get a quick time.
This meant ‘false positives’ could not be measured, i.e. moves
the user not intended but resulted in a favourable outcome, as the
participant was making quick gestures making it difficult to track
and compare eye gestures with the eye model. Furthermore, with
limited commands, the game duration was at a maximum of 3
minutes 55 seconds, and with fatigue as a factor, analysis with
longer experiment time was not included in this study.

One of the main limitations of the proposed proof-of-concept
modality, even though this study took place in a non-shielded
lab environment, is that the magnetic field noise may vary when
outside the lab. Also, induced magnetic field such as from ele-
vators, large head motions during recordings or introduction of
other magnetic fields that are greater than a few micro-Tesla may
interfere with the eye gesture recordings. A method to mitigate
this noise is with the use of a trigger command by making a
specific gesture towards a sensor with either eyeball. This will
ensure gesture is not recorded continuously, for example, when
an individual is running, and a large field is induced compared
to when the user is at rest. Or when the user is performing a
daily activity and does not require interfacing capabilities with
the eye gesture system at that moment.
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V. CONCLUSION

In this paper, we proposed a novel eye gesture detector using
miniature TMR sensors with a sensitivity of 11 mV/V/Oe. We
demonstrated that magnets embedded within the soft contact
lens can create sufficiently strong magnetic fields to be detected
by nearby sensors. Using a web camera to record participant
eye movement, 13 participants successfully completed a ‘Tetris’
gesture-based game. A mean accuracy of 90.8% + 5.9% was
achieved using a proof-of-concept prototype with custom-built
GFS. Our lens was placed on an animatronic eye model and
the sensors were placed on a 3D-printed frame to substitute
an eyeglass frame. The system successfully detected three eye
gestures: Up, left, and right. These corresponded to the position
of the TMR sensors on the frame. The purpose of the GFS is
to validate the concept non-invasively. In conclusion, the results
demonstrate the proposed method to be a strong candidate for
future solutions in human-machine interfaces and assisted living.
Further advancements of this work will involve (1) increasing
the number of commands and accuracy by combining ma-
chine learning techniques and include more eye gesture pattern
datasets such as circular movements, (2) optimising readout cir-
cuit by miniaturising the TMR sensors into bridge configuration
for greater sensitivity and (3) developing a more efficient power
unit with lower power consumption to ensure that the system is
fully wearable.

SUPPLEMENTARY INFORMATION

Data availability: Data supporting the plots within this paper
and other finding of this study are available from the correspond-
ing authors upon reasonable request.

A demonstration of the system can be found via the following
link: Code and image availability: Design of the eye model and
software code can be found via the following GitHub link: https:
//github.com/melabglasgow/Eye-gesture. Also, found within
the link is a closeup image of the GFS system.
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