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Abstract—With advances in circuit design and sensing tech-
nology, the acquisition of data from a large number of Internet
of Things (IoT) sensors simultaneously to enable more accurate
inferences has become mainstream. In this work, we propose a novel
convolutional neural network (CNN) model for the fusion of mul-
timodal and multiresolution data obtained from several sensors.
The proposed model enables the fusion of multiresolution sensor
data, without having to resort to padding/ resampling to correct for
frequency resolution differences even when carrying out temporal
inferences like high-resolution event detection. The performance of
the proposed model is evaluated for sleep apnea event detection, by
fusing three different sensor signals obtained from UCD St. Vincent
University Hospital’s sleep apnea database. The proposed model is
generalizable and this is demonstrated by incremental performance
improvements, proportional to the number of sensors used for
fusion. A selective dropout technique is used to prevent overfitting
of the model to any specific high-resolution input, and increase the
robustness of fusion to signal corruption from any sensor source.
A fusion model with electrocardiogram (ECG), Peripheral oxygen
saturation signal (SpO2), and abdominal movement signal achieved
an accuracy of 99.72% and a sensitivity of 98.98%. Energy per
classification of the proposed fusion model was estimated to be
approximately 5.61 µJ for on-chip implementation. The feasibility
of pruning to reduce the complexity of the fusion models was also
studied.

Index Terms—Sensor data fusion, wearable sensing,
convolutional neural networks, sleep apnea detection, ECG,
SpO2.

I. INTRODUCTION

FUSION of data obtained from multiple sensors can improve
detection performance, compared to that of using data
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from a single sensor source [1], [2]. It can also improve the
quality and robustness of inferences when noise corrupts data
from any of the input sensors. Fusion techniques have been
demonstrated to improve the performance of a task without
significant variations in the existing data acquisition setup and
with minimal additional computational and power consumption
costs. Therefore, data fusion has become popular in the design
of wearable physiological monitoring systems.

With the advances made in 2-dimensional convolutional neu-
ral networks (2D-CNNs) for tasks such as object detection and
image classification, a similar model for 1-dimensional (1D)
time-series signals has been widely explored for biomedical
applications [3]–[5]. Compact 1D-CNNs are less resource-
intensive compared to their 2D counterparts and the filters used
in these models are equivalent to a simple traditional 1D time-
series filter [6], [7]. Due to its efficiency and low computational
requirements, 1D-CNNs are suitable for event detection, classi-
fication tasks from time-series data and are well suited for fusion
algorithms. Often, the different sensors used in this context
have different sampling frequencies, and therefore extraction
of temporal information from fused data often requires signal
padding, re-sampling, etc [8].

Data fusion algorithms are most commonly classified based
on the information abstraction level: signal level, feature level,
or decision level [9]. Multiple signals are often combined at
the signal level to generate one or more signals of the same
form but of better quality. Alternatively, fusion can be done after
feature extraction or in the final decision stage [10]. Decision-
level fusion represents the highest level of abstraction and is
commonly used when the signals provided are dissimilar [11],
[12]. Fusion systems are also classified based on the relationship
between sensor inputs as complementary, redundant, and coop-
erative [13]. In the context of deep learning, a deep network,
namely CentralNet, was proposed for the fusion of information
from different sensors that could automatically balance the
tradeoff between early and late fusion i.e., between the fusion
of low-level versus high-level information [14]. However, the
issues arising due to different sampling frequencies of time
series data were not discussed. Kim and Ghosh proposed a
simple convolutional fusion layer, called the latent ensemble
layer, that has a structural advantage in dealing with noise,
with each source being allowed to provide a different number
of channels, and admitting source-specific features to survive
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even after the fusion procedure [15], but the issues arising
due to different sampling frequencies of time series data were
not analyzed. A deep convolutional neural network (DCNN),
namely SensorNet, was proposed to classify multimodal and
multiresolution time series signals by generating a time-series
image [8]. However, the data was resampled/ padded such that
the input to the DCNN would be uniform, leading to the develop-
ment of a model that does not address issues such as overfitting to
signals with the larger sampling frequency. Undersampling the
signal from a high sampling rate sensor can lead to the loss of
important information. Oversampling/ padding the signal from
a low sampling rate sensor could lead to the development of
a larger model with more connections, weights, and additional
computations. Therefore, traditional time series feature-based
fusion algorithms are not suitable for multiresolution fusion
tasks. This leads to the contributions of this work:

1) Development of a 1D-CNN based fusion framework for
the data-driven fusion of multisensor, multimodal data at
different sampling frequencies for temporal inferences,
without having to resort to padding or resampling, by
utilizing signal based selective dropout method that en-
sures that the fusion model does not overfit to the signals
with higher sampling frequencies (or features from models
with more samples in the input), which is applicable to
biomedical Internet of Things (IoT) sensors.

2) A network development methodology that focuses on
developing individual well-performing models for each
sensor source prior to fusion so that the fused model
developed uses the best features from each sensor source
for fusion.

3) Development of a novel multimodal sleep apnea detection
technique using the proposed fusion framework that is at
a higher detection resolution compared to state-of-the-art
and its performance evaluation.

4) Complexity analysis of the developed fusion models and
their optimization using network pruning techniques to
reduce computational costs.1

The core hypothesis focuses on analyzing whether an event
detection model based on 1D-CNNs can fuse multimodal and
multiresolution signals without resorting to resampling of the
signals and that the fused models can improve detection accura-
cies compared to using 1D-CNNs for each signal individually.

The rest of the article is organized as follows: Section II
discusses the methodology and experimental design, the fusion
stage, and the method to prevent overfitting to signals with high
sampling frequencies. Section III discusses the application of the
proposed fusion architecture to the sleep apnea detection prob-
lem. Section IV includes the performance of the fusion models
developed from three different sensor sources and discussions.

II. 1D-CNN BASED FUSION FOR MULTI-SENSOR DATA

This section presents the methodology for developing mul-
timodal and multiresolution fusion models. Consider an event
classification task from multi-sensor time-series data obtained

1Code and models available at [Online]. Available: https://github.com/
arlenejohn/multi-resolution_fusion_sleep-apnea

from different sensor sources, where data from each source can
be used to carry out the classification task with acceptable per-
formance. At first, independent 1D-CNN models for achieving
the task have to be developed based on each sensor input signal
separately. Here, the hyperparameters of each model have to
be tuned to design an optimal independent model based on a
single sensor source data. These models are free to have any
number of convolutional layers, filters, and filter size, so that
the functions that the models learn are optimal. The number of
nodes in the output layer of the model will be specified based on
the type of classification. The performances of the independent
models are tested on a test set to ensure that the model has
acceptable performance when only data from a single sensor
source is available.

A. Data Driven Fusion Approach

Once all the independent models are able to achieve accept-
able performance, the output layers of the models have to be
removed, and the flatten layers have to be concatenated together.
This concatenated layer should then be attached to a fully
connected dense network and then to a final output layer to form
the multi-sensor fusion model. The structure of the multi-sensor
fusion model will be as shown in Fig. 1, and it works based on a
feature-level fusion approach. The same dataset with all different
sensor signals is used to train the multi-sensor fusion model. All
layers except the final fully connected layer are frozen during
training to get the desired performance- equivalent to using the
bottleneck features in transfer learning. The hyperparameters
of the fully connected layers are then tuned for optimizing the
fusion model’s performance using the validation set. And finally,
the performance of the fusion model is evaluated on the test set.
The goal of the fusion algorithm is to improve the overall model
performance, but in few scenarios combining a well-performing
model with a not-so-well-performing model may cause the
performance of the fused model to be lower than the individual
models. Since the initial layers are frozen and training is carried
out only on the layers after the concatenated flatten stage, the
network should be able to learn the correct set of weights based
on which of the signals are more reliable for improving detection
accuracies. This is beneficial in scenarios where the individual
models perform reasonably well and the model performance
can be improved by combining information from the features
learned by the individual models (which are optimal with regard
to the learning algorithm for each individual model), leading to
a data-driven approach to fusion and improvements in the per-
formance of the fused model. This is advantageous in wearable
devices as individual sensor features in the flatten stage (as they
are already optimal for the single sensor network) can be used at
any point in time to carry out individual sensor source inference
by using the final weights after the flatten stage (maybe due
to power constraints, fusion is not preferred and the wearable
device can switch between using fusion methodology or using
the best performing individual sensor depending on the battery
levels easily due to the shared weights prior to the flatten stage)
without significant additional memory or area requirements.
Moreover, the fused model training time would also be lower
with this approach with the confidence that the fused model

https://github.com/arlenejohn/multi-resolution_fusion_sleep-apnea
https://github.com/arlenejohn/multi-resolution_fusion_sleep-apnea


JOHN et al.: MULTIMODAL MULTIRESOLUTION DATA FUSION USING CONVOLUTIONAL NEURAL NETWORKS FOR IOT WEARABLE SENSING 1163

Fig. 1. Proposed 1D-CNN based fusion technique for multi-sensor data.

performance would be equal to or better than the individual
model performances.

B. Signal Based Selective Dropout

Consider the scenario where some sensor sources have higher
sampling rates than others, leading to more data samples per
second. In this scenario, the decision-making of the fusion
model will be dominated by the sensor source with a higher
sampling frequency (Fshigh) than those with a lower sampling
frequency (Fslow). This essentially leads to overfitting of the
model to the data from the sensor source at the high sampling
frequency. Methods to prevent overfitting to training data, such
as regularization and dropout, have been previously discussed
in literature [16]. However, methods to prevent overfitting to
inputs from a single source, in the case of a multi-source input
scenario, have not been explored previously. Here, we propose to
enable selective dropout during the training stage at the flatten
layer for only the features from the signal source with higher
sampling rates so that the fusion model would not overfit to
the higher sampling rate inputs. The advantage of the signal-
based selective dropout is that during the inference stage, all
the features in the flatten stage can contribute to the fusion
stage compared to undersampling the signal obtained at the
higher sampling frequency which leads to the dropped signals
or features not being able to contribute at all in the model.
Moreover, dropout is random for each training cycle, thereby
making sure that all the features at the various positions get
to contribute during the training process, which is completely
different from undersampling the obtained features (which often
leads to the same samples/ samples in fixed positions being
dropped and not contributing to the fusion stage). Moreover, this
is the first method proposed to prevent overfitting to the model
with larger number of neurons in the flatten stage as optimising

individual model architectures can lead to different number of
neurons in the flatten layers. For signals with different sampling
frequencies but matching network structures, the dropout rate
for the model for the signal with higher sampling frequency
should be set to 1− Fslow

Fshigh
. Matched network structures indicate

that for two different signals with sampling rates Fs1 and Fs2,
and corresponding ratio of the input window lengths to the two
networks being Fs1

Fs2
, the kernel sizes and number of neurons in

each layer of the two networks should have the same ratio of
Fs1
Fs2

. In case there is a mismatch in network structure such that
the ratio of the neurons in the output layer does not match the
ratio Fslow

Fshigh
, the dropout ratio Dr should be set as:

Dr = 1− neuronslow

neuronshigh
, (1)

where neuronslow indicate the number of neurons in the flatten
layer of model for signal with the lower sampling frequency
Fslow, and neuronshigh indicate the number of neurons in the
flatten layer of model for the signal with the higher sampling
frequency Fshigh. In the scenario where the fusion of k different
sensors at k different sampling frequencies need to be carried
out, the dropout ratio Dr for each of the jth signal model can be
calculated as:

Dr,j = 1− min(Fs1, F s2, . . . , F sk)

Fsj
∀j ∈ [1, . . . , k]. (2)

Alternatively, the dropout ratio for the jth signal model in terms
of the number of neurons in the flatten layer of each of the
individual models can be calculated as:

Dr,j = 1− min(neurons1, neurons2, . . . , neuronsk)

neuronsj

∀j ∈ [1, . . . , k], (3)
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Fig. 2. Flow diagram of the proposed fusion methodology.

where neuronsj corresponds to the number of neurons in the
flatten layer of the jth signal model. We call this signal based
selective dropout. The flow of the proposed fusion methodology
is as shown in Fig 2.

III. APPLICATION TO SLEEP APNEA DETECTION

The abnormal pause in breathing or lowering of the breath-rate
during sleep is termed as the sleep apnea-hypopnea syndrome
and is a disorder that affects 10% of middle-aged adults [17].
There is a complete pause in breathing during an apnea event,
while a hypopnea event is characterized by a drop in oxygen sat-
uration for at least 10 seconds due to the reduction in airflow [18].
Overnight polysomnography is the diagnostic tool used to diag-
nose sleep-related disorders under the supervision of a clinician.
Recording polysomnograms for clinical evaluation is costly and
involves wearing sensors that are uncomfortable for the patient
during sleep like airflow thermistors at the nose. Therefore,
the development of non-intrusive and automatic sleep-apnea
detection methods for deployment in wearable devices like
smartwatches and smartvests using physiological signals that
can be easily acquired without causing discomfort to the patient
is of paramount importance. However, in wearable sensing, these
signals can be corrupted by electrode contact noise, power-line
interference, motion artifacts, electromyographic noise, etc.,
leading to poor feature extraction, erroneous data interpretation,
and false alarms [19]. This can lead to subsequent slowing down
of response times due to alarm fatigue [20].

Electrocardiogram (ECG) is a record of the electrical ac-
tivity of the heart and can be obtained through non-invasive
wearable devices. Peripheral oxygen saturation (SpO2) is an
estimation of blood oxygen levels and is usually measured with
a pulse oximeter, which is non-invasive and is usually found in
smartwatches [21]. Various studies have shown that sleep apnea
events can be monitored using ECG and SpO2. An ECG based
sleep apnea detection method using ECG derived respiration
(EDR) that can detect sleep apnea occurrence during a minute
with an accuracy of 94.12% was proposed in [22]. Heart Rate

Variability (HRV) features based methods for apnea detection-
from ECG signals with apnea event occurrences in 30-second
windows- with an accuracy of 74.85% was proposed in [23].
An SpO2 based apnea detection method that could detect apnea
event occurrences in a minute with an accuracy of 85.26% was
proposed in [24]. A review of the methods discussed in the
literature for sleep apnea detection using deep learning was
carried out in [25]. In literature, it was observed that most studies
carry out sleep-apnea detection on a minute-by-minute basis or
for a window of 30 seconds and often use only a single sensor
for inference. The highest resolution for sleep apnea detection
from ECG signals (every 10 seconds) was studied by Urtnasan
et al. [26]. The highest resolution of sleep apnea detection from
SpO2 signals was explored in [27] with a resolution of 1 s and
with a performance accuracy of 79.61%.

Many machine learning-based methods were discussed for
sleep apnea detection by combining various features like ECG-
derived respiration (EDR) and heart rate variability (HRV) de-
rived from ECG signals [22], [28]–[30]. Convolutional neural
networks have been used to generate features that can be used for
sleep apnea detection in [26]. CNNs were used in combination
with long-short-term-memory (LSTM) for sleep apnea detection
from ECG signals [26], [31], [32]. Deep learning methods for
apnea detection from SpO2 signals have been discussed in the
literature [24]. Fusion methods that combine multiple sensor
signals for detection of apnea events are also studied. In [33],
fuzzy structural algorithms were utilized to identify and char-
acterize apnea and hypopnea episodes using respiratory airflow
and SpO2. Fusion methods based on combinations of features
derived from ECG signal and SpO2 for a time segment with
a resolution of 1 minute were proposed for apnea detection
in [18]. A 2D-CNN based method for sleep apnea detection
using SpO2, oronasal airflow, ribcage and abdominal movement
was proposed in [27]. A method to fuse ECG and SpO2 signals
through a combination of CNNs and LSTM was proposed
in [32]. These works and the corresponding performance in
sleep apnea detection helped in deciding which complementary
signals were to be used for fusion to improve accuracy if any of
the signals are corrupted or lost.

We propose a method for sleep apnea detection with a very
high resolution of one second. The advantage of a high resolution
model is that apnea events can be detected quickly and alert the
patient as loss of oxygen for an extended period of time can lead
to potential brain damage [34], [35] and faster detection of apnea
events could help to reduce the impact. Additionally, depending
on the power constraints of a wearable device (remaining battery
power), the resolution can be adjusted in real-time by carrying
out predictions once every few seconds. Since the model is
trained to infer events on a per second basis, resolution can be
reduced purely by skipping the signal windows to reduce power
consumption, and high resolution processing can be resumed
without a large wait time when needed. Apnea detection with
a resolution of 1 s is carried out by considering a single signal
window of 11 seconds and employing a 1D-CNN for apnea
detection. An 11-second window is used as an apnea event is
classified as sleep apnea if the patient does not breathe for at least
10 seconds. To achieve this, overlapping windows of duration 11
seconds and an overlap of 10 seconds are generated. A window
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TABLE I
ECG SIGNAL MODEL PARAMETERS AS DISCUSSED IN [37]

is assigned the label (apnea/ non-apnea) depending on whether
the 2nd 1 s signal in that window is apneic or non-apneic. From a
practical machine learning model training perspective, this way
of window selection gave more data examples to train the model
with, that probably lead to the high detection accuracies of the
models obtained.

A. Dataset and Models

For this work, the St. Vincent’s University Hospital’s sleep
apnea database is used [36]. The database contains polysomno-
gram data from 25 patients with annotations from a sleep ex-
pert. Signals recorded were: electroencephalogram, electroocu-
logram, submental electromyogram, oro-nasal airflow, ribcage
movements, abdomen movements, snoring, body position, as
well as the signals we are interested in- ECG signals at 128 Hz
(Fshigh) and SpO2 (from finger pulse oximeter) at 8 Hz (Fslow).
The ECG and SpO2 signals are suitable for apnea detection
as they can be easily incorporated into wearable devices. The
labels provided by the sleep experts were used to mark sleep
seconds as apneic or non-apneic. The dataset is split into training,
validation, and test set in the ratio of 8:1:1. The class imbalance
problem was addressed by oversampling the minority class.
It is to be noted that the oversampling of the minority class
(apnea events) signal examples is different to signal resampling
to correct for resolution differences as discussed in Section I.
The oversampling of the minority classes increases the number
of examples used to train the 1D-CNN model, while signal
resampling increases or decreases the window length of the data
fed into the model. For the individual signal models, we use the
model proposed in [37] for the ECG signal. The parameters of
the model are as shown in Table I. For the SpO2 signal, we use
the model proposed in [38], and the parameters of the model
are as shown in Table II. The weights and biases were selected
during training by using a validation callback method that stored
the best parameters that exhibited the highest accuracy on the
validation set. Since the number of neurons in the flatten layer of
the ECG model was 1950 and that for the SpO2 model was 660,
the dropout rate for the features extracted from the ECG model
in the flatten layer was fixed at 0.67. The flattened layers from
the two models are concatenated and batch-normalized prior to
the output layer which uses a softmax activation.

TABLE II
SPO2 SIGNAL MODEL PARAMETERS AS DISCUSSED IN [38]

IV. RESULTS

The total number of parameters from the fused model using
ECG and SpO2 signals is 88,529, out of which 78,087 parame-
ters are from the convolution layers and are frozen. The model
was trained using the adam optimizer. Adam can be looked at as
a combination of the RMSprop that uses the squared gradients to
scale the learning rate individually for each parameter (2nd mo-
ment) and moving average of the gradient instead of gradient like
in stochastic gradient descent with momentum. The advantage
of the Adam optimizer is that it foregoes the need for a learning
rate scheduler and is robust to any reasonably bounded learning
rate for the problem at hand, and here the learning rate of 0.001
was chosen. The model was trained over the full training set and
simultaneously validated on the validation set for each epoch,
where a true positive stands for an accurately detected apnea
event. Validation callback was used to determine the best weights
during training based on which set of weights exhibited the
highest validation accuracy. We evaluate the model performance
based on the Sensitivity (Se), Specificity (Sp), and Accuracy
(Ac) that are calculated as shown in Eqs. (4), (5), and (6).

Se (%) =
TP

TP + FN
× 100 (4)

Sp (%) =
TN

TN + FP
× 100 (5)

Ac (%) =
TN + TP

TN + TP + FN + FP
× 100 (6)

However, due to the huge class imbalance with 50368 test
set examples of non-apnea events and just 1368 apnea event
samples, missing a few apnea events (FNs) lead to very low
sensitivity values, although the overall accuracy doesn’t get
affected much due to a large number of true negatives. Therefore,
a metric that can capture these two components is required. For
this, we use the Fβ- score- of which the F1-score is the most
commonly used- such that both sensitivity (Se) and precision
are taken into account with the right importance assigned to
sensitivity and precision that we require. The precision/ Positive
Predictive Value (PPV) is calculated as shown in Eqn (7).

PPV (%) =
TP

TP + FP
× 100 (7)
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The Fβ- score is calculated from Se and PPV as shown in Eqn (8).

Fβ − score(%) =
(1 + β2).PPV.Se
β2.PPV + Se

× 100 (8)

In this case, we are placing β times more importance in correctly
identifying true positives (sensitivity) than reducing the number
of false positives or false negatives (precision). Since there
are approximately 36 times more non-apnea events than apnea
events, we set β =

√
36 = 6, and therefore we call this metric

the F6-score (F6).
The ECG signal-based model (M11 (1 in the subscript indi-

cates single sensor)) was found to exhibit an F6-score of 95.82%,
a sensitivity of 96.05%, and a specificity of 99.75% as discussed
in [37]. The SpO2 signal-based model (M12) was found to
exhibit an F6-score of 82.86%, a sensitivity of 84.65%, and a
specificity of 97.42% as discussed in [38]. The performance of
the SpO2 model is not as good as the ECG signal-based model,
however, the overall performance of the fused model should
be better than that of the individual models. The fused model
(M21 (the 2 in the subscript indicates two sensors)) was found
to exhibit an F6-score of 97.20%, a sensitivity of 97.44%, and
a specificity of 99.68%. On comparing the performance of the
fusion model with the SpO2 alone model, there is a significant
performance improvement. However, when comparing the per-
formance of the fusion with the ECG signal, there is only a
slight improvement in overall performance. We also compare
the performance of the fusion model (M21) with a fusion model
without the dropout layer (M̃21) applied to the sensor model
with the higher sampling frequency/ higher number of neurons
in the flatten layer as discussed in II-B. In the case where we
ignore the possibility of overfitting to the ECG based model,
the ECG+Spo2 fused model (M̃21) exhibited an F6-score of
only 96.86%, which is poorer than the model that accounted for
the possibility of overfitting to the ECG based model (M21),
thereby proving that the selective dropout method is suitable
to prevent overfitting. However, this is not much evident in
the case where both signals are clean. Overfitting to the sensor
source with a higher sampling rate becomes more pronounced
in the case where the signal sources are corrupted by noise,
which is a major challenge in wearable monitoring. Severe
motion artifacts, electrode contact noise, and electromyographic
noise can affect data obtained from wearable devices. The main
advantage of fusion methods becomes evident when any of the
sensor sources are corrupted by noise, which is discussed in the
next subsection.

A. Performance Evaluation With Noisy Data

To analyze the performance of fusion models with noisy data,
we have simulated scenarios with noisy signal windows, where
all the samples in a noisy signal window are corrupted by noise.
This is achieved by adding -20 dB white Gaussian noise to the
signal segments. The approach of using white Gaussian noise is
to capture all noise frequencies, although during sleep, the low
frequency noises would be dominant. However, as per the central
limit theorem, the sum of multiple independent distributions
tends to be a gaussian distribution, and therefore white gaussian
noise is added to the signals to study the performance in noisy

scenarios. For the training and validation set, all the signal
samples in a window in 20% of the ECG window set are noisy
while the corresponding SpO2 window set are clean, all the
signal samples in a window in 20% of the SpO2 window set are
noisy while the corresponding ECG window set are clean, and
all the signal samples in a window in 20% of both SpO2 and ECG
window set are noisy for both apnea and non-apnea events. For
the test set, all the signal samples in a window in 11.42% of the
ECG window set are noisy while corresponding SpO2 window
set are clean, all the signal samples in a window in 11.42% of the
SpO2 window set are noisy while corresponding ECG window
set are clean, and all the signal samples in a window in 11.42%
of both SpO2 and ECG window set are noisy for both apnea and
non-apnea events. The individual models for ECG and SpO2
were retrained using this dataset with simulated noise and fused
as discussed in Section III-A. The ECG signal-based model,
M1,n1 (the ‘n’ in the subscript indicates that the model is gener-
ated for dataset containing noisy samples) was found to exhibit
an F6-score of 74.80%, a sensitivity of 74.85%, and a specificity
of 99.24%, and the SpO2 signal-based model (M1,n2) was found
to exhibit an F6-score of 72.22%, a sensitivity of 77.85%, and a
specificity of 91.56%. The fused model with selective dropout
(M2,n1) was found to exhibit an F6-score of 82.3%, a sensitivity
of 85.01%, and a specificity of 96.33%. From the results, it can
be observed that the F6-score and sensitivity are significantly
higher for the fusion model compared to ECG and SpO2 models.
A fused model without the selective dropout stage (M̃2,n1) was
found to exhibit an F6-score of 81.55%, a sensitivity of 83.41%,
and a specificity of 97.26%. From the performance of the ECG
and SpO2 models as well as the fused model without selective
dropout, it can be seen that the models are highly biased towards
the majority class, even with minority class oversampling. These
observations indicate that when the signals are corrupted by
noise, important features that can be learned on clean signals
are not learned by the model, and in such scenarios, the fusion
algorithm proposed in this article will be useful in tackling this
issue.

B. Generalization to Multiple Sensors

To expand and generalize on the proposed method, we gener-
alize the fusion model to include a third sensor source. Here, we
consider the abdominal movement signals as the sensors used to
obtain abdominal movement signals can be easily incorporated
in a wearable smartvest. Abdominal movements are found to
be highly reliable parameters for the sleep apnea detection
problem [39]–[41]. Lin et al. proposed an adaptive nonharmonic
model to model thoracic and abdominal movement signals to
design features for sleep apnea events [39]. In [40], wavelet do-
main features from abdominal, chest, and nasal way signals are
used to detect obstructive sleep apnea events using ensembles.
In [41], a measuring module integrating abdominal and thoracic
triaxial accelerometers, SpO2, and an ECG sensor was devised
and a long short-term memory recurrent neural network model
was proposed to classify four types of sleep breathing patterns.
We use the abdomen movement signals recorded using strain
gauges from the St. Vincent’s University Hospital’s sleep apnea
database [36]. The dataset is split into training, validation, and
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Fig. 3. Independent 1D-CNN fusion model for sleep apnea detection from abdominal movements.

TABLE III
THE MODEL PARAMETERS FOR THE ABDOMEN MOVEMENT SIGNAL

BASED MODEL

TABLE IV
PERFORMANCE OF THE SINGLE SIGNAL MODELS

test set in the ratio of 8:1:1. The class imbalance problem was
addressed by oversampling the minority class. We developed a
1D-CNN model as discussed next for the abdominal signal.

1) 1D-CNN Model Based on Abdominal Signal: The 1D-
CNN model developed for abdominal movement signals for
sleep apnea detection is as shown in Fig. 3, and the model
parameters are detailed in Table III. The model optimization
used binary cross-entropy as the loss function with the adam
optimizer and, the training procedure was similar to that used
to generate the ECG- and SpO2-based models. The weights
and biases were selected during training by using a validation
callback method that stored the best parameters that exhibited the
highest accuracy on the validation set. We refer to the abdominal
movement-based single sensor model as M13. The results of the
three independent models are summarised in Table IV.

Fig. 4. Performance of the single signal models and fusion models employing
selective dropout.

The model exhibited an F6-score of 98.34%, a sensitivity of
98.76%, and a specificity of 99.54% on the test set consisting of
data from all the patients.

C. Fusion Algorithm With Abdominal Signal

The 1D-CNN model based on abdominal signal is fused
with the SpO2 signal-based model (SpO2+Abdo → M22) and
the ECG signal-based model (ECG+Abdo → M23). Since the
number of samples used in the abdominal signal-based model is
equal to the number of samples used in the ECG signal model,
sampling frequency-based selective dropout is not required.
However, when the abdominal signal-based model is fused
with the SpO2 signal-based model, we need to account for the
possible overfitting to the abdominal signal model features in
the fusion model, and therefore signal features-based selective
dropout needs to be carried out. For the abdominal signal-based
model, the number of neurons in the flatten layer is 1950,
and the number of neurons in the flatten layer of the SpO2
signal-based model is 660, and therefore the selective dropout
ratio is set to 0.67. The performance of the fusion models in terms
of F6-score, sensitivity, and specificity is as shown in Fig. 4,
along with the three new fusion models, namely SpO2+Abdo
(M22), ECG+Abdo (M23), and ECG+SpO2+Abdo (M31). On
comparing with the ECG+SpO2 model (M21), it can be seen that
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Fig. 5. Comparison of the fusion models with and without selective dropout.

TABLE V
PERFORMANCE OF THE FUSION MODELS AND WITHOUT WITHOUT

SELECTIVE DROPOUT

*The individual ECG and Abdo models have the same number of neurons in the flatten
layer, and therefore selective dropout ratio for both would be 0. Hence, M23 and M̃23
exhibits the same performance.

the sensitivity is higher when abdominal signal data is included
(in models M22, M23, and M31), and with higher F6-score
for when ECG and abdominal models are fused (M23). The
results demonstrate that increasing the number of sensor sources
generally improve the performance of the fusion models. We
also check for the efficacy of the selective dropout method to
prevent overfitting to the sensor source with a larger sampling
rate. In the case of the SpO2+Abdo model with selective dropout
(M22) an F6-score of 98.57% is exhibited, while for a fused
SpO2+Abdo model without selective dropout (M̃22), the F6-
score was just slightly lower at 98.56%. However, in the case
of the ECG+SpO2+Abdo model, the difference is slightly more
pronounced. For the ECG+SpO2+Abdo model with selective
dropout (M31), and F6-score of 98.75% is exhibited, while
for a fused ECG+SpO2+Abdo model without selective dropout
(M̃31), the F6-score was lower at 98.65% as shown in Fig. 5.
In the case of model M23, since both ECG and abdominal
movement signals have the same number of samples, selective
dropout is not employed. The results of the fusion algorithms
with and without selective dropout are as discussed in Table V.

We next analyze the performance of the fusion model with
noisy input data.

1) Performance of Fusion With Three Inputs and Noisy Data:
For the training and validation set, few windows in the dataset
have been corrupted by noise in the following manner:

1) All the signal samples in a window in 10% of the ECG
window set is noisy while corresponding SpO2 and ab-
domen window sets are clean, all the signal samples in a
window in 10% of the SpO2 window set is noisy while cor-
responding ECG and abdomen window sets are clean, and

TABLE VI
PERFORMANCE OF THE SINGLE SIGNAL MODELS WHEN THE DATASET

CONTAINS NOISY SAMPLES

Fig. 6. Performance of the single signal models and fusion models with
selective dropout in the presence of noise.

all the signal samples in a window in 10% of the abdomen
movement window set is noisy while corresponding ECG
and SpO2 window sets are clean.

2) All the signal samples in a window in 10% of the ECG
and SpO2 window sets are noisy while corresponding
abdomen window set is clean, all the signal samples in
a window in 10% of the SpO2 and abdomen window sets
are noisy while corresponding ECG window set is clean,
and all the signal samples in a window in 10% of the
ECG and abdomen movement window sets are noisy while
corresponding SpO2 window set is clean.

3) 10% of the ECG signal, SpO2 signal, and abdomen signal
window sets are noisy.

For the test stage, the few samples in the test set have been
corrupted by adding noise to the samples in a similar manner
as discussed for the training and validation set, by adding noise
to all the samples in a window for 5% of the signal window set
from each of the 7 different noise combinations.

The individual models were retrained using this dataset with
added noise and fused as discussed in Section III-A. The perfor-
mances of the independent models are summarised in Table VI.
The performance of the fusion models in terms of F6-score,
sensitivity, and specificity is as shown in Fig. 6. From the results,
it can be observed that F6-score is higher for the fusion models
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Fig. 7. Comparison of the fusion models with and without selective dropout when the dataset contains noisy signal samples.

compared to the individual models. From the performance of
the (M1,n1) and (M1,n2) models, it can be seen that the models
are highly biased towards the majority class, even with minority
class oversampling. These observations indicate that when the
signals are corrupted by noise, important features that can be
learned on clean signals are not learned by the model. The
performance of the fusion model is also dependant on the quality
of the individual models, like in the case of model M2,n2, the
performance is poorer with an F6-score of 82.91%, compared
to the single sensor model M1,n3 with an F6-score of 83.05%,
as when fusing with the SpO2 model with just an F6-score of
72.22%, reduced the specificity of the fused model.

The performance of the fused model M2,n2 could have been
improved upon by changing the training routine, reducing the
regularization coefficients, etc, but for consistency across train-
ing routines across all models were maintained for comparison
and we report these results here. From the results, it can be
observed that in the noisy scenario, the three sensor model
exhibits a significant improvement in F6-score and sensitivity
compared to the single sensor or two-sensor fusion models,
which was not as evident in the non-noisy scenario. From the
results, it is noticeable that the fusion model with ECG+SpO2
model (M2,n1 and M21) does not outperform the Abdo model
(M1,n3 and M13), leading to the conclusion that Abdo move-
ment needs to be incorporated into the fusion algorithms for
best performance, but the Abdo movement recordings is not
a standard signal acquired from wearable devices. However,
the ECG and SpO2 signals can be easily incorporated into
the current wearable devices ecosystem, and the ECG+SpO2
(M21) fusion algorithm is well suited for wearable devices as
they exhibit significant performance improvement over the ECG
alone (M11) or SpO2 alone (M12) model for both clean signal
and noisy signal scenarios. However, in the scenario where
abdominal movement signals can be obtained, the Abdo+ECG
model (M23) can be used to improve performance over the single
sensor models, and the larger ECG+SpO2+Abdo model (M31)
can be used when the power constraints are not pressing. We also
check for the efficacy of the selective dropout method to prevent
overfitting to the sensor source with the larger sampling rate. In
the case of the M2, n2 model an F6-score of 82.91% is exhibited,
while for a M2,n2 model without selective dropout (M̃2,n2),
the F6-score was lower at 81.86% as shown in Fig. 7. For the
model M3,n1, and F6-score of 89.69% is exhibited, while for
the fused model without selective dropout (M̃3,n1), the F6-score
was lower at 89.25%. The results of the fusion algorithms with
and without selective dropout when the dataset contains noisy

TABLE VII
PERFORMANCE OF THE FUSION MODELS WITH AND WITHOUT SELECTIVE

DROPOUT WHEN THE DATASET CONTAINS NOISY SAMPLES

∗The individual ECG and Abdo models have the same number of neurons in the flatten
layer, and therefore selective dropout ratio for both would be 0. Hence, M2,n3 and
M̃2,n3 exhibits the same performance.

samples are as discussed in Table VII. The studies with and
without selective dropout indicates that using selective dropout
improves the model sensitivity with no additional computational
cost during inference as selective dropout is applied only during
training to prevent over fitting to the model that provides more
features at the flatten stage of the fusion algorithm.

D. Complexity Analysis

The computational complexities of the three networks were
calculated in terms of the number of multiplications and ad-
ditions required for each second [42]. The computations in-
volved in the convolution layers were calculated based on
simple filtering calculation count and without assuming a fast
Fourier transform approach [43]. For the Max Pooling layers,
the operation of selecting the maximum is approximated to an
addition operation. For the dense layers, the calculations are
carried out as discussed in [42]. Detection of sleep apnea events
with ECG signal using M11 requires 6534116 multiplications
and 6546647 additions [37], and with SpO2 signal using M12
requires 1270016 multiplications and 1272876 additions [38].
The fusion model M21 requires 7809352 multiplications and
7824743 additions. Detection of sleep apnea events with ab-
domen movement signals using M13 requires 6534116 mul-
tiplications and 6546647 additions like the ECG-based model
M11 due to the same network structure. The fusion model M22
that fuses the SpO2 and abdomen movement signal requires
7809352 multiplications and 7824743 additions. The fusion
model M23 that fuses the ECG and abdomen movement sig-
nal requires 13076032 multiplications and 13101094 additions.



1170 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 15, NO. 6, DECEMBER 2021

TABLE VIII
MODEL COMPLEXITY IN TERMS OF MULTIPLICATIONS AND ADDITIONS AND

ESTIMATED ENERGY CONSUMPTION

The fusion model M31 that fuses all the three signals requires
14347368 multiplications and 14375290 additions. The total
energy consumption during prediction is estimated by assuming
that the energy required for a 16-bit multiplication accumulation
(MAC) operation is 0.39 pJ [44], [45], and for a 16-bit adder
is around 20 fJ [46] in 28 nm FD-SOI technology. The energy
consumption during prediction using M11 is found to be 2.55μJ,
prediction using M12 is found to be 0.50 μJ, and with M13
is found to be 2.55 μJ. The total energy consumption during
prediction using the fusion models M21 is found to be 3.05 μJ,
prediction using M22 is found to be 3.05 μJ, and with M23
is found to be 5.10 μJ. The energy consumption for predic-
tion using the three-sensor fusion model M31 is 5.61 μJ. The
complexity in terms of multiplications and additions and the
corresponding energy consumption are discussed in Table VIII.
The corresponding models trained without selective dropout and
the models generated for the dataset with noisy samples require
the same number of computations as discussed above due to the
same network structure. From performance and computational
complexity analysis, abdominal signal-based models are found
to be most suitable for the task. However, for ease of integration
into the current generation of wearables, the ECG+SpO2 model
is most ideal. For the dataset used in the clean signal scenario,
the fusion model that combines all three signals does not sig-
nificantly outperform the ECG+SpO2 model or the ECG+Abdo
model. However, in the scenario where signals are noisy, the
fusion model that combines all three signals significantly outper-
form the 2-signal fusion models, indicating that as the number of
sensors used in fusion increase, the reliability of inferences also
increases. As discussed in the previous section the ECG+SpO2
(M21) fusion algorithm is well suited for integration into current
wearable devices ecosystems. However, in the scenario where
abdominal movement signals can be obtained, the Abdo+SpO2
model (M22) which is the least computationally intensive of
the abdominal movement based fusion models can be used.
But the Abdo+SpO2 (M22) model does not perform as well as
the more computationally intensive ECG+Abdo model (M23),
and the larger ECG+SpO2+Abdo model (M31) can be used
when the power constraints are are not pressing. It can also be
observed that the addition of the SpO2 signal to the ECG+Abdo
(M23) fusion does not lead to a very large increase in energy
requirements due to the SpO2 (M12) alone model being very
small. The computational complexity of the fusion models can
be reduced by investigating model pruning, which is discussed
next.

1) Model Pruning: Pruning is the systematic removal of
parameters from an existing network for reducing resource

Fig. 8. Performance of the pruned models with sparsity varying from 50%
to 80% when the (a) ECG and SpO2 signal is fused, (b) SpO2 and Abdomen
movement signal is fused, (c) ECG and Abdomen movement signal is fused,
and (d) SpO2, ECG, and Abdomen movement signal is fused.

TABLE IX
COMPUTATIONAL COMPLEXITY IN TERMS OF MULTIPLICATION AND ADDITION

OPERATIONS AND THE ENERGY CONSUMPTION OF THE SPARSIFIED MODELS

DURING PREDICTION

requirements at prediction time [47]. In this work, magnitude-
based weight pruning is used, which gradually zero out model
weights during the training process [48]. This enables compres-
sion of the model and is suitable for deployment in resource-
constrained wearable devices. We consider the pruning of the
fused models to reduce the computational complexity that results
from the additional sensor sources used in fusion. For this, the
developed fusion models are pruned with sparsity varying from
50% to 80% (aggressive pruning) using the weight pruning
method. The performance of M21 pruned models, M22 pruned
models, M23 models, and M31 models are as shown in Fig. 8(a),
(b), (c), and (d) respectively, with model sparsity varying from
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TABLE X
COMPARISON OF STATE-OF-THE-ART FUSION BASED SLEEP APNEA DETECTION ALGORITHMS WITH THE PERFORMANCE OF THE PROPOSED 1D-CNN BASED

FUSION MODELS FOR APNEA DETECTION

50% to 80%. From the figures, it can be observed that for models
M23, and M31, as sparsity increases, the F6-score and sensitivity
drops while accuracy and specificity stay above approximately
97%. However, for models M21 and M22, the F6-score and
sensitivity behave unpredictably. The F6-score and sensitivity
increases when sparsity is increased from 50% to 60%, and drops
again after sparsity is increased to 70%. It can be observed that
both M21 and M22 used the SpO2 signal and this trend is similar
to that observed for the individually sparsified SpO2 model
as discussed in [38], as even though the overall performance
drops (in terms of accuracy) with an increase in sparsity, the
weights that make the network highly specific are pruned away
with an increase in sparsity, making the network more sensitive.
Therefore, this trend is the contribution of the SpO2 based signal
model. A similar trend is observed in the model M31 that fuses
all three signals, but with F6-score and sensitivity increasing
when sparsity is increased from 60% to 70%, and drops again
at a sparsity of 80%. The computational complexity and energy
consumption of the pruned models are discussed in Table IX.

From the performance figures and model complexities, it
can be concluded that an increase in model sparsity may lead
to a drop in performance of the fused model, but the pruned
fusion model performance can outperform individual model
performances at lower computational complexities, which is
promising. However, in this work, we have explored only
magnitude-based aggressive pruning (sparsity above 50%) and,
therefore, the performances of the pruned models are not as
compelling. Hence, further investigation into different pruning
methodologies at sparsity levels varying from 5% to 80% needs
to be explored to derive a compelling argument for the benefits
of pruned fusion models over single signal-based models.

The performance of the proposed fused networks is compared
with that of state-of-the-art fusion algorithms for sleep apnea
detection in Table X. It can be seen that all the fusion models
outperform the fusion models discussed in [33], [32], [18],
and [27] in terms of accuracy and sensitivity on the UCD St.
Vincent’s sleep apnea database. However, direct comparison
with [33] and [32] is not recommended due to the studies using
a proprietary dataset. The performance improvements observed
with the proposed model in comparison to state-of-the-art can
be attributed to the proposed methodology of developing high
resolution well-performing individual sensor models, which is
different from the methodology where all the data is fed to a

single model and trained together as proposed in [33], [32], [18],
and [27]. Moreover, the windowing approach with an overlap of
90.9% when generating the signal windows for training helped
with training deep data-hungry models which improved perfor-
mance. The pruned fusion models are also found to outperform
the state-of-the-art methods.

V. CONCLUSION

In this work, we propose a 1D-CNN model for the fusion
of multimodal and multiresolution signals to capture temporal
information like event detection, without having to resort to re-
sampling of the individual signals. Here, we explore whether the
fusion model can improve accuracy over that of using 1D-CNNs
for each signal individually. We also proposed an experimental
study in which selective dropout of the features obtained from
the sensor with a larger sampling rate is used to prevent the
fusion model from overfitting to features from the sensor with the
larger sampling rate. In the proposed architecture, the 1D-CNN
network learns the optimal parameters for fusion - a data-driven
approach instead of a heuristic method for fusion. We apply
this model to the sleep apnea detection problem using ECG and
SpO2 signals with the signals sampled at different sampling
rates. Prior literature in the field indicates that these two signals
can detect apnea events with reasonably good accuracy. The
performance of the fusion model and individual signal models
were analyzed over a common test set to confirm the hypothesis
that the fusion model would perform better. We also study the
advantage of including the selective dropout in the training
process over models that do not use selective dropout. We then
extend the model to include a third sensor source to exhibit the
generalizability to multi-sensor fusion problems using abdomen
movement signals for sleep apnea detection. The performance
of the three signal fusion models and various combinations of
two signal fusion models were analyzed to exhibit the merits of
the fusion algorithm. In the case of the model that fuses ECG
and SpO2 signal, the F6-score was found to be 1.6% higher
on the test set compared to the ECG signal-based model and
18.03% higher than the F6-score of the SpO2 based model. In
the case of the model that fuses ECG and Abdomen movement
signal, the F6-score was found to be 2.99% higher on the test
set compared to the ECG signal-based model and 0.35% higher
than the F6-score of the abdomen movement-based model. We
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also analyzed pruning methods to compensate for the increase
in computational complexity arising from additional sensor
sources. It was observed that although an increase in model
sparsity may lead to a drop in performance of the fused model,
the pruned fusion model performance can outperform individual
model performances at lower computational complexities- indi-
cating that pruned fusion models are a promising direction for
sleep apnea detection in wearable devices. The performances of
the fusion models were compared against other fusion models in
literature and the proposed models outperform the state-of-the-
art models discussed in the literature. The model complexities
were also analyzed and it was observed that the fusion model
that combines all three sensor sources does not significantly
outperform models that combine two sensor sources in the
scenario where the signal samples are noise free. However, in the
scenario where signals are noisy, the fusion model that combines
all three signals significantly outperform the 2-signal fusion
models, indicating that as the number of sensors used in fusion
increase, the reliability of inferences also increases, indicating
that fusion algorithms for the detection of sleep apnea in wear-
able devices is a promising direction. Future iterations of the
fusion model would focus on multi-stage automatic fusion level
selection through a data-driven approach which uses attention
mechanism after each layer to generate the attention weights.
Future works would also focus on advanced CNN algorithms and
aim to reduce the fusion model complexity while maintaining the
model performance by employing smart hybrid pruning methods
and quantization prior to deployment on a wearable device.
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