
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 28, 2024

A Memristor-Based Learning Engine for Synaptic Trace-Based Online Learning

Wang, Deyu; Xu, Jiawei; Li, Feng; Zhang, Lianhao; Cao, Chengwei; Stathis, Dimitrios; Lansner, Anders;
Hemani, Ahmed; Zheng, Li-Rong; Zou, Zhuo

Published in:
IEEE Transactions on Biomedical Circuits and Systems

Link to article, DOI:
10.1109/TBCAS.2023.3291021

Publication date:
2023

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Wang, D., Xu, J., Li, F., Zhang, L., Cao, C., Stathis, D., Lansner, A., Hemani, A., Zheng, L-R., & Zou, Z. (2023).
A Memristor-Based Learning Engine for Synaptic Trace-Based Online Learning. IEEE Transactions on
Biomedical Circuits and Systems, 17(5), 1153 - 1165. Article 10169114.
https://doi.org/10.1109/TBCAS.2023.3291021

https://doi.org/10.1109/TBCAS.2023.3291021
https://orbit.dtu.dk/en/publications/e4cb98de-3665-4888-8775-0dfd4293767e
https://doi.org/10.1109/TBCAS.2023.3291021


TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YEAR 1

A Memristor-Based Learning Engine for Synaptic
Trace-Based Online Learning

Deyu Wang, Jiawei Xu, Member, IEEE, Feng Li, Lianhao Zhang, Chengwei Cao, Dimitrios Stathis,
Anders Lansner, Ahmed Hemani, Li-Rong Zheng, Senior Member, IEEE, and Zhuo Zou, Senior Member, IEEE

Abstract—The memristor has been extensively used to fa-
cilitate the synaptic online learning of brain-inspired spiking
neural networks (SNNs). However, the current memristor-based
work can not support the widely used yet sophisticated trace-
based learning rules, including the trace-based Spike-Timing-
Dependent Plasticity (STDP) and the Bayesian Confidence Prop-
agation Neural Network (BCPNN) learning rules. This paper
proposes a learning engine to implement trace-based online
learning, consisting of memristor-based blocks and analog com-
puting blocks. The memristor is used to mimic the synaptic
trace dynamics by exploiting the nonlinear physical property
of the device. The analog computing blocks are used for the
addition, multiplication, logarithmic and integral operations. By
organizing these building blocks, a reconfigurable learning engine
is architected and realized to simulate the STDP and BCPNN
online learning rules, using memristors and 180 nm analog
CMOS technology. The results show that the proposed learning
engine can achieve energy consumption of 10.61 pJ and 51.49 pJ
per synaptic update for the STDP and BCPNN learning rules,
respectively, with a 147.03× and 93.61× reduction compared to
the 180 nm ASIC counterparts, and also a 9.39× and 5.63×
reduction compared to the 40 nm ASIC counterparts. Compared
with the state-of-the-art work of Loihi and eBrainII, the learning
engine can reduce the energy per synaptic update by 11.31×
and 13.13× for trace-based STDP and BCPNN learning rules,
respectively.

Index Terms—Memristor, learning engine, trace dynamics, on-
line learning, spike-timing-dependent plasticity (STDP), Bayesian
confidence propagation neural network (BCPNN), spiking neural
network (SNN).
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IN the recent years, the remarkable development of the
Internet of Things (IoT) has led to a significant growth of

information at the edge, requiring time- and energy-efficient
online processing on terminal devices [1]. Inspired by the bio-
logical nervous system, the spiking neural network (SNN) has
gained great interest due to its potential to address spatiotem-
poral information. Featuring event-driven processing, SNNs
offer a power-saving computing paradigm for IoT and edge
computing. In addition, the Hebbian learning rules of SNNs
allow for unsupervised online learning from unlabeled data [2].
Furthermore, the synaptic dynamics exhibited in the Hebbian
learning of SNNs have also been leveraged and widely used
in neuromorphic applications [3]. Nonetheless, the scaling of
complementary metal-oxide-semiconductor (CMOS) technol-
ogy gives rise to issues related to energy consumption and
storage, particularly in the implementation of online learning.

The memristor provides a possibility to alleviate the afore-
mentioned issues by fusing computation and storage [4].
The memristor has various characteristics such as biomimetic
conductance adjustability, nonvolatility, and compatibility with
the current CMOS process. Especially, the hysteretic behavior
of the memristor enables it to represent multiple values, which
resembles biological synapses. Therefore, the memristor is
a promising candidate to realize synaptic online learning of
SNNs and numerous studies have been conducted. In [5], a
hybrid CMOS-memristive circuit was proposed to implement
the triplet STDP learning algorithm. In [6], the suppression
triplet STDP learning rule was realized using second-order
memristors. A memristor-based circuit is proposed, based
on the mechanism of biological unsupervised nonassociative
learning [7]. Recently, a multi-parameter control circuit based
on the forgetting memristor was proposed, where the STDP
learning mechanism is implemented [8]. Furthermore, vari-
ous memristor-based SNNs that support online learning have
been presented. In [9], a simplified spike-timing-dependent
plasticity (STDP) learning rule was proposed to carry out
learning tasks in SNNs using memristors. An STDP-based
SNN with multi-memristive synapses was proposed for un-
supervised learning of temporal correlations in [10]. Another
study presented a memristor-based SNN that utilizes nonlinear
weight update in its memristor synapses based on STDP
[11]. In [12], a SNN hardware was constructed using an
optimized memristor-based synapse model, which employs
the BCM mechanism. However, the current memristor-based
SNNs mostly adopt relatively simple synaptic learning rules
such as simplified STDP. They can not support the more
biologically plausible yet sophisticated trace-based learning
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rules, such as trace-based variants of STDP and the Bayesian
confidence propagation neural network (BCPNN) learning
rules.

Trace-based learning rules refer to the unsupervised online
learning rules that involve the synaptic trace variables into the
learning process, which better describe the synaptic plasticity
discovered in the human brain [13], [14]. Therefore, trace-
based learning rules have been widely used in neuromor-
phic applications [15]–[21]. Recently, several energy-efficient
implementations for trace-based online learning have been
proposed. A neuromorphic SNN processor named Loihi was
presented, which can support programmable synaptic learning
rules including trace-based pairwise and triplet STDP [22].
A real-time custom ASIC implementation called eBrainII was
developed, where the BCPNN learning rule is employed for
synaptic online learning [23]. An FPGA-based SNN processor
was proposed, where the trace-based STDP is adopted as the
online learning algorithm [24]. Despite their good performance
and energy efficiency, these works still encounter bottlenecks
in the aspects of storage and memory access of synaptic
state variables, restricted by the memory wall of the von
Neumann architecture. As a device fusing computation and
storage, the memristor offers the potential for in-memory
computation of trace variables [25]. Recently, the inherent
PCM conductance drift was exploited to realize the eligibility
trace in reinforcement learning [26]. Besides, we studied
how to map the computation of synaptic trace variables to
a memristor model to implement trace-based learning rules
[27]–[29].

In this work, we propose a reconfigurable learning engine
for the energy-efficient implementation of trace-based online
learning. Especially, the learning engine enables in-memory
computation for trace dynamics by exploiting the nonlinear
physical property of memristors. This paper advances our
previous work in [29] and presents three new contributions
as follows:
• This paper proposes a learning engine for generalized

trace-based learning rules of spiking neural networks. The
learning engine consists of memristor-based blocks and
analog computing blocks, thus supporting the computation
of the nonlinear decay of trace variables and other required
calculation operations of trace-based learning.

• A novel reconfigurable design is presented in the learning
engine, where the building blocks can be reused to support
diverse trace-based learning rules. The flexibility and re-
configurability of the design are validated by implementing
the trace-based STDP and the BCPNN learning rules at the
circuit level.

• This paper evaluates the performance and energy efficiency
of the proposed learning engine. The results show that the
learning engine can achieve energy consumption of 10.61 pJ
and 51.49 pJ per synaptic update for the STDP and BCPNN
learning rules, respectively, with a 147.03× and 93.61×
reduction compared to the 180 nm ASIC counterparts, and
also a 9.39× and 5.63× reduction compared to the 40
nm ASIC counterparts. Compared with the state-of-the-art
work, the learning engine can reduce the energy per synaptic
update by 11.31× and 13.13× for trace-based STDP and
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Fig. 1. (a) The spike train and the corresponding trace variable. (b) Three
key traces of the BCPNN learning rule, including Z trace, E trace, and P
trace. Z trace is the low-pass filtered output of the spike train, E trace is the
low-pass filtered output of Z trace, and P trace is the low-pass filtered output
of E trace.

BCPNN learning rules, respectively.
The rest of this paper is organized as follows. Section

II introduces the background knowledge about trace-based
learning and memristor nonlinearity. Section III presents the
memristor-based learning engine for trace-based online learn-
ing. Section IV presents the circuit model and design of the
building blocks of the learning engine. Section V reports the
experimental results, evaluates the performance and energy
efficiency, and compares the proposed learning engine with
other counterparts. Section VI concludes the paper.

II. PRELIMINARY

A. Trace-based Learning

In spiking neural networks, information is encoded and
processed through sequences of spikes. The precise timing of
these spikes is utilized to modulate the strength of synaptic
connections. In [13], it was discovered that the occurrence
of pre- or post-synaptic spikes does not directly cause an
immediate change in synaptic weights. Instead, spikes may
trigger the update of hidden internal variables that are closely
associated with synaptic plasticity. Therefore, the internal
variable called trace is introduced. The trace variable increases
when there is a spike and decays when there is no spike, as
defined below:

dx

dt
= −x

τ
+ k · s (1)

Where x represents the trace variable and s denotes the
spike. The constant k determines the rising amplitude, and
the time constant τ controls the decay rate. The dynamics of
a trace variable is visualized in Fig. 1 (a).

The trace variable plays a crucial role in emulating synaptic
dynamics and is a fundamental component of trace-based

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2023.3291021

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on August 29,2023 at 10:49:18 UTC from IEEE Xplore.  Restrictions apply. 



TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YEAR 3

 Trace behavior
Spike = 1 Spike = 0

T
ra

c
e

S
p
ik

e
s

(a)
Time (ms)Time (ms)

0.8

1.6

0

×10
-3

 Memristor behavior
Vwrite = -2.9 VVwrite = 3.6 V

(b)

R
e

s
is

ta
n

c
e
 

(Ω
)

V
o
lt
a

g
e

Pulse Pulse number

1

2

0

×10
6

(c)

R2T

M

V

S dX
S X

dt
 = −

X

X

Spike Trace

Trace

R2T: Resistance-to-TraceR2TVoltage inputV

Fig. 2. (a) The dynamics of the trace variable. (b) The resistance of the memristor when applied with consecutive voltage pulses. (c) The schematic of the
memristor-based block to transform the incoming spike train to the trace variable.

learning rules, such as the widely used trace-based STDP
variants and the more sophisticated BCPNN learning rule.

1) Trace-based STDP: STDP is a Hebbian online learning
rule, where the strength of synaptic weights is adjusted ac-
cording to the timing of pre- and post-synaptic spikes [30].
To date, multiple variants of STDP have been studied and
proposed based on the classic STDP model. In [13], a pairwise
STDP and a triplet STDP are implemented with synaptic
trace variables, which can give a more biologically plausible
description of the STDP mechanism of the human brain.

The trace-based variants of the STDP learning rule have
been widely adopted in neuromorphic applications. For in-
stance, it was employed in an SNN for digit recognition,
which achieved high classification performance on the MNIST
benchmark [15]. Another work proposed a self-organizing
SNN for unsupervised learning tasks by combining trace-based
STDP with the self-organizing map (SOM) algorithm [16].
Additionally, a spiking recurrent neural network was presented
for classifying electromyography (EMG) gestures, utilizing the
trace-based STDP and a soft winner-take-all mechanism [17].

So far, a variety of digital neuromorphic implementations
have been proposed, where the trace-based STDP learning rule
is adopted for online learning. The Loihi processor developed
by Intel can support trace-based pairwise and triplet STDP
with its programmable learning engine [22]. An FPGA-based
SNN processor was presented for image classification, and
the trace-based STDP is employed for the online learning
process [24]. Recently, a neuromorphic core for edge systems
was presented, which can support various on-chip learning
methods, including the variants of trace-based STDP [31].

2) BCPNN Learning Rule: The BCPNN learning rule is
derived from Bayes’ rule [32] and has clear links to biological
synaptic plasticity processes [14]. In the spike-based version
of this learning rule, three key traces are introduced to keep
track of the dynamics of the pre-, post-synaptic, and coincident
synaptic activities [33], as visualized in Fig. 1 (b). The synaptic
weight is thus modulated according to the trace variables.

The BCPNN learning rule has been leveraged to handle pat-
tern recognition tasks in an unsupervised manner. Competitive
classification performance on the MNIST and Fashion-MNIST
benchmarks can be achieved, with an accuracy of 98.6% and
88.9% on test sets, respectively [18]. Moreover, the BCPNN
learning rule has been used extensively in detailed spiking

models of brain-like cognitive capabilities such as associative
memory [19], working memory [20], and episodic memory
[21].

The BCPNN learning rule has been utilized to construct
cortex-like neural networks. The neural networks have been
implemented in high-performance computers, such as clusters
[19], and GPUs [34]. Recently, a custom ASIC implementation
called eBrainII was developed, and the BCPNN learning rule
is employed for the online learning process [23].

B. Memristor Nonlinearity

Although the current digital neuromorphic implementations
for trace-based online learning have demonstrated good perfor-
mance and energy efficiency, they still suffer from bottlenecks
in the storage and memory access of synaptic state vari-
ables. As an emerging device fusing computation and storage,
the memristor provides a possibility to relieve these issues.
However, the current memristor-based work can only support
simple online learning rules like the simplified STDP. They
can not deal with the more sophisticated trace-based learning
rules that involve the nonlinear decay of trace variables.

The memristor exhibits rich hysteretic current-voltage be-
havior, which is commonly observed in various nanoscale
electronic devices. Nonetheless, there can be considerable
nonlinearities in the ionic transport process, due to the electric
fields generated by voltage inputs in nanoscale devices. This
phenomenon is known as nonlinear dopant drift or nonlinearity
[35]. The resistance of the memristor changes in a nonlinear
manner when applied with external voltage pulses, which is
similar to the nonlinear decay of trace variables. Therefore, it
is motivated that the memristor nonlinearity can be exploited
to emulate the nonlinear decay of trace variables.

III. LEARNING ENGINE

In this work, we propose a generalized learning engine for
trace-based online learning. The learning engine is comprised
of memristor-based blocks and analog computing blocks,
which perform the necessary calculations. Especially, the
memristor’s behavior is utilized to simulate the nonlinear
decay of the synaptic trace variable. Moreover, the learning
engine features a reconfigurable architecture, allowing it to
support both the trace-based pairwise STDP and the BCPNN
learning rules.
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Fig. 3. (a) The reconfigurable architecture of the learning engine, composed of memristor-based building blocks and analog computing blocks. (b) Two
working modes of the learning engine, i.e., the trace-based pairwise STDP and the BCPNN learning rule.

A. Synaptic Trace with Memristor

The behaviors of the trace variable and the memristor resis-
tance are illustrated in Fig. 2 (a) and (b), respectively. The trace
variable increases in response to spikes and decays between
them, while the memristor resistance increases in response to
positive voltage pulses and decreases in response to negative
voltage pulses. This suggests that the consistency between
the dynamics of the trace and the behavior of the memristor
resistance can be utilized to compute trace variables.

Fig. 2 (c) presents the schematic of a memristor-based
block, which is designed for the computation of trace vari-
ables. Since the trace variable changes with the incoming spike
sequences, the memristor resistance is stimulated with external
voltage pulses. In this way, the iteration of the trace variable
can be represented with the memristor resistance. The different
rise amplitudes and decay rates of the traces (represented
by the constant k and the time constant τ in formula (1))
can be correspondingly achieved by adjusting the amplitude
of voltage pulses applied across the memristor. In addition,
a resistance-to-trace (R2T) module is needed to convert the
resistance to the trace value at a specific mapping scale.
The details of the mapping process between the memristor
resistance and the trace variable can be referred to in our
previous work [29].

B. Reconfigurable Architecture of the Learning Engine

Fig. 3 (a) depicts the reconfigurable architecture of the
learning engine. The learning engine comprises two types of
building blocks: the memristor-based block and the analog
computing blocks. The memristor-based block, consisting of
a memristor element and a R2T module, is responsible for
computing trace variables. Each memristor-based block rep-
resents a trace variable in the trace-based learning rules. The
analog computing blocks of the learning engine handle the
other calculation operations, including addition, multiplication,
logarithmic, and integral operations. The circuit model and
design of these building blocks will be elaborated in Section
IV.

The memristor-based block and analog computing blocks
can support the required operations for trace-based online
learning. Therefore, a range of trace-based learning rules in
SNNs can be implemented by cascading the building blocks.
In this work, the proposed learning engine is equipped with
five memristor-based blocks, five adders, three logarithmic
modules, a multiplier, and an integrator. By organizing and
configuring these building blocks, the learning engine can
support both the trace-based pairwise STDP and the BCPNN
learning rules.

The learning engine achieves reconfigurability by switching
the data path to support different learning rules. As shown
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the original BCPNN learning rule are mainly used for delayed reinforcement
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in Fig. 3 (b), the learning engine can be configured into two
working modes. Switches S1, S2, S3, S4, S5, and S6 control
the switching between the two modes. When switches S1, S2,
and S6 are turned on and switches S3, S4, and S5 are turned
off, the learning engine functions for the trace-based pairwise
STDP. On the other hand, when switches S3, S4, and S5 are
turned on and switches S1, S2, and S6 are turned off, the
learning engine functions for the BCPNN learning rule.

If the learning engine is configured for trace-based pairwise
STDP, the incoming pre- and post-synaptic spike sequences
Si and Sj , which are represented with voltage pulses, drive
the iteration of two synaptic traces (Xi and Xj) with time
constants τi and τj , respectively, as illustrated in Fig. 4
(a). This requires the use of two memristor-based blocks to
represent the trace variables. Additionally, an adder and an
integrator are necessary to update the synaptic weight Wij

based on the two traces.
When the engine is configured for the BCPNN learning

rule, the spike trains Si and Sj drive pre- and post-synaptic Z
traces (Zi and Zj) with corresponding time constant τzi and
τzj , respectively. These Z traces in turn drive the three P traces
(Pi, Pj , and Pij) following the same kind of dynamics with
the time constant τp, as shown in Fig. 4 (b). Therefore, the
iteration of the BCPNN learning rule requires five memristor-
based blocks to represent the five trace variables. For the Pij

trace, the input to the block is the product of the outputs of Zi

and Zj , thus requiring a multiplier. Besides, five adders and
three logarithmic modules are needed to calculate the weight
Wij and the bias βj based on the trace variables.

Op Amp
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Fig. 5. The circuit diagram of the memristor-based block. (a) The memristor
element is stimulated and the resistance of the memristor is sampled. (b) The
resistance-to-trace module is used to convert the resistance to a trace value.

In this work, the most commonly used trace-based pairwise
STDP and the simplified BCPNN learning rule without E
traces are implemented. The reconfigurability of the learning
engine allows for the reuse of the same computing blocks for
both two configurations. Moreover, it should be noted that the
other STDP variants such as the triplet STDP containing three
traces and the original BCPNN learning rule with eight traces,
can also be supported by increasing the number of building
blocks inside the learning engine. The learning engine’s build-
ing blocks are scalable and reconfigurable, allowing for the
support of a wider range of trace-based learning rules of SNNs.

IV. CIRUIT MODEL AND DESIGN

In this section, the memristor-based block and the analog
computing blocks of the learning engine are modeled and
designed at the circuit level.

A. Memristor-Based Block

In the memristor-based block, the memristor element is
constructed with a SPICE model in Verilog-A. In addition,
peripheral circuits are needed to sample the resistance of the
memristor and transform it into a trace value.

1) Verilog-A Memristor Model: In this work, the VTEAM
model [36] combined with an improved window function
based on [27] is adopted to characterize the behavior of the
memristor.

The VTEAM model is a widely used SPICE-level model
for memristor devices. It is compatible with various window
functions and exhibits great flexibility in simulating the non-
linearity of memristors, which is defined as follows:

dx(t)
dt

=


koff · ( v(t)

voff
− 1)

αoff · f(x(t)), 0 < voff < v

0, von < v < voff

kon · ( v(t)
von

− 1)
αon · f(x(t)), v < von < 0

R(t) = Ron + (Roff −Ron) · x(t)

v(t) = R(t) · i(t)
(2)

Here, x(t) denotes an internal state variable, v(t) represents
the voltage applied to the memristor, whereas i(t) indicates
the current. R(t) stands for the resistance, and f(x) is the
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Fig. 6. The circuit diagram of the analog computing blocks: (a) The adder. (b) The multiplier. (c) The logarithmic module. (d) The integrator.

window function. The threshold voltages of the memristor
are designated as von and voff , while Ron and Roff refer to
the minimum and maximum resistance of the memristor. The
parameters kon, koff , αon and αoff are adjustable parameters.

To emulate the nonlinearity of memristor devices, the
window function is introduced as an essential part of the
memristor model. Recently, we proposed a flexible yet concise
window function to mimic the memristor nonlinearity [27]. In
this work, we improve the window function proposed in [27],
by introducing a tuning function p(i) to replace the previous
tuning parameter p. With this enhancement, the window func-
tion can more accurately capture the varying nonlinearities of
physical memristors as their resistance increases or decreases,
by applying different parameters poff and pon under different
current directions.

The improved window function f(x) is provided as follows:

f(x) = j[sgn(−i) · (x− 1) + stp(−i)]p(i)

sgn(i) =

{
1, i ≥ 0
−1, i < 0

stp(i) =

{
1, i ≥ 0
0, i < 0

p(i) =

{
poff , i ≥ 0
pon, i < 0

(3)

where i is the current, j is a tuning parameter, and p(i)
is a tuning function. The tuning function p(i) determines the
decrease rate of the window function near the boundaries. The
nonlinearity is weakened when poff or pon approaches 0.

2) Circuit Design: The circuit diagram for the memristor-
based block is depicted in Fig. 5. The resistance of the
memristor is stimulated and sampled in Fig. 5 (a). The
memristor element is constructed using the Verilog-A SPICE
model described earlier. The input voltage represents the
incoming spike train, with positive voltage indicating a spike
and negative voltage indicating no spike. Switches S1, S2,
and S3 are controlled by voltages Vclk1, Vclk2, and Vclk3,
respectively, to switch between the circuit’s two operating
states. In the holding state, switch S2 is on while S1 and S3
are off, and the voltage source excites the memristor, changing
its resistance. In the sampling state, switches S1 and S3 are on

while switch S2 is off, and a constant current from the current
source passes through the memristor to convert its resistance
into a voltage value, which is stored in capacitor C1.

Fig. 5 (b) is used to transform the sampled memristor
resistance into an expected trace value. In the sampling state,
when switches S1 and S3 are on, and switch S2 is off, the
memristor resistance is sampled and stored as a voltage value
in capacitor C1. Since switch S3 is on, the voltage stored in
capacitor C2 is equal to the voltage stored in capacitor C1.
Next, the operational amplifier amplifies the voltage stored in
capacitor C2, and the resulting voltage is stored in capacitor
C3 as the input voltage for the next-stage circuit.

B. Analog Computing Blocks

In addition to the memristor-based block, several analog
computing blocks are needed to perform additional computa-
tion operations for trace-based learning, including the addition,
multiplication, logarithmic and integral operations.

1) Adder: Fig. 6 (a) presents the diagram of the non-
inverting adder circuit. As an example, the sampling voltage
of the P trace is added with the constant parameter ε.

2) Multiplier: As shown in Fig. 6 (b), the multiplier is
implemented based on the classic Gilbert cell. The sampling
voltage of Zi trace is multiplied by the sampling voltage of
Zj trace. The aspect ratios W/L for M1, M2, M3, M4 are
1µm/0.18µm, while the aspect ratios W/L for M5, M6 are
2µm/0.18µm. In addition, the bias voltages Vdc for Zi and
Zj are 1.5 V and 1.3 V respectively.

3) Logarithmic Module: Fig. 6 (c) presents the diagram of
the logarithmic circuit. The input is the sum of the P trace
and the constant parameter ε, which is then logarithmically
calculated through a triode and an operational amplifier.

4) Integrator: Fig. 6 (d) presents the diagram of the inte-
grator. The two capacitors both have a capacitance of 1 pF.

The learning engine proposed here consists of multiple
analog computing blocks, including five adders, a multiplier,
three logarithmic modules, and an integrator. To enable trace-
based STDP, an adder, and an integrator are utilized. On
the other hand, for the BCPNN learning rule, five adders, a
multiplier, and three logarithmic modules are required.
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TABLE I
FITTING PHYSICAL MEMRISTOR DEVICES WITH THE IMPROVED MEMRISTOR MODEL

Memristor Parameters Setting (j = 1) RMSE

αoff αon voff [V] von[V] Roff [Ω] Ron[Ω] koff [s−1] kon[s−1] poff pon dt AICAS’22 [29] This Work Reduction

Ferroelectric [37] 5 5 1.4 -2.0 1.4×107 1.6×105 1.6×105 -1.3×109 1.48 1.79 100 ns 8.2×105 7.2×105 12.3%
STO-based [6] 2 2 1.3 -1.3 2.0×109 2.9×108 1.2×105 -1.2×106 4.50 2.52 10 µs 3.0×107 7.9×106 73.3%
NiO-based [38] 1 1 0.1 -0.1 3.2×104 2.6×104 7.4 -11.1 1.22 5.16 2 ms 393.8 86.5 78.0%
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Fig. 7. The fitting results of two physical memristor devices with the
memristor model. (a) The ferroelectric memristor is applied with consecutive
negative voltage pulses. (b) The ferroelectric memristor is applied with
consecutive positive voltage pulses. (c) The NiO-based memristor is applied
with consecutive negative voltage pulses. (d) The NiO-based memristor is
applied with consecutive positive voltage pulses.

V. EXPERIMENTAL RESULTS

We perform various experiments to validate and evaluate
the proposed learning engine. First, we verify the behavioral
consistency between the Verilog-A memristor model with real
devices. Then we perform SPICE-level simulations to verify
the feasibility of the learning engine. The energy efficiency of
the learning engine is also evaluated. Furthermore, we conduct
comparative tests on different computing platforms to demon-
strate the advantages of the learning engine. In particular, we
perform ASIC designs for the STDP and BCPNN learning
rules and synthesize the RTL designs under the process of
180 nm and 40 nm, respectively. Moreover, the learning engine
is also compared with the state-of-the-art works. Finally, we
present the discussion on device variation issues and our
follow-up work in the future.

A. Parameters for Memristor SPICE Model

The memristor element of the memristor-based block is
constructed with a memristor SPICE model in Verilog-A.
To mimic the real memristor behavior, the parameters for
the memristor model are obtained by fitting several physical
memristor devices [6], [37], [38].

To fit the experimental data of physical devices, the root
mean square error (RMSE) is used as the optimization metric,
as defined below:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷk − yk)
2 (4)

Here, N denotes the overall number of samples, yk repre-
sents the kth sample of the reference resistance of physical
devices, while ŷk denotes the kth sample of the resistance
fitted with the memristor model.

According to the tuning resistance by consecutive voltage
pulses reported in [6], [37], [38], a set of parameters is selected
to fit the memristor model to the experimental data. To obtain
the optimized set of parameters, the RMSE is minimized using
gradient descent [39] and simulated annealing algorithms [40].
Especially, the parameters voff , von, Roff , Ron are established
based on the experimental data reported in [6], [37], [38],
respectively. The timestep dt is determined based on the
reported pulse duration. The parameters j, αoff , and αon are
manually set to demonstrate similarity. The fitting procedure
is then iterated on koff , kon, poff , and pon to minimize the
error function given in formula (4).

The optimized parameters of the memristor model for three
physical memristor devices are presented in Table I. For the
ferroelectric memristor, a minimum RMSE of 7.2×105 is
attained, which reduces the RMSE by 12.3% compared with
our previous work in [29]. For the STO-based memristor, a
minimum RMSE of 7.9×106 is achieved, with a reduction of
RMSE by 73.3%. For the NiO-based memristor, a minimum
RMSE of 86.5 is achieved, with a reduction of RMSE by
78%. The fitting results of the ferroelectric memristor and the
NiO-based memristor are also visualized in Fig. 7. The results
show that the improved memristor model has a decent fitting
effect on the physical memristor devices. In the subsequent
experiments, the set of fitting parameters for the ferroelectric
memristor device is adopted to implement the memristor
element in SPICE-level simulations.

B. SPICE Simulation of Trace-based Learning Rules

To validate the feasibility of the learning engine for trace-
based online learning, we performed simulations at the circuit
level. Specifically, both the trace-based pairwise STDP and the
BCPNN learning rules are simulated in the SPICE simulation
environment. To ensure the reliability of the memristor-based
building block and maintain compatibility between memristors
and analog circuits, we adopt the 180 nm process to implement
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TABLE II
SPICE SIMULATION RESULTS OF TRACE-BASED LEARNING RULES

STDP BCPNN

Xi Xj wij Zi Zj Pi Pj Pij wij βj

Mean Error 4.01×10−5 3.47×10−5 1.53×10−10 1.96×10−2 1.47×10−2 1.35×10−3 1.18×10−3 4.15×10−5 4.39×10−2 2.5×10−2

Max Error 2.36×10−4 2.34×10−4 4.75×10−10 1.6×10−1 1.59×10−1 3.65×10−3 3.17×10−3 3.65×10−3 6.59×10−1 7.67×10−2

RMSE 5.76×10−5 4.37×10−5 1.95×10−10 3.43×10−2 2.96×10−2 1.64×10−3 1.56×10−3 1.39×10−4 6.77×10−2 3.29×10−2

RRMSE 3.82% 2.85% 1.5% 11.94% 10.33% 1.82% 2.35% 3.29% 2.06% 1.62%

CC 98.71% 98.98% 99.86% 94.56% 95.32% 99.83% 99.81% 99.72% 99.85% 99.92%

the learning engine, which has been mainly employed in recent
works of CMOS-memristor hybrid designs [41], [42].

During the SPICE simulation, the memristor-based block of
the learning engine is implemented with the circuit presented
in Fig. 5. The memristor element is constructed using the
memristor SPICE model in Verilog-A with the fitting parame-
ters obtained from the ferroelectric memristor in Table I. The
analog computing blocks are implemented with the analog
circuits in Fig. 6, using 180 nm analog CMOS technology. By
configuring and reusing the building blocks, both the trace-
based pairwise STDP and the BCPNN learning rule can be
implemented with the learning engine.

In the simulation, voltage pulses with different amplitudes
are used to represent a set of incoming pre- and post-synaptic
spike trains. The time per synaptic update can be adjusted by
applying voltage pulses with different widths. In this work, the
timestep for each synaptic update operation is set to be 100 ns
based on the voltage pulse width reported in [37]. The SPICE
simulation step is 10 ps, therefore 10,000 SPICE simulation
steps are needed to simulate one timestep. The total simulation
time is 100 µs, which includes 1000 timesteps in total. During
the simulation, the instantaneous current and voltage of key
nodes are recorded and exported for accuracy and power
analysis. Given the same incoming pre- and post-synaptic
spike trains, the SPICE simulation results are compared with
the reference model of the trace-based learning rules and
error analysis is conducted. During the analysis, the average
error, maximum error, RMSE, relative RMSE (RRMSE), and
correlation coefficient (CC) are used as the main evaluation
metrics. Specifically, the RRMSE normalizes the RMSE with
the peak-to-peak amplitude of the reference data, while the
CC reflects the correlation between the simulation results and
the reference data.

As shown in Table II, the simulation results demonstrate
a high degree of fit with the reference model. The nonlinear
decay of the trace variables can be achieved with high accu-
racy. The correlation coefficient of the synaptic weights wij of
the trace-based pairwise STDP and the BCPNN learning rules
reach more than 99%, and the relative RMSE is less than 3%.
The above results prove that the proposed learning engine can
implement the trace-based learning rules with a high level of
precision at the circuit level.

TABLE III
ENERGY CONSUMPTION OF THE LEARNING ENGINE

FOR EACH SYNAPTIC UPDATE OF TRACE-BASED LEARNING RULES

STDP BCPNN

Memristor (pJ) 3.28 4.91

R2T module 2.45 6.12

Adder 1.22 6.12

Multiplier - 27

Logarithmic module - 7.34

Analog
circuits (pJ)

Integrator 3.66 -

Total (pJ) 10.61 51.49

C. Evaluation of Energy Efficiency

In this work, power and energy reduction is the main
goal. We take advantage of the nonlinear property of physical
memristor devices to mimic synaptic dynamics, which can
avoid sophisticated nonlinear computation compared with dig-
ital implementations. In the current hardware implementations
of SNNs, the energy per synaptic operation (SOP) is often
used to evaluate the energy efficiency [43], [44]. However,
the definition of SOP is not unified in these implementations
and is not applicable to this work. Therefore, we employ the
energy per synaptic update as the evaluation metric, which is
defined as the energy consumed for a complete weight update
process.

The total energy consumption of the learning engine is com-
posed of two parts, the memristor part, and the analog circuit
part. To evaluate the power consumption of the memristor
part, the instantaneous voltage and instantaneous current of the
memristor nodes in the circuit are measured and recorded. The
power consumption of the memristors for each synaptic update
is then calculated by accumulating the instantaneous power.
The power consumption of the analog circuit is calculated
according to the operating voltage and current of the circuit
modules.

Table III exhibits the energy consumed by the learning
engine for every synaptic update of trace-based learning rules.
In the working mode for the trace-based pairwise STDP,
it takes 100 ns for each synaptic weight update, and the
consumed energy is 10.61 pJ in total. The detailed power
breakdown of the learning engine is visualized in Fig. 8 (a).
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Fig. 8. (a) The power breakdown of the learning engine in the learning mode for the trace-based pairwise STDP. The memristor part is composed of two
memristor nodes, representing two traces Xi and Xj . (b) The power breakdown of the learning engine in the learning mode for the BCPNN learning rule.
The memristor part is composed of five memristor nodes, representing five traces Zi, Zj , Pi, Pj , and Pij .

The memristor part accounts for approximately 30% of the
total power consumption. Due to the difference between the
pre- and post-synaptic spike trains Si and Sj , the power
consumption of the two memristor nodes that represent the
two traces Xi and Xj also varies slightly.

When the learning engine works for the BCPNN learning
rule, it takes 100 ns for each synaptic update, and the energy
consumption is 51.49 pJ in total, as presented in Table III. The
memristor part is responsible for less than 10% of the total
power consumption, as demonstrated in Fig. 8 (b). The power
consumption of the five memristors, used to represent the five
traces Zi, Zj , Pi, Pj , and Pij , varies due to the different
voltage pulses applied. The analog computing blocks account
for most of the power consumption, of which the multiplier
accounts for more than 50%.

D. Comparative Experiments on Different Platforms

To demonstrate the advantages of the proposed learning
engine in terms of performance and energy efficiency, compre-
hensive comparative experiments are performed on different
computing platforms where trace-based learning rules are
implemented. The synaptic update processes of the trace-based
STDP and the BCPNN learning rules are both implemented on
the CPU, the Raspberry Pi, and the FPGA and ASIC design,
respectively. As shown in Table IV, for each implementation,
the time consumption, average power, and energy consumption
are measured and evaluated. The energy-delay product is also
provided as a reference.

1) Implementation on CPU: As a general-purpose proces-
sor, the CPU is often employed for brain-like simulations.
In this work, the CPU experiment is conducted on the Intel
Core i7-9750H processor. The processor has six cores and
its base frequency is 2.60 GHz (max turbo frequency is 4.5
GHz), along with 12 MB Intel Smart Cache. The operating
system used is Microsoft Windows 10.0.19044. The synaptic
update processes of the trace-based STDP and the BCPNN
learning rules are implemented with Python in Anaconda
Prompt, respectively.

The total running time of the simulation is recorded, and the
real-time power of the CPU is measured with the HWiNFO

monitor, as depicted in Fig. 9 (a). However, the operating
frequency of the CPU may fluctuate significantly in a short
period, which can affect the accuracy of the measurement
results. Therefore, to mitigate the effect of CPU operating
frequency fluctuations, the measurement results are obtained
by averaging 1,000,000 tests. As shown in Table IV, for the
trace-based pairwise STDP, it takes 1.33 µs on average to
complete a synaptic update process, with an average energy
consumption of 18.06 µJ. In terms of the BCPNN learning
rule, it takes 3.26 µs on average to complete a synaptic update
process, with an average energy consumption of 52.43 µJ.

2) Implementation on Raspberry Pi: As an embedded de-
vice, the Raspberry Pi can be used to train neural networks
at the edge. The experiment on the Raspberry platform is
performed using the Raspberry Pi 4B, equipped with a 1.5GHz
ARM Cortex-A72 processor and 4GB LPDDR4 memory.
The synaptic update processes of the trace-based STDP and
the BCPNN learning rules are separately implemented using
Python in a Linux environment.

Similarly, the simulation time and average power consump-
tion of the Raspberry Pi are measured. To mitigate the effect
of fluctuations in the working frequency of the device, the
measurement results are also obtained by averaging 1,000,000
tests. As shown in Fig. 9 (b), the real-time power of the
Raspberry Pi 4B is measured with the POWER-Z USB tester
and exported to the laptop for further analysis. As shown in
Table IV, for the trace-based pairwise STDP, the average time
taken to complete a synaptic update process is 3.61 µs, with an
average energy consumption of 3.48 µJ. As for the BCPNN
learning rule, the average time taken to perform a synaptic
update is 8.67 µs, with an average energy consumption of
8.29 µJ.

3) Implementation on FPGA and ASIC: The FPGA is a
programmable hardware platform that provides great paral-
lelism and flexibility. Besides, the ASIC design can deliver
better performance and energy efficiency, thanks to their
specialized and optimized circuitry.

Specifically, the trace-based pairwise STDP and the BCPNN
learning rules are implemented with Verilog HDL, respec-
tively. The full functional verification is performed, and the
RTL designs are implemented on the Xilinx xc7a100tfgg484-
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TABLE IV
IMPLEMENTING TRACE-BASED LEARNING RULES

ON DIFFERENT COMPUTING PLATFORMS

Platform CPU Raspberry Pi FPGA ASIC
(180-nm digital)

ASIC
(40-nm digital)

Memristor-based
(180-nm analog)

Time per
synaptic update 1.33 µs 3.61 µs 80 ns 80 ns 80 ns 100 ns

STDP Average power 13.8891 W 0.9656 W 121 mW 19.5 mW 1.25 mW 0.106 mW

Energy per
synaptic update 18.06 µJ 3.48 µJ 9.68 nJ 1.56 nJ 99.68 pJ 10.61 pJ

Energy-delay
product 24.02 µJ · µs 12.56 µJ · µs 0.77 µJ · ns 124.8 nJ · ns 7.97 nJ · ns 1.06 nJ · ns

Time per
synaptic update 3.26 µs 8.67 µs 130 ns 130 ns 130 ns 100 ns

BCPNN Average power 15.8933 W 0.9531 W 271 mW 37 mW 2.23 mW 0.51 mW

Energy per
synaptic update 52.43 µJ 8.29 µJ 35.23 nJ 4.82 nJ 290 pJ 51.49 pJ

Energy-delay
product 170.92 µJ · µs 71.87 µJ · µs 4.58 µJ · ns 626.6 nJ · ns 37.7 nJ · ns 5.1 nJ · ns

(b) (c)

Host Computer Host Computer 
POWER-Z  

Raspberry Pi 4B  

Xilinx xc7a100tfgg484-2

(a) (d)

Primetime Power Analysis

Power Recording 

HWiNFO Monitor HWiNFO Monitor 

Fig. 9. (a) Implement trace-based learning rules on the CPU and measure the real-time power with the HWiNFO monitor. (b) Implement trace-based
learning rules on Raspberry Pi 4B and measure the real-time power with the POWER-Z USB tester. (c) Implement trace-based learning rules on the Xilinx
xc7a100tfgg484-2 FPGA device. (d) Implement trace-based learning rules on ASIC and analyze the power consumption with Primetime given fixed incoming
spike trains.

2 FPGA device, as depicted in Fig. 9 (c). Since the learning
engine adopts 180 nm analog CMOS technology for analog
circuits, the digital ASIC design is also synthesized in the
180 nm process as a fair comparison. The RTL designs are
synthesized using Synopsys Design Compiler under typical
case corner at a clock frequency of 100 MHz. The obtained
gate.v, .sdc. .sdf and .spf files, together with the vcd files
recording the switching activities are imported into the Prime-
time for power analysis, as shown in Fig. 9 (d). Furthermore,
the energy consumption for the memory access of the synaptic
trace variables that are stored in the SRAM memory is also
considered.

To implement the trace-based pairwise STDP, it takes 80
ns to perform a weight update process. It consumes 1.56 nJ
for each synaptic update, which is 147.03 times the energy
consumption of the learning engine, as shown in Table IV. In
terms of the BCPNN learning rule, it takes 130 ns for each
weight update. The energy consumption per synaptic update
is 4.82 nJ, which is 93.61 times that of the learning engine.

As a comparison, the ASIC design is also synthesized using
the more advanced 40 nm technology at 100 MHz. As shown
in Table IV, for the pairwise STDP, the energy consumption

per synaptic update is 99.68 pJ, which is 9.39 times that of the
learning engine. As for the BCPNN learning rule, the energy
for each synaptic update is 290 pJ, which is 5.63 times that
of the learning engine.

It should be noted that the time taken for each synaptic
update process in these implementations can be adjusted by
varying their working frequency, which in turn would affect
their average power. However, their energy consumption per
synaptic update would still be in the same range, that’s why we
employ the energy per synaptic update as the main evaluation
metric in this work.

E. Comparison with the State-of-the-art Work

Recently, several hardware implementations for trace-based
online learning have been presented [22]–[24], which exhibit
excellent energy efficiency. Table V compares the proposed
learning engine with the state-of-art works that support trace-
based learning rules. Since these works are oriented to differ-
ent application scenarios, their reported results are normalized
as the energy consumption per synaptic update to achieve a
fair comparison.
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TABLE V
COMPARISON WITH THE STATE-OF-THE-ART WORK

TCASI’21
[24]

Loihi
[22]

eBrainII
[23] This work

Implementation FPGA ASIC ASIC Memristor-based

Technology - 14 nm 28 nm 180 nm

Trace-based
Learning STDP STDP BCPNN STDP

BCPNN

Energy per
Synaptic Update

297 pJ
(STDP)

120 pJ
(STDP)

676 pJ
(BCPNN)

10.61 pJ
(STDP)
51.49 pJ
(BCPNN)

The FPGA-based SNN processor employs trace-based
STDP for the online learning of each image in the MNIST
task. The reported energy consumption per synapse for the
online learning of each image is 0.297 µJ /image [24]. The
learning of each image is achieved by encoding the image
into a spike train with a timestep length of 1000. After
normalization, the energy consumption for each synaptic up-
date is 297 pJ. For Loihi, the energy per synaptic update
(pairwise STDP) is 120 pJ, which is extracted from pre-
silicon SDF and SPICE simulations, in accordance with early
post-silicon characterization [22]. In the eBrainII work, a
lazy-update mechanism is employed in the synaptic update
process [23]. To update the 101 cells of a synaptic matrix,
the energy consumption is 68.27 nJ, and the average energy
for each synaptic cell is 676 pJ. Compared with these works,
the proposed learning engine can achieve a 27.99×, 11.31×,
and 13.13× reduction of energy consumption for the synaptic
update of trace-based STDP and the BCPNN learning rules,
respectively.

F. Discussion on Device Variations and Future Work

In this paper, we focus on the design of the proposed
learning engine for synaptic trace-based online learning and
evaluating the feasibility and energy efficiency of the design.
However, in reality, memristor-based structures tend to suf-
fer from device variations, including device-to-device (D2D)
variations and cycle-to-cycle (C2C) variations [45], [46]. D2D
variations are spatial variations where the same voltage pulse
leads to varying resistances among different memristor de-
vices. On the other hand, C2C variations are temporal and
describe changes in the behavior of a single device over time.
Several works have studied the impact of device variations on
the performance of spiking neural networks. In [47], an SNN
simulation was conducted, revealing the network’s resilience to
device variations. Another study also confirmed the robustness
of SNNs against device variations, using a model of the
double-gate MOSFET device [48].

In this section, we model device variations by introducing
Gaussian noise into the resistance R(t) of the memristor model
in formula (2) based on the method in [46]. The memristor
resistance with device variation R

′
(t) is represented as:

R
′
(t) = R(t)× (1 +N(σ)) (5)
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Fig. 10. Fitting the ferroelectric memristor using the memristor model with
device variations. (a) The ferroelectric memristor is applied with consecutive
negative voltage pulses. (b) The ferroelectric memristor is applied with
consecutive positive voltage pulses.

Here, the mean of the Gaussian noise N(σ) is 0, and
the standard deviation is σ. The value of the σ is 0.1544,
which is calculated based on the variation observed between
the real memristor resistance and the memristor model. The
fitting results of the ferroelectric memristor device using the
memristor model added with Gaussian noise is visualized in
Fig. 10. Taking the device variation into consideration, we
performed experiments at the network level. To be specific,
an SNN network based on the trace-based pairwise STDP,
containing 625 excitatory neurons and inhibitory neurons, is
trained and tested on the MNIST dataset. Despite the presence
of device variations, the accuracy of a network-level MNIST
task using memristor-based STDP remains almost the same
(92.67 ± 0.47%). The network-level results show that thanks
to unsupervised online learning, the SNNs adopting trace-
based learning rules demonstrate good robustness against the
device variations in typical physical memristors.

To clarify, this paper concentrates on the design and eval-
uation of the proposed learning engine. Therefore, we only
conduct a basic modeling experiment of device variation.

In the future, there are several areas that can be explored
for further study. Firstly, a more comprehensive and systematic
analysis of the impact of device variations on the proposed de-
sign can be conducted, including both the device-to-device and
cycle-to-cycle variations. Additionally, it would be valuable to
investigate the influence of process scaling on the functionality
of the learning engine. Furthermore, the architectural design
that integrates the proposed learning engine into large-scale
neuromorphic chips can be explored.

VI. CONCLUSION

In this work, a reconfigurable learning engine is proposed to
implement synaptic trace-based online learning. The learning
engine consists of memristor-based blocks and analog com-
puting blocks. Based on these building blocks, the learning
engine is architected and realized using memristors and 180
nm analog CMOS technology. Two trace-based learning rules,
i.e., the trace-based STDP and the BCPNN learning rules,
are implemented with the learning engine. The performance
and energy efficiency of the learning engine is evaluated. The
proposed learning engine can achieve energy consumption of
10.61 pJ and 51.49 pJ per synaptic update for the STDP
and BCPNN learning rules, respectively, with a 147.03× and
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93.61× reduction compared to the 180 nm ASIC counterparts,
and also a 9.39× and 5.63× reduction compared to the 40 nm
ASIC counterparts. Compared with the state-of-the-art work,
the learning engine can reduce the energy per synaptic update
by 11.31× and 13.13× for trace-based STDP and BCPNN
learning rules, respectively. Furthermore, this paper verifies the
feasibility and efficiency of the proposed learning engine for
online learning at the synaptic level, which lays the foundation
for network-level applications and provides the possibility to
realize biological brain-like intelligence.
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