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Abstract—Future high-density and high channel count neural
interfaces that enable simultaneous recording of tens of thousands
of neurons will provide a gateway to study, restore and augment
neural functions. However, building such technology within the
bit-rate limit and power budget of a fully implantable device is
challenging. The wired-OR compressive readout architecture ad-
dresses the data deluge challenge of a high channel count neural
interface using lossy compression at the analog-to-digital interface.
In this article, we assess the suitability of wired-OR for several steps
that are important for neuroengineering, including spike detection,
spike assignment and waveform estimation. For various wiring
configurations of wired-OR and assumptions about the quality of
the underlying signal, we characterize the trade-off between com-
pression ratio and task-specific signal fidelity metrics. Using data
from 18 large-scale microelectrode array recordings in macaque
retina ex vivo, we find that for an event SNR of 7–10, wired-OR
correctly detects and assigns at least 80% of the spikes with at least
50× compression. The wired-OR approach also robustly encodes
action potential waveform information, enabling downstream pro-
cessing such as cell-type classification. Finally, we show that by
applying an LZ77-based lossless compressor (gzip) to the output
of the wired-OR architecture, 1000× compression can be achieved
over the baseline recordings.

Index Terms—A/D conversion, analog-to-digital compression,
brain-machine interfaces, compression algorithm, neural
interfaces.
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I. INTRODUCTION

H IGH-THROUGHPUT and high-density neural interfaces
will enable better technology to study, restore and

augment functionality in the nervous system [1]. By providing
simultaneous cellular-resolution recording of activity in large
populations of neurons, these interfaces can shed light on the
complex interactions between neurons and their cooperative
behavior in a manner that has previously been unattainable [2],
[3], [4], [5], [6], [7]. In addition, high bandwidth and single-cell
resolution offer promising prospects for treating neurological
diseases and expanding human sensory perception in clinical
applications [8], [9]. Therefore, there is an increasing need to
record more neurons over a longer duration in vivo [1]. The
ideal system to fulfill this need must have many simultaneous
recording channels and high temporal resolution, and must be
fully wireless to provide stable recording for long durations.

In a typical fully implantable neural interface design, ac-
tion potentials from neurons are captured using microelectrode
arrays connected to multi-channel recording electronics (see
Fig. 1(a)). Each recording channel undergoes amplification,
filtering and digitization before being transmitted outside the
implant for further processing. However, previous systems fol-
lowing such design are limited to approximately a thousand
channels [10], [11], [12]. This is because as channel density
and the number of simultaneous recording channels increase,
processing and transmitting the huge amount of generated data
given the power and area constraints of a fully implantable device
becomes difficult or impossible. Leading designs high channel
count devices such as the Neuropixels [13] and Argo [14]
systems attempt to work around the issue with a switch ma-
trix scheme [13], [15] or on-chip multiplexing [12], [13]. The
Neuropixels system applies a switch matrix scheme to access
more electrodes; however, the number of simultaneous recording
channels remains the same [13], [15]. On-chip multiplexing
increases the density of electrodes; however, the total amount
of data to transmit remains unchanged [13], [14].

Take the Argo system, for example, each of its CMOS sensor
arrays is able to simultaneously record 2048 channels. However,
this is achieved by multiplexing all pixels that are sampled
at the 32 kHz Nyquist-rate, to 32 high-speed analog outputs
with output buffers driving long transmission lines to external
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Fig. 1. System overview of single-cell resolution neural interfaces. Top: In conventional fully implantable neural recording systems, a data deluge is created at
the A/D interface. Data reduces as the computation increases. Bottom: Compression happens at the A/D interface. This greatly reduces the amount of memory and
computation before transmitting the data.

12-bit analog-to-digital converters (ADCs). As a result, such
Nyquist-sampling-based systems generate an immense amount
of data (Argo: ∼ 0.8 GB/s), posing a great throughput challenge
to the communication link. The substantial data rate necessitates
the system to operate within the limitation imposed by tether-
ing cables for effective data readout, consequently limiting its
mobility and suitability for fully implantable applications.

Researchers have also investigated a range of on-chip com-
pression approaches to address the throughput challenge. For
cortical applications that only require binary threshold features
to estimate low-dimensional manifolds, large power and data
reduction is possible through thresholding [16], [17], [18], [19],
[20]. However, this precludes off-chip spike sorting that is
required to resolve the spikes originating in different cells of
different types. Determining the appropriate per-channel thresh-
old also requires substantial computational resources and power.
To achieve data reduction without sacrificing such information,
on-chip spike sorting [21], [22], [23] and compression [24],
[25] have been considered. However, digitizing and moving the
immense amount of data for such approaches to work is another
major hurdle. Therefore, data compression needs to happen as
close as possible to the analog-to-digital interface as shown in
Fig. 1(b). In order to avoid a large data rate at any point in the
system, part of the analog signal that is not important to the
application must be removed using lossy compression [26].

In neural recordings, most of the information corresponding
to the extracellular activities that are sensed and captured by
the microelectrodes are in the spike waveforms [27]. Given the
significance of these waveforms, one idea for data compression
is to detect the spike times and only record samples in their
vicinity (thus eliminating baseline samples between spikes).
From a hardware perspective, a key issue with this approach lies
in finding the proper threshold and managing the data movement

with limited resources in a dense array. These issues are seen
in previous works [18], [28], which use analog memory cells
and additional computation to find the thresholds appropriate
for spike detection in each recording channel.

Our previous work [29] overcomes this issue using a wired-
OR analog-to-digital converter (ADC) array, reviewed in Sec-
tion II A. In this architecture, samples are discarded based on
a wired-OR competition between the pixels and no threshold-
ing is needed. In [29], we demonstrated this technique with
a simulation-based study in cell receptive mapping tasks and
showed that for the three retina recording datasets, ∼ 40×
compression was achieved while missing less than 5% of cells in
ex vivo primate retina recordings. Through previous analysis, we
observed that wired-OR is capable of almost always recovering
spike samples while discarding the baseline samples [29]. In
the present study, we build upon our previous discoveries from
cell-receptive mapping tasks by evaluating the performance of
the wired-OR method in preserving key features for a wide range
of neuroscience and neuroengineering applications.

For neural signal compression, it is crucial to distinguish the
signal’s salient information from unnecessary data samples, to
efficiently extract the features used in various applications. In
motor brain-computer-interface (BCI) applications, only thresh-
old crossing of spikes is needed to decode very simple tasks [16]
(Fig. 2(a)). For scientific studies investigating the behavior of
individual neurons, identifying certain neural circuits, or en-
hancing the efficacy of brain-machine interfaces, it is necessary
to distinguish spikes detected from different neurons (Fig. 2(b)).
This procedure is commonly known as spike sorting [21], [30].
Finally, cell type identification is heavily dependent on the spike
waveform shape over space (shown in Fig. 2(c)), i.e. the average
electrical image (EI) of spikes from a cell [31], [32], [33], [34],
[35].
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Fig. 2. Spike features for different applications.

Fig. 3. Wired-OR readout concept. (a) A snippet of action potential wave-
form seen on different electrodes. (b) Conversion of voltage to pulse position
and collision-free readout of one pixel. (c) A collision between two pixels.
(d) Massive collision across the array at the baseline level. (e) Diagonal wiring
conceptual drawing. (f) Interleaving wiring.

In [36], we explored generalizations and reconfigurability of
the wired-OR architecture to assess its suitability for a broad
range of applications. By constructing a single-electrode neural
signal processing pipeline that incorporated commonly used
methods, we sought to comprehend the tradeoff between per-
formance and compression ratio through a simulation study of
3 ex vivo primate retina recordings.

This article is an extension of [36] focusing on the conceptual
exploration of the wired-OR architecture. In addition to previous
analyses:
� We extend the single-electrode analysis to consider multi-

ple nearby electrodes as a unit patch, which better preserves
the spatiotemporal information of spikes.

� We assess various task-specific signal fidelity metrics
and investigate the performance variation across retina
recordings.

� We explore the potential to compress the output of the
wired-OR readout further.

� We assess the scalability of wired-OR to a higher number
of channels.

This article presents an analysis of 18 ex vivo primate retina
recordings representing a wide range of signal-to-noise ratio
(SNR) scenarios. We compare the performance at each stage of
processing (spike detection, spike classification and waveform
estimation) with an event SNR metric for each electrode, de-
veloped in Section III, so that the results can be translated to
any neural system provided the corresponding SNR is known.
To better comprehend the performance variation as we scale
up our analyses to more datasets, we also accounted for the
cell density and average firing rate characteristics defined in
Section V. These findings contribute to the future development
of a data-driven approach for optimizing wired-OR configura-
tions for different applications.

The remainder of this article is organized as follows:
Section II presents the wired-OR compressive readout archi-
tecture and discusses the configuration space for different ap-
plications. Section III describes the signal fidelity simulation
and analysis methods and introduces a range of quantitative
metrics of interest to different neural interface applications.
Section IV presents the simulation and analysis results, using
ex vivo primate retina recordings. The results are further dis-
cussed in Section V. The wired-OR topology captures at least
80% of the spike waveforms with at least 50× data compression
across all 18 datasets.

II. WIRED-OR COMPRESSIVE READOUT ARCHITECTURE

A. Wired-OR Readout Concept

The wired-OR readout architecture simultaneously achieves
analog-to-digital compression and channel multiplexing for neu-
ral recordings by exploiting the sparsity and diversity of neural
signals (Fig. 3(a)). In the wired-OR readout architecture [29],
each pixel conditions and samples the input as commonly done
in neural interfaces. The sampled voltage is then converted
into a pulse position, which is achieved by comparing it to
a globally-distributed ramp step signal (see Fig. 3(b)). In the
most basic implementation, the pulses from pixels in the same
row or column are combined into single wires using wired-OR
circuitry. In essence, signal compression occurs by having the
pixels compete for these limited wire resources. If only a single
pixel produces a pulse at a given time step (i.e., it is the only
channel with a quantized voltage corresponding to the time step,
see Fig. 3(b)), then the pixel location and its A/D conversion
result (ramp counter state) can be uniquely recovered. On the
other hand, if multiple pulses from different pixels occur at
the same time step (i.e., the quantized voltages on two or more
channels are equal) multiple rows and/or columns are activated
(collision case in Fig. 3(c)) and the conversion results cannot
be recovered (samples are discarded, which leads to the desired
compression). As discussed in [29], this compression approach
is effective for neural signals due to their long-tailed probability
distribution. Voltage samples associated with spikes tend to be
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Fig. 4. Wired-OR wiring implementations. (a) Two-projection example. (b)
Left diagonal wiring.

unique and are typically retained, while baseline samples falling
within a certain voltage range tend to be discarded (see Fig. 3(d)).

B. Generalization of wired-OR Configurations

Wired-OR compressive readout architecture achieves data
compression by discarding collision samples, which are most
likely to occur near the baseline level of neural signals [29].
While massive collisions (Fig. 3(d)) occur for ramp values
around zero, which do not correspond to useful information
(no spike activity), small collisions (Fig. 3(c)) may still con-
tain useful spike information. Different wiring configurations
can be used to resolve small collisions and retain more spike
information. Diagonal wiring [36] (see Fig. 3(e)) in addition
to interleaving wiring [29] (see Fig. 3(f)) are assessed for their
merits to our readout scheme.

Consider a collision case in which two pixels record the same
voltage levels simultaneously (see t1 in Fig. 3(a)). Through
the wired-OR logic, the pixels are projected onto the row and
column index of the data matrix (see Fig. 3(c)). In this case,
the address of the channels is not uniquely decodable, resulting
in a small collision. Different wiring configurations can be
abstracted as different projections. One way to decode this small
collision is by adding a right diagonal projection through extra
wiring (conceptually shown in Fig. 3(e)). In a Ncol ×Nrow

array (32× 16 in this work), the number of elements activated
in each projection p are denoted in np. When Max(np) ≤ 2,
the triggered channels are uniquely decodable with one set
of added diagonal wiring. A left diagonal projection can be
added as another projection (the number of projections/wiring is
denoted byOp). ForOp = 4, whenMax(np) ≤ 4, the triggered
channels are uniquely decodable. While there are more uniquely
decodable cases when Max(np) > 4, for hardware simplicity,
the decoding criteria of wired-OR is set only to consider cases
when no more than four wires in each projection are activated.
In its physical implementation, each pixel has Op static con-
nections to the periphery (four for Op = 4 with both left and
right diagonal wiring): the first two connect the pixel by row
and column, realizing x and y projections like in a traditional
projection scheme as shown in Fig. 4(a). The diagonal projection
mapping illustrated in Fig. 4 resembles the diagonal connection
mapping for pixels. Similar to [37], [38], the relationship used
to reconstruct the original pixel position from the data stream

given each projected output Pi(i ≤ 4) is shown as follows:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P1(x, y) = x, column readout

P2(x, y) = y, row readout

P3(x, y) = (x+ y)modN, left diagonal

P4(x, y) = (x+ y × (N − 1))modN, right diagonal
(1)

This solution effectively disentangles two or more channels
recording the same spike voltage levels.

When multiple channels are recorded simultaneously through
the wired-OR, a prefix code is needed to record the number of
collision-free channels. Here, we use Huffman coding for the
prefix. Effectively, at each ramp step, when collecting k uniquely
decodable channels, the number of bits transmitted is:

Sp = Huffman Code + k ×
∑
Op

log2(Np) (2)

where Np denotes the dimension of the corresponding projec-
tion. In simple scenarios where there is only one channel active,
although there are more projections available, only sending
two of the projection readout outputs can reduce the number
of bits to be transmitted. The resulting data rate depends on
the average number of bits transmitted, denoted as S̄p. For a
sampling frequency of fs, the data rate is:

Rp = S̄p × fs (3)

In the previously proposed interleaving wiring [29], small colli-
sions are solved by effectively separating the array into smaller
sub-arrays that still use the row and column projections - see
Fig. 3(f) for W = 2 number of interleaving wires. The resulting
data rate also depends on the average rate of decodable channels
per sample, denoted as αd,p:

RW = [log2(Nrow/W ) + log2(Ncol)]αd,Wfs (4)

For B-bit ADC resolution, the corresponding compression ratio
in both strategies is:

CR =
Ncol ×Nrow ×B × fs

R
(5)

Knowing the estimated average rate of decodable channels per
sample in a neural dataset, one can calculate the output data rate
of wired-OR with (3) and (4) for diagonal and interleaved wire
configurations, and its corresponding compression ratio with (5).
An optimal design should maximize collision events for baseline
samples (maximum compression) and collision-free events for
spike samples (maximum performance) [29].

III. ACTION POTENTIAL SIGNAL PROCESSING METHODS

To understand how wired-OR compression affects the signal
fidelity of action potential signal recordings in a broader range
of applications, we establish a neural signal analysis pipeline
that extracts various features of interest to different applications,
as shown in Fig. 5. The recorded raw data is re-processed in
software to simulate the wired-OR readout scheme. In addition
to the traditional reconstruction and spike-sorting approach dis-
cussed in [29], a tailored neural signal processing pipeline is
built to handle the compressed outputs of wired-OR better, also
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Fig. 5. Neural signal analysis pipeline for our simulation study. (a) Analysis diagram (b) Example of original action potential recording from retina datasets.
(c) wired-OR encoded outputs. (d) Detected and aligned spike samples (e) Cluster centroids from multi-electrode K-means clustering. (f) Visualization of merged
clusters with principal component analysis. (g) Cell receptive field mapping analyzed with Kilosort after reconstructing wired-OR encoded outputs.

shown in Fig. 5(a). The pipeline consists of spike detection, spike
alignment, clustering, and dimensionality reduction analysis
using principal component analysis (PCA).

A. Spike Detection and Alignment

The most often used spike detection method for implantable
neural signal processors is thresholding. Conversely, the wired-
OR scheme by construction discards baseline samples and
almost always recovers spike samples. Hence, the wired-OR
recorded samples can be directly analyzed for spike detec-
tion. We adopt the simplest spike detection and alignment
method based on the wired-OR readout strategy by assuming all
collision-free samples belong to a spike. For any given channel,
to preserve the spatiotemporal features for further analysis,
we select the surrounding channels of the given channel to

form a patch (see Fig. 6). When uniquely decodable samples
are recorded, we search for the minimum-value sample in the
window of the next 30 samples (this number is empirically
chosen) to align the spikes by their peak. This spike detection
and alignment approach is hardware friendly and also achieves
spike detection in the compressed domain.

B. Spike Classification–Clustering

Clustering is commonly used in neural signal processing for
spike classification tasks to distinguish spikes from different
measured neurons and extract neural spike trains. Clustering
is an essential step in spike sorting, which is one of the most
important data analysis problems in neurophysiology. The pre-
cision in spike sorting critically affects the accuracy of all
subsequent analyses [39]. Traditional spike sorting and other
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Fig. 6. Multi-electrode detected and aligned signal as input feature for K-
means clustering.

neural signal processing methods require dimensionality reduc-
tion to facilitate the clustering process and reduce the compu-
tation complexity. This is typically obtained by principal com-
ponent analysis (PCA). Recent algorithms [40], [41], [42], [43]
can perform clustering without the need for feature extraction.
In such algorithms, the spike waveform itself can be considered
a feature of interest. However, it is not the focus of this work
to build a brand new spike sorting algorithm for wired-OR
readouts. In this analysis, we implemented a basic clustering
algorithm, K-means clustering, to demonstrate the effect of
separability among recorded neurons after compression by com-
paring the pairwise cluster distance in the original recording
and the simulated wired-OR outputs. Therefore, the recorded
spike samples from the target and surrounding electrodes are
detected and aligned by the minimum value, also referred to
as the global peak, shown in Fig. 6. We then applied K-means
clustering on the reshaped signal array. While multi-electrode
clustering preserves the local spatiotemporal features, duplicates
of clusters are seen on nearby electrodes. After the full array is
analyzed, the clusters are compared to one another to verify
that their pairwise cluster distance is greater than a merging
threshold Tm. This threshold Tm is approximated from the
standard deviation of baseline signal recorded on each electrode
when no action potential is detected (denoted as σ), as presented
in [41]:

T = k(σ2) (6)

TM =
√
T (7)

Here, k denotes the number of samples accounted for as input
features to the K-means clustering. If two clusters from nearby
electrode patches are too close in distance, under the threshold
distance, then the clusters are considered to be duplicates and
merged.

C. Principal Component Analysis

PCA (Principal Component Analysis) is a statistical method
that aims to condense a large set of highly correlated variables
into a smaller number of essential variables known as “principal
components” while still preserving the significant variations
present in the data [44]. We applied PCA to our processing

Fig. 7. Wired-OR recorded and reconstructed samples with zero-padding and
linear interpolation.

pipeline because it plays an important role in neural signal pro-
cessing as well as helps us visualize the dimensionality-reduced
clusters. An example of the PCA of merged clusters is shown in
Fig. 5(f).

D. Cell Classification

Accurate identification of distinct cell types in complex tissue
samples is a critical prerequisite for elucidating the roles of
cell populations in various biological processes [45]. In the
retina particularly, neighboring retina ganglion cells may contain
opposite information, some respond to the increase of light
intensity (ON response), and others respond to a decrease in
light intensity (OFF response). The neural response properties
of these different types of cells must be recorded to allow such
cells to be differentiated and treated separately to enable an
effective prosthesis. To perform cell classification, we use the
spike sorting algorithm kiloSort [30]. To interface with this
state-of-the-art spike sorting algorithm, we need to reconstruct
the original signal. Missing samples due to collisions are ini-
tially set to zero and subsequently reconstructed using a 3-tap
non-causal finite impulse response (FIR) filter with coefficients
b−1 = 0.5, b0 = 0, b+1 = 0.5 [29]. This filter operates in the
time domain and makes the assumption that the missing sample
can be approximated as the average of the previous and the next
samples. An example neural signal waveform after reconstruc-
tion is shown in Fig. 7. After KiloSort identifies different cell
units, cell type classification is performed manually using their
measured receptive field properties.

IV. SIGNAL FIDELITY ANALYSIS RESULTS

To evaluate the performance of wired-OR architecture, we
use 512-channel ex vivo primate retina data recordings and
process them in software according to the scheme described
in Section II. Different wiring schemes, as described in Sec-
tion II-B, and ramp resolutions (6-10 bits) define the design
space for us to analyze the tradeoff between the signal fidelity of
the compressed recording and the overall compression ratio. To
quantify the performance of wired-OR in each step of the neural
signal processing pipeline shown in Fig. 5(a), different metrics
such as spike detection accuracy, average waveform normalized
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Fig. 8. Spike capturing performance for (a) datasets 1,6 and 8 in 8-bit 1 wire
configuration (b) dataset 17 with different numbers of diagonal wires (c) dataset
17 with different ADC solutions.

mean squared error (NMSE), and pairwise cluster distance are
analyzed to study their trade-off with compression ratio.

A. Spike Detection and Alignment

To quantify the spike detection performance, we analyze
the percentage of spikes captured by the output of wired-OR
and compare it to the original full-bandwidth offline dataset.
We use the spike times detected by KiloSort as ground truth.
The percentage of spikes captured for each identified neuron in
KiloSort as a function of the event signal-to-noise ratio (SNR)
is shown in Fig. 8. The event SNR is approximated by [47]:

SNR =
V spike peak amplitude

Vσ,channel
(8)

The amplitude of the spike peak is determined by identify-
ing the electrode with the most significant negative peak. The
noise level is calculated as the median absolute deviation when
no action potential is detected on the electrode. The correla-
tion between the percentage of spikes captured and the event
signal-to-noise ratio (SNR) is consistent across various datasets
(Fig. 8(a)). This correlation allows the performance metrics to
be transferable, given the SNR.

A survey of the state-of-the-art neural interfaces shows an
SNR range of 7-10 (see Fig. 9). Dataset 17 in our analysis shows
similar SNR values (with a mean of 8.32 and a standard deviation
of 2.49), which suggests it has a comparable level of SNR to
other designs in the survey. The performance of different wiring
configurations simulated with dataset 17 is demonstrated in
Fig. 8(b), with “soma electrode” referring to the wired-OR sys-
tem with additional diagonal wiring, as illustrated in Fig. 4(b).
“Diag L+R” extends this to two directions of diagonal wiring.
As explained in Section II, incorporating diagonal wiring en-
hances the wired-OR architecture’s ability to decode situations
where multiple channels are activated simultaneously, resulting
in a higher percentage of spikes detected. The percentage of
spikes captured for an SNR range of 3-12 given different ramp
signal resolutions is shown in Fig. 8(c). Increasing ramp signal
resolution is shown to improve performance because the finer
the voltage levels, the less chance of multiple channels falling
into the same quantization voltage levels. For signal SNR over
7, at least 80% of the spikes are captured for all configurations
of wired-OR. For a typical neural recording system design such
as the Neuropixels probe in mice, where SNR is around 8 [47],

Fig. 9. Recorded signal-to-noise ratio for state-of-the-art neural interface
technologies and their number of simultaneous recording channels. The datasets
used in this analysis recorded with the system described in [35] has a wide range
of signal SNR compared to the design from Shobe et al. [46], NeuroPixel 1.0 [47],
BlackRock Utah arrays in [48], [49], NeuroPixel 2.0 [13] and Argo [14].

Fig. 10. Spike detection accuracy (a) soma electrodes (b) axon electrodes.

over 90% of the spikes are predicted to be captured by adding
diagonal wiring.

Although multiple nearby electrodes see the extracellular sig-
nal from one neuron, it only takes one electrode (typically, with
the highest SNR) to extract the spike timing information. Given
the density of our microelectrode array, the action potential
signals seen on this electrode are always generated by the cell
body, also known as soma. Here, we refer to this main electrode
that records the highest SNR signal of the neuron of study as
the “soma electrode.” The extracellular voltage signal recorded
by other electrodes contains potentially useful information such
as axon conduction velocity, axon and dendritic location, etc.
Therefore, we further compared the spike-capturing perfor-
mance of “soma electrodes” and “other electrodes” for each
identified neuron in the dataset, showing that soma electrodes
capture a higher percentage of spikes (see Fig. 10). For other
electrodes along the axon direction, due to the spatial symmetry,
they are more likely to record similar amplitude and result in
collisions.

As one would expect, the performance improvement from
extra wiring and higher ADC resolution comes at the cost of
compression ratio. For both diagonal and interleaving wiring,
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Fig. 11. Pareto frontier of wired-OR average spike capturing performance (8 b
1 wire configuration) for (a) different wiring schemes. (b) All configurations
assessed.

increasing the number of wires boosts the spike detection per-
formance but also decreases the achievable compression ratio
(see Fig. 11(a)). Previously proposed interleaving wiring scheme
results are demonstrated in blue, and diagonal wiring results
are shown in warm colors. Diagonal wiring results are shown
to surpass the previous Pareto frontier. This result is also con-
firmed in different ADC resolution configurations, as shown in
Fig. 11(b). Comparing the configuration of diagonal wiring in
both directions (4 projections) to 4 interleaved wires, fewer wires
and higher compression is possible while further improving the
spike capturing performance.

B. Clustering

In order to assess the impact of loss incurred through wired-
OR compression to distinguish between cells, two metrics are
evaluated: cluster distance and average waveform distortion.

1) Pairwise Cluster Distance: To determine the effect of
loss introduced by wired-OR compression on the separability
of clusters, we evaluate the pairwise cluster distance between
identified units. We match the clusters identified by our neural
signal processing pipeline from wired-OR compressed data to
that from the original full-bandwidth data. The matching is based
on clusters that have the most similar average spike waveform,
which is also the centroid of sorted clusters.

The pairwise cluster Euclidean distance for signals seen on
each electrode is calculated between each cluster in the multi-
electrode patch.

In order to assess the variation in wired-OR performance
across different datasets, we compared the average pairwise
cluster distance extracted from original data and after wired-OR
compression. By analyzing the pairwise cluster distance before
and after wired-OR compression in various datasets, a consistent
correlation was observed across these datasets (see Fig. 12(a)).
Cells with smaller spike event SNR also have smaller cluster
distance to other cells. Such clusters are also harder to accu-
rately define after wired-OR compression. The performance of
different configurations are demonstrated in Fig. 12(b)–(c). As
we expected, diagonal wiring, which resolves more cases where
multiple channels are activated, reduces the cluster distance
differences comparing wired-OR compressed data to the original
full-bandwidth recording. Increasing the quantization resolution
of the wired-OR architecture also improves cluster separability.

Fig. 12. Average K-means cluster distance before and after wired-OR com-
pression for (a) datasets 1,6 and 8 in 8-bit 1 wire configuration (b) dataset 17 with
different numbers of diagonal wires (c) dataset 17 with different ADC solutions.

Fig. 13. Waveform recording performance for (a) datasets 1,6 and 8 in 8-bit
1 wire configuration(b) dataset 17 with different numbers of diagonal wires (c)
dataset 17 with different ADC solutions.

Fig. 14. Waveform recording performance for (a) soma electrodes (b) axon
electrodes.

2) Waveform Estimation: The waveform shape of the action
potential spikes are shown to contain valuable information en-
abling cell-type classification [31] as well as diagnosis and treat-
ment of neurological disorders [50]. We analyze the waveform
distortion of the average action potential waveform by studying
the normalized mean square error in the spike waveforms in
each cell-electrode pair compared to that from the uncompressed
dataset. The wired-OR performance shows a strong correlation
to the event SNR (Fig. 13). As expected, additional wiring and
higher ADC resolution reduce the NMSE (Fig. 13(b)–(c)).

We further examine the waveform estimation performance
differentiating soma and axon electrodes. Under a given con-
figuration, the NMSE of the average spike waveform is not
affected by whether the signal is recorded on the soma or the
axon electrodes and instead depends on the signal SNR (see
Fig. 14). Although wired-OR compression is lossy, the spike
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Fig. 15. Pareto frontier of wired-OR waveform recording performance for (a)
different wiring schemes. (b) All configurations assessed.

waveform information is well preserved by averaging tens or
hundreds of spikes, which diminishes the loss due to multiple
channels activated at the same time, making wired-OR efficient
and robust in recording action potential waveforms.

The increase in waveform recording performance resulting
from additional wiring or higher ADC resolution is at the penalty
of compression ratio, as shown in Fig. 15(a). Similarly, diagonal
wiring results exceed the previous Pareto frontier proposed
in [29]. The trade-off between the average signal NMSE and
compression ratio for all studied configurations is summarized
in Fig. 15(b).

C. Cell Classification

To also assess the performance of diagonal wiring to the
end result for cell-receptive-field mapping application in retinal
prostheses, we also passed the compressed data through state-of-
the-art spike sorting and cell-type classification using KiloSort.
The recovered receptive field mosaic of the collection of ON
and OFF parasol cells is illustrated in Fig. 16. For the same
percentage of cells recovered, diagonal wiring achieves higher
compression than interleaved wiring.

V. DISCUSSION

A. Performance Across Datasets

The wired-OR readout architecture achieves analog-to-digital
compression for neural recordings by exploiting neural signal
spatiotemporal sparsity and diversity. Previously, we have an-
alyzed the performance of wired-OR through a “simulation-
driven” approach, which requires us to re-run the simulation
every time the design parameters or constraints change (e.g.,
the gain and noise of the recording electronics). Such extensive
Nyquist-rate recordings may not be available when we apply
wired-OR to different applications. Therefore, it is important
to address the dataset variations to build toward a data-driven
approach for optimizing wired-OR configurations for different
applications. In this article, we extend our analysis to 18 pri-
mate datasets collected over the past eight years from different
retina samples, front-end settings, and various tissue health
conditions.

We characterize the datasets by the total number of cells in
each dataset and its average firing rate to study the correlation

Fig. 16. Receptive field mosaic for ON and OFF parasol cells from several
wired-OR configurations.

of performance variation to such characteristics. The number of
cells refers to the total number of retinal ganglion cells recorded
(2 mm x 1 mm array) and classified manually by domain experts
(ground truth) based on their temporal response properties and
receptive fields. This metric can translate to cell density as the
number of cells per unit size array. The average firing rate
describes the average number of spike events per second for
all classified neurons.

We then study the performance variation and how much
compression wired-OR achieves in different datasets as these
biological metrics (event SNR, cell density and average firing
rate) change. This comparison is done using the single wire
configuration and 10-bit resolution. The average performance
for each of the 18 datasets such as spike detection accuracy,
waveform NMSE, and compression ratio are summarized in
Fig. 17(a)-(c). Examining the performance metrics averaged
across each dataset for all 18 datasets, we find the dominating
factor for performance degradation in each case. Fig. 17(a)
shows that the higher the average firing rate and cell density, the
lower the spike detection accuracy after wired-OR compression.
However, a higher signal SNR could greatly compensate for
the performance degradation due to firing rate and cell density
variations. The distortion of the average spike waveform is
barely affected by the cell density or firing rate, and depends
more on the signal SNR (Fig. 17(g)-(i)), as shown in Fig. 17(b).
The number of cells collected in each dataset contributes most
to the overall compression ratio, shown in Fig. 17(c). Datasets
with higher signal SNR show to achieve lower compression ratio
through wired-OR.
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Fig. 17. Wired-OR performance across 18 datasets over 8 years that differs in SNR, average firing rates and number of recorded cells in the array. (a) Average spike
detection accuracy. (b) Average Waveform recording performance. (c) Average compression ratio for different datasets. (d) Apike detection accuracy performance
variation as the datasets vary in SNR but share similar average firing rate, and number of cells. (e) Spike detection accuracy performance in dataset 9, dataset 1
and dataset8 that are in ascending order of the number of cells recorded in each dataset. (f) Spike detection accuracy performance in datasets that has an increasing
overall average firing rate in each dataset. (g) Spike waveform recording performance variation as the datasets vary in SNR but share similar average firing rate,
and number of cells. (h) Spike waveform recording performance variation for datasets that vary in the number of cells recorded in each dataset. (i) Spike waveform
recording performance variation for datasets that vary in the overall average firing rate in each dataset. (j) Cluster distance variation in multi-electrode K-means
clustering analyses as the datasets vary in SNR but share similar average firing rate, and number of cells. (k)Cluster distance variation in datasets that vary in the
number of cells recorded in each dataset. (l) Cluster distance variation in datasets that vary in the overall average firing rate in each dataset.
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To further decouple the signal SNR variation factor, we stud-
ied each dataset more closely to make the following observa-
tions:
� Datasets 1, 6 and 8 share similar cell density and average

firing rates, and only the event SNR varies. Both the spike-
capturing performance and waveform distortion follow a
consistent correlation to the event SNR in all three datasets
(Fig. 17(d) and Fig. 17(g)). Although errors are introduced
by the naive K-means clustering spike classification anal-
ysis, the pairwise cluster distance reduction is comparable
across all three datasets (Fig. 17(j)).

� Datasets 9, 1 and 7 share similar event SNR and average
firing rates and have an ascending cell density (dataset 9
> dataset 1 > dataset 7). Higher cell density results in a
wider spread of spike-capturing performance (Fig. 17(e)).
This is because higher cell density means each elec-
trode records the extracellular voltage signal from more
cell units, causing a higher chance of having multiple
rows/columns activated. The more collision cases, the more
missing samples from the spikes, which make the clusters
less separable, resulting in a reduction of pairwise cluster
distance (Fig. 17(k)). Waveform distortion is not impacted
by the cell density (Fig. 17(h)).

� Datasets 5, 6 and 13 share similar event SNR and cell
density and have an increasing average firing rate (dataset
13 > dataset 6 > dataset 5). Although the three datasets
have a different range of event SNR, higher firing rates
affects spike-capturing performance as there are more
spikes, and a higher chance of more than one row/column
getting activated(Fig. 17(f)). Similarly, a higher firing rate
also causes degradation in cluster separability (Fig. 17(l)).
Waveform distortion is not impacted by the average firing
rate (Fig. 17(i)).

B. Post Compression

Traditional full-bandwidth, Nyquist-sampled neural record-
ings carry a high percentage of random noise with sparse spike
activity. From information theory, random noise has very high
information content [51]. Therefore, any lossless compression
that attempts to do entropy coding offers very little benefit.
This is confirmed when we apply Zip, which uses an LZ77
compressor [52], to 5-second original full-bandwidth record-
ing segments, and only achieve 1.53 ∼ 1.76× compression
ratio.

However, the wired-OR architecture, by design, discards the
baseline samples that comprise most of the noise in the record-
ing that cannot be compressed, leaving only spike samples.
If we compress the wired-OR encoded bitstream (5-second
segments of recordings encoded by an 8-bit, four-interleaving
wiring configuration) with Zip, we achieve another 4.3 ∼ 4.6×
compression of all 5-second segments in one 30-minute retina
dataset. Zip performs lossless compression, which is confirmed
by comparing the extracted and decoded segments to the wired-
OR encoded bitstream and the original dataset, a snippet of
which is shown in Fig. 18(b). Interestingly, the more interleaving
wiring is used in wired-OR configuration, the more the outputs

Fig. 18. (a) Example of wired-OR encoded action potential recording and
decoded output after zip reconstruction. (b) Lossless compression performance
across different wired-OR configurations.

TABLE I
COMPRESSION RATE COMPARISON FOR DIFFERENT ARRAY SIZES AND

DIFFERENT WIRED-OR CONFIGURATIONS

can be compressed by Zip (Fig. 18(c)). Overall, lossless com-
pression by Zip of wired-OR output could achieve an overall
compression rate of ∼ 1000×. These promising results justify
exploring future hardware-friendly lossless post-compression of
the wired-OR output, as an alternative to the Zip compressor.

C. Scalability

The scalability performance of the wired-OR architecture
was evaluated by applying the wired-OR algorithm to arrays
of different sizes and assessing the results in terms of spike
detection accuracy and average waveform NMSE. We selected
four 512-channel datasets with similar cell density and average
firing rates and combined to form arrays with sizes 16× 32,
32× 32, and 64× 32. For these artificial datasets, the per-
centage of spikes captured and the average waveform NMSE
consistently correlate with the event SNR across different array
sizes (Fig. 19(a), (b) - 8-bit, 1-wire). However, both metrics
decline as the array size increases. To mitigate the performance
drop, two potential solutions are utilizing a configuration with
more wires and increasing the ramp resolution. Increasing the
number of wires to 2 and enhancing the ramp resolution to 9 bits
for 32× 32 or increasing the number of wires to 4 and enhancing
the ramp resolution to 10 bits for 64× 32 has been shown to lead
to an improvement in performance and in some cases, resulting
in superior performance outcomes (Fig. 19(b)–(c)), ((e)–(f)).
Table I provides the compression rate for various array sizes
and different wired-OR configurations. Notably, the maximum
compression rate for different array sizes is similar, even though
achieved with different configurations. Hence, the wired-OR
scheme can be easily scaled to larger arrays by exploiting
different wire configurations and bit resolution. The 32 x 32 8-bit
configuration wired-OR data-compressive neural recording IC
was fabricated and tested in [53]. The IC is tested to accurately
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TABLE II
COMPARISON WITH PREVIOUS WORK

Fig. 19. Evaluation of wired-OR scalability. (a) Spike detection accuracy
and (b) spike waveform recording accuracy for different array sizes. Increas-
ing the number of wires to mitigate (c) spike detection accuracy drop and
(d) spike waveform recording performance drop. Increasing the ramp resolution
to mitigate (e) spike detection accuracy drop and (f) spike waveform recording
performance drop.

record neural spikes with 36 μm pixel pitch and consumes only
268 nW per pixel from a single 1 V supply.

D. Comparison With Prior Work

Table II compares this work to previous action potential
compression approaches for neural interface designs. This work
achieves compression at the analog-to-digital interface, which
avoids a large data rate at any point in the system, reducing sub-
stantial computational resources and power during digitization,
data movement and downstream processing. Compared to other
approaches such as on-chip spike detection [18], [19], [20], [54],

on-chip spike sorting [22], [23], compressive sensing [55], [56],
and machine learning (ML) based autoencoder [24], wired-OR
is scalable to higher number of recording channels. And no
additional computational resources or memory accesses are
needed during compression. Wired-OR also achieves 3x higher
compression compared to thresholding-based spike detection,
and 10x higher compression compared to compressive sens-
ing. Wired-OR attains similar data-rate reduction compared to
ML-based autoencoder while no training is required. Wired-OR
attains similar data-rate reduction compared to ML-based au-
toencoder while no training is required. Compared to on-chip
spike sorting, wired-OR preserves the waveform information
and compresses action potential signal with minimal computing
overhead.

VI. CONCLUSION

We presented a simulation study of the wired-OR compres-
sive readout architecture using a range of multi-electrode neu-
ral signal processing methods. We demonstrated that diagonal
wiring is a more effective configuration compared to interleaved
wiring and showed that the wired-OR readout can effectively
capture spikes with high compression. For event SNR of 7-10,
which is typical in most neuroscience recordings, the wired-OR
readout captures at least 80% of the spikes with at least 50×
compression, while maintaining sufficient waveform fidelity for
spike sorting. We also showed that wired-OR can be scaled to
larger arrays by exploiting different wiring configurations and
bit resolution. Additionally, our findings regarding the biological
metrics that impact performance variations between datasets
will help practitioners estimate the utility of wired-OR across
different neural systems. Along with lossless post-compression,
Wired-OR can potentially give more than 1000× overall com-
pression.
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