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Abstract— Kernel methods have been successfully applied to 

the areas of pattern recognition and data mining. In this paper, 

we mainly discuss the issue of propagating labels in kernel space. 

A Kernel-Induced Label Propagation (Kernel-LP) framework 

by mapping is proposed for high-dimensional data classification 

using the most informative patterns of data in kernel space. The 

essence of Kernel-LP is to perform joint label propagation and 

adaptive weight learning in a transformed kernel space. That is, 

our Kernel-LP changes the task of label propagation from the 

commonly-used Euclidean space in most existing work to kernel 

space. The motivation of our Kernel-LP to propagate labels and 

learn the adaptive weights jointly by the assumption of an inner 

product space of inputs, i.e., the original linearly inseparable 

inputs may be mapped to be separable in kernel space. Kernel-

LP is based on existing positive and negative LP model, i.e. the 

effects of negative label information are integrated to improve 

the label prediction power. Also, Kernel-LP performs adaptive 

weight construction over the same kernel space, so it can avoid 

the tricky process of choosing the optimal neighborhood size 

suffered in traditional criteria. Two novel and efficient out-of-

sample approaches for our Kernel-LP to involve new test data 

are also presented, i.e., (1) direct kernel mapping and (2) kernel 

mapping-induced label reconstruction, both of which purely 

depend on the kernel matrix between training set and testing set. 

Owing to the kernel trick, our algorithms will be applicable to 

handle the high-dimensional real data. Extensive results on real 

datasets demonstrate the effectiveness of our approach.   
 

Index Terms— Kernel-induced label propagation; mapping; 

adaptive weight learning; semi-supervised classification1 

I. INTRODUCTION 

In the practical applications, many types of real data, such as 

images, often contains high-dimensional attributes, redundant 

information and unfavorable features, thus how to represent 

and classify the real data automatically by machine learning 

efficiently and effectively is still a challenging task. Besides, 

most of real data have no explicit class information and are 

usually hard to identify due to the high-dimensional features 

and unfavorable features [1-3]. In other words, a lot of real 

data are unlabeled, whose labels are needed to be estimated. 
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Note that these issues can benefit from the semi-supervised 

learning (SSL) methods [1-3] that can learn knowledge using 

both labeled and unlabeled data, and especially by capturing 

their geometrical structures over a graph [1][35-37][48-51].  

Label Propagation (LP), which is one of the most popular 

graph based SSL algorithms [1][35-37], has aroused much 

attention the areas of data mining and pattern recognition in 

recent years because of its effectiveness and efficiency. More 

specifically, LP has been successfully applied to various real 

applications, e.g., face recognition and image segmentation.  

LP is a process of propagating label information of labeled 

data to the unlabeled data based on their intrinsic geometry 

relationships, which is mainly performed via trading-off the 

manifold smoothness term over neighborhood preservation 

and the label fitness term [3-13], where the label fitness is to 

measure the predicted soft labels and the initial states, and the 

manifold smoothness term enables LP to determine the labels 

of samples by receiving partial information from neighbors.  

Generally speaking, existing graph based LP algorithms 

[3-13][17-24] can be divided into two categories according to 

whether it can be applied to classify the outside new data, i.e., 

transductive and inductive models. The transductive methods 

aim at predicting the unknown labels of samples directly, i.e., 

it cannot handle those new outside data effectively, while the 

inductive ones can handle the data inclusion task effectively 

through label embedding [4][5][6] or label reconstruction [8]. 

Representative label embedding based inductive algorithms 

include Flexible Manifold Embedding (FME) [4], Laplacian 

Linear Discriminant Analysis (LapLDA) [6], Embedded 

Label Propagation (ELP) [5] and discriminative Sparse FME 

(SparseFME) [47]. FME, ELP, LapLDA and SparseFME can 

solve the out-of-sample issue by learning a linear projection 

explicitly. Different from LapLDA, both FME and ELP add a 

regressive error term to encode the mismatch between soft 

labels and embedded features/soft labels by a classifier [4][6]. 

Note that LapLDA, FME, ELP and SparseFME are all linear 

projection methods, so the computations for label estimation 

mainly depend on the dimensionality of data. Thus, LapLDA, 

FME, ELP and SparseFME may be inefficient for the very 

high-dimensional case in reality. By comparing with the label 

embedding based scheme, the reconstruction based inclusion 

method aims to reconstruct the label of each new data using 

the soft labels of its neighbors in training set [8]. Thus, the 

reconstruction scheme has to firstly search the neighbors of 

each new data prior to label reconstruction, which is time-

consuming especially for the large-scale testing set. Besides, 

no explicit mapping or projection is delivered for inclusion of 

new data in the label reconstruction based scheme.  



  

Popular transductive LP methods include Gaussian Fields 

and Harmonic Function (GFHF) [7], Learning with Local and 

Global Consistency (LLGC) [3], Special Label Propagation 

(SLP) [10], Linear Neighborhood Propagation (LNP) [8], 

Class Dissimilarity based LNP (CD-LNP) [9], Nonnegative 

Projective Label Propagation by Label Embedding (ProjLP) 

[11], Sparse Neighborhood Propagation (SparseNP) [12], and 

Positive and Negative Label Propagation (PN-LP) [13], etc. 

Notice that the existing GFHF, LLGC, SLP, LNP, CD-LNP, 

ProjLP and SparseNP algorithms mainly discuss the problem 

that “sample i should be assigned to class l” by trading-off 

the manifold smoothness and label fitness terms. But recent 

PN-LP extends the common setting by considering additional 

information that “sample i should not be assigned with the 

label k (k≠l) jointly”, and presents an associated model by 

including negative label information in the process of label 

prediction. Note that existing transductive algorithms cannot 

deal with the outside new data directly and efficiently.  
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Fig. 1: A comparison between label propagation in Euclidean 

space (a) vs. kernel space (b) for classification.   

It should be noticed that the above-mentioned LP methods 

suffer from the following common drawbacks. First, to the 

best of our knowledge, the learning process of almost all the 

existing transductive models and the training process of most 

inductive models estimate the labels of unlabeled data and 

compute the graph weights for neighborhood preservation in 

the original Euclidean space that computes the "ordinary" 

distance between each data pair, which may be inaccurate in 

reality, by comparing with the kernel-induced metric over the 

inner-product distance between samples. In Fig. 1, we show a 

comparison between label propagation in Euclidean space (a) 

vs. kernel space (b) for binary-class (denoted by blue square 

and red circle) data representation and classification, where 

we also illustrate the neighborhoods of an unlabeled data xi in 

Euclidean space and kernel space for visual observation as an 

example, yi is the initial label for unlabeled data xi to receive, 

and the connections with blue square and red circle denote 

local neighborhood information to be received by unlabeled 

data xi. Note that those original linearly inseparable inputs 

may be mapped into the separable ones in kernel space due to 

the nonlinear mapping, which is also the main assumption of 

kernel method [14-15], i.e., the originally linearly inseparable 

data can be mapped into a higher-dimensional space where it 

exhibits linear patterns that can be easily represented and 

classified [14-15]. That is, the patterns in kernel space are 

more informative and descriptive than the original data in the 

original Euclidean space. So, the manifold smoothness over 

the neighborhoods in kernel feature space may be potentially 

encoded more accurately, since the neighbors of the samples 

in inseparable Euclidean space may come from other classes, 

which will lead to inaccurate similarity measure and reduced 

results directly. Second, for the neighborhood preservation 

most existing methods pre-compute the weights prior to label 

propagation by performing the nearest-neighbor-search and 

weight assignment, so they often suffer from the tricky issue 

of choosing the optimal neighborhood size. More importantly, 

the pre-obtained weights using independent step cannot be 

ensured as optimal for subsequent label prediction. Third, the 

two existing label embedding and label reconstruction based 

inclusion methods in testing phase may suffer from the same 

issue as training process. Specifically, the label embedding 

methods use the learnt classifier from the Euclidean space for 

mapping data into label space, while the label reconstruction 

method also decides the neighbors of new data and assigns 

weights for the neighbor selection in Euclidean space.  

In this paper, to overcome the aforementioned problems of 

existing LP models, we propose a solution scheme to address 

the problems and enhance the performance. Specifically, we 

propose a novel kernelized LP framework to propagate label 

information in the kernel feature space [14-15] in an adaptive 

manner. Next, we summarize the main contributions:  

(1) Technically, a new Kernel-Induced Label Propagation 

(Kernel-LP) model is proposed for transductive classification 

of high-dimensional samples. For transductive learning, our 

Kernel-LP performs the joint label propagation and adaptive 

weight learning in a transformed kernel space via an implicit 

mapping from the original input space. That is, our Kernel-

LP changes the task of label prediction from the commonly-

used Euclidean space to the kernel space. The motivation of 

Kernel-LP to propagate label information and compute the 

graph weights in kernel space arises from the assumption that 

the original linearly inseparable input data may be mapped to 

be linearly separable in kernel space [14-15]. Note that we 

mainly propose a kernelized LP framework and most existing 

LP methods can be similarly performed in kernel space. In 

this paper, we mainly formulate our Kernel-LP based on the 

existing PN-LP model by the positive effects of the negative 

constraint to enhance the label prediction power. The sparse 

L2,1-norm is also regularized on the label predictor in the 

kernel space, which can ensure the prediction results to be 

robust against noise and make the results more discriminating 

and accurate potentially [25-26][34].  

 (2) To ensure the constructed graph weights to be optimal 

for the joint representation and classification, to enhance the 

representation power by learning with the most informative 

patterns of data in the kernel feature space, and to avoid the 

tricky process of selecting the optimal neighborhood size, our 

Kernel-LP performs label propagation in an adaptive manner. 

That is, our Kernel-LP performs the joint label prediction and 

adaptive weight construction in the same kernel feature space. 

Specifically, the graph weights are shared in the kernelized 

data space and kernelized label space over the inner-product 

distances of data in kernel space jointly. As a result, the label 

prediction power can be potentially improved due to the joint 



  

minimization of the adaptive representation and classification 

errors in the kernel feature space.  

(3) To handle outside new data effectively and efficiently, 

we also present two novel out-of-sample extension methods 

for our Kernel-LP, namely, direct kernel mapping and kernel 

mapping-induced label reconstruction schemes. The direct 

kernel mapping approach can involve new test data simply by 

directly computing the kernel vector (i.e., soft label vector of 

the test data) between training data and new data, which is so 

easy to implement. The kernel-induced label reconstruction 

scheme also purely depends on the kernel matrix between the 

training set and testing set, where the pairwise similarity and 

predicted soft label vectors are all obtained from the kernel 

vectors. Compared with the label reconstruction step of LNP, 

our kernel-induced label reconstruction is more efficient.  

The outline of this paper is shown below. Section II briefly 

reviews the related work and kernel trick. Section III shows 

the transductive kernel LP framework, and the out-of-sample 

extensions are shown in Section IV. The relationship analysis 

is described in Section V. Section VI shows the settings and 

results. The paper is finally concluded in Section VII.  

II. RELATED WORK 

In this section, we briefly review the closely related works to 

our method, i.e., PN-LP [13] and Kernel method [14-15].  

A. Positive and Negative Label Propagation (PN-LP) 

PN-LP extends the existing LP framework to the scenario of 

label propagation with both positive and negative labels [13].  

Given a set of samples  1 2, ,..., n N

NX x x x   that belong to 

label set  1,2,...,L c , n is the original dimensionality of 

each sample ix , N is the number of samples and c is the class 

number. We assume that each sample only belongs to a class. 

For SSL, l points 
ix  are considered as labeled, and the rest u 

samples are regarded as unlabeled. Let  ,G V E  be a graph, 

where vertices in V correspond to the data points and edges in 

E characterize pairwise relationships. An edge connecting the 

nodes i and j is assigned with a weight 
ij

W  that indicates the 

similarity between them. Usually, this similarity weight can 

be computed by the heat kernel equation:   

   2

, exp /   i j ij i jW x x W x x ,                 (1) 

where  is the mean edge length distance among neighbors, 

and i jx x  is the Euclidean distance between ix  and jx . 

By extending the traditional LP algorithm to incorporate both 

positive and negative label information in the process of label 

estimation, PN-LP defines the following objective function:  

   

         1 2

1

2

2

F tr F LF

tr F Y F Y tr F Y F Y


 



 
   

 

      
  

, (2) 

where  
1 2, , ,

c l u
l uF f f f

 
     

is the predicted soft label 

matrix to be obtained, 1/ 2 1/ 2L D WD   is the normalized graph 

Laplacian [13], W is a weight matrix,  ,1:i i jj N
D diag W


   is 

a diagonal matrix, and the parameters
1 20 1, ,     are used 

to balance the contributions of positive label information 

1 2, , ,    


   

c N

l uY y y y and negative label information 
-

1 2, , ,   


   

c N

l uY y y y , defined as 

1,

0,

1,

0, .






 



 


j i

ij

j i

ij

if from prior knowledge x c
y

otherwise

if from prior knowledge x c
y

otherwise

,        (3) 

where 

iy  and 

iy  denote the initialized positive label and 

negative label for each sample xi. Clearly, the first term in Eq. 

(2) is the graph regularization, the second term forces the 

initially labelled data to retain their initial label, and the third 

term restricts the initially negative labelled data in obtaining 

the negative label information. The task of positive LP tries 

to solve the issue of spreading label information from a small 

set of labeled data to a much larger set of unlabeled samples, 

while negative LP refers to the dual problem of positive LP, 

That is, negative LP propagates the labeling constraint that 

the i-th sample does not belong to the l-th class, which means 

that the actual label information in negative LP is unknown 

and renders the labeling constraint as less informative than 

positive labels. By setting the partial derivative w.r.t. F to 

zero, we can obtain the optimal solution of F as 

   
1

1 2 1 2   
       F L I Y Y .            (4) 

Finally, a high value of ,i jF  denotes a high probability that 

sample i is assigned to class j, and the position corresponding 

to the largest values decides the class assignment of samples.  

B. Kernel Method and Kernel Trick 

We also briefly review the kernel method and kernel trick. 

Kernel methods are successfully applied to the cases that the 

input-output relationship may not be linear and the inter-class 

data are not be separable by a linear boundary (i.e., linearly 

inseparable) [14-15][39-40]. For the linearly inseparable data, 

kernel method aims at mapping them to higher dimensions 

where they can exhibit linear patterns and then linear models 

can be used in the new feature representation space. Denote 

by :  x X x K    the nonlinear mapping from original 

space n  to a high-dimensional kernel space   ,
p

p n  

which can be implicitly defined by a kernel function, and the 

then the inner product    , i jx x  in the kernel space K 

between 
ix  and jx  can be defined as 

         , ,   


 i j i j i jx x x x K x x  ,              (5) 

which is also the pairwise similarity between each pair of 

samples. There are four popular kernels for real-valued inputs, 

i.e., Linear Kernel, Quadratic Kernel, Polynomial Kernel and 

Gaussian Radial Basis Function (RBF) Kernel.  

III. KERNEL-INDUCED LABEL PROPAGATION BY MAPPING 

FOR SEMI-SUPERVISED CLASSIFICATION 

A. Summary of Main Notations 

We first present the important notations used in this paper. 

Denote ,   L UX X X , where LX is a labeled set and UX is a 



  

unlabeled subset, assume that there are c classes in LX
 
and 

each data of LX  has a unique class label in 1, ,c . For any 

matrix
1 2[ , , ..., ]   m q

qA a a a , its 
,r pl -norm is defined as 

 
1/

/

,, 1 1 

 
  
 
 

p
p r

rm q

i jr p i j
A A .                     (6) 

When p = r = 2, it is the commonly used Frobenius norm; 

when p =1 and r = 2, it identifies the L2,1-norm [25-26]. For 

any matrix  m qA , let
ia  denote the i-th column vector of A, 

and ia  denote the i-th row vector of A. Then, the Frobenius 

norm and L2,1-norm of A can be defined as 

   

 

22 2 T T

2
1 1 1

1/2

2 T

2,1 2
1 1 1

2

  
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   

 
   

 

 

  

qm m
i

ijF
i j i

qm m
i

ij

i j i

A A a tr A A tr AA

A A a tr A BA

 ,      (7) 

where B is a diagonal matrix with entries being
2

1/ 2 i

iiB a , 

i=1,2,…,m [25-26], 
T

is the transpose of a matrix or a vector, 

2
 is the only used vector norm (i.e., ℓ2-norm), 

ijA  is the (i, 

j)-th entry of the matrix A. In addition, I is an identity matrix, 

and its dimensionality is automatically compatible with the 

related matrices. For ease of presentation, the horizontal (resp. 

vertical) concatenation of a collection of matrices or vectors 

along row (resp. column) is denoted by 1 2; ;...; ms s s    (resp. 

1 2, ,..., qs s s   ). Let      ,K x y x y 


  be the inner product 

between x and y in kernel space [14-15].  

B.  Proposed Formulation 

We discuss the problem of propagating positive and negative 

labels in kernel space in this section. A novel Kernel Positive 

and Negative Label Propagation (Kernel-LP) framework is 

proposed for adaptive high-dimensional data classification. 

Note that our Kernel-LP is formulated based on the model of 

existing PN-LP, so it can inherit all the merits of PN-LP. In 

addition, our Kernel-LP also improves PN-LP by changing 

the task of label propagation from the used Euclidean space 

in PN-LP to a kernel feature space, i.e., performing the label 

propagation task in a learnt new feature representation space 

in which the original linearly inseparable data can be mapped 

to linearly separable patterns in a higher-dimensional kernel 

space, and then calculating the adaptive graph weights and 

estimating the unknown labels of samples over the linearly 

separable patterns, which is relatively easier and will be more 

accurate compared with handling the original data. Given the 

original dataset X including both labeled and unlabeled data, 

rewriting each solution in kernel space as an expansion in 

terms of the mapped data, each basis projection vector p  in 

the original space can be formulated as    
1

N

i ii
p x X   


   

[14][39]. Let       1 ,...,   NX x x  and  1 | ... |    N c

dQ  

be the projection matrix in kernel space, the initial objective 

function of our Kernel-LP can be defined as 

     

    

T T

,
1 1

2 2T T

2 2
1 1

, , ,

. . 0, 0, , 1,2,...,

N N

i i i i i i
Q W

i i

N N
i

i i iF
i i

ij ii

Min J Q W u Q K X x y u Q K X x y

X X w Q K Q Kw w q

s t w w i j N
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 

 

   

     
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 

  , (8) 

where N cQ   is a projection to be trained for predicting the 

soft labels in the kernel space,    K X X 


  is the kernel 

matrix, the entries wij in each reconstruction weight vector wj 

can measure the similarities between sample pairs, 0ijw  is 

a nonnegative constraint, 0, 1,2,..., iiw i N  is included to 

avoid the trivial solution W=I, and    
N N

ijW w is the 

reconstruction weight matrix. That is, the weight matrix W is 

also a variable to be optimized, i.e., our Kernel-LP is able to 

perform the joint label prediction and reconstruction weight 

construction in an adaptive manner. More importantly, jointly 

minimizing     2 2T T

21
 


   

N

i i ii F
X X w Q K Q Kw w  can 

ensure the learnt reconstruction weight matrix wij to be joint-

optimal for representation and classification explicitly, where 
2

T T

1


N

ii F
Q K Q Kw  encodes the manifold smoothness in the 

kernel space.   and   are two positive parameters, 

iu  and 


iu balance positive and negative label information. Note that 

the learnt weight matrix W in our model is not symmetric.  

It is also worth noting that our Kernel-LP can estimate the 

labels of samples by performing positive and negative label 

propagation in the kernel feature subspace. More specifically, 

the joint minimization of the label reconstruction errors 

   T T

1 1
, ,   

 
   

N N

i i i i i ii i
u Q K X x y u Q K X x y  can enforce 

the vector  T , iQ K X x  to be the soft label vector in kernel 

space, where 

iu  and 

iu  are weighting factors for the labeled 

and unlabeled samples during the process of classification, 

and  , iK X x  is the kernel computational result between the 

original data matrix X and each data vector
ix . That is, the 

soft label vector  T , iQ K X x  of each sample 
ix  can be easily 

obtained by embedding  , iK X x  directly onto the projection 

directions in Q, i.e., the projection Q can also be explicitly 

regarded as a classifier for the class assignments.  

By using matrix expressions, the final objective function 

of our Kernel-LP algorithm can be formulated as 

 

       

    

,

T T
T T T T

1 2

22 2T T

2,1

,

. . 0, 0

   

   



    

     

 

Q W

FF F

ii

Min J Q W

tr Q K Y U Q K Y tr Q K Y U Q K Y

X X W Q K Q KW W Q

s t W W

,  (9) 

where    K X X 


  is a kernel matrix of N N . Note that 

the imposed sparse L2,1-norm on Q by the regularization 

term 
2,1 2
 i

i
Q q  can ensure Q is sparse in rows so that 

discriminative representations, that is, predicted soft labels of 

data points, can be obtained in the kernel space for predicting 

their labels [25]. The mixed signs or noise in the predicted 

soft labels can also be potentially reduced due to the positive 

effects of robust L2,1-norm regularization [50]. 
1U  and 

2U  

are two diagonal matrices with the entries being 


iu  and 


iu  

respectively for weighting the labeled and unlabeled data in 

the process of positive and negative label propagation. On 

one hand, for positive label propagation, 


iu  is usually set to 

a large value (e.g., +∞) for labeled data so that the resulted 

label can keep consistent with the initial states, and is set to 

be a small value (e.g., 0) for the unlabeled data so that label 

information from the neighbors can be received for class 

assignments [5]. On the other hand, for positive and negative 



  

label propagation, the significance of positive and negative 

labels is usually unequal, and the increased accuracy can be 

obtained when the significance of positive labels is higher 

than negative ones [13]. Based on the above analysis, in this 

work we set 1010 iu
 
(to approximate +∞) and 0 for labeled 

and unlabeled data respectively, and set 1 iu
 
and 0 for the 

labeled and unlabeled data respectively in simulations. Next, 

we detail the optimization procedures.   

C. Optimization 

In this section, we show the optimization for the objective 

function of our presented framework in Eq. (9). It is worth 

noting that our Kernel-LP involves two major variables, i.e., 

Q and W. More importantly, the two variables depend on each 

other, so the problem cannot be solved directly. Thus, we aim 

to solve the problem by updating the variables alternately. 

That is, we update one variable each time by fixing another 

one. It is worth noting that our formulation can be optimized 

alternately between the following two steps: kernelized label 

propagation by feature mapping and kernel-induced adaptive 

weight construction. We first fix the weight matrix W to date 

the projection classifier Q for adaptive label prediction.  

(1) Kernelized label propagation by feature mapping for 

adaptive classification:  

When the adaptive weight matrix W is known, we can focus 

on estimating the labels of samples by performing adaptive 

kernel positive and negative label propagation to compute the 

kernel-induced projection classifier Q. By removing terms 

independent of Q from the problem in Eq. (9), the reduced 

problem for computing Q can be obtained as 

     

   

T
T T

1

T
T T

2

2
T T

2,1
+

Q

F

Min J Q tr Q K Y U Q K Y

tr Q K Y U Q K Y

Q K Q KW Q 

 

 

  

  

 

.             (10) 

By the property of L2,1-norm, we have  T

2,1
2Q tr Q VQ  

[25-26], whereV  is a diagonal matrix with the entries being 

 
2

1/ 2
ii

i
v q  and 

iq  is the i-th row of Q. But note that the 

derivative does not exist when 0iq  , 1,2,...,i N .Thus, when 

each 0iq  , the above formulation can be approximated by 

involving one more variable V similarity as [25-26]:  

     

   

   

T
T T

1
,

T
T T

2

T T T

,

+

Q V
Min Q V tr Q K Y U Q K Y

tr Q K Y U Q K Y

tr Q KLK Q tr Q VQ 

 

 

   

  



,          (11) 

since  
2

T T T T

F
Q K Q KW tr Q KLK Q  , where   

T
L I W I W     

is a symmetric matrix. By taking the derivative of the above 

problem with respect to variable Q , we can obtain 

  T T T

1 1 2

T T

2

, /Q V Q KU K Q KU Y KU K Q

KU Y KLK Q VQ 





    

  
.        (12) 

By setting the derivative  , / 0Q V Q   , we can obtain 

the projection classifier 1tQ   at the (t+1)-th iteration as 

 

 

-1
T T T

1 1 2

T T

1 2

t t tQ KU K KU K KL K V

KU Y KU Y

 

 

   

 

,             (13) 

where   
T

t t tL I W I W   . After the classifier Q  is obtained, 

we can update the diagonal matrix V alternately. Specifically, 

the i-th diagonal element  1t ii
v 

of the matrix 
1tV 

 at the 

(t+1)-th iteration can be computed by 

 1 1 2
1/ 2 , 1,2,....,i

t tii
v q i N 

  
 

,               (14) 

where 1

i

tq   is the i-th row of 
1tQ 
. After the projection Q  and 

diagonal matrix V are updated in kernel space, we can 

compute the weights W by optimizing the following adaptive 

graph construction process.   

 (2) Kernel-induced adaptive weight construction:  

After the projection matrix Q  is computed, we can construct 

the adaptive reconstruction weights W in kernel space easily. 

Due to the feature mapping from the original input space to a 

high-dimensional kernel space, the neighborhoods of the data 

can be potentially discovered more accurately in the obtained 

new representation space. As a result, the similarity measure 

based on the kernel induced adaptive weights W will be more 

accurate potentially and hence enhancing the label prediction 

power. The main idea of the adaptive weights construction in 

kernel space is to jointly minimize the reconstruction error 

   
2

F
X X W  over the new representations and the label 

reconstruction error 
2

T T

F
Q K Q KW  in kernel feature space, 

which ensures the learnt adaptive weight matrix W is optimal 

for the kernel-induced representation and classification at the 

same time. By removing the terms independent of W from the 

objective function of Kernel-LP in Eq.(9), the kernel-induced 

adaptive weight construction can be formulated as 

      22 2T T

. . 0, 0

      

 

FF FW

ii

Min J W X X W Q K Q KW W

s t W W

.(15) 

To facilitate the optimizations, the term    
2

F
X X W    

is firstly transformed into the following equation:  

   

         

 

2

T

T T

F
X X W

tr X X W X X W

tr K KW W K W KW

 

   



   
 

   

.          (16) 

 Then, by taking the derivative of the optimization problem 

in Eq. (15) with respect to W, we can obtain 

  T T T T/      J W W KW K K QQ KW K QQ K W .     (17) 

By further setting   / 0J W W   , we can update 
1tW 

 at 

the (t+1)-th iteration easily as 

   
   

1
T T

1 1 1 1 1

1 1 1max ,0 , 0


 

    

  

   

 

t t t t t

t t t ii

W K K Q Q K I K K Q Q K

W W W

.      (18) 

After convergence of the algorithm, we obtain an optimal 

adaptive reconstruction weight matrix W  and classifier Q . 

Then, we can obtain the estimated soft labels of samples as 



  

   F Q X X Q K 
    ,                    (19) 

where the position corresponding to the biggest element in 

label vector if
  determines the class assignment of each ix . 

That is, the hard label of each data point ix  can be assigned 

as arg max j c jif 

 , where jif   is the j-th entry of estimated soft 

label vector 

if . For complete presentation of the method, we 

summarize the optimization procedures of our Kernel-LP in 

Algorithm 1, where the weight matrix W0 is initialized as 

   
-1

K K QQ K I K K QQ K      , and the diagonal matrix 

V0 is initialized as an identity matrix as [25-26].  

D. Computational Time Complexity 

We analyze the computational complexities of our Kernel-LP 

and other traditional methods. Note that GFHF, LLGC, SLP 

and LNP need to construct the k nearest neighborhood graph, 

and the computational complexity is  2O N k , where k is the 

number of neighborhoods and N=l+u. For label propagation, 

the computational complexity of GFHF, LNP, LLGC and 

SLP is  O Nkc , where c is the number of classes. So, the total 

complexity GFHF, LNP, LLGC and SLP is  2O N k Nkc . 

Since LNP has to additionally solve the reconstructed weight 

matrix by solving a standard QP problem, the computational 

complexity is  3O Nk . Hence, the computational complexity 

of LNP is  2 3O N k Nkc Nk  . For our Kernel-LP method, 

the computational complexity of calculating the projection 

classifier is  O Nsc , where s is the average number of the 

nonzero of data points [42]. Since Kernel-LP does not need 

to construct a k nearest neighborhood graph and compute the 

adaptive weights, so the computational complexity is  3O N . 

The complexity of computing the kernel matrix K is  2O nN . 

Since s is at most equal to e and c N , if we use a big O  to 

represent the complexity, then the overall complexity of our 

Kernel-LP will be  3O N  if n N , that is, our Kernel-LP also 

depends more on the number of training data than the input 

dimensionality as other existing methods.  

E. Convergence Analysis 

Note that our proposed Kernel-LP formulation involves three 

main variables and optimizes the variables in an alternative 

way, so we would like to analyze its convergence behavior. 

To assist the proof, a lemma in [25] is firstly reviewed.  

Lemma 1. For any pair of non-zero vectors , ma b , the 

following inequality holds:  

2 2

2 2 2 2 2 2
/ 2 / 2a a b b b b   .                (20) 

Then, the convergence behavior of our Kernel-LP can be 
summarized as the following proposition.  

Proposition 1. The objective function of our Kernel-LP in 

Eq.(9) is non-increasing at each iteration of the optimizations 

when the diagonal matrix V is fixed as constant.  

Proof. Based on the formulations of the sub-problems in 

Eqs. (10) and (15), since    T Ttr A A tr AA , the objective 

function of our Kernel-LP in Eq. (9)  can be reformulated as 

       

      

T T
T T T T

1 2
, ,

22 2T T T

Q W V

FF F

Min tr Q K Y U Q K Y tr Q K Y U Q K Y

X X W Q K Q KW W tr Q VQ   

       

     

.(21) 

Denote V as
t

V at the t-th iteration, if we aim to calculate 

1t
Q


 and 

1tW 
 at the (k+1)-th times iteration, we can have the 

following inequality held:  

   

   

2 T

1 1 1 1 1

2 T

t t t t t tF

t t t t t tF

W tr Q V Q

W tr Q V Q

 

 

        

     

,           (22) 

where the auxiliary matrices 
1t  and 

1t are defined as 

   

   

T
T T

1 1 1 1

T
T T

1 2 1

t t t

t t

tr Q K Y U Q K Y

tr Q K Y U Q K Y

 

  

 

 

   

  

.              (23) 

   
22 T T

1 1 1 1 1t t t t tF F
X X W Q K Q KW          .     (24) 

It should be noted that
2,1 1 2

N

i

i

t tQ q


 , so the following 

equivalent inequality holds for Eq.22:  

 

 

2

+12 2

1 1 1 +1 +12,1 2

2

2

2 2

2,1 2

2

2

2

i

ti

t t t t tF i
i i t

i

ti

t t t t tF i
i i t

q
W Q q

q

q
W Q q

q

 

 

  

  
         

 
 

  

  
          

 
 

  

 

 

. (25) 

According to the result in Lemma 1, it is easy to obtain the 
following inequalities:  

2 2

+1 2 2

+1 2 2

2 2
2 2

i i

t ti i

t ti i
i i i it t

q q
q q

q q
      .       (26) 

   By combing the above inequalities, we can easily obtain 

the following inequality:  

 

 

2

1 1 1 1 2,1

2

2,1

t t t tF

t t t tF

W Q

W Q

 

 

       

     

,                (27) 

which explicitly indicates that the objective function value of 

Kernel-LP is decreasing monotonically in the optimizations. 

Note that the above theorem indicates the objective function 

of our Kernel-LP is non-increasing, but it is also important to 

show the predicted labels 
TQ K  by Q also converges, since 

the projection classifier Q is one major variable. Note that the 

convergence condition (  is a small value) can be defined as 

Algorithm 1 : Transductive Kernel-LP Framework 

Inputs: Data matrix  1 1,..., , ,..., n N

l l l uX x x x x 

   , initial class 
label sets +Y and -Y , parameters and  , 0t  , Q0=0.  

While not converged do 

1. Fix Wt, update the projection classifier 
1tQ 
 and diagonal 

matrix 
1tV 
 by Eqs.(13) and (14), respectively;  

2. Fix Qt+1, update the adaptive weights 
1tW 
 by Eq.(18) ;   

3. Convergence check: if
2

1   t t F
Q Q , stop; else 1t t  . 

End while 

Output: An optimal projection classifier
1tQ Q

 .  



  

1

1

t

t t F
error Q Q 

   ,                       (28) 

which can measure the divergence between two sequential 

projection classifiers and ensure the predicted results will not 

change drastically, which will be verified by simulations.  

IV. INDUCTIVE EXTENSION OF KERNEL-LP 

In the above section, we have introduced the main procedure 

and transductive formulation of Kernel-LP. In what follows, 

we will also discuss the issue of extending our Kernel-LP to 

handle outside new data. More specifically, we will present 

two approaches for inclusion of the new data by direct kernel 

mapping and by label reconstruction. For the inductive 

learning scenario, a test set  1 2, ,..., T

T

n N

T NX x x x   is also 

available and ,   L UX X X is considered as the training set.  
 

A. Inclusion of New Data by Direct Kernel Mapping 

We first describe the inclusion scheme for our Kernel-LP to 

include the outside new data through direct kernel mapping, 

termed I-Kernel-LP-map. According to [8][41], to generalize 

our Kernel-LP to handle the out-of-sample data, we need to 

employ the same type of mapping criterion as in Eq.(9) for a 

new test sample 
newx , and ensure that the inclusion of each 

sample
newx  in 

TX will not affect the original objective 

function value on the training dataset X. As claimed above, 

the joint minimization of the label reconstruction errors 

   T T

1 1
, ,   

 
   

N N

i i i i i ii i
u Q K X x y u Q K X x y  can enforce 

the vector  T , iQ K X x  to be the soft label vector of training 

data ix in kernel space. Thus, the kernel mapping criterion 

for computing the soft label vector newf  and hard label vector 

 newl x of each new test data 
newx  can be similarly formulated 

by kernelizing 
newx  with the training data X as 

   

 T

arg max

wher ,e





new newi c i

new newf Q K

x

X x

l f
,                    (29) 

where  new i
f is the i-th entry of estimated vector

newf . That is, 

the position corresponding to the biggest entry in label vector 

newf  decides the class assignment of newx . Note that the soft 

label matrix 
newF  of all the test data in 

TX  can be obtained as 

 T ,new TF Q K X X , which is easy and efficient. For complete 

presentation of the approach, we summarize the inductive 

Kernel-LP by direct kernel mapping (I-Kernel-LP-map) in 

Algorithm 2, where the initializations of W0 and V0 are the 

same as those of transductive Kernel-LP in Algorithm 1.  

B. Inclusion of Outside New Data by Kernel-Induced Label 

Reconstruction 

We also present a kernel-induced label reconstruction scheme 

for our Kernel-LP model, referred to as Inductive Kernel-LP 

by kernel-induced label reconstruction (I-Kernel-LP-recons), 

to involve the new data. This label reconstruction scheme is 

motivated by the scheme of LNP [8], but it should be noted 

that our proposed kernel-induced label reconstruction scheme 

differs from that of LNP clearly in two main aspects. First, 

the label reconstruction scheme of LNP needs to search the k-

nearest neighbors of each new data firstly and then computes 

the weighted soft labels to obtain the label of each new data, 

while our inductive Kernel-LP-recons only needs to compute 

the kernel matrix between the training set X and test set 
TX , 

which is simple and straightforward. Second, searching the k-

nearest neighbors and assigning the weights in LNP are all 

performed in Euclidean space, while our inductive Kernel-

LP-recons performs classification clearly in the kernel space. 

For inductive classification, since  T , iQ K X x is the predicted 

soft label of each sample ix X , we can define the following 

similar smoothness criterion as Kernel-LP for each xnew:  

 
 

 
 

  
2

T

:
2

,
,

,


  
i

i k new

i new

new new i

i x X new
x top x

K x x
f f Q K X x

K X x
,   (30) 

where  , N

newK X x   is the column kernel vector between 

training set X and xnew, and  ,i newK x x  is the i-th entry of the 

vector  , newK X x . Note that  ,i newK x x  can also be treated as 

the kernel-induced similarity between each training data 
ix  

and
newx , i.e.    

2
, / ,i new newK x x K X x  is a normalized similarity 

that can be applied to measure the closeness degree between 

each ix X  and
newx . Note that  k newtop x  contains k-closest 

training samples to sample xnew based on sorting  , newK X x  in 

descending order, i.e., the k-closest training samples have the 

largest kernel-induced similarity to the new data xnew. Since 

 f  is convex in
newf , it is minimized when 

 

 
 

 

T

:
2

,
,

,


 
i

i k new

i new

new i

i x X new
x top x

K x x
f Q K X x

K X x ,            (31) 

which can be easily expressed using the matrix form as 

 
 
 

T

2

,
,

,


k new

new k

k new

K X x
f Q K X X

K X x
,                  (32) 

where 
kX  is a data matrix containing the k-closest training 

samples to xnew, and  , kK X X  is the kernel matrix between 

the training set X and 
kX . It is worth noting that there is no 

need to compute the soft label matrix  T , kQ K X X and kernel 

matrix  ,k newK X x  separately. Specifically,  T , kQ K X X  can 

be extracted directly from the predicted soft label matrix 

Algorithm 2 :  Inductive Kernel-LP by Kernel Mapping 

Inputs:  Training set  1 1,..., , ,..., n N

l l l uX x x x x 

    and test set 

 1 2, ,..., T

T

n N

T NX x x x   , initial label sets +Y and -Y , model 
parameters  and  , 0t  , Q0=0.  

Training Phase based on X:  

While not converged do 
1. Fix Wt, update the projection classifier 

1tQ 
 and diagonal 

matrix 
1tV 
 by Eqs.(13) and (14), respectively;  

2. Fix Qt+1 to update the adaptive weights 
1tW 
 by Eq.(18) ;   

3. Convergence check: if
2 5

1 10

  t t F
Q Q , stop; else 1t t  . 

End while 
Testing Phase based on X and XT:  

4. Estimate the soft label matrix of all the testing data by 

 T

1 2, ,...,,


    
T

T

c N

Nnew TF Q K X f f fX , where the position 
corresponding to the biggest entry in each label vector

if  
decides the class assignment of each test data ix .  



  

 T ,Q K X X of all training samples, which is achieved in the 

training phase, based on the indices of the k-closest training 

samples to xnew in  k newtop x . Similarly,  ,k newK X x can also 

be obtained directly from  , newK X x  based on the indices of 

the k-closest training samples to xnew. In other words, we only 

need to compute the kernel computation matrix  , TK X X  in 

this reconstruction scheme. Finally, the label of each xnew can 

be optimally reconstructed from the soft labels of the kernel-

induced k-closest training samples in training set, i.e.,  

 
 
 

2

T

2

,
min ,

,
 

new

k new

new new k
f

k new

K X x
f f Q K X X

K X x
,         (33) 

where the position corresponding to the biggest entry in label 

vector fnew similarly determines the class assignment of xnew. 

We also summarize the procedures of I-Kernel-LP-recons in 

Algorithm 3, where the initializations of W0 and V0 are the 

same as those of transductive Kernel-LP in Algorithm 1.  

V.  EXPERIMENTAL RESULTS AND ANALYSIS 

We mainly evaluate the proposed Kernel-LP model for image 

classification and segmentation, along with illustrating the 

comparison results with the related methods for transductive 

and inductive learning. For transductive classification, the 

label prediction power of Kernel-LP is mainly compared with 

those of LNP, SparseNP, CD-LNP, ProjLP, LLGC, GFHF, 

SLP and PN-LP. For inductive data classification, we mainly 

evaluate the inclusion performance of our I-Kernel-LP-map 

and I-Kernel-LP-recons by comparing the results with the 

two widely-used inductive schemes, i.e., label reconstruction 

of LNP [8] and the direct label embedding method (including 

LapLDA, FME, ELP and SparseFME [47]). To avoid the 

tricky process of choosing different widths   of Gaussian 

function used in GFHF, LLGC, LapLDA, SLP and FME, the 

LLE-style reconstruction weights [8][38] are applied in them 

for semi-supervised learning for fair comparison. CD-LNP 

and SparseFME use their respective weights. Since the LLE-

reconstruction weight matrix W is asymmetric, we preprocess 

it by symmetrizing it as  T / 2W W W   for each algorithm 

and then normalizing it as 1 2 1 2
W D WD

 
 , where D denotes 

a diagonal matrix with the i-th entry being the sum of the i-th 

row or column of W. The diagonal elements of the weight 

matrix are also set to be zeros for LLGC. Note that Kernel-

LP has two model parameters (i.e.,   and  ) to estimate, 

similarly as FME and ELP. In this simulation, the parameters 

 and   are carefully chosen from the same candidate set 

for fair comparison, similarly as [18][22][32]. For FME and 

ELP, the parameters are selected based on the rules that a 

small   and a relatively large   are used according to [4-5]. 

In all simulations, the neighborhood size k (i.e., number of 

neighbors) is set to 7 for each method as [43-44] that have 

shown that this choice can generally work well on the whole.  

   We mainly evaluate each method by quantitative evaluation 

of classification and visual observation of segmentation. For 

fair comparison, all criteria use their respective regularization 

parameters for weighting the labeled and unlabeled data, and 

all results are averaged for each setting. The Gaussian kernel, 

i.e.    2
2, exp / 2  i j i jK x x x x , is employed in our method, 

and the width  will be discussed later. In this study, six face 

databases, three handwriting digit databases, and three object 

databases, are involved. The experiments are carried out on a 

PC with Intel (R) Core (TM) i5-4590 @ 3.30Hz 8.00 GB.    

A. Visualization of Graph Adjacency Matrix 

Kernel-LP performs joint label prediction and reconstruction 

weight learning in an adaptive manner. More importantly, 

jointly minimizing     2 2T T
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 


   

N

i i ii F
X X w Q K Q Kw w  

can ensure the learnt reconstruction weights Wij to be joint-

optimal for representation and classification explicitly. Thus, 

we would like to visualize the learnt graph adjacency matrix 

and compare the learnt reconstruction weight matrix with the 

two widely-used methods in the existing label propagation 

methods to define the weights, i.e., Gaussian function used in 

GFHF, LLGC, LapLDA, SLP, and the LLE-reconstruction 

weights are used in LNP. In this study, UMIST face database 
2 is used for constructing the weights. UMIST face set has 

575 images of 20 persons (mixed race/gender/appearance). 

Each individual is shown in a range of poses from profile to 

frontal views. The average size of images is 32×32 pixels. 

For semi-supervised learning, we choose 10 face images per 

person as labeled (i.e., 200 images) and treat the rest as 

unlabeled (i.e., 375 images). Note that the computed LLE-

style reconstruction weights, Gaussian weights, and our 

adaptive reconstruction weights over labeled and unlabeled 

data are shown in Figs. 2 (a-c) and Figs. 2 (d-f), respectively. 

From the comparison results, we can see clearly that: (1) The 

constructed weight matrices by the three kinds of weighting 

methods have the approximate block-diagonal structures; (2) 

                                           
2 Available at http://www.sheffield.ac.uk/eee/research/iel/research/face 

Algorithm 3 :  Inductive Kernel-LP by Kernel-Induced 
Label Reconstruction 

Inputs: Training set  1 1,..., , ,..., n N

l l l uX x x x x 

   , test set 
 1 2, ,..., T

T

n N

T NX x x x   , initial class label sets +Y and -Y , 
trade-off parameters   and  , 0t  , Q0=0.  
Training Phase based on X:  

While not converged do 
1.  Fix Wt, update the projection classifier 

1tQ 
 and diagonal 

matrix 
1tV 
 by Eqs.(13) and (14), respectively;  

2.  Fix Qt+1 to update the adaptive weights 
1tW 
 by Eq.(18) ; 

3. Convergence check: if
2 5

1 10

  t t F
Q Q , stop; else 1t t  . 

Testing Phase based on  X and XT:  
4. Compute the kernel matrix  , TK X X  between training 

set X and test set
TX ;  

5. For each new test data j Tx X :  
1)  Obtain the similarity vector  , jK X x  from  , TK X X ;  
2) Obtain the matrix 

kX  containing k-closest training 
samples to xj by sorting  , newK X x  in descending order;  

3) Extract  T , kQ K X X  from the predicted soft label 
matrix  T ,Q K X X of all training samples, and extract 

 ,k jK X x  from  , jK X x  based on the indices of the 
k-closest training samples to xj;  

4) Obtain the soft label vector fj of the test data xj as 

 T ,j k jf Q K X X w , where    
2

, / ,j k j k jw K X x K X x is 
the normalized similarity. The biggest element in label 
vector fj decides the class assignment of xj.  



  

 
(a) Gaussian weights on labeled data             (b) LLE-style weights on labeled data                (c) Our adaptive weights on labeled data   

 
(d) Gaussian weights on unlabeled data           (e) LLE-style weights on unlabeled data         (f) Our adaptive weights on unlabeled data  

Fig. 2: Visualization of the Gaussian weights, LLE-style reconstruction weights, and our adaptive reconstruction weights.  
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(a) Indian face database                             (b) USPS handwritten digit database                         (c) Caltch6 object database 

Fig. 3: Convergence behavior of our Kernel-LP, where (a-c) show the divergence between two consecutive Q on three databases. 

 

There are more wrong inter-class connections in the weight 

matrices constructed by Gaussian function and the LLE-style 

reconstruction weights, for example the highlighted parts by 

the red and green rectangles, which will result in inaccurate 

similarity measure, representations and label predictions. In 

contrast, the adaptive reconstruction matrix in our Kernel-LP 

is more informative than both the LLE-style reconstruction 

weights and Gaussian weights, because our adaptive graph 

weight matrix has less wrong inter-face-images connections 

and better intra-class connectivity simultaneously. Note that a 

good intra-class connectivity with less inaccurate inter-class 

connections is very important for subsequent representation 

and classification, since the target data can be reconstructed 

by the samples from the same class as much as possible.  It is 

also noted that the superiority of our learnt adaptive graph 

adjacency matrix over other two can be attributed to the joint 

learning process of weights by minimizing the reconstruction 

error     iX X w   and the label reconstruction error 
2

T T

i F
Q K Q Kw  simultaneously, because the pre-known class 

information of labeled images and the pairwise relationship 

between both labeled and unlabeled images can enforce the 

learnt weight matrix to be block-diagonal. 

B. Convergence Analysis 

We have shown that the objective function value of Kernel-

LP in Eq.(9) is non-increasing under the updating rules, so 

we want to describe some quantitative convergence analysis 

results by reporting the divergence between two sequential 

projection classifiers Q. In this simulation, three kinds of real 

databases i.e., Indian face [33], USPS handwritten digits [46] 

and Caltech6 object, are tested. The used USPS dataset has 

11,000 examples of handwritten digits, publicly available at 

http://www.cs.nyu.edu/~roweis/data.html/USPSHandwritten 

Digits. There are 8-bit grayscale digit images of ‘0’ through 

‘9’ and 1100 images of each digit. In the database, the size of 

each digit image is 16×16 pixels. The Caltech6 object image 

database contains 3738 images of six object categories and 

one background category. For each database, we randomly 

choose 6 samples as labeled, and the convergence analysis 

http://www.cs.nyu.edu/~roweis/


  

results averaged over 15 iterations are illustrated in Fig. 3.  

As can be observed from the results, the divergence between 

consecutive projections Q also converges to zero, which 

means that the final results will not be changed drastically. It 

is also noticed that the convergence speed is fast, and the 

number of iterations is about 15-20 in the simulations.  

C. Image Recognition by Transductive Classification 

(1) Face Recognition. We firstly examine our Kernel-LP for 

transductive learning and recognition. The results are mainly 

compared with those of LNP, SparseNP, CD-LNP, ProjLP, 

LLGC, GFHF, SLP, LapLDA and PN-LP. In this study, six 

real face databases, i.e., AR-male and AR-female sample sets 

[30], ORL face database, UMIST face database [28], Georgia 

Tech database and Indian face database, are tested. ORL face 

database has 40 distinct subjects and each has 10 face images. 

Georgia Tech face database has 50 distinct subjects and each 

has 15 face images.  There are 7 different images of each of 

40 distinct subjects in the Indian database. We also merge the 

face images of Georgia Tech and Indian into a single one 

called Georgia-Indian for face recognition. For each database, 

all the face images are resized into 32×32  pixels, so each 

face image corresponds to a data point in a 1024-dimensional 

space. In this study, we evaluate the learning performance of 

each method by varying the number of labeled face images of 

each subject. For each fixed number of labeled face images, 

the results are averaged over 15 times runs. Fig. 4 illustrates 

the averaged classification results of each algorithm. We can 

observe that: (1) The performance of each method can be 

improved by increasing the number of labeled face images of 

each subject; (2) Kernel-LP can obtain higher classification 

accuracy compared with the other recent label propagation 

methods in most cases, especially on the AR-male and AR-

female face datasets. One main reason can be attributed to the 

formulation of transforming the label prediction and weight 

construction processes from original input space into a kernel 

space that can discover the relations between images more 

accurately. The other reason is the adaptive reconstruction 

weight construction is incorporated into the label propagation 

process for joint optimization in the kernel space, which can 

ensure the constructed weights are joint-optimal for similarity 

measure and classification. The results of GFHF, LapLDA 

and SparseNP are generally better than those of SLP, ProjLP 

PN-LP and CD-LNP in most cases. In Table 1, we describe 

the statistics of each algorithm according to the numerical 

results in Fig. 4, where we report the mean accuracy, highest 

accuracy and mean running time for each method. Note that 

we report the computational time of one iteration for iterative 

methods. The highest records are highlighted in bold. We can 

obtain similar findings from the numerical results shown in 

Table 1, that is, the performance superiority of evaluated 

methods keeps consistent with the experimental results in Fig. 

4. That is, our proposed two inductive methods i.e., I-Kernel-

recons and I-Kernel-map deliver better results than the label 

reconstruction and label embedding based inductive schemes.  

 (2) Object Recognition. We also evaluate our Kernel-LP 

to recognize the objects of the ETH80 database [31]. ETH80 

database contains 8 big object categories with 10 small object 

categories per big category. Each small object category has 

41 images that vary in shape and texture but otherwise appear 

on a uniform background and roughly share the same size. In 

this study, we perform classification on the 8 big categories, 

i.e., one 8-class classification problem is created and tested. 

Four experimental settings over various numbers of labeled 

images (i.e., 20, 80, 140 and 200) are randomly selected from 
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(a) AR-female                                                      (b) AR-male                                                (c) Georgia-Indian 
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                                    (d) ORL                                                          (e) UMIST                                                       (f) Indian 

Fig. 4: Classification results of each evaluated algorithm on the six face image databases.  



  

Table 1: Performance comparison of each algorithm under different settings based on the six face image databases.  

Dataset 

Method  

AR-female AR-male   Georgia-Indian ORL UMIST Indian 

Mean/Best/Time Mean/Best/Time Mean/Best/Time Mean/Best/Time Mean/Best/Time Mean/Best/Time 

SparseNP 26.54/58.85/0.4117 27.97/64.50/0.4536 66.53/74.112/0.9039 86.61/94.93/0.8619 89.12/96.05/0.8555 65.05/71.51/0.6484 

ProjLP 25.78/58.55/0.3923 27.22/63.90/0.4343 65.23/73.41/0.8712 86.05/94.10/0.8415 81.33/92.00/0.8239 64.29/71.32/0.6262 

SLP 26.56/56.70/0.4015 27.90/62.15/0.4476 66.01/74.33/0.8835 86.05/95.21/0.8503 83.90/95.45/0.8228 64.62/71.90/0.6411 

LNP 26.14/53.35/0.3260 27.32/58.45/0.3527 64.38/72.84/0.8494 84.76/94.38/0.7747 85.89/94.10/0.8235 63.48/71.41/0.5441 

LLGC 22.95/46.45/0.4718 24.63/49.20/0.5219 55.07/61.57/0.9237 77.07/85.14/0.8513 81.82/92.00/0.8513 53.60/59.42/0.6228 

LapLDA 35.02/63.30/0.3993 38.45/66.70/0.4470 63.80/71.64/0.9131 83.91/89.17/0.8524 88.20/94.41/0.8717 63.04/67.90/0.6439 

GFHF 26.03/56.70/0.2660 27.61/62.35/0.2879 65.81/73.85/0.8259 85.88/95.07/0.7819 89.28/95.35/0.8114 64.31/71.80/0.5905 

CD-LNP 20.05/31.55/0.3033 20.75/34.75/0.3196 59.95/67.85/0.9225 79.11/86.74/0.7920 82.91/91.76/0.8469 59.35/66.53/0.5357 

PN-LP 21.49/35.80/0.4146 22.64/40.90/0.4558 54.99/62.47/0.9146 76.13/83.96/0.8639 84.56/90.55/0.8625 53.95/61.29/0.6536 

Kernel-LP 53.08/75.00/0.5873 53.24/74.55/0.6033 67.76/75.39/0.8515 88.88/98.19/0.8818 90.13/96.46/0.8152 66.46/73.28/0.6692 

 

each object class for recognition. The results are averaged 

over the first 15 best records based on 20 realizations of 

training and test sets. We describe the classification results in 

Table 2, including the mean accuracy, standard deviation the 

best accuracy and mean running time of each algorithm in 

each setting, in which the simulation settings are also shown. 

We have the following observations: (1) The performance of 

each method goes up with the increasing numbers of training 

samples. (2) Kernel-LP delivers higher accuracy than other 

techniques in most cases, which can also be attributed to the 

positive effects of negative label information, kernel label 

propagation, and the seamless integration of adaptive weight 

construction and kernelized label propagation. SparseNP also 

performs well by delivering better results than other methods.  

 
Table 2: Performance comparison of each algorithm under different settings based on the ETH80 database.  

Result 

 

Method 

ETH80 database 

(20 labeled per class) 
ETH80 database  

(80 labeled per class) 
ETH80 database  

(140 labeled per class) 
ETH80 database  

(200 labeled per class) 

Mean / Std / Best / Time Mean / Std / Best / Time Mean / Std / Best / Time Mean / Std / Best / Time 

SparseNP 71.65/3.61/71.48/173.4 83.50/2.76/83.90/173.6 85.76/3.03/87.43/173.1 86.90/2.52/89.01/0.6134 

ProjLP 67.00/0.61/68.01/32.74 81.86/0.59/81.97/16.42 84.52/1.63/85.23/12.03 85.25/3.52/87.71/0.6442 

SLP 62.62/3.21/62.96/11.31 82.95/3.05/83.22/11.55 

0944 

85.48/2.47/87.39/11.42 86.96/2.71/88.89/0.3791 

LNP 67.50/2.49/68.50/35.41 80.24/2.52/81.79/35.77 83.94/2.21/85.84/35.70 86.05/2.27/89.80/0.6442 

LLGC 60.49/3.11/61.70/44.44 73.21/2.95/75.97/44.90 75.76/2.84/76.62/44.81 76.43/2.46/78.27/0.5543 

LapLDA 59.90/1.53/60.69/11.17 

28/57/ 

68.70/2.82/70.25/11.09 69.61/1.21/69.83/11.08 70.90/1.73/7390/0.6850 

GFHF 71.10/5.19/72.16/13.74 82.32/2.26/82.51/13.67 85.15/3.12/86.39/13.64 86.55/2.96/88.00/0.6508 

CD-LNP 67.81/2.68/70.85/9.157 79.47/2.53/81.47/8.355 82.79/1.92/84.21/8.120 85.16/1.95/86.42/0.5066 

PN-LP 57.55/3.02/59.32/10.35 70.91/1.26/71.30/10.27 74.38/2.65/75.96/10.40 77.70/1.80/78.18/0.6859 

Kernel-LP 72.85/3.59/73.58/22.11 83.54/2.73/84.64/22.49 87.73/2.33/88.39/22.19 89.11/2.62/90.17/0.6665 

 
Table 3: Descriptions of the used real-world databases. 

 

D. Image Recognition by Inductive Classification 

In this study, we mainly evaluate the inclusion performance of 

our I-Kernel-LP-map and I-Kernel-LP-recons to handle new 

data. We mainly compare the inductive classification results 

with the existing two widely-used inductive schemes, that is, 

label reconstruction of LNP and direct label embedding. For 

the label embedding based methods, we include the inductive 

LapLDA, FME, ELP and SparseFME for comparison. In this 

study, three kinds of image databases are evaluated, including 

three face databases, three handwriting digit databases and 

three object image databases. The detailed information of the 

evaluated databases is described in Table 3. For inductive data 

classification, we randomly split each dataset into training and 

test sets, where training set includes the labeled and unlabeled 

data, and all samples in test set are unlabeled. The accuracy is 

gained by comparing the predicted labels with the ground-

truth labels provided by the original data corpus.  

 (1) Face recognition results. We first evaluate each model 

for inductive face recognition. Three face databases, including 

the UMIST database [28], YALE-Indian dataset and Georgia 

Tech face database [32], are involved. The YALE-Indian face 

dataset is a merged set of both YALE 3 and Indian face images. 

In this study, we mainly report the inclusion results of each 

method on the testing set. The recognition results averaged 15 

random splits of training and testing samples are summarized 

in Fig. 5, where the horizontal axis is the number of labeled 

                                           
3 Available at http://vision.ucsd.edu/content/yale-face-database 

Dataset Name Data Type #Class (c) #Dim (n) #Points 

UMIST face 20 1024 575 

Georgia Tech face 50 1024 750 

YALE-Indian face 76 1024 842 

Pen-RHD handwriting 10 16 10992 

HWDB1.1-D handwriting 10 196 2381 

USPS handwriting 10 256 11000 

COIL100 object 100 1024 7200 

ETH80 object 80 1024 3280 

Caltech6 object 7 1024 3738 
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         (a) UMIST                                                    (b) YALE-Indian                                                    (c) Georgia Tech face 

Fig. 5:Inductive classification results of each evaluated algorithm on the three face databases.  

Table 4: Performance comparison of each algorithm under different settings based on the three face databases.  

        Result 

Method 

UMIST face YALE-Indian face Georgia Tech face 

Mean/Best/Time Mean/Best/Time Mean/Best/Time 

LapLDA 0.8052/91.24/0.0019 43.76/46.89/0.0023 32.00/34.60/0.0011 

ELP 0.8333/93.58/0.0018 43.88/47.93/0.0023 35.69/37.63/0.0011 

FME 0.8481/94.38/0.0018 46.46/49.74/0.0024 39.68/42.95/0.0010 

SparseFME 0.8529/93.63/0.0017 48.91/58.29/0.0025 41.90/47.30/0.0010 

Inductive LNP 0.8396/92.83/0.0805 54.51/64.51/0.0574 62.17/76.00/0.0311 

I-Kernel-map 0.8601/95.12/0.0204 63.51/76.68/0.0188 69.85/84.40/0.0148 

I-Kernel-recons 0.8709/96.01/0.0365 57.49/68.13/0.0317 65.91/76.40/0.0238  

training data in each class, and the vertical axis is the averaged 

inductive accuracy of each semi-supervised learning method. 

Clearly, the prediction performance of each method can be 

effectively improved with the increasing number of labeled 

training data from each class. It can also be noted that our two 

inductive methods, i.e., I-Kernel-recons and I-Kernel-map, can 

deliver better results than the label reconstruction and label 

embedding based inductive schemes. The label reconstruction 

based LNP outperforms the other remaining methods on the 

YALE-Indian  and Georgia Tech face datasets, while the label 

embedding based LapLDA, FME, ELP and SparseFME gains 

better results than the inductive LNP. For the label embedding 

based methods, SparseFME can outperform LapLDA, FME 

and ELP for face recognition over each database.  

Table 4 describes the statistics of each evaluated method 

according to the quantitative results in Fig. 5, where we report 

the mean inductive accuracy, best records and inclusion 

method. The highest two records in each group are highlighted 

in bold. We find that the performance superiority of evaluated 

methods can keep consistent with the quantitative analysis in 

Fig. 5. That is, our two inductive algorithms can obtain higher 

accuracies compared with the other recent related methods in 

most cases. SparseFME is capable of achieving better result 

than the LapLDA, FME and ELP methods. For the running 

time performance, the label embedding method is the most 

efficient. The direct kernel mapping and the kernel-induced 

label reconstruction schemes are more efficient than the label 

reconstruction method of LNP, because LNP has to search the 

neighbors of each test data and then computes the weight 

vector so that the label of test data can be reconstructed by the 

soft labels of its neighbors, while our proposed data inclusion 

schemes only depends on the kernel matrix between training 

and test data. Relatively, the kernel mapping method is more 

efficient the kernel-induced label reconstruction. 

(2) Handwritten digit recognition. We then evaluate each 

inductive learning method for handwriting recognition. In this 

study, three popular handwritten digit databases, including 

USPS [46], CASIA-HWDB1.1 database [32] and Pen based 

Recognition of Handwritten Digits [45] (Pen-RHD), are tested. 

CASIA-HWDB1.1 database has 3755 Chinese characters and 

171 alphanumeric and symbols, collected from 300 writers. In 

this study, the sample set termed HWDB1.1-D [33], including 

2381 handwritten digits (‘0’-‘9’), from CASIA-HWDB1.1 is 

used for the evaluations. Pen-RHD database contains 10992 

handwritten digits of ‘0’-‘9’.  

For each handwriting database, we report the results under 

various numbers of labeled handwritten digits, fix the number 

of the unlabeled digits to 10, and regard the rest ones as testing 

set for inclusion. The handwritten digit recognition accuracies 

of the testing data averaged over 15 times runs are illustrated 

in Fig. 6. From the results, we can similarly conclude that the 

overall performance of each method can be greatly improved 

with the increasing numbers of labeled handwritten digits. 

More specifically, the performance of our inductive methods 

and the label reconstruction based LNP goes up faster when 

the labeled number increases in each setting. We also see that 

our I-Kernel-map can achieve more promising results than the 

other recent methods on each database. Kernel-recons obtains 

highly comparable results with the label reconstruction based 

LNP on the USPS database, and both are superior to the other 

remaining methods. In other words, the label reconstruction 

scheme of LNP and our inclusion schemes of kernel-induced 

mapping/label reconstruction are all better than the direct label 

embedding scheme for the handwriting digits recognition.  



  

Table 5 summaries the results (including the mean, highest 

accuracies and the inclusion time of testing digits) according 

to Fig. 6. From the results, similar performance superiority of 

evaluated methods can be obtained. (1) The mean and highest 

records of our inductive methods and the label reconstruction 

based LNP are better than the other methods in most cases. (2) 

Our proposed I-Kernel-LP-map gains higher accuracies than 

its competitors in each case, specifically when the number of 

labeled training digits is relatively small. (3) Considering the 

running time performance of data inclusion, it is clear that the 

label embedding scheme by direct projection is still efficient, 

successively followed by our proposed kernel mapping and 

kernel-induced label reconstruction schemes. For the label 

reconstruction scheme, I-Kernel-LP-map is faster than LNP.  

(3) Object recognition. Finally, we evaluate each inductive 

learning method for recognizing objects. In this study, three 

popular object databases, i.e., COIL100 [31], ETH80 [31] and 
Caltech6, are involved. The COIL100 database contains 7,200 

images of 100 objects. The objects were placed on a motorized 

turntable against a black background. The turn-table was 

rotated through 360 degrees to vary object pose with respect to 

a fixed color camera. Images of the objects were taken at pose 

intervals of five degrees, corresponding to 72 different poses 

per object. For ETH80 database, we regard each subcategory 

as a single class, namely, an 80-class classification problem is 

created and evaluated. We also evaluate the data inclusion 

performance of each learning method by varying the number 

of labeled object images in each class. Specifically, we tune 

the number of labeled training samples from {10, 20, …, 100} 

for both ETH80 and Caltech6, and vary the number of labeled 

training samples from {2, 5,…,23} for COIL100. Since we 

mainly focus on evaluating the data inclusion performance, the 

number of unlabeled training samples is always fixed to 10 for 

each experimental setting. We illustrate the averaged result of 

each algorithm over 10 random splits of training and test 

samples in Fig.7, and Table 6 summarizes the statistics in the 

figures according, including the mean accuracy, best records 

and data inclusion time of testing samples. We can have the 

following observations. First, the increasing number of labeled 

training samples can effectively boost the object recognition 

performance of each method. Second, I-Kernel-LP-map and I-

Kernel-LP-recons outperform others on ETH80 and COIL100. 

I-Kernel-LP-map is able to deliver better results on Caltech6 

database by achieving better results. The results of the label 

reconstruction based LNP and I-Kernel-LP-recons are highly 

comparative with each other. The performances of the label 

embedding based methods are close with each other in each 

case. Third, we once again observe from the inclusion time of 

testing data that the label embedding based inclusion scheme 

is very efficient. Our proposed direct kernel mapping based 

inclusion scheme is also relatively more efficient than others, 

and the label reconstruction scheme of LNP is relatively slow.  
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      (a) Pen-RHD                                              (b) CASIA HWDB1.1-D                                              (c) USPS 

Fig. 6: Classification results of each evaluated algorithm on the three handwriting digit databases. 

Table 5: Performance comparison of each algorithm under different settings based on the three handwriting digit databases.  

     Result 

Method 

Pen-RHD digits HWDB1.1-D digits  USPS digits 

Mean/Best/Time Mean/Best/Time Mean/Best/Time 

LapLDA 80.65/82.47/0.0007 49.84/55.32/0.0099 72.88/80.66/0.0045 

ELP 79.75/81.86/0.0008 46.09/51.52/0.0119 69.67/81.02/0.0043 

FME 83.43/85.34/0.0013 46.90/52.03/0.0146 72.30/81.98/0.0053 

SparseFME 85.49/87.41/0.0012 42.91/49.64/0.0145 71.36/78.08/0.0053 

LNP 92.35/95.88/0.5652 58.91/64.80/1.1994 86.87/91.24/0.8293 

I-Kernel-map 93.07/95.59/0.1019 61.83/67.76/0.6987 93.01/95.87/0.3029 

I-Kernel-recons 88.85/92.44/0.4160 54.45/59.76/1.8411 

. 

86.18/90.30/0.8216 
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         (d) ETH80                                                          (e) COIL100                                                               (f) Caltech6 

Fig. 7: Classification results of each evaluated algorithm on the three object image databases.  

Table 6: Performance comparison of each algorithm under different settings based on the three object databases.  

      Result 

Method 

ETH80 object COIL100 object Caltech6 object 

Mean/Best/Time Mean/Best/Time Mean/Best/Time 

LapLDA 25.24/34.31/0.0070 63.75/78.65/0.0195 45.18/47.17/0.0055 

ELP 24.66/34.50/0.0076 63.76/79.28/0.0223 48.33/50.70/0.0056 

FME 26.08/36.11/0.0092 65.05/79.46/0.0270 53.57/56.13/0.0059 

SparseFME 33.86/40.89/0.0081 68.89/82.15/0.0261 58.40/62.72/0.0056 

Inductive LNP 46.31/56.67/0.2283 76.60/95.44/0.8364 

1212/ 

63.85/69.85/0.3770 

I-Kernel-map 53.65/65.47/0.1748 83.68/98.50/0.6931 74.76/80.53/0.1190 

I-Kernel-recons 48.08/58.53/0.2920 82.88/97.27/1.2198 64.78/70.46/0.2151 

 

E.   Application to Interactive Image Segmentation 

In this section, we prepare a study to interactively segment the 

natural images using the Berkeley segmentation database [27]. 

The main task is to extract the foreground regions from natural 

images. When handling the interactive image segmentation, 

the most important issue is to collect the user specified pixels 

about both foreground and background. In this study, seven 

images from the Berkeley database are tested. Each extracted 

pixel from the image is represented by using a 5D vector , 

i.e.,  , , , ,R G B  


 , where  , ,R G B  denotes the normalized 

color of pixels and  ,   denotes the spatial coordinate with 

image width and height. Fig. 8 exhibits the interactive image 

segmentation results. The first row shows the original images, 

and the second row shows the source images with the user 

specified pixels. Note that the colored lines represent different 

data, where the red lines represent the foreground that needs to 

be extracted, referred to one class of labeled pixels, the green 

lines denote background, regarded as another class of labeled 

pixels, and the blue lines represent the training pixels without 

labels. The rest rows illustrate the result of each method.  

In this study, we mainly compare the result of Kernel-LP 

with those of LNP, LapLDA, SLP, LLGC, GFHF and CD-

LNP. From the segmentation results in Fig. 8, we can have the 

following conclusions: 1) Under the same setting, our Kernel-

LP generally outperforms other evaluated methods, especially 

on the castle image, lake Image and swan image, since we can 

clearly see that more pixels of the foreground and background 

of images are incorrectly classified by other related methods. 

In contrast, our Kernel-LP performs better in classifying pixels 

and output satisfactory results; 2) Detecting the edge regions is 

relatively difficult. Kernel-LP can deliver visually comparable 

and even better performance than the others in most cases on 

determining the image boundaries, since compared methods 

often make the border of foreground and background blurry 

and hazy if the colors of foreground and background of target 

images are similar. LapLDA also gains a better segmentation 

result, such as on handling the second tea related image.  

F． Parameters Analysis 

In this section, we perform two simulations to investigate the 

effects of model parameters on the learning performing. In the 

first study, we mainly we investigate the effects of parameters 

(i.e. ,  ) on the performance of our Kernel-LP approach. In 

another study, we mainly explore the effects of kernel width 

  in the Gaussian kernel function.  

   (1) Investigation of the parameters  and  . In this study, 

we illustrate the results by using the approach of grid search to 

explore the effects. For each pair of parameters, we average 

the results over 20 times random splits with varied parameters 

  and   from 5 4 4 510 ,10 ,...,10 ,10  . We choose three kinds of 

databases (i.e., UMIST face, Pen-RHD digits and COIL100 

object) as examples. For the simulations, we fix the number of 

labeled training images (i.e., 7, 10 and 10 for UMIST face, 

Pen-RHD digits and COIL100 object databases respectively) 

and use the remaining samples as unlabeled training set. Three 

groups of parameter selection results on the three databases 

are shown in Fig. 9. We can observe from the results that our 

Kernel-LP can perform well in a wide range of parameters in 

each group, that is, our proposed method is not sensitive to the 

parameters  and  . We also notice that a relatively small   

tends to decrease the results on for UMIST face and COIL100 

object databases. Similar findings of parameter selections can 
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Fig. 8: Interactive image segmentation results of each algorithm on the benchmark Berkeley segmentation database.  
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(a) UMIST face                                           (b) Pen-RHD digits                                      (c) COIL100 objects 

Fig. 9: Sensitivity analysis of different selections of parameters   and   on three real-world databases.  
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(a) Transductive learning process                          (b) Direct kernel mapping                     (c) Kernel-induced label reconstruction 

Fig. 10: Sensitivity analysis of different selections of kernel width  on the three real-world databases.  

 

be found from other sets in most cases, but the results will not 

be shown due to page limitation. From this study, we simply 

set 3
=10  and -1

=10  for Kernel-LP in all experiments.  

 (2) Investigation of the Gaussian kernel width . In this 

experiment, we will present two groups of analysis results, i.e., 

exploring the effects of kernel width   from the candidate set 

{10-4, 10-3, …, 1011, 1012} on the transductive and inductive 

processes of our Kernel-LP. For our inductive process, we also 

present two results based on the direct kernel mapping and the 

kernel-induced label reconstruction.  

The selection results of kernel width   on the transductive 

learning process are shown in Fig.10 (a), from which we can 

observe that the best results are all obtained at 310   for the 

tested three kinds of databases. Thus, we simply set 310   

for our Kernel-LP for semi-supervised classification.  

The selection results of kernel width   on the direct kernel 

mapping and kernel-induced label reconstruction process are 

illustrated in Fig.10 (b-c) respectively. From the results on the 

direct kernel mapping, we can find that the best records are 

also obtained at 310   for the tested three kinds of databases. 

While for the analysis on kernel-induced label reconstruction 

process, one can easily see that promising results are usually 

achieved at 210   over the tested databases. Thus, we can set 

the width   to 103 and 102 for our inductive I-Kernel-map and 

I-Kernel-recons to include the outside new data.  

VI. CONCLUDING REMARKS 

We have proposed a novel kernel-induced label propagation 

framework termed Kernel-LP by mapping for semi-supervised 

classification. The core idea of our Kernel-LP is to change the 

scenario of label propagation from commonly-used Euclidean 

distance to kernel space so that more informative patterns and 

relations of samples can be accurately discovered for learning 

useful knowledge based on the mapping assumption of kernel 

trick. Thus, the similarity can be encoded more accurately for 

enhancing subsequent representation. For kernel-induced label 

propagation, the seamless integration of adaptive graph weight 

construction and kernelized label propagation can also ensure 

the weights to be joint-optimal for data representation and 

classification in kernel space. The positive effects of negative 

label information are also used to boost the results. To enable 

Kernel-LP to process new data efficiently, two novel out-of-

sample methods by direct kernel mapping and kernel-induced 

label reconstruction are also presented. The proposed new data 

inclusion methods only depends on the kernel matrix between 

training set and testing set, which is simple and efficient.  

Extensive results on image recognition and segmentation 

have demonstrated the effectiveness of our kernelized methods 

for the transductive and inductive classification. Extending the 

kernelized scheme of our algorithm to other related methods 

will be investigated in future. Besides, extending our methods 

to the other application areas, such as image retrieval and text 

categorization, is also worth investigating in future.  
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