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Abstract—Dramatic increases in the size and complexity of modern datasets have made traditional “centralized” statistical inference
prohibitive. In addition to computational challenges associated with big data learning, the presence of numerous data types (e.g.
discrete, continuous, categorical, etc.) makes automation and scalability difficult. A question of immediate concern is how to design a
data-intensive statistical inference architecture without changing the basic statistical modeling principles developed for “small” data
over the last century. To address this problem, we present MetaLP, a flexible, distributed statistical modeling framework suitable for
large-scale data analysis, where statistical inference meets big data computing. This framework consists of three key components that
work together to provide a holistic solution for big data learning: (i) partitioning massive data into smaller datasets for parallel
processing and efficient computation, (ii) modern nonparametric learning based on a specially designed, orthonormal data
transformation leading to mixed data algorithms, and finally (iii) combining heterogeneous “local” inferences from partitioned data using
meta-analysis techniques to arrive at the “global” inference for the original big data. We present an application of this general theory in
the context of a nonparametric two-sample inference algorithm for Expedia personalized hotel recommendations based on 10 million
search result records.

Index Terms—Nonparametric mixed data modeling; LP transformation; Distributed statistical learning; Heterogeneity; Meta-analysis;
Data-parallelism.
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1 INTRODUCTION

M otivation. Expedia is a large online travel agency and
has a strong interest in understanding how user,

search, and hotel characteristics influence booking behav-
ior. As a result, Expedia released a dataset [1] containing
52 variables of user and hotel characteristics (e.g. search
criteria, hotel features and pricing, user purchase history,
competitor pricing, etc.) from 10 million hotel search results
collected over a window of the year 2013. These factors
will ultimately be used to optimize hotel search results
and increase booking rates. For this purpose, we develop
a scalable, distributed algorithm that we refer to as MetaLP.
This learning algorithm can mine search data from millions
of travelers, in a completely nonparametric manner, to find
important features that best predict customers’ likelihood
to book a hotel. This is an important large-scale machine
learning problem.

The Volume Problem. This kind of “tall” data structure,
whose number of observations can run into the millions
and billions, frequently arises in astronomy, marketing,
neuroscience, e-commerce, and social networks. These mas-
sive datasets cannot be stored or analyzed by a single
computer all-at-once using standard data analysis software.
This creates a major bottleneck for statistical modeling and
inference. We seek to develop a framework that allows data
scientists to systematically apply the tools and algorithms
developed prior to the “age of big data” for massive data
problems.
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The Variety Problem. Another challenge is in develop-
ing a standard algorithm that can work across different
data types, known as the mixed data problem [2]. The
Expedia dataset contains variables of different types (e.g.
continuous, categorical, discrete, etc.), and each requires a
different statistical method for inference. A few examples of
traditional statistical measures for (Y ;X) data include: (1)
Pearson’s φ-coefficient: Y and X both binary, (2) Wilcoxon
statistic: Y binary and X continuous, (3) Kruskal-Wallis
statistic: Y discrete multinomial and X continuous, and
many more. Computational implementation of traditional
statistical algorithms for large, mixed data thus become
dauntingly complex as they require data type information
to calculate the proper statistic. To streamline this process,
we need to develop unified computing algorithms that yield
appropriate statistical measures without demanding data
type information from the user. To achieve this goal, we de-
sign a customized, discrete, orthonormal, polynomial-based
transformation, the LP-Transformation [3], [4], suitable for
arbitrary random variable X . This transformation can be
viewed as a nonparametric, data-adaptive generalization
of Norbert Wiener’s Hermite polynomial chaos-type rep-
resentation [5]. This easy-to-implement LP-transformation
based approach allows us to extend and integrate classical
and modern statistical methods for nonparametric feature
selection, thus providing the foundation to build automatic
algorithms for large, complex datasets.

The Scalability Problem. Finally, the most crucial issue
is to develop a scalable algorithm for large datasets, like
the Expedia example. With the evolution of big data struc-
tures, new processing capabilities relying on distributed,
parallel processing have been developed for efficient data
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Algorithm Nonparametric Inference Modeling Speed Heterogeneity
MetaLP 3 3 3 3 3
BLB [9] 3 3 7 7 7
SAVGM [10] 3 3 7 7 7
KL-Weighting [11] 7 3 3 7 7
AEE [12] 7 3 3 3 7
Split-and-conquer [13] 7 3 3 3 7

TABLE 1: Scope of MetaLP and other existing methods.

manipulation and analysis. This paper presents a statistical
inference framework for massive data that can fully exploit
the power of parallel computing architecture and can be
easily embedded into the MapReduce framework [6]. We
design the statistical “map” function and “reduce” function
for massive data variable selection by integrating many
modern statistical concepts and ideas introduced in Sections
2 and 3. Doing so allows for faster processing of big datasets,
while maintaining the ability to obtain accurate statistical
inference without losing information. Another appealing
aspect of our distributed statistical modeling strategy is
that it is equally applicable for small and big data, thus
providing a unified approach to modeling.

Related Literature. Several statistical distributed learning
schemes for big data have been proposed in the litera-
ture. The divide and recombine (D&R) approach [7], [8]
to the analysis of large, complex data provides a general
statistical approach to analyzing big data in a way that is
mostly considered embarrassingly parallel. In this setting,
communication-efficient algorithms have been developed
for various tasks such as assessing estimator quality [9], sta-
tistical optimization [10], and model aggregation [11], based
on bootstrap resampling and subsampling techniques. Par-
allel algorithms have also been designed for large-scale
parametric linear regression [12], [13]. These proposals ad-
dress important challenges in analyzing large, complex data,
but there are still significant hurdles to clear in developing
a holistic framework for big data learning. Table 1 provides
a comparison of the MetaLP learning framework with these
proposals to better illustrate where this work fits into the
existing distributed learning landscape.

The MetaLP framework broadens the existing scope of
big data learning challenges that can be addressed in four
important ways. First, the methods of [12], [13] are based on
parametric modeling assumptions. However, these assump-
tions often do not hold when analyzing large, complex data
and present automation difficulties, as these assumptions
are inherently data type dependent. On the other hand,
the MetaLP framework is model–free in the sense that it
is nonparametric and does not assume any specific model
form. Thus, it is more applicable for big data analytics.
Second, while the communication-efficient algorithms [9],
[10], [11] are flexible to accommodate various statistics and
model forms, they require specific instances from the user
in order to conduct inference and modeling. In contrast,
our MetaLP framework relies on statistics based on the LP-
transformation for nonparametric inference and modeling
due to its favorable theoretical properties and its ability to
solve the mixed data problem (see Section 3). Third, MetaLP
also enjoys a considerable reduction in computation time

compared to other methods which rely on computationally
intensive bootstrap resampling [9], [11] and subsampling
[10] techniques in order to generate local inferences. Lastly,
characteristics across subpopulations may vary significantly,
even under purely random data partitioning (see Section
4.2 and Supplementary Section B), which is known as
heterogeneity [14]. Using meta-analysis principles, MetaLP
assigns optimal weights to each local inference, which prop-
erly accounts for any potential heterogeneity. These weights
then determine the influence of each local inference on the
final global inference. This approach provides a crucial ad-
vantage over methods relying on equal weighting schemes
where heterogeneity can spoil inference (see Sections 2.3 and
4.2). In summary, this work provides the basis to develop
a general and systematic massive data analysis framework
that can simultaneously perform nonparametric statistical
modeling and inference and can be adapted for a variety of
learning problems.

Organization. Section 2 provides the basic statistical for-
mulation and overview of the MetaLP algorithmic frame-
work. Section 3 covers details of the individual elements
of the distributed statistical learning framework, address-
ing the important issue of heterogeneity in big data along
with a concrete nonparametric parallelizable variable se-
lection algorithm. Section 4 evaluates the effectiveness of
our proposed variable selection algorithm and compares
it with other popular methods through simulation studies.
Section 5 provides an in-depth analysis of the motivating
Expedia dataset using the framework to conduct variable
selection under different settings to determine which hotel
and user characteristics influence booking behavior. Section
6 provides some concluding remarks and discusses the
future direction of this work. Supplementary materials are
also available discussing two examples on how the MetaLP
framework provides a new understanding and resolution
for problems related to Simpson’s Paradox and Stein’s Para-
dox, the relevance of MetaLP for small-data, and the R
scripts for MapReduce implementation.

2 STATISTICAL FORMULATION OF BIG DATA
ANALYSIS

Our research is motivated by a real business problem of
optimizing personalized web marketing for Expedia with
the goal of improving customer experience and look-to-
book ratios1 by identifying key factors that affect consumer

1. The number of people who visit a travel agency web site com-
pared to the number who make a purchase. This ratio measures the
effectiveness of an agency in securing purchases.
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choices. This prototypical digital marketing case study al-
lows us to address the following more general data model-
ing challenge, which finds its applicability in many areas of
modern data-driven science, engineering, and business:

How can we design nonparametric distributed algorithms that
work on large amounts of data (that cannot be stored or processed
by just one machine) to find the most important features that affect
certain outcomes?

At first glance, this may look like a simple two-sample
inference problem that can be solved by some trivial gen-
eralization of existing ‘small-data’ statistical methods, but
in reality, this is not the case. In this article we perform a
thorough investigation of the theoretical and practical chal-
lenges present in big data analysis. We emphasize the role of
statistics in big data analysis and provide an overview of the
three main components of our statistical theory along with
the modeling challenges they are designed to overcome. In
what follows, we present the conceptual building blocks of
MetaLP, a large-scale distributed learning tool that allows
big data users to run statistical procedures on large amounts
of data. Figure 1 outlines the architecture.
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LP Statistic 

Compute 
LP Statistic 

Massive 
Data Set 
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Whole 
Inference 

Compute  
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Combine and Reduce via  

Meta-analysis 

Fig. 1: MetaLP large-scale distributed statistical inference
architecture.

2.1 Partitioning Massive Datasets

Dramatic increases in the size of datasets have created a
major bottleneck for conducting statistical inference in a
traditional, ‘centralized’ manner, where we have access to
the full data. The first, and quite natural, idea to tackle
the volume problem is to divide the big data into sev-
eral smaller datasets, similar to modern parallel computing
database systems like Hadoop and Spark as illustrated in
Figure 2. However, simply dividing the dataset does not
allow data scientists to conquer the problem of big data

analysis. There are many unsettled questions that we have
to carefully address using proper statistical tools to arrive at
an appropriate solution.

Users must select a data partitioning scheme to divide
the original large data into several smaller parts and assign
them to different nodes for processing. The most com-
mon technique is random partitioning. However, users may
choose other strategies, like spatial or temporal partitioning,
in order to use the inherent structure of the data. Also,
the original massive dataset may already be partitioned by
some natural grouping variable, in which case an algorithm
that can accommodate pre-existing partitions is desirable.
The number of partitions could also be defined by the user
who may consider a wide range of cost metrics including
the number of processors required, CPU time, job latency,
memory utilization, and more.

Another important, and often overlooked, consideration
when choosing a partitioning scheme is that the charac-
teristics of the subpopulations created may vary largely.
This is known as heterogeneity [14] and is an unavoidable
obstacle for divide-and-conquer style inference models. Het-
erogeneity can certainly impact data-parallel inference, so
we incorporate diagnostics to measure the severity of the
problem (see Section 3.5) and data-adaptive regularization
to adjust effect size estimates accordingly (see Section 3.6).
This allows users to detect the presence of heterogeneity in
a given data partition and offers robustness to various data
partitioning options in the estimation.

2.2 LP Statistics for Mixed Data
Massive datasets typically contain a multitude of data
types, and the Expedia dataset is no exception. Figure
2 shows three predictor variables with different data
types in the Expedia dataset: promotion_flag (binary),
srch_length_of_stay (discrete count), and price_usd
(continuous). In order to construct appropriate statistical
measures for identifying important variables, traditional al-
gorithmic approaches demand two pieces of information: (1)
values and (2) data type information for every variable. This
requirement produces considerable complications in com-
putational implementation and creates serious roadblocks
for building systematic and automatic algorithms for large,
complex data. Thus, the question of immediate concern is:

How can we develop a unified computing formula, with
automatic built-in adjustments, that yields appropriate statistical
measures, without requiring data type information from the user?

To tackle this ‘data variety’ or ‘mixed data’ prob-
lem, we design a custom-constructed, discrete, or-
thonormal, polynomial-based transformation, called LP-
Transformation. This data transformation provides a generic
and universal representation of any random variable, de-
fined in Section 3.1. We use this transformation technique
to represent the data in a new LP Hilbert space. This data-
adaptive transformation will allow us to construct unified
learning algorithms by compactly expressing them as inner
products in the LP Hilbert space.

2.3 Combining Information via Meta-Analysis
Eventually, the goal of having a distributed inference proce-
dure critically depends on the question:
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Subpopulation 1

booking_bool promotion_flag srch_length_of_stay price_usd
1 0 2 164.59
0 1 7 284.48
1 0 1 194.34
...

...
...

...
0 1 3 371.27

•

•

•
Subpopulation k

booking_bool promotion_flag srch_length_of_stay price_usd
1 1 1 125.65
1 0 3 149.32
0 1 1 224.46
...

...
...

...
1 1 3 174.89

Fig. 2: Illustration of a partitioned data set with k subpopulations and various data types. Three variables in the
Expedia dataset are shown. The target variable Y , booking_bool, indicates whether or not the hotel was booked.
The three predictor variables shown are X1 promotion_flag (indicates if a sale price promotion was displayed), X2

srch_length_of_stay (search criterion for number of nights stayed), and X3 price_usd (displayed hotel price).

How to judiciously combine the ‘local’ inferences executed in
parallel by different servers to get the ‘global’ inference for the
original big data?

To resolve this challenge, we make a novel connection
with meta-analysis. Section 3.2 describes how we can use
meta-analysis to parallelize the statistical inference process
for massive datasets. Furthermore, we seek to provide a
distribution estimator for the LP-statistics via a confidence
distribution (CD) that contains information for virtually
all types of statistical inference (e.g. estimation, hypothesis
testing, confidence intervals, etc.). Section 3.4 discusses the
use of CD-based meta-analysis, which plays a key role in
integrating local inferences to construct a comprehensive
answer for the original data. These new connections allow
data scientists to fully utilize the parallel processing power
of large-scale clusters for designing unified and efficient big
data statistical inference algorithms.

To conclude, we have discussed the architectural
overview of MetaLP, which addresses the challenge of
developing an inference framework for data-intensive ap-
plications without requiring modifications to the core sta-
tistical principles developed for ‘small’ data. Next, we de-
scribe the theoretical underpinnings, algorithmic founda-
tion, and implementation details of our data-parallel, large-
scale MetaLP inference model.

3 ELEMENTS OF DISTRIBUTED STATISTICAL
LEARNING

In this section, we introduce the key concepts of our pro-
posed method by connecting several classical and mod-
ern statistical ideas to develop a comprehensive inference
framework. We highlight along the way how these new

ideas and connections address the real challenges of big data
analysis as noted in Section 2.

3.1 LP United Statistical Algorithm and Universal Rep-
resentation

To address the mixed data problem, we introduce a non-
parametric statistical modeling framework based on an LP
approach to data analysis [3].

Data Transformation and LP Hilbert Functional Space Rep-
resentation. Our approach relies on an alternative represen-
tation of the data in the LP Hilbert space, which will be
defined shortly. The new representation shows how each
explanatory variable, regardless of data type, can be repre-
sented as a linear combination of data-adaptive orthogonal LP
basis functions. This data-driven transformation will allow
us to construct unified learning algorithms in the LP Hilbert
space. Many traditional and modern statistical measures de-
veloped for different data types can be compactly expressed
as inner products in the LP Hilbert space. The following is
the fundamental result for LP basis function representation.

Theorem 3.1 (LP representation). Random variableX (discrete
or continuous) with finite variance admits the following decom-
position: X − E(X) =

∑
j>0 Tj(X;X)E[XTj(X;X)] with

probability 1.

Tj(X;X), for j = 1, 2, . . ., are score functions con-
structed by Gram Schmidt orthornormalization of the pow-
ers of T1(X;X) = Z(Fmid(X;X)). Where Z(X) = (X −
E[X])/σ(X), σ2(X) = Var(X), and the mid-distribution
transformation of a random variable X is defined as

Fmid(x;X) = F (x;X)− .5p(x;X) (1)
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where p(x;X) = Pr[X = x], F (x;X) = Pr[X ≤ x]. We
construct the LP score functions on 0 < u < 1 by letting
x = Q(u;X), where Q(u;X) = inf{x : F (x) ≥ u} is the
quantile function of the random variable X and

Sj(u;X) = Tj(Q(u;X);X). (2)

Why is it called the LP-basis? Note that our specially
designed basis functions vary naturally according to data
type unlike the fixed Fourier and wavelet bases as shown
in Figure 3. Note an interesting similarity of the shapes of
LP score functions and shifted Legendre Polynomials for
the continuous feature price_usd. In fact, as the number of
distinct values of a random variable A(X) → ∞ (moving
from discrete to continuous data type), the shape converges
to smooth Legendre Polynomials. To emphasize this univer-
sal limiting shape, we call it an Legendre-Polynomial-like
(LP) orthogonal basis. For any general X , LP-polynomials
are piecewise-constant orthonormal functions over [0, 1], as
shown in Figure 3. This data-driven property makes the
LP transformation uniquely advantageous in constructing
a generic algorithmic framework to tackle the mixed data
problem.

Constructing Measures by LP Inner Product. Define the
two-sample LP statistic for variable selection of a mixed
random variable X (either continuous or discrete) based on
our specially designed score functions

LP[j;X,Y ] = E[Tj(X;X)T1(Y ;Y )],

= Cor[Tj(X;X), Y ]. (3)

To prove Equation (3), which expresses our variable selec-
tion statistic as an LP-inner product measure, verify the
following for Y binary,

Z(y;Y ) = T1(y;Y ) =


−
√

p

1− p
for y = 0√

1− p
p

for y = 1.

LP statistic properties. Using empirical process theory,
we can show that the sample LP measures

√
nL̂P[j;X,Y ],

asymptotically converge to i.i.d. standard normal distribu-
tions [3].

As an example of the power of LP-unification, we de-
scribe L̂P[1;X,Y ] that systematically reproduces all the
traditional linear statistical variable selection measures for
different data types of X . Note that the nonparamet-
ric Wilcoxon method to test the equality of two distri-
butions can equivalently be represented as Cor(I{Y =
1}, Fmid(X;X)), which leads to the following important
alternative LP representation result.

Theorem 3.2. Two sample Wilcoxon Statistic W can be com-
puted as

W (X,Y ) = L̂P[1;X,Y ]. (4)

Our computing formula for the Wilcoxon statistic using
L̂P[1;X,Y ] offers automatic adjustments for data with ties;
hence, no further tuning is required. Furthermore, if we
have X and Y both binary (i.e. data from the two variables
can be represented in a 2× 2 table), then we have
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Fig. 3: (a) Top 2 × 2 panel shows the shape of the
first four LP orthonormal score functions for the variable
length_of_stay, which is a discrete random variable
taking values 0, . . . , 8; (b) Bottom 2 × 2 panel shows the
shape of the LP score functions for the continuous variable
price_usd.

T1(0;X) = −
√
P2+/P1+, T1(1;X) =

√
P1+/P2+

T1(0;Y ) = −
√
P+2/P+1, T1(1;Y ) =

√
P+1/P+2, (5)

where Pi+ =
∑
j Pij and P+j =

∑
i Pij , and Pij denotes the

entry for the ith row and jth column of the 2×2 probability
table, and

L̂P[1;X,Y ] = E[T1(X;X)T1(Y ;Y )],

=
2∑
i=1

2∑
j=1

PijT1(i− 1;X)T1(j − 1;Y ),

=
(
P11P22 − P12P21

)
/
(
P1+P+1P2+P+2

)1/2
.
(6)

Following result summarizes the observation in (6).
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Theorem 3.3. For a 2 × 2 contingency table with Pearson
correlation φ, we have,

φ(X,Y ) = LP[1;X,Y ]. (7)

Beyond Linearity. Higher order Wilcoxon statistics are LP
statistics of higher order score functions, Tj(X;X), which
detect distributional differences as in variability, skewness,
or tail behavior for two different classes. The LP statistics
LP[j;X,Y ] for j > 1 can capture how the distribution of
a variable changes over classes and is applicable for mixed
data types.

To summarize, LP statistics allow data scientists to write
a single computing formula for any variable X , irrespective
of its data type, with a common metric and asymptotic
characteristics. This leads to a huge practical benefit in
designing a unified method for combining distributed ’local’
inferences without requiring data type information for the
variables.

3.2 Meta-Analysis and Data-Parallelism

The objective of this section is to provide a new way of
thinking about the problem: how to appropriately combine
‘local’ inferences to derive reliable and robust conclusions
for the original large dataset? This turns out to be one of
the most crucial, and heavily neglected, aspects of data-
intensive modeling that decides the fate of big data infer-
ence. Here we introduce the required statistical framework
that can answer the key question: how to compute individ-
ual weights for each partitioned dataset? Our framework
adopts the concept of meta-analysis to provide a general
recipe for constructing such algorithms for large-scale paral-
lel computing. This will allow us to develop statistical algo-
rithms that can balance computational speed and statistical
accuracy.

Brief Background on Meta-Analysis. Meta-analysis [15] is
a statistical technique by which information from indepen-
dent studies is assimilated, which has its origins in clinical
settings. It was developed primarily to combat the problem
of under-powered “small data” studies. A key benefit of
this approach is the aggregation of information leading
to improved statistical power as opposed to less precise
inference derived from a single study. A huge amount of
literature exists on meta-analysis, including a careful review
of recent developments [16], which includes 281 references.

Relevance of Meta-analysis for big data inference? Unlike the
classical situation, we don’t have statistical power issues
for big data problems. However, we are unable to analyze
the whole dataset all-at-once using a single machine in a
classical inferential setup. We apply meta-analysis from a
completely different perspective and motivation, as a tool
to facilitate distributed inference for massive datasets. This
novel connection provides a statistically sound mechanism
to combine “local” inferences by determining the optimal
weighting strategy [15].

We partition big data systematically into several subpop-
ulations over a distributed database, estimate parameters of
interest in each subpopulation separately, and then combine
results using meta-analysis as demonstrated in Figure 1.
Thus, meta-analysis provides a way to pool information
from subpopulations and produce a singular, powerful

combined inference for the original large dataset. In some
circumstances, the dataset may already be partitioned (e.g.
each group could be an image or a large text document)
and stored in different servers based on some reasonable
partitioning scheme. Our distributed statistical framework
can work with these predefined groupings as well by com-
bining them using the meta-analysis framework to arrive at
the final combined inference.

We call this statistical framework, which utilizes both LP
statistics and meta-analysis methodology, as MetaLP, and
it consists of two parts: (i) the LP statistical map function
or algorithm (that tackles the “variety” problem), and (ii)
the meta-analysis methodology for merging the information
from all subpopulations to get the final inference.

3.3 Confidence Distribution and LP Statistic Represen-
tation

The Confidence Distribution (CD) is a distribution estima-
tor, rather than a point or interval estimator, for a particular
parameter of interest. From the CD, all traditional forms
of statistical estimation and inference (e.g. point estimation,
confidence intervals, hypothesis testing) can be produced.
Moreover, CDs can be utilized within the meta-analysis
framework, as we will show in the next section. More
specifically, the CD is a sample-dependent distribution func-
tion on the parameter space that can represent confidence
intervals of all levels for a parameter of interest.

While the CD was first defined in [17], [18] extended
the concept to asymptotic confidence distributions (aCDs).
A comprehensive review of the concept can be found in [19].

Definition 3.1. Suppose Θ is the parameter space for an
unknown parameter of interest, θ, and ω is the sample space
corresponding to data Xn = {X1, X2, . . . , Xn}T . Then a
function Hn(·) = Hn(X, ·) on ω×Θ→ [0, 1] is a confidence
distribution (CD) if: (i) for each given Xn ∈ ω,Hn(·) is a
continuous cumulative distribution function on Θ; (ii) at
the true parameter value θ = θ0, Hn(θ0) = Hn(X, θ0),
as a function of the sample Xn, following the uniform
distribution U [0, 1]. The function Hn(·) is an asymptotic CD
(aCD) if the U [0, 1] requirement holds only asymptotically
for n→∞ and the continuity requirement on Hn(·) can be
relaxed.

The CD is a function of both a random sample and the
parameter of interest. The additional requirement in (i) is
that for each sample, the CD should be a distribution func-
tion on the parameter space. The U [0, 1] requirement in (ii)
allows us to construct confidence intervals from a CD easily,
meaning that (H−1

n (α1), H−1
n (1−α2)) is a 100(1−α1−α2)%

confidence interval for the parameter θ0 for any α1 > 0,
α2 > 0, and α1 + α2 < 1.

Generally, the CD can easily be derived from the stochas-
tic internal representation [20] of a random variable and
a pivot, Ψ(S, θ). The distribution of the pivot should not
depend on the parameter, θ, where θ is the parameter of
interest and S is a statistic derived from the data. Here, we
derive the CD for the LP statistic. Suppose L̂P[j;X,Y ] is the
estimated jth LP statistic for the predictor variable X and
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binary response Y . The limiting asymptotic normality of the
empirical LP statistic can be compactly represent as:

LP[j;X,Y ] | L̂P[j;X,Y ] = L̂P[j;X,Y ] +
Z√
n
, (8)

which is the stochastic internal representation of the LP
statistic, similar to the stochastic differential equations rep-
resentation. Thus, we have the following form of the con-
fidence distribution, which is the cumulative distribution
function of N

(
L̂P[j;X,Y ], 1/n

)
:

HΦ(LP[j;X,Y ]) = Φ
(√

n
(

LP[j;X,Y ]− L̂P[j;X,Y ]
))

.

(9)
The above representation satisfies the conditions in the CD
definition as n → ∞ and therefore is the asymptotic CD of
LP[j;X,Y ].

3.4 Confidence Distribution-based Meta-Analysis
Using the theory presented in Section 3.3, we can estimate
the CD for the LP statistics for each of the subpopulations,
H(LP`[j;X,Y ]), and the corresponding point estimators,
L̂P`[j;X,Y ], for ` = 1, . . . , k. The next step of our MetaLP
algorithm is to judiciously combine information contained
in the CDs for all subpopulations to arrive at the combined
CD, H(c)(LP[j;X,Y ]), based on the whole dataset for each
specific variable X . The framework relies on a confidence
distribution-based approach to meta-analysis [21]. The com-
bining function for CDs across k different studies can be
expressed as:

H(c)(LP[j;X,Y ])

= Gc{gc(H(LP1[j;X,Y ]), . . . ,H(LPk[j;X,Y ]))}. (10)

The functionGc is determined by the monotonic gc function:
Gc(t) = P (gc(U1, . . . , Uk) ≤ t), where U1, . . . , Uk are in-
dependent U [0, 1] random variables. A popular and useful
choice for gc is

gc(u1, . . . , uk) = α1F
−1
0 (u1) + . . .+ αkF

−1
0 (uk), (11)

where F0(·) is a given cumulative distribution function
and α` ≥ 0 , with at least one α` 6= 0, are generic weights.
F0(·) could be any distribution function, which highlights
the flexibility of the proposed framework. Hence, the fol-
lowing theorem introduces a reasonable proposed form of
the combined aCD for LP[j;X,Y ].

Theorem 3.4. Setting F−1
0 (t) = Φ−1(t) and αl =

√
n`,

where n` is the size of subpopulation ` = 1, . . . , k, the following
combined aCD for LP[j;X,Y ]) follows:

H(c)(LP[j;X,Y ])

= Φ

( k∑
`=1

n`

)1/2 (
LP[j;X,Y ]− L̂P

(c)
[j;X,Y ]

)
(12)

with

L̂P
(c)

[j;X,Y ] =

∑k
`=1 n`L̂P`[j;X,Y ]∑k

`=1 n`
(13)

where L̂P
(c)

[j;X,Y ] and
(∑k

`=1 n`
)−1

are the mean and vari-
ance respectively of the combined aCD for LP[j;X,Y ].

To prove this theorem, verify that replacing
H(LP`(j;X,Y )) by (9) in Equation (10) along with
the choice of combining function given in (11), where
F−1

0 (t) = Φ−1(t) and α` =
√
n`, we have

H(c)(LP[j;X,Y ])

= Φ

 1√∑k
`=1 n`

k∑
`=1

√
n`

LP[j;X,Y ]− L̂P`[j;X,Y ]

1/
√
n`

 .
3.5 Diagnostic of Heterogeneity
Heterogeneity is a common issue with divide, combine, and
conquer approaches to big data analysis and is caused by
different characteristics across subpopulations. This issue is
often ignored and can easily spoil the big data discovery
process by producing very different statistical estimates,
which may not faithfully reflect the original parent dataset.
Therefore, we diagnose and quantify the degree to which
each variable suffers from heterogeneous subpopulation
groupings using the I2 statistic [14]. Define Cochran’s Q
statistic:

Q =
k∑
`=1

α`
(
L̂P`[j;X,Y ]− L̂P

(c)
[j;X,Y ]

)2
, (14)

where L̂P`[j;X,Y ] is the estimated LP-statistic from sub-
population `, α` is the weight for subpopulation ` as defined

in Theorem 3.4, and L̂P
(c)

[j;X,Y ] is the combined meta-
analysis estimator. Compute the I2 statistic by

I2 =

{
Q−(k−1)

Q × 100% if Q > (k − 1);
0 if Q ≤ (k − 1);

(15)

where k is the number of subpopulations. As a general rule
of thumb, 0% ≤ I2 ≤ 40% indicates heterogeneity among
subpopulations is not severe.

3.6 τ2 Regularization to Tackle Heterogeneity in Big
Data
Variations among the subpopulations impact LP statistic
estimates, which are not properly accounted for in the
Theorem 3.4 model specification. This is especially severe
for big data analysis, as it is very likely that a substantial
number of variables may be affected by heterogeneity across
subpopulations. To better account for the heterogeneity in
our distributed statistical inference framework, following
[15], we introduce an additional parameter, τ2, to account
for uncertainty due to heterogeneity across subpopulations.
This results in a hierarchical model structure:

L̂P`[j;X,Y ] | LP`[j;X,Y ], si
iid∼ N(LP`[j;X,Y ], s2

i ),
(16)

LP`[j;X,Y ] | LP[j;X,Y ], τ
iid∼ N(LP[j;X,Y ], τ2),

(17)
where ` = 1, . . . , k. This model describes two sources of
variability of the LP statistic: variation between different
subpopulations, and sampling variability within each sub-
population. Note that when τ = 0, all the subpopulation
LP effect size estimates, L̂P`[j;X,Y ], come from a single,
homogeneous distribution. Thus, when I2 indicates the
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Observations Partition Parameter Mean Absolute Accuracy Run Time (seconds) Speed
n γ Error (×105) Full Data MetaLP Full Data MetaLP Increase

0.3 79.87 1 0.09 10.9
5,000 0.4 119.69 1 1 0.98 0.08 12.3

0.5 189.43 1 0.05 19.6
0.3 10.66 1 0.38 20.9

50,000 0.4 19.69 1 1 7.95 0.20 39.8
0.5 34.42 1 0.13 61.2
0.3 1.56 1 2.02 41.4

500,000 0.4 3.20 1 1 83.66 1.01 82.8
0.5 6.20 1 0.67 124.9
0.3 0.89 1 3.36 53.2

1,000,000 0.4 1.86 1 1 178.65 1.59 112.4
0.5 3.19 1 1.17 152.7

TABLE 2: Comparison of estimation and run times for full data and MetaLP LP statistic estimation. Mean absolute error is
reported for the Meta LP estimates of the full data LP statistics across all variables. Accuracy is defined as the proportion
of replications correctly selecting the true model variables, {X1, X2, X3}. Run times are reported along with the speed
increase using the distributed MetaLP approach.

presence of “excess” variability among {L̂P1, . . . , L̂Pk}, be-
yond random fluctuation alone, it is important to introduce
the second layer in (17) to account for that heterogeneity. See
Sections 4.2 and 5.4 for more discussion on this topic.

Under the new model specification, the CD of the
LP statistic for the `-th group is H(LP`[j;X,Y ]) =

Φ((LP[j;X,Y ] − L̂P`[j;X,Y ])/(τ2 + s2
`)

1/2) where s` =
1/
√
n`. The following theorem provides the form of the

combined aCD under this specification.

Theorem 3.5. Setting F−1
0 (t) = Φ−1(t) and α` =

1/
√

(τ2 + (1/n`)), where n` is the size of subpopulation ` =
1, . . . , k, the following combined aCD for LP[j;X,Y ] follows:

H(c)(LP[j;X,Y ]) =

Φ

( k∑
`=1

1

τ2 + (1/n`)

)1/2

(LP[j;X,Y ]− L̂P
(c)

[j;X,Y ])


with

L̂P
(c)

[j;X,Y ]) =

∑k
`=1(τ2 + (1/n`))

−1L̂P`[j;X,Y ])∑k
`=1(τ2 + (1/n`))−1

(18)

where L̂P
(c)

[j;X,Y ]) and (
∑k
`=1 1/(τ2 + (1/n`)))

−1 are
the mean and variance respectively of the combined aCD for
LP[j;X,Y ].

The proof is similar to that for Theorem 3.4. The DerSi-
monian and Laird [22] and restricted maximum likelihood
estimators of the data-adaptive heterogeneity regularization
parameter τ2 are provided in Supplementary Section E.

4 SIMULATION STUDIES

In our simulation studies, we investigate the performance
of our MetaLP approach compared with the oracle full
data LP estimates, as well as with existing methods. We
evaluate the methods from four perspectives: 1) accuracy
in estimating the oracle full data LP statistics, 2) ability to
correctly classify important variables and noise variables, 3)
computational efficiency in terms of run time, and 4) perfor-
mance under the influence of heterogeneity. The dataset we
considered has the form (Xi, Yi) ∼ P , i.i.d, for i = 1, 2, ..., n,
where Xi ∈ Rp and Yi ∈ (0, 1). We generate dataset

from the model Yi ∼ Bernoulli(P (β1X
2
1i + XT

(−1)iβ−1)),
where P (u) = exp(u)/(1 + exp (u)). X−1 and β−1 mean
all X’s except X1 and all β’s except β1. We set β =
(β1, β2, ..., βp) = (2,−1.5, 3, 0, ..., 0)T to be a p-dimensional
coefficient vector, where p = 50, and then generate three
important variables, X1i, X2i, and X3i, from StudentT(30),
Binomial(n = 15, p = 0.1), and Bernoulli(p = 0.2) respec-
tively. The remaining noise features are generated from the
standard normal distribution.

4.1 Comparison with Full Data Estimates
In this section, we evaluate the ability of the dis-
tributed MetaLP approach to consistently estimate the
oracle full data LP statistics under various partitioning
schemes. Comparisons are made in terms of variable se-
lection and run time (see Table 2). Let n be the to-
tal number of observations in one dataset, where n =
5, 000, 50, 000, 500, 000, and 1 million. For each setting of n,
we generate 100 datasets and randomly partition the dataset
with n total observations into k = bnγ + 0.5c subpopula-
tions with roughly equal numbers of observations, where
γ = 0.3, 0.4, 0.5.

Table 2 provides the mean absolute error (×105) for
the MetaLP LP statistic estimates of the oracle full data
LP statistics across all 50 variables. All mean absolute er-
rors are small, indicating estimation using the distributed
MetaLP approach is consistent with estimation using the
whole dataset. Note that errors increase as the number of
partitions, k, increase for fixed n. This is expected as the
number of observations in each partition decreases as the
number of partitions increases for fixed n. However, for
fixed k, errors are inversely proportional to the number
of observations n. Table 2 also compares the MetaLP and
oracle full data LP variable selection methods in terms of ac-
curacy in selecting the true model variables, {X1, X2, X3},
and computation time. Second order LP statistics are used
to test for significance for X1, since it has a second order
impact on the dependent variable, and first order LP statis-
tics are used to detect significance of other variables. Note
that both methods correctly select all the three important
variables every time, which suggests that the distributed
approach is comparable to the full data approach in select-
ing important variables. However, our distributed MetaLP
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approach saves a considerable amount of time compared to
the non-distributed approach (i.e. computing LP statistics
from the whole dataset all-at-once). We list speed improve-
ments (how many times faster the MetaLP algorithm is over
the full data approach) in the last column of Table 2. For
example, when n = 1, 000, 000 and γ = 0.5, MetaLP is
about 150 fold faster.

4.2 Comparison with Other Methods

In this section, we compare the performance of our
proposed MetaLP framework with two nonparametric,
communication-efficient, distributed inference algorithms:
BLB [9] and SAVGM [10]. As noted in Table 1, BLB and
SAVGM provide a way to conduct distributed inference for
a given estimator provided by users. In order to make a
fair comparison, we use empirical LP statistic estimators
for BLB and SAVGM methods. We call these methods LP-
BLB and LP-SAVGM, respectively, to reflect that they are
based on LP statistics. Similar to Section 4.1, we compare
the methods based on their abilities to accurately estimate
the oracle full data LP statistics, as well as their abilities
to differentiate between important and noise variables. We
calculate the mean square deviance (MSD) of the distributed
LP statistic estimates from the oracle full data LP statistics,

MSD =
1

R

R∑
r=1

{
L̂P

∗
r − LP(full)

r

}2
, (19)

where R is the number of simulated repetitions, L̂P
∗
r are the

distributed LP statistic estimates for a specific method, and
LP(full)

r are the oracle full data LP statistics.
We use the same model as in Section 4.1 to gener-

ate R = 100 realizations of the simulated data for each
n = 10, 000, 50, 000, 100, 000 with γ = 0.3 in determining
the number of subpopulations for all methods. For LP-BLB,
we set the number of bootstrap samples taken within each
subpopulation to be 100, following [9]. For LP-SAVGM, we
fix the sub-sampling ratio to be 0.08. The upper portion of
Table 3 summarizes the results.

The relative MSD, MSDLP-BLB/MSDMetaLP and
MSDLP-SAVGM/MSDMetaLP, are all greater than 1, which
means MetaLP is more accurate on average for all three
important variables and sample sizes. The LP-BLB method
relies on bootstrap resampling to estimate the distribution
of the statistic locally. It has been noted that “the bootstrap
distribution is an approximate confidence distribution” [19],
[23], so there is not much difference in terms of local
estimation. Hence, the improvement in MSD of the MetaLP
method over the LP-BLB method largely comes from
the different approach to combining inferences. Rather
than weighting each local inference equally, as the LP-
BLB method does, MetaLP assigns optimal weights to
each local inference adjusting for possible heterogeneity.
As mentioned previously, even under purely random
partitioning with equal sample sizes, heterogeneity may
exist (see Supplementary Section B). SAVGM is essentially
a bias correction method for divide and recombine
estimators. If SAVGM is applied to unbiased estimators, as
noted by [10], it could increase the variance of the estimator
substantially. This is consistent with our simulation results

Equal Subpopulation Size
Methods n Relative MSD Mean Speed

X1 X2 X3 Extra FD Increase
10,000 1.06 1.92 2.22 1.80 125

LP-BLB 50,000 1.06 2.68 2.98 1.75 106
100,000 1.14 3.46 3.89 1.48 97
10,000 1.46 35.87 39.87 -0.66 1.20

LP-SAVGM 50,000 1.61 64.01 52.79 -0.29 1.09
100,000 1.67 99.97 88.61 -0.14 1.05

Unequal Subpopulation Size
Methods n Relative MSD Mean Speed

X1 X2 X3 Extra FD Increase
10,000 2.42 16.61 3.45 2.22 121

LP-BLB 50,000 8.50 241.45 4.08 2.86 102
100,000 12.06 585.41 6.46 4.08 96
10,000 3.88 74.63 42.58 0.29 1.12

LP-SAVGM 50,000 11.14 323.22 317.83 1.31 1.08
100,000 23.02 727.88 909.04 1.41 1.05

TABLE 3: Comparison of methods in estimating full data
LP statistics and variable selection. Relative MSD (e.g.
MSDLP-BLB/MSDMetaLP) compares the accuracy in estimat-
ing the oracle full data LP statistics. Mean extra false
discovery (FD) is the average number of additional noise
variables selected by other methods compared to MetaLP.
Speed increase captures how many times faster the MetaLP
algorithm runs compare to other methods. Upper portion:
under equal subpopulation size; lower portion: under un-
equal subpopulation size.

indicating LP–SAVGM performs significantly worse than
MetaLP in terms of MSD.

In terms of the accuracy in variable selection, all methods
correctly select the three important variables on every run.
Extra mean false discovery (FD) is the average number
of additional noise variables incorrectly determined to be
important by the LP-BLB/LP-SAVGM methods compared
to the MetaLP method. For example, when n = 50, 000, the
LP-BLB method, on average, falsely selects 1.75 additional
noise variables compared to the MetaLP method. It should
be noted that LP-SAVGM performs well in terms of selecting
fewer noise variables due to the inflated variance of the LP
statistic estimates.

Computational savings is a crucial consideration for big
data analysis. Note that MetaLP is around 100 times faster
than LP-BLB. The additional LP-BLB run time comes from
the need to resample each subpopulation numerous times in
order to obtain the bootstrap estimate, while our approach
calculates the LP estimates for each subpopulation in one
shot. The LP-SAVGM is relatively comparable to MetaLP,
where the additional run time is due to the need for sub-
sampling to perform the bias correction.

Next, we investigate the impacts of heterogeneity on
the different methods. For this exercise, we will define het-
erogeneity in terms of varying subpopulation sizes, letting
the size increase linearly. In particular, we set the size of
the first subpopulation to be 500 and increase the size by
150 for the second subpopulation, and so on. The lower
portion of Table 3 shows that the relative MSD increases
dramatically, indicating that heterogeneity has substantial
negative impacts on both LP-BLB and LP-SAVGM, while
MetaLP remains robust under this setting. It also should
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be noted that, unlike in the equal size case, MetaLP tends
to outperform LP-SAVGM in terms of mean extra false
discoveries, especially when the total sample size is large.

5 EXPEDIA PERSONALIZED HOTEL SEARCH
DATASET

Based on MetaLP, in this section we develop a model-
free, parallelizable, two-sample feature selection algorithm
for big data and apply it to the Expedia digital marketing
problem. Detailed discussions on each of the following
components of our big data two-sample inference model are
given in the next sections:

• (Section 5.1) Data Description.
• (Section 5.2) Data Partitioning.
• (Section 5.3) LP Map Function.
• (Section 5.4) Heterogeneity Diagnostic and Regular-

ization.
• (Section 5.5) Meta Reducer via LP Confidence Distri-

bution.
• (Section 5.6) Robustness to Size and Number of Sub-

populations.

5.1 Data Description

Fig. 4: On top (a) is a snapshot of a search window with
search criteria variables; on the bottom (b) is a list of
ranked hotels returned by Expedia with hotel characteristic
variables.

Expedia provided a large dataset (n = 9, 917, 530) of
hotel search results collected over a window of the year
2013 [1] in order to better understand the factors that
influence booking behavior. Data are generated by online

customers who first provide search criteria for their de-
sired travel plans (e.g. length of stay, destination, number
of children, etc.) to the Expedia website (see Figure 4a).
Expedia then returns an ordered list of available hotels
along with important hotel information (e.g. hotel name,
price, star rating, promotion, etc.) for customers to review
and consider booking for their travel plans (see Figure
4b). In the background, Expedia also records important
user information (e.g. visitor location, search history, etc.)
and competitor pricing and availability for hotels listed,
which may impact booking behavior. Expedia then records
how customers interact with each hotel listed (e.g. ignored,
clicked, booked). We are primarily interested in understand-
ing which factors influence the binary response variable,
booking_bool, indicating whether the hotel was booked
or not. Descriptions of representative variables and data
types are provided in Supplementary Section A.

5.2 Data Partitioning

We consider two different partitioning schemes that are
appropriate for the Expedia dataset: 1) random partitioning,
which results in homogeneous, similarly sized subpopu-
lations, and 2) predefined partitioning, which results in
heterogeneous, disproportionately sized subpopulations.

Step 1. We randomly assign search lists, which are collec-
tions of observations with the same search id in the dataset,
to 200 different subpopulations. Random assignment of
search lists rather than individual observations ensures that
sets of hotels viewed in the same search session are all
contained in the same subpopulation. Note that the number
of subpopulations chosen can be adapted to meet the pro-
cessing and time requirements of different users. We show
in Section 5.6 that our method is robust to different numbers
of subpopulations as the inference remains unchanged.

There may be situations where natural groupings
exist in the dataset, which can be directly used to
form subpopulations. For example, the available Ex-
pedia data could be grouped naturally by the coun-
try where each visitor to the Expedia website resides,
visitor_location_country_id.

Our framework can directly utilize these predetermined
subpopulations for processing rather than requiring the
massive data to be gathered and randomly assigned to
subpopulations. However, this partitioning scheme may
result in heterogeneous subpopulations, so extra steps must
be taken to address this issue as described in Section 5.4. For
the Expedia dataset, Figure 5 shows the number of observa-
tions for the 20 largest subpopulations from partitioning by
visitor_location_country_id. The top three largest
countries by number of observations contain 74% of the
total observations, and the leading country contains almost
50% of the total observations. On the other hand, random
partitioning results in roughly equal sample sizes across
subpopulations (50,000 each).

5.3 LP Map Function

We tackle the data variety problem by developing auto-
mated mixed data algorithms using LP statistical data mod-
eling tools.
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Fig. 5: Number of observations for the 20 largest subpopula-
tions from partitioning by visitor_location_country_id

Step 2. Following the theory in Section 3.1, we construct
LP score polynomials, Tj(x;Xi), for each variable based on
each partitioned input dataset. Figure 3 shows the LP basis
polynomials for variables variable_length_of_stay
(discrete) and price_usd (continuous).

Step 3. Estimate LP`[j;Xi, Y ], which denotes the jth LP
statistic for the ith variable in the `th subpopulation,

L̃P`[j;Xi, Y ] = n−1
`

n∑̀
k=1

Tj(xk;Xi)T1(yk;Y ). (20)

Step 4. Compute the corresponding LP confidence dis-
tribution given by

Φ
(√

n
(

LP`[j;Xi, Y ]− L̂P`[j;Xi, Y ]
))

, (21)

for i = 1, . . . , 45 variables across ` = 1, . . . , 200 random
subpopulations (or 233 predefined subpopulations defined
by visitor_location_country_id).

5.4 Heterogeneity Diagnostic and Regularization

Figure 6 shows the distribution of the first or-
der LP statistic estimates for variable price_usd
across different subpopulations based on random and
visitor_location_country_id partitioning. It is clear
that random partitioning produces relatively homo-
geneous LP statistic estimates as the distribution
is much more concentrated. On the other hand,
visitor_location_country_id partitioning results in
heterogeneous LP statistic estimates, which is reflected in
the dispersion of the corresponding histogram. In fact, the
standard deviation of the first order LP statistic under
visitor_location_country_id partitioning is about
15 times more than that of the random partition, which
further highlights the underlying heterogeneity issue. Thus,
care must be taken to account for this heterogeneity in
a judicious manner that ensures consistent inference. We
advocate the method mentioned in Section 3.5.

Step 5. Compute the Cochran’s Q-statistic us-
ing (14) and I2 heterogeneity index (15) based on
LP1[j;Xi, Y ], . . . ,LPk[j;Xi, Y ] for each i and j, where k is
the number of subpopulations. Under random partitioning,
the subpopulations are fairly homogeneous, with respect to
all variables, as all I2 statistics are below 40% (see Figure
7(a)). However, visitor_location_country_id parti-
tioning divides data into heterogeneous subpopulations for
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Fig. 6: Distribution of LP statistic estimates for the
variable price_usd based on random partitioning and
visitor_location_country_id partitioning.

some variables as shown in Figure 7(b) (i.e. some variables
have I2 values outside the permissible range of 0 to 40%
before correction).

Step 6. Compute the DerSimonian and Laird data-driven
estimate

τ̂2
i = max

{
0,
Qi − (k − 1)

n−
∑
` n

2
`/n

}
, i = 1, . . . , p.

One can also use other enhanced estimators, like the re-
stricted maximum-likelihood estimator, as discussed in Sup-
plementary Section E. I2 diagnostics after correction using
τ2 regularization are shown in Figure 7(b). Note that all I2

values after correction fall within the acceptable range of
0 to 40%. This result demonstrates that our framework can
resolve heterogeneity issues among subpopulations through
τ2 regularization, which protects the validity of the meta-
analysis approach.

5.5 Meta Reducer via LP Confidence Distribution
This step combines confidence distribution estimates of
LP statistics from different subpopulations to estimate the
combined confidence distribution of the LP statistic for each
variable as outlined in Section 3.6.

Step 7. Use τ2-corrected weights to properly take into

account the heterogeneity effect. Compute L̂P
(c)

[j;X,Y ])
by (18) and the corresponding LP confidence distribution
using Theorem 3.5.

The resulting 95% confidence intervals
for each variable under both random and
visitor_location_country_id partitioning can
be found in Figure 8. Variables with indexes 43, 44,
and 45 have highly significant positive relationships
with booking_bool, the binary response variable.
Those variables are prop_location_score2, the
second score quantifying the desirability of a hotel’s
location, promotion_flag, if the hotel had a
sale price promotion specifically displayed, and
srch_query_affinity_score, the log probability a
hotel will be clicked on in Internet searches. There are
three variables that have highly negative impacts on hotel
booking: price_usd, displayed price of the hotel for the
given search, srch_length_of_stay, number of nights
stay that was searched, and srch_booking_window,
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Fig. 8: 95% Confidence intervals for LP statistics for each
variable in the Expedia dataset under random partitioning
(black) and visitor_location_country_id partition-
ing (red).

number of days in the future the hotel stay started from
the search date. Moreover, there are several variables
whose LP statistic confidence intervals include zero,
which means those variables have an insignificant
influence on hotel booking. The top five most influential
variables in terms of absolute value of LP statistic point
estimates are prop_location_score2, promotion
flag, srch_query_affinity_score, price_usd, and
srch_length_of_stay (see Table 4). Intuitively, users
are more likely to book hotels with desirable locations (high
prop_location_score2 values), special promotions
(promotion_flag=1), and high probabilities of being
clicked (high srch_query_affinity_score values).

The variables we selected are also among the list of top
important variables identified by the winners of the ICDM
2013 competition [24], which required participants to
develop hotel ranking algorithms for all user search queries
based on the features in the Expedia dataset. This speaks
to the usefulness of these selected features for downstream
analytical tasks (e.g. classification, ranking, etc.).

Note that the confidence intervals for each of the vari-
ables under both partitioning schemes are very similar,
resulting in similar variable selection outcomes. Four of the
top five influential variables identified under random par-
titioning are also in the top five influential variables identi-
fied under visitor_location_country_id partitioning
(see Table 4). The impact of heterogeneity on the results
under visitor_location_country_id partitioning can
be seen in Figure 8 as the confidence intervals are generally
wider than those derived under random partitioning. This
can be attributed to extra variability among subpopulations
captured by τ2 due to different characteristics among sub-
populations defined by country.

Rank Random partition Predetermined partition
1 prop_location_score2 prop_location_score2
2 promotion_flag promotion_flag
3 srch_query_affinity_score srch_query_affinity_score
4 price_usd srch_length_of_stay
5 srch_length_of_stay srch_booking_window

TABLE 4: Top five influential variables by random partition-
ing and predetermined partition

5.6 Robustness to Size and Number of Subpopulations

Due to different capabilities of computing systems available
to users, users may choose different sizes and numbers of
subpopulations for distributed computing. This requires our
algorithm to be robust to different numbers and sizes of sub-
populations for practical applications. To assess robustness,
we compare LP statistic estimates generated from multiple
random partitions with different numbers of subpopula-
tions (k = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500) for
the Expedia dataset. Figure 9 presents LP statistic 95%
confidence intervals for three influential variables and three
insignificant variables calculated from partitions with vary-
ing numbers of subpopulations. Note that the intervals are
consistent, even as the number of subpopulations increase
(i.e. the number of observations in each subpopulation
decrease), which is evidence of stable estimation.

6 FINAL REMARKS

To address the major challenges associated with big data
analysis, we have outlined a general theoretical foundation
in this article, which we believe may provide the missing
link between small data and big data science. Our research
shows how the traditional and modern ‘small’ data mod-
eling tools can be successfully adapted and connected for
developing powerful, big data analytic tools by leveraging
distributed computing environments.

In particular, we have proposed a nonparametric two
sample inference algorithm that has the following two-fold
practical significance for solving real-world data mining
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Fig. 9: LP statistics and 95% confidence intervals for six vari-
ables across different numbers of subpopulations (dotted
line is at zero).

problems: (1) scalability for large data by exploiting dis-
tributed computing architectures using a confidence distri-
bution based meta-analysis framework, and (2) automation
for mixed data using a united LP computing formula. Un-
doubtedly, our theory can be adapted for other common
data mining problems, and we are currently investigating
how the proposed framework can be utilized to develop
parallelizable regression and classification algorithms for
big data.

Instead of developing distributed versions of statistical
algorithms on a case-by-case basis, here we develop a
generic platform to extend traditional and modern statistical
modeling tools to large datasets using scalable, distributed
algorithms. We believe this research is a great stepping stone
towards developing a United Statistical Algorithm [25] to
bridge the increasing gap between the theory and practice
of small and big data analysis.
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The Supplementary Appendix
This supplementary document contains five Appen-

dices. Section A provides a data dictionary for represen-
tative variables from various categories found in the Ex-
pedia dataset. Section B provides a small data example to
demonstrate the applicability of the MetaLP framework on
datasets both big and small. Section C demonstrates how
the proper treatment of heterogeneity through the MetaLP
approach provides new insights and resolutions for two
challenging problems: Simpson’s paradox and Stein’s para-
dox. Finally, Sections D and E will describe a MapReduce
computational implementation of the MetaLP inference en-
gine and the τ2 estimators used in our calculations.

APPENDIX A
EXPEDIA DATA DICTIONARY

See Table 1 for detailed descriptions of representative vari-
ables from each category of data found in the Expedia
dataset. Data type information is also included to better
illustrate the challenges stemming from the mixed data
problem.

APPENDIX B
METALP ANALYSIS OF TITANIC DATA

The Titanic dataset is utilized as a benchmark to validate the
effectiveness, accuracy, and robustness of the MetaLP ana-
lytical framework. Due to its manageable size, we are able
to compute the full data LP estimates and can compare with
the MetaLP estimates, which operate under a distributed

computing framework. A step-by-step MetaLP analysis of
Titanic dataset is provided here.

The Titanic dataset contains information on 891 of its
passengers, including which passengers survived. A key
objective in analyzing this dataset is to better understand
which factors (e.g. age, gender, class, etc.) significantly
influence passenger survival. Complete descriptions of all
eight variables can be found in Table 2. We seek to estimate
the relationship between various passenger characteristics
(Xi, i = 1, . . . , 7) and the binary response variable (Y ),
passenger survival, by using both our distributed algorithm
and traditional aggregated LP statistics to compare their
results.

To develop an automatic solution to the mixed data
problem, we start by constructing LP score polynomials
for each variable. Figure 1 shows the shapes of LP basis
functions for two variables from the Titanic data. Next,
we randomly assign 891 observations to 5 different sub-
populations and calculate LP statistics for each variable in
each subpopulation, and then combine LP statistics to get
a combined LP statistic for each variable. We repeat this
process three times to see how much our final MetaLP
result changes with different random partitions of the full
data. Figures 2(a) shows the I2 statistics for three random
partitions on the Titanic dataset. Even with the randomly as-
signed partitions, some variables may exhibit heterogeneity
among subpopulations as I2 statistics move above 40%. For
example, random partition 2 results show heterogeneity in
variables Embarked and Sex. Thus, we use τ2 regularization
to handle the problem. Figure 2(b) shows the I2 statistics af-
ter τ2 regularization. The additional τ2 parameter accounts
for the heterogeneity in the subpopulations and adjusts the

Category Variable Data Type Description

User
information

visitor_location_country_id Discrete The ID of the country in which customer is located
visitor_hist_starrating Continuous The mean star rating of hotels customer previously purchased
visitor_hist_adr_usd Continuous The mean price of hotels customer previously purchased
orig_destination_distance Continuous Physical distance between hotel and the customer

Search
criteria

srch_length_of_stay Discrete Number of nights stay searched
srch_booking_window Discrete Number of days in the future the hotel stay started
srch_adults_count Discrete Number of adults specified in the hotel room
srch_children_count Discrete Number of children specified in the hotel room
srch_room_count Discrete Number of hotel rooms specified in the search
srch_saturday_night_bool Binary Short stay including Saturday night

Static
hotel
characteristics

prop_country_id Discrete Country ID where customer is located
prop_starrating Discrete Hotel star rating
prop_review_score Continuous Mean hotel customer review score
prop_location_score1 Continuous Desirability of hotel location (1)
prop_location_score2 Continuous Desirability of hotel location (2)
prop_log_historical_price Continuous Mean hotel price over last trading period
pprop_brand_bool Discrete Independent or belongs to a hotel chain

Dynamic
hotel
characteristics

price_usd Continuous Displayed hotel price for the given search
promotion_flag Discrete Hotel sale price promotion available
gross_booking_usd Continuous Total transaction value

Competitor
information

comp1_rate_percent_dif Continuous Absolute percentage difference between competitors
comp1_inv Binary If competitor 1 has hotel availability
comp1_rate Discrete If Expedia has lower/same/higher price than competitor

Other
information

srch_id Discrete Search ID
site_id Discrete Expedia Point of Sale ID

Response booking_bool Binary Hotel booked or not

TABLE 1: Data dictionary for Expedia dataset.
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Variable Name Type Description Values
Survival Binary Survival 0 = No; 1 = Yes
Pclass Categorical Passenger Class 1 = 1st; 2 = 2nd; 3 = 3rd
Sex Binary Sex Male; Female
Age Continuous Age 0 - 80
Sibsp Discrete Number of Siblings/Spouses Aboard 0 - 8
Parch Discrete Number of Parents/Children Aboard 0 - 6
Fare Continuous Passenger Fare 0 - 512.3292

Embarked Categorical Port of Embarkation
C = Cherbourg;
Q = Queenstown;
S = Southampton

TABLE 2: Data dictionary for the Titanic dataset.

Fig. 1: (a) Top: first four LP orthonormal score functions
for variable # Siblings/Spouses Aboard, a discrete
random variable taking values 0, . . . , 8; (b) Bottom: first
four LP orthonormal score functions for continuous variable
Passenger Fare.

estimators accordingly, resulting in significantly lower I2

statistics for all variables under this model.
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Fig. 2: (a) Top: I2 diagnostics for three random partitions of
the Titanic dataset (b) Bottom: I2 diagnostic with τ2 regular-
ization on the Titanic dataset for three random partitions.

Figure 3 contains the LP statistics and their 95% con-
fidence intervals generated from our algorithm for 3 rep-
etitions of random groupings (k = 5) along with the
confidence intervals generated using the whole dataset. A
remarkable result of our method is that the MetaLP estimators
and the aggregated (full data) LP estimators are almost in-
distinguishable for all variables. In summary, the estimators
from our MetaLP method produces very similar inference
to the estimators using the entire dataset, which means we
can obtain accurate and robust statistical inference while
taking advantage of the computational efficiency in parallel,
distributed processing.
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Fig. 3: 95% Confidence Interval of LP Statistic for each
variable based on three MetaLP repetitions and aggregated
full dataset (which is the oracle estimate).

APPENDIX C
SIMPSON’S AND STEIN’S PARADOX: A METALP
PERSPECTIVE

Heterogeneity is not solely a big data phenomenon; it can
easily arise in the small data setup. We show two examples,
Simpson’s Paradox and Stein’s Paradox, where blind aggre-
gation without paying attention to the underlying heterogeneity
leads to a misleading conclusion.

C.1 Simpson’s Paradox
Table 3 shows the UC Berkeley admission data [1] by de-
partment and gender. Looking only at the university level
admission rates at the bottom of this table, there appears to
be a significant difference in admission rates for males at
45% and females at 30%. However, the department level
data does not appear to support a strong gender bias as
in the university level data. The real question at hand is
whether there is a gender bias in university admissions? We
provide a concrete statistical solution to the question put
forward by [2] regarding the validity and applicability of
traditional statistical tools in answering the real puzzle of
Simpson’s Paradox: “So in what sense do B-K plots, or
ellipsoids, or vectors display, or regressions etc. contribute
to the puzzle? They don’t. They can’t. Why bring them up?
Would anyone address the real puzzle? It is a puzzle that
cannot be resolved in the language of traditional statistics.”

In particular, we will demonstrate how adopting the
MetaLP modeling and combining strategy (that properly
takes the existing heterogeneity into account) can resolve
issues pertaining to Simpson’s paradox [3]. This simple
example teaches us that simply averaging as a means of
combining effect sizes is not appropriate regardless of the size
of the data. The calculation for the weights must take into
account the underlying departure from homogeneity, which
is ensured in the MetaLP distributed inference framework.
Now we explain how this paradoxical reversal can be re-
solved using the MetaLP approach.

As both admission (Y ) and gender (X) are binary vari-
ables, we can compute at most one LP orthogonal polyno-
mial for each variable T1(Y ;Y ) and T1(X;X); accordingly,
we can compute only the first-order linear LP statistics,
LP[1;Y,X], for each department. Following Equation (9),

Dept Male Female

A 62% (512 / 825) 82% (89 / 108)

B 63% (353 / 560) 68% (17 / 25)

C 37% (120 / 325) 34% (202 / 593)

D 33% (138 / 417) 35% (131 / 375)

E 28% (53 / 191) 24% (94 / 393)

F 6% (22 / 373) 7% (24 / 341)

All 45% (1198 / 2691) 30% (557 / 1835)

TABLE 3: UC Berkeley admission rates by gender by depart-
ment.

we derive and estimate the aCD for the LP statistic for each
of the 6 departments, H(LPl[1;X,Y ]), l = 1, . . . , 6, and for
the aggregated university level dataset,H(LPa[1;X,Y ]). As
noted in Section 3.3, the department level aCDs are normally
distributed with a mean of L̂Pl[1;X,Y ] and variance of
1/n` where n` is the number of applicants to department `.
Similarly, the aggregated aCD is also normally distributed
with a mean of L̂Pa[1;X,Y ] and variance of 1/na where na
is the number of applicants across all departments.

Now we apply the heterogeneity-corrected MetaLP al-
gorithm following Theorem 3.5 to estimate the combined
aCD across all departments as follows:

H(c)(LP[1;X,Y ]) =

Φ

( 6∑
`=1

1

τ2 + (1/n`)

)1/2

(LP[1;X,Y ]− L̂P
(c)

[1;X,Y ])


with

L̂P
(c)

[1;X,Y ]) =

∑6
`=1(τ2 + (1/n`))

−1L̂P`[1;X,Y ])∑6
`=1(τ2 + (1/n`))−1

where L̂P
(c)

[1;X,Y ]) and
∑6
l=1(τ2 + (1/n`))

−1 are the
mean and variance respectively of the meta-combined aCD
for LP[1;X,Y ]. Here, the heterogeneity parameter, τ2, is
estimated using the restricted maximum likelihood formu-
lation outlined in Supplementary Section E. Figure 4(a)
displays the estimated aCDs for each department, aggre-
gated data, and for the MetaLP method. First note that the
aggregated data aCD is very different from the department
level aCDs, which is characteristic of the Simpson’s paradox
reversal phenomenon due to naive “aggregation bias”. This
is why the aggregated data inference suggests a gender bias
in admissions, while the department level data does not.
Second, note that the aCD from the MetaLP method pro-
vides an estimate that falls more in line with the department
level aCDs. This highlights the advantage of the MetaLP
meta-analysis framework for combining information in a
judicious manner. Also, as mentioned in Section 3.3, all tra-
ditional forms of statistical inference (e.g. point and interval
estimation, hypothesis testing) can be derived from the aCD
above.

For example, we can test H0 : LP(c)[1;X,Y ] ≤ 0
(indicating no male preference in admissions) vs. H1 :
LP(c)[1;X,Y ] > 0 (indicating a male preference in admis-
sions) using the aCD for LP(c)[1;X,Y ]. The corresponding
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Fig. 4: (a) aCDs (top) and (b) 95% confidence intervals
(bottom) for linear LP statistics for UC Berkeley admission
rates by gender (department level aCDs and confidence
intervals in black).

p-value for the test comes from the probability associated
with the support of H0, C = (−∞, 0], (i.e. “high” support
value for H0 leads to acceptance) following [4]. Hence, the
p-value for the above test is

p-value = H
(
0; LP(c)[1;X,Y ]

)
= Φ

 0− L̂P
(c)

[1;X,Y ]√∑6
l=1(τ2 + (1/nl))−1

 ≈ .81.

In this case, the support of the LP CD inference (also
known as ‘belief’ in fiducial literature [5]) is .81. Hence, at
the 5% level of significance, we fail to reject H0 and confirm
that there is no evidence to support a significant gender bias
favoring males in admissions using the MetaLP approach.

In addition, we can also compute the 95% confidence
intervals for the LP statistics measuring the significance of
the relationship between gender and admissions as shown
in Figure 4(b). Note the paradoxical reversal as 5 out of the
6 departments show no significant gender bias at the 5%
level of significance (confidence intervals include positive
and negative values), while the confidence interval for the
aggregated dataset indicates a significantly higher admis-
sion rate for males. On the other hand, note that the MetaLP

approach resolves the paradox (which arises due to the failure
of recognizing the presence of heterogeneity among depart-
ment admission patterns) and correctly concludes that no
significant gender bias exists (as the confidence interval for
the MetaLP-based LP statistic includes the null value 0).

C.2 Stein’s Paradox
Perhaps the most popular and classical dataset for Stein’s
paradox is given in Table 4, which shows the batting av-
erages of 18 major league players through their first 45
official at-bats of the 1970 season. The goal is to predict each
player’s batting average over the remainder of the season
(comprising about 370 more at bats each) using only the
data of the first 45 at-bats. Stein’s shrinkage estimator [6],
which can be interpreted as an empirical Bayes estimator
[7] turns out to be more than 3 times more efficient than the
MLE estimator. Here we provide a MetaLP approach to this
problem by recognizing the “parallel” structure (18 parallel
sub-populations) of baseball data, which fits nicely into the
“decentralized” MetaLP modeling framework.

Name hits/AB µ̂
(MLE)
i µi µ̂

(JS)
i µ̂

(LP)
i

Clemente 18/45 .400 .346 .294 .276
F Robinson 17/45 .378 .298 .289 .274
F Howard 16/45 .356 .276 .285 .272
Johnstone 15/45 .333 .222 .280 .270
Berry 14/45 .311 .273 .275 .268
Spencer 14/45 .311 .270 .275 .268
Kessinger 13/45 .289 .263 .270 .265
L Alvarado 12/45 .267 .210 .266 .263
Santo 11/45 .244 .269 .261 .261
Swoboda 11/45 .244 .230 .261 .261
Unser 10/45 .222 .264 .256 .258
Williams 10/45 .222 .256 .256 .258
Scott 10/45 .222 .303 .256 .258
Petrocelli 10/45 .222 .264 .256 .258
E Rodriguez 10/45 .222 .226 .256 .258
Campaneris 9/45 .200 .286 .252 .256
Munson 8/45 .178 .316 .247 .253
Alvis 7/45 .156 .200 .242 .251

TABLE 4: Batting averages µ̂
(MLE)
i for 18 major league

players early in the 1970 season; µi values are averages over
the remainder of the season. The James-Stein estimates µ̂(JS)

i

and MetaLP estimates µ̂(LP)
i provide much more accurate

overall predictions for the µi values compared to MLE. MSE
ratio for µ̂(JS)

i to µ̂(MLE)
i is 0.283 and MSE ratio for µ̂(LP)

i to
µ̂

(MLE)
i is 0.293 showing comparable efficiency.

We start by defining the variance-stabilized effect-size
estimates for each group

θ̂i = sin−1(2µ̂
(MLE)
i − 1), i = 1, . . . , k

whose asymptotic distribution is normal with mean θi and
variance 1/ni where ni = 45 (for all i) is the number of
at-bats for each player and µ̂(MLE)

i is the individual batting
average for player i. Figure 5 provides some visual evidence
of the heterogeneity between the studies.

We apply a MetaLP procedure that incorporates inter-
study variations and is applicable for unequal vari-
ance/sample size scenarios with no further adjustment.
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First, we estimate the weighted mean, θ̂µ, of the transformed
batting averages with weights for each study (τ̂2

DL+n−1
i )−1,

where τ̂2
DL denotes the DerSimonian and Laird data-driven

estimate given in Supplementary Section E. The MetaLP

estimators, θ̂(LP)
i , are represented as weighted averages

between the transformed batting averages and θ̂µ as follows:

θ̂
(LP)
i = λθ̂µ + (1− λ)θ̂i, (i = 1, . . . , 18),

where λ = (n−1
i )/(τ̂2

DL + n−1
i ). Table 4 shows that MetaLP-

based estimators are as good as James-Stein empirical Bayes
estimators for the baseball data. This stems from the simple
fact that random-effect meta-analysis and the Stein for-
mulation are mathematically equivalent. But nevertheless,
the framework of understanding and interpretations are
different. Additionally, MetaLP is much more flexible and
automatic in the sense that it works for ‘any’ estimators
(such as mean, regression function, classification probabil-
ity) beyond mean and Gaussianity assumptions. We feel
the MetaLP viewpoint is also less mysterious and clearly
highlights the core issue of heterogeneity. Our analysis indi-
cates an exciting frontier of future research at the interface
of MetaLP, Empirical Bayes, and Stein’s Paradox to develop
new theory of distributed massive data modeling.
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Fig. 5: 95% confidence intervals for transformed batting
averages, θi, for each player, indicating the heterogeneity
of the effect sizes estimates.

APPENDIX D
MAPREDUCE COMPUTATION FRAMEWORK AND R
FUNCTIONS

In this note, we describe how the proposed MetaLP statisti-
cal algorithmic framework for big data analysis can easily be
integrated with the MapReduce computational framework,
along with the required R code. MapReduce implementa-
tion of MetaLP allows efficient parallel processing of large
amounts of data to achieve scalability.

D.1 LP.Mapper

We apply the following LP.Mapper function to each sub-
population. This function computes LP[j;X,Y ] for j =
1, . . . ,m (where user selects m, which should be less than
the number of distinct values of the given random sample).
The first step is to design the data-adaptive orthogonal LP
polynomial transformation of the given random variable X .
This is implemented using the function LP.Score.fun.
The second step uses the LP inner product to calcu-
late the LP variable selection statistic using the function
LP.VarStat (see Section 3.1 for details).

Inputs of LP.Mapper. Y is binary (or discrete multi-
nomial) and X is a mixed (discrete or continuous type)
predictor variable.

Outputs of LP.Mapper. It returns the estimated
L̂P[j;X,Y ] and the corresponding (asymptotic) sample
variance. Note that the sample LP statistic converges to
N (0, σ2

` = 1/n`), where n` is the effective sample size of the
`th subpopulation. By effective size we mean n` −M`(X),
where M`(X) denotes the number of missing observations
for variable X in the `th partition. LP.Mapper returns only
{L̂P[1;X,Y ], . . . , L̂P[m;X,Y ]} and n`, from which we can
easily reconstruct the CD of the LP statistics.

LP.Mapper <- function (Y,x,m=1) {
LP.Score.fun <- function(x,m){

u <- (rank(x,ties.method = c("average"))-.5)/length(x);
m <- min(length(unique(u ))-1, m);
S.mat <- as.matrix(poly(u,df=m));
return(as.matrix(scale(S.mat)))

}
LP.VarStat <- function(Y,x,m){
x <- ifelse (x=="NULL",NA,x);
x <- na.omit (x);
if (length (unique(x)) <=1 ){
r.lp=0;

n=0;
}else{
which <- na.action(x);
if (length(which)>0) Y <- Y[-which];
if (length(unique(Y))<=1){
r.lp=0;

n=0;
}else{
x <- as.numeric (x);
S <- LP.Score.fun(x,m);
r.lp <- cor(Y,S);n=length(Y);

}
}
return(c(r.lp,n))

}
temp <- LP.VarStat(Y,x,m);
output.LP <- temp[1:length(temp)-1];
output.n <- temp [length(temp)]
logic <- ifelse (length(temp)-1==m,"NA",
"m is not less than the number of distinct value of x")

return (list(LP=output.LP,n=output.n,Warning=logic))
}

D.2 Meta.Reducer

LP.Mapper computes the sample LP statistics and the
corresponding sample variance. Now at the ‘Reduce’ step,
our goal is to judiciously combine these estimates from k
subpopulations to produce the statistical inference for the
original large data. Here we implement the MetaReduce
strategy to combine the inference from all the subpopula-
tions, implemented in the function Meta.Reducer.

Before performing the Meta.Reducer step, we run
the ‘combiner’ operation that gathers the outputs of the
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LP.Mapper function for all the subpopulations and orga-
nizes them in the form of a list, which has two components:
(i) a matrix L.value of order k × p, where k is the number
of subpopulations and p is the number of predictor vari-
ables (the (`, i)th element of that matrix stores the jth LP
statistic LP[j;Xi, Y ] for `th partition); (ii) a matrix P.size
of size k × p ((`, i)th element stores the effective size of the
subpopulation for the variable `).

Inputs of Meta.Reducer

1) L.value and P.size
2) fix: a binary argument (TRUE or FALSE), indicat-

ing whether to ignore the τ2 regularization. If it
equals to FALSE, then the model with τ2 regular-
ization is applied.

3) method: It’s valid only if fix equals FALSE, and
can equal to either "DL" or "REML", indicating the
estimation method of τ2.

4) "DL" stands for the method proposed in [8],
and "REML" is the restricted maximum likelihood
method, which was proposed in [9]. We include the
calculation methods of these two τ2 estimators in
the next section.

Outputs of Meta.Reducer

1) Meta-analysis combined LP statistic estimators
2) Standard errors of meta-analysis combined LP

statistic estimators
3) I2 heterogeneity diagnostic
4) τ2 estimate only if fix equals to FALSE

Meta.Reducer <- function(L.value, P.size, fix, method){
th_c <- NA;

sd_th_c <- NA;
for (i in 1:ncol(L.value)){
th_c[i] <- sum(L.value[,i]*P.size[,i])/sum(P.size[,i]);
sd_th_c[i] <- sqrt(1/sum(P.size[,i]));

}
Q <- matrix (,ncol(L.value),1);
for (i in 1:ncol(L.value)){

Q[i,] <- sum ( P.size[,i]*(L.value [,i] - th_c[i])ˆ2);
}
K<-NA;
for (i in 1:ncol(L.value)){

A <- P.size[,i];
K[i] <- length (A[A!=0]);

}
if (fix==T){

I_sq.f <- ifelse ((Q-(K-1))/Q>0, (Q-(K-1))/Q,0);
return (list(LP.c=th_c, SE.LP.c=sd_th_c,I_sq.f=I_sq.f))

}else{
if (method=="DL"){
tau.sq <- NA;
for (i in 1:ncol(L.value)){
tau.sq[i] <- (Q[i]-(K[i]-1)) /
(sum(P.size[,i])
- sum((P.size[,i])ˆ2)/sum(P.size[,i]));

}
tau.sq <- ifelse(tau.sq>0,tau.sq,0);
w_i <- matrix(NA,nrow(P.size), ncol(P.size));
for (i in 1:ncol(L.value)){

w_i[,i] <- (1/P.size[,i]+tau.sq[i])ˆ-1;
}
mu.hat <- NA;
SE_mu.hat <- NA;
for (i in 1:ncol(L.value)){

mu.hat[i] <- sum(L.value[,i]*w_i[,i])/sum(w_i[,i]);
SE_mu.hat[i] <- sqrt(1/sum(w_i[,i]));

}
lam_i <- matrix (NA,nrow(P.size),ncol(P.size));
for (i in 1:ncol(L.value)){

lam_i[,i] <- (1/P.size[,i])/(1/P.size[,i]+tau.sq[i]);
}
th.tilde <- matrix(NA,nrow(L.value), ncol(L.value))
for (i in 1:ncol(L.value)){

th.tilde[,i] <- lam_i[,i] * mu.hat [i] +

(1-lam_i[,i])*L.value[,i];
}
th.tilde <- ifelse(is.nan(th.tilde)==T,0,th.tilde);
Q <- matrix (NA,ncol(L.value),1);
for (i in 1:ncol(L.value)){
Q[i,] <- sum ( w_i[,i]*(th.tilde [,i] - mu.hat[i])ˆ2);

}
I_sq.r <- ifelse ((Q-(K-1))/Q>0, (Q-(K-1))/Q,0);
return (list (LP.c=mu.hat,
SE.LP.c=SE_mu.hat,I_sq.r=I_sq.r,tau.sq=tau.sq))

}
if (method=="REML"){
tau.sq <- NA;
for (i in 1:ncol(L.value)){
tau.sq[i] <- (Q[i]-(K[i]-1)) /
(sum(P.size[,i]) -
sum((P.size[,i])ˆ2)/sum(P.size[,i]))

}
tau.sq <- ifelse(tau.sq>0,tau.sq,0);
for (i in 1:ncol(L.value)){
if (sum(P.size[,i]==0)>0){
n <- P.size[,i][-which(P.size[,i]==0)];
thh <- L.value[,i][-which(P.size[,i]==0)];

}else{
n <- P.size[,i];
thh <- L.value[,i];

}
nloop <- 0;
absch <- 1;
while (absch > 10ˆ(-10)){
nloop <- nloop + 1;
if (nloop > 10ˆ5){
tau.sq[i] <- NA ;
}
else{
tau.sq.old <- tau.sq[i]
# update thetaR, wR
wR <- 1/(1/n + tau.sq.old);
thetaR <- sum(wR*thh) / sum(wR);
# update tauR
tau.sq[i] <- sum(wRˆ2*(K[i]/(K[i]-1)*
(thh- thetaR)ˆ2 - 1/n) ) / sum(wRˆ2);
absch <- abs(tau.sq[i] - tau.sq.old);

}
}

}
tau.sq <- ifelse(tau.sq>0, tau.sq, 0);
w_i <- matrix(NA,nrow(P.size),ncol(P.size));
for (i in 1:ncol(L.value)){
w_i[,i] <- (1/P.size[,i]+tau.sq[i])ˆ-1;

}
mu.hat <- NA;
SE_mu.hat <- NA;
for (i in 1:ncol(L.value)){
mu.hat[i] <- sum(L.value[,i]*w_i[,i])/sum(w_i[,i]);
SE_mu.hat[i] <- sqrt(1/sum(w_i[,i]));

}
lam_i <- matrix(NA,nrow(P.size), ncol(P.size));
for (i in 1:ncol(L.value)){
lam_i[,i] <- (1/P.size[,i])/(1/P.size[,i]+tau.sq[i]);

}
th.tilde <- matrix (NA,nrow(L.value),ncol(L.value));
for (i in 1:ncol(L.value)){
th.tilde [,i] <- lam_i[,i] * mu.hat [i] +
(1-lam_i[,i])*L.value[,i];

}
th.tilde <- ifelse(is.nan(th.tilde)==T,0,th.tilde);
Q <- matrix(NA,ncol(L.value),1);
for (i in 1:ncol(L.value)){
Q[i,] <- sum(w_i[,i]*(th.tilde [,i] - mu.hat[i])ˆ2);

}
I_sq.r <- ifelse ((Q-(K-1))/Q>0,(Q-(K-1))/Q,0);
return(list(LP.c=mu.hat,SE.LP.c=SE_mu.hat,
I_sq.r=I_sq.r,tau.sq=tau.sq))
}

}
}

APPENDIX E
τ2 ESTIMATOR

There are many different proposed estimators for the τ2 pa-
rameter. We consider the DerSimonion and Laird estimator
[8], τ̂2

DL, and the restricted maximum likelihood estimator
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[9], τ̂2
REML, for our analysis. τ̂2

DL can be found from the
following equation:

τ̂2
DL = max

{
0,

Q− (k − 1)∑
` s

−2
` −

∑
` s

−4
` /

∑
` s

−2
`

}
;

where

Q =
k∑
`=1

(
L̂P`[j;X,Y ]− L̂P

(c)
[j;X,Y ]

)2

s−2
` .

However, τ̂2
REML should be calculated in an iterative

fashion to maximize the restricted likelihood following
these steps:

Step 1: Obtain the initial value, τ̂2
0 . We use τ̂2

DL as the
initial value:

τ̂2
0 = τ̂2

DL.

Step 2: Obtain L̂P
(c)

τ [j;X,Y ] (τ -corrected combined LP
statistics).

L̂P
(c)

τ [j;X,Y ] =

∑
` w`(τ

2
0 )L̂P`[j;X,Y ]∑
` w`(τ̂

2
0 )

;

w`(τ̂
2
0 ) = (s2

` + τ̂2
0 )−1.

Step 3: Obtain the REML estimate.

τ̂2
REML =∑
` w

2
` (τ̂

2
0 )

(
k
k−1

(
L̂P`[j;X,Y ]− L̂P

(c)

τ [j;X,Y ]

)
− s2

`

)
∑
` w

2
` (τ̂

2
0 )

.

Step 4: Compute new L̂P
(c)

τ [j;X,Y ] by plugging τ̂2
REML

obtained in Step 3 into formula from Step 2.

Step 5: Repeat Step 2 and Step 3 until τ̂2
REML converges.

Convergence can be measured as the absolute difference
between τ̂2

REML from the latest iteration and the previous
iteration reaching a threshold close to zero.
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