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Abstract

Since the BRAIN Initiative and Human Brain Project began, a few efforts have been made to 

address the computational challenges of neuroscience Big Data. The promises of these two 

projects were to model the complex interaction of brain and behavior and to understand and 

diagnose brain diseases by collecting and analyzing large quanitites of data. Archiving, analyzing, 

and sharing the growing neuroimaging datasets posed major challenges. New computational 

methods and technologies have emerged in the domain of Big Data but have not been fully 

adapted for use in neuroimaging. In this work, we introduce the current challenges of 

neuroimaging in a big data context. We review our efforts toward creating a data management 

system to organize the large-scale fMRI datasets, and present our novel algorithms/methods for the 

distributed fMRI data processing that employs Hadoop and Spark. Finally, we demonstrate the 

significant performance gains of our algorithms/methods to perform distributed dictionary 

learning.
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1 Introduction

AFTER the success of the Human Genome Project (HGP) [1], [2], [3] to map 3 billion 

nucleotides representing human inheritance, the US Brain Research Through Advancing 

Innovative Neurotechnologies (BRAIN) [4] Initiative, European Union Human Brain Project 

(HBP) [5] launched in 2013 and China Brain Project (soon to be announced) were initiated 

to reflect the aspiration and investment in neuroscience research for understanding the 

human brain structure and function, especially to treat many brain disorders.

The sheer complexity of the brain has forced the neuroscience community and specifically 

the neuroimaging experts to transit from the smaller brain datasets to the extent far less 

manageable. The cutting-edge technologies in the biomedical imaging field, as well as the 

new techniques in digitizing, all lead to collect further information from the structural 

organization and functional neuron activities in the brain [6].

Understanding the relationship between functional neural activity, structural organization of 

brain regions, and subsequent behavior became the main goals of neuroscience. These goals 

are only achievable by analyzing covariance in large scale studies [6]. Aligned with these 

goals, discovery-based approaches have been employed to empower the investigation of 

brain-behavioral relation-ships. These goals are not reachable but through large-scale 

datasets. The possible challenges of holding and analyzing this much data have been one of 

the main topics of the annual meetings of the Organization for Human Brain Mapping 

(OHBM) since 2012.

Certainly, Human Connectome Project (HCP) with more than 1200 healthy subjects is a 

perfect example of these large datasets [7], [8]. HCP was awarded more about $40 million in 

2010 to develop advanced neuroimaging methods and to recruit a large number of 

individuals to map brain regions and their connectomes [9, 10]. The main goal is to 

understand the human brain better and eventually to treat the neurological and psychiatric 

disorders. The other examples can be 1000 functional connectomes [11] and openfMRI 

project [12]. These efforts clearly draw a portrait clarifying the emphasis of neuroscience 

community to employ new techniques to deal with neuroimaging bigdata.

As a few studies have shown [13], [3], the arrival of big data in neuroscience demands a 

cultural shift from isolated single efforts applying limited methods over small dataset to a 

more horizontal efforts to cover a wider range of problems, using larger datasets and more 

comprehensive techniques. This transition, however, will require the community to address 

certain challenges [13]. A few of these challenges are as follows.

Handling more comprehensive datasets demands sophisticated techniques and substantial 

resources that necessitate close collaboration among laboratories. In recent years, numerous 

articles have stressed the importance of data sharing, particularly neuroscience MRI data 
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[11], [12], [14], [15], [16]. They mostly indicate that adoption of new data sharing tools 

along with close collaboration among researchers will benefit researchers methodologically, 

financially, and ethically, fully allowing researchers to exploit the sizeable quantities of 

information generated across laboratories.

Techniques for studying the neural activities and the brain structure are varied, consisting of 

strategies to represent a vast range of temporal and spatial resolutions [13]. Each of these 

methods is limited to a specific resolution and only applicable to a portion of the brain 

studies. These techniques can be as fast as 0.0001s for patch clamping and as accurate as 

electron microscopy with ~0.0001mm accuracy, to electroencephalography and fMRI with 

lower spatial and temporal resolutions. Each of these techniques carries its own set of 

vocabulary and metadata, and thus different standardizations are needed. This complexity 

makes the cross-pipelines harder to automate, as multidimensional problems involving 

multiple modalities and techniques are required to reach an appropriate level of scientific 

certainty.

Among various neuroimaging methods, functional magnetic resonance imaging, fMRI, has 

been widely used to assess functional activity patterns in the brain [17], [18], [19], [20]. 

Since the early 1990s [21], [22], when fMRI came to dominate the brain mapping research, 

more than 42,000 papers have been published according to PubMed which indicates the 

significant interest of scientists to use this modality to understand brain functions. 

Researchers have vastly used both Task-based (tfMRI) and Resting-state (rfMRI) fMRI 

techniques for functional brain mapping. [23], [24], [25], [26], [27], [28], [29], [30]. From a 

total of 12 available shared neuroimaging datasets at 2014, 8 of those contained rfMRI and 

four of them tfMRI scans [15]. This demonstrates the fundamental role of fMRI as a tool for 

discovery, shedding light on the unexplored functional brain activities.

Given the popularity and the importance of fMRI to map functional brain networks, 

tremendous efforts have been devoted to the establishment of fMRI neuroinformatics 

systems through which users can easily employ comprehensive statistical and computational 

approaches for fMRI analysis [31], [32], [33], [34], [35], [36]. These systems are expected to 

host large-scale datasets and to provide a modular independent platform to run wide-ranging 

complex algorithms and processes in which tasks can be run in a distributed or parallel 

fashion.

Storing, analyzing, visualizing, and sharing large datasets need intensive computational and 

storage resources that more traditional methods could not deliver. Therefore, experts in 

computer science have developed dedicated tools in recent years to address these 

shortcomings.

We fit the current computational challenges for neuroimaging bigdata in 6 categories and 

then explain how researchers have addressed each correspondingly. We then discuss our 

solutions, developed at the Cortical Architecture Imaging and Discovery Laboratory, or 

CAID, located at the University of Georgia, and its collaborators.

Data management system is the core requirement to both organize and present data to the 

researchers. The Extensible Neuroimaging Archive Toolkit, XNAT [37] is one of the best 
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examples, designed particularly to host and manage neuroimaging data in which supports 

the standard input formats such as DICOM and covers a broad range of metadata standards. 

A hierarchical Extensible Markup Language (XML) schema provides a framework in which 

users can define their own types of inference, depend on the imported data, and easily import 

the experiments’ descriptors through both web interface and command environment. XNAT 

is an active project, and the modified version of this toolkit serves as the basis of Human 

Connectome Project Database [38]. The open-source availability and the RESTful 

application programming interface allow communication between package components via 

the web, making XNAT a unique solution for neuroimaging data management system.

Data Processing Pipeline is another essential element of neuroimaging bigdata analysis 

where end-to-end processing workflows are specified, and users can manage workflow 

parameters and execution. There exist a few of neuroimaging pipelining solutions, including 

LONI [39], [40] with a graphical user interface, Nypype [41] a Python-based pipelining tool, 

and XNAT, an XML-based solution with grid computing capability.

Computing platform is the critical requirement for bigdata analysis. For example, 

preprocessing fMRI data takes roughly 5 minutes per subject using an 8-core machine with 

16 gigabytes memory dedicated to this task. Preprocessing compromises skull removal, 

motion correction, slice time correction, and spatial smoothing as well as global drift 

removal [30]. Applying this step over hundreds of subjects will take hours to days using a 

single machine. Therefore, running computationally-intensive tasks in parallel is essential to 

reduce the overall computational time from days and months to hours and minutes; high-

performance computing (HPC) is a very common solution. With the use of CPU and GPU-

based clusters, substantial speedups can be achieved with no need of modifying the existing 

software tools. Incorporating GPUs and CPUs in parallel processing has recently become a 

popular topic among researchers to study [42], [43], [44], [45]. Amazon Elastic Compute 

Cloud (EC2) is one of the most successful instances in providing scalable computing 

capacity on-demand.

Cloud storage and cloud computing are inseparable parts of bigdata analysis. High-speed 

access to the stored data is essential in cloud computing due to the constant read and write 

flow among computing nodes. Amazon Simple Storage System, or S3, is an efficient choice 

of cloud storage with instant access to the data from EC2 computing nodes. The read and 

write speed and fault tolerance, as well as pricing, make S3 a competitive choice for 

researchers.

Data Visualization is an imperative entity of bigdata: making complex results 

understandable and interpretable by a human, and dynamic visualization is to improve the 

insight gained from data. A well-designed pipeline should generate graphics that represent 

the rich variety of date in neuroimaging, including time series, regions of interest, networks, 

and connectomes. There exist several tools and libraries that in combination with statistical 

and analytical frameworks generate data-related graphics. However, it is hard for general 

users to implement and apply and in results, more efforts are needed to create customized 

tools for neuroscience experts that can be easily applied in the existent pipelines. As 

Freeman in [46] suggests, visualizing the results with an interactive environment is far 
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valuable than a static image representing only a portion of information especially when we 

are interacting with large datasets with rich data.

Processing engines enable researchers and programmers to load and analyze data in a 

distributed fashion and to create new methods to handle sophisticated analytics processes 

faster and with ease of use. As we discussed earlier, dealing only with a portion of datasets is 

ideal only at the testing stage, but in benchmark analysis, a more substantial portion of 

datasets is necessary. In 2003 and 2004, the Google file system and MapReduce were 

introduced, respectively, to the world as a simplified abstraction for parallel manipulation of 

massive datasets [47]. The main idea of MapReduce is to store data in a distributed file 

system located in a cluster environment and then use individual nodes to do the computation. 

This way, data is accessible from all the nodes and only the subsequent aggregation steps of 

the computation will be transferred to the master node. The whole workflow works in two 

stages: map and reduce. At first, a function will apply to partitions of the data in parallel, and 

then an associative operator will aggregate the results across partitions. Fig. 1 shows an 

example of word count problem solved by MapReduce.

Although MapReduce is widely used by researchers and programmers to model variety of 

computationally intensive tasks and machine learning methods [48], due to some data 

modeling constraints, it is not considered an all-purpose big data tool. MapReduce loads the 

data into the memory from the hard disk and returns the results at every round of analysis 

that causes a substantial amount of disk I/O and queries especially for iterative machine 

learning algorithms in neuroimaging. It is also hard to represent complex series of 

computations given pipelining in neuroimaging.

In 2009, the Spark framework [49] was developed at the University of Berkeley AMPlab. 

This framework addresses deficiencies of MapReduce by introducing resilient distributed 

datasets (RDD) abstract which the operations are performed in the memory. Spark compiles 

the action lineages of operations into efficient tasks, which are executed on the Spark engine. 

Spark’s scheduler will execute the duties across the whole cluster. Spark minimizes the 

repetition of data loading by caching data in memory which is crucial in complex processes. 

Also, Spark supports multiple programming languages, including Java, Python, Scala, and 

R. Fig. 2 shows the general Spark workflow and how it operates tasks in different stages. 

Spark uses Hadoop filesystem as a core distributed file system (HDFS) but networking file 

systems (NFS) can also be used if it runs on an HPC cluster. Apache Spark is the single most 

active Apache project. The new version 2.0 is promised to repair the performance leaks 

already found in the earlier version of 1.5 and 1.6. While Spark has considerable traction in 

industry and academia, Apache Flink [50], developed originally as Stratosphere in 2014, is 

another new distributed processing engine with similar goals but an entirely new 

architecture. Flink offers a full compilation of execution plans, optimizing the operations 

performed and minimizing repeated computations and network accesses. However, this 

project is still under development, having only reached version 1.0 in recent months.

Developing a comprehensive fMRI neuroinformatics platform named ΉAFNI-Enabled 

Large-scale Platform for the Neuroimaging Informatics’ (HELPNI) [51] (http://

bd.hafni.cs.uga.edu/helpni) was our first step toward bigdata. This platform was built on the 
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version 1.6 of XNAT (will soon upgrade to version 1.7). HELPNI particularly was designed 

to apply our framework for the sparse representation of whole brain fMRI signals termed, 

‘holistic atlases of functional networks and interactions’ (HAFNI) [52]. This goal was 

achieved by aggregating fMRI signals into an over-complete dictionary matrix and a 

corresponding coefficient matrix through an efficient online dictionary learning algorithm 

[53], [54]. The time series of each over-completed dictionary represents the temporal activity 

of a brain network, and its corresponding reference weight vector stands for the spatial map 

of every network. HAFNI is recognized as an efficient method for inferring a comprehensive 

collection of concurrent functional networks in the human brain. [52]

Dictionary learning and sparse coding have been the center of attention of researchers in a 

variety of disciplines [56], [57], [58], [64], [65]. These are unsupervised learning algorithms 

that attempt to learn a concise, high-level representation of unlabeled data. Sparse dictionary 

learning can be applied to a variety of problems including signal, image, video and audio 

processing as well as unsupervised clustering [66]. Image denoising, compression, and 

fusion are of the widely used applications of these algorithms. The superior performance of 

dictionary learning in decomposing the meaningful and comprehensive functional networks 

from various types of fMRI signals is also not an exception [52], [55]. HAFNI framework 

and R1DL algorithm [59] are our in-house dictionary learning solutions for decomposing 

functional brain networks, as well as similar applications in discussed areas. The premise of 

dictionary learning is to reduce millions of rows of fMRI signals to a smaller representation 

of coefficient matrices and dictionary matrices. Understanding the functional connectomics 

and defining it as a standard requires group-wise and eventually population-wise studies. 

Group-wise fMRI needs combining subjects and analyzing them as one unit expecting to 

process gigabytes of data and even terabytes in population-wise studies. To address this 

issue of scale, we devolved a novel distributed rank-1 dictionary learning (D-r1 DL) model, 

leveraging the power of distributed computing to handle large-scale fMRI big data. We 

initially presented this model at the KDD 2016, and here we present an extended version of 

it [59]. It is expected that the new D-r1 DL algorithm and methodology could be widely 

applicable to many other domains of applications that entail sparse representation of big 

data.

We have used spark version 1.6 at our previous project to implement R1DL algorithm in a 

distributed fashion. We also used our own data management platform (HELPNI) customized 

for fMRI, where data will be stored and a variety of analyses can be scheduled through its 

pipelining and scheduling tools. Based on the choice of user and analysis requirements, data 

will be transferred to either a local virtual cluster, the Georgia Advanced Computing 

Resource Center (GACRC) or an Amazon EC2 cluster for further analyses.

At the next section we will first briefly discuss the general scheme of HELPNI, and then we 

will explain how D-r1DL algorithm work. Moreover, at the experimental result, we will 

focus on the efficiency of this method in comparison with the previous methods. We will 

demonstrate a computational architecture which is capable of dealing with the fast-growing 

demands of neuroimaging community.
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2 Method and Implementation

2.1 Overview of HELPNI

We developed HELPNI first to store and visualize large-scale multi-modal neuroimages 

datasets. The second goal is to facilitate running and controlling complicated neuroimaging 

multi-stage processes with a secure, user-friendly web interface. The third goal is to give 

researchers parallel and distribute computing accessibility while they implement their own 

analytical and visualization tools via HELPNI. This way we have provided a 

neuroinformatics tool that can conduct the variety and volume complexities of neuroimaging 

big data. It means that large datasets with diverse neuroimaging standards can be easily 

imported to the system. Moreover, newly implemented methods could leverage from the 

parallel processing capabilities of such a system.

The main five components of HELPNI are: data storage, data management tools, pipelining 

engine, user interface and data sharing tools. The web interface is built on the Apache 

Tomcat version 6.0 using WAR build process. RESTful application programming interface 

enables the data management through standard GET, PUSH, GIVE and DELETE 

commands. HELPNI runs over JAVA language, where it uses Maven to install and update 

the webapps, and it uses Jakarta turbine to generate reports and to manage web application. 

This platform uses XML schema from which data types are defined and users can also 

extend these definitions. The XML schema enables the Pipelining at HELPNI to understand 

the parameters and application resources through a Java parser and in result to properly run a 

workflow consist of multiple applications and procedures. Fig. 3 shows how different 

components are connected and interact with each other.

We implemented HAFNI pipeline to automate the whole processes of fMRI data registration 

and online dictionary learning (ODL) and to reduce the processing time of running these 

tasks over extensive datasets. We used the 1000 FC project with more than 1200 rfMTI 

images as a test bed to examine the performance of HELPNI in a standard environment with 

an eight-core Intel CPU and 32 GB of RAM machine. Running the HAFNI pipeline over the 

1288 subjects of 1000FC took ~214 hours (9 days) consist of an average of 5 min/subj for 

the preprocessing step and 5 min/subj for the ODL at the HAFNI framework. The results 

were the meaningful functional brain networks for each subject.

Since then, we concentrated on developing and extending the data storage, data 

management, and also data processing aspects of HELPNI. The primary goal was to add a 

distributed file system as well as empowering the computational platform with parallel 

processing feature. The rest of this section will follow such a goal.

2.2 Extending HELPNI for parallel processing

Both local hard drives and cloud storage are integrated into the system, as we use Amazon 

Simple Storage Solution (S3) as permanent data storage for larger datasets. Data are securely 

accessible from the web application with a Postgresql database to respond to data queries. 

Users either can upload the data to the system manually from the web-based Java uploader, 

or can use the script uploading method. However, the latter method allows users to upload a 

vast number of images after defining the appropriate data schema. Another under-
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development feature is that users can obtain DICOM images directly from PACS machines 

located at other laboratories.

HELPNI platform controls the data flow and working schedule from preparing data to the 

processing units. One advantage of the proposed neuroinformatics platform is flexibility and 

modularity of the processing units. Researchers, depend on the algorithmic structure of the 

analysis, can choose the available computational nodes that will process the chain of tasks. 

Platform controls 3 data processing units: an in-house cluster (8 cores, 16 GB memory) 

deployed on the same machine as the platform exists; a remote high-performance computing 

cluster (a GACRC cluster with 48 cores and 128 GB of memory, gacrc.uga.edu); and the 

cloud-based Amazon EC2 cluster. Fig. 3 shows an overview of the neuroinformatics system, 

through which stored fMRI data in centralized storage will be sent to processing units, and 

the results will be visualized through dynamically-generated web pages.

The preparation of fMRI data includes preprocessing and the conversion of the 4D fMRI 

images to a 2D data matrix. Model parameters are also set during the preparation: either 

automatically extracted from the data (e.g., the number of columns and rows of input matrix) 

or defined by user specification (e.g., sparseness constraint r). While the data are being 

processed, an online visualization tool will simultaneously generate the reports of the 

statistics and visualizations of the decomposed functional networks. Fig. 4 shows an 

overview of real-time visualization of discovered networks. Then the results will be 

uploaded to the Apache server, accessible via web browsers for visualizing and sharing. The 

PDF version of all reports, as well as an interactive web page, will be available in every 

subjects’ profile page. This demonstration will make the future comparison and studies 

much easier. Also, all the results will remain in the system directory linked to the subjects’ 

profile. Doing so will help collaborators’ future studies be done easier and more efficient 

because they can access raw data as well as any prior study results instantly. For example, 

the standard fMRI preprocessing can be done once, and all the future analysis can easily 

leverage from the one time preprocessed data.

2.3 Algorithm of rank-1 matrix decomposition with sparse constraint

The rank-1 dictionary learning (r1DL) algorithm [59] decomposes the input matrix S (of 

dimension T×P) by iteratively estimating the basis vector u (T×1 vector with unit length) 

and the loading coefficient vector v (P×1 vector). The algorithm is an extreme case of the 

general dictionary learning framework [60] as the input is approximated by a rank-1 matrix 

(spanned by two vectors). With the l-0 sparseness constraint, the following energy function 

L(u, v) will be minimized:

L u, v = ‖S − uvT‖F, s.t.‖u‖ = 1, ‖v‖0 ≤ r . (1)

Thus the total number of non-zero elements in v should be smaller than or equal to the given 

sparsity constraint parameter r which is empirically determined based on the context of the 

application. The algorithm alternates updating u (randomly initialized before the first 

iteration) and v until the convergence of u:
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v = argmin
v

‖S − uvT‖F, s . t . ‖v‖0

u = argmin
u

‖S − uvT‖F = Sv
‖Sv‖

(2)

One dictionary basis [u, v] can be estimated after the convergence of Eq. 2. Since the value 

of the energy function in Eq. 1 decreases at each iteration in Eq. 2, the objective function is 

guaranteed to converge. For estimating the next dictionary (up to the dictionary size K), the 

input matrix S will be deflated to its residual R.

Rn = Rn − 1 − vTRn − 1, R0 = S, 1 < n ≤ K . (3)

2.4 Algorithm of rank-1 matrix decomposition with sparse constraint

To utilize computational power and memory capacity across many machines to address the 

big data problem, we implemented the distributed r1DL algorithm on Spark, which we refer 

to as the distributed rank-1 dictionary learning (D-r1 DL) framework as illustrated in Fig. 5. 

Using Spark’s Resilient Distributed Dataset (RDD) abstraction from [61], D-r1DL can 

potentially deal with large-scale imaging data whose size exceeds the memory capacity of 

the working machine. Spark addresses such out-of-core operations by loading only specific 

partitions of the whole input matrix S into the memory of each node. The learning of 

dictionary bases [u, v] is performed in parallel at each node (i.e., machine), and are then 

broadcasted across all nodes during the update. Specifically, the matrix multiplication 

operations described in Eq. 2 and the deflation operation defined in Eq. 3 were implemented 

by their corresponding distributed primitives in Spark:

I. During the vector-matrix multiplication, each node will use its portion of the 

updated u vector, then estimate the v vector based on the multiplication of its 

partition of S and the vector u. The resulting partial v vectors from all the nodes 

will be then reduced by the summation operation.

II. During the matrix-vector multiplication, each node will use the updated v vector 

and its partition of the S matrix to estimate a single corresponding element of the 

u vector. The resulting u vector is assembled from the results of each node.

III. During the matrix deflation operation, both u and v learned from Eq. 2 will be 

broadcasted. Each node estimates a portion of the outer product between 

corresponding elements of u vector with the whole v vector. Each partition of the 

S matrix is deflated using the corresponding partial product of u and v.

3 Experimental Results

3.1 Model performance on a relatively large-scale dataset

We applied the D-r1DL model on the publicly available dataset from Human Connectome 

Project [7] for validating its effectiveness in discovering functional networks from large-
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scale fMRI dataset. The acquisition parameters of the fMRI are as follows: 90×104 matrix, 

220mm FOV, 72 slices, TR=0.72s, TE=33.1ms, flip angle=52°, BW=2290 Hz/Px, 2.0mm 

isotropic voxels. Data preprocessing followed the protocols detailed in [62], including 

motion correction, spatial smoothing, temporal pre-whitening, slice time correction, and 

global drift removal. The tfMRI data was then registered to the standard MNI152 2mm 

space using FSL FLIRT to enable group-wise analysis. The final individual tfMRI signal 

matrix used as model input contains 223,945 number of voxels (defined on the grey matter) 

and varying temporal length based on task design. In this work, tfMRI datasets from 68 

subjects during Emotion Processing task were used, with the time length of 176 volumes 

which matches the aim of the proposed framework for population-level fMRI bigdata 

analysis.

Afterward, we aggregated the 68 individual fMRI data during Emotion task into one big, 

group-wise matrix with the dimension of 176×15,228,260 (~20 GB as a text file). Using the 

parameter setting of K=100 (i.e., decomposing 100 functional networks) and r=0.07 (i.e., 7% 

of the total number of grey matter voxels across all subjects can have non-zero value), we 

obtained the 100 group-wise functional networks. The analysis was performed on the high-

performance computing cluster and took around 10 hours to finish. The temporal patterns of 

the group-wise functional networks are defined in the D matrix. The spatial patterns were 

distributed across each individual’s space (223,945 voxels) in the z matrix. To obtain a 

volumetric image, we averaged the loading coefficient value on each voxel across all 

individuals.

For validation purposes, we compared the decomposed group-wise functional networks with 

the group-wise activation detection results obtained by model-driven General Linear Model 

(GLM). The basic rationale of such comparison is that the activation detection results 

characterize the intrinsic and basic temporal/spatial patterns as a response to external stimuli 

and should therefore also be revealed by data-driven matrix decomposition-based methods 

such as D-r1DL. In order to identify the correspondence between the 100 functional 

networks decomposed by D-r1DL and the GLM results, we calculated Pearson’s correlation 

between the temporal patterns (in the D matrix) of the functional networks and the 

hemodynamic response function (HRF)-convolved task designs of Emotion Processing task 

and selected the result with the highest correlation. The group-wise functional network 

obtained by D-r1DL and the corresponding GLM results are shown in Fig. 6. We also 

calculated the spatial overlapping rate SOR between the spatial patterns of the results from 

D-r1 DL (P1) and group-wise GLM (P2) to measure their similarity quantitatively:

SOR P1, P2 = P1 ∩ P2 / P2 , (4)

where operator |·| counts the total number of voxels with non-zero values in the given spatial 

pattern. The rate ranges from 0 (no voxels overlapping) to 1 (exact the same pattern GLM 

result). The SOR values of the four pairs of correspondent results between D-r1DL and 

GLM are 0.72, 0.75, 0.67 and 0.65, respectively.
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3.2 Model application with sampling strategy

In addition to the analysis on the whole group-wise tfMRI dataset, we also uniformly 

sampled the 176×15,228,260 input matrix into 10%~90% of its size (e.g. 10% sampled data 

is a 176×1,522,826 matrix). The main rationale for the sampling study is to further 

accelerate initial investigations into the effectiveness of the dictionary bases learned by D-

r1DL. In such circumstances, the sampling strategy could offer an approximation of the 

detailed and accurate functional networks learned from the original data [67]. By applying 

D-r1DL on the nine sampled datasets, the corresponding sets of functional networks were 

obtained. One example functional network showing the correspondence between the ten sets 

of results is visualized in Fig. 7. Notably, our prior experiments using online dictionary 

learning and stochastic coordinate coding showed that dictionary learning algorithms have 

excellent performance of reconstructing original fMRI signals [52, 55, 68]. In the future, we 

will perform extensive comparisons of D-r1DL with these dictionary learning algorithms 

regarding their reconstruction performances, once all of them are implemented via the Spark 

framework.

It was observed that the spatial patterns of the corresponding functional networks learned 

from the same dataset with different sampling rates are mostly the same (with overlapping 

rate>0.85), excepting some minor differences in the details. The time costs for the group-

wise analysis on uniformly-sampled datasets are summarized in Fig. 8. The time cost 

follows a quadratic function with the sampling rate (R2=0.994). Thus, while analyzing the 

original 20 GB dataset took around 10 hours to finish, the time cost is approximately 1 hour 

using the 20% sampled data. Further comparison of other sampling methods has already 

done by Ge Bao et al [67] where they have concluded that signal sampling can speed up to 

ten times while representing the whole brain’s signals very well with high accuracy.

3.3 Performance boost relative to other dictionary learning algorithms

The advantages of the proposed D-r1DL algorithm are predicated on its smaller memory 

footprint and robust learning mechanism (no need to set learning rate); even without 

parallelization, the algorithm should have similar or faster running speed compared with 

other dictionary learning methods, as Spark intrinsically performs out-of-core computations 

whether these are distributed over multiple machines or run in parallel on a single machine. 

We compare D-r1DL with two other dictionary learning algorithms: the online dictionary 

learning framework implemented in SPAMS [54] and the stochastic coordinate coding 

(SCC) algorithm introduced in [6]. We applied these two methods on the same HCP Q1 

dataset and computed performance statistics compared to D-r1 DL. We ran these algorithms 

using the same in-house server. The performance comparison is shown in Fig. 9 (averaged 

across all 68 subjects over the HCP task fMRI (tfMRI) dataset). From the comparison, it can 

be seen that D-r1DL outperformed the other two methods in all the seven tfMRI datasets.

To benchmark the D-r1DL efficiency on the running time, we designed an experiment using 

two popular parallel processing platforms of Spark and Flink. We set up a virtual cluster of 

three nodes, each with four virtual CPUs, 8192 MB RAM, and 30 GB disk storage. As we 

examined both platforms using varying of input matrixes, the preliminary testing shows that 

Flink Dr1DL could offer performance gains over Spark Dr1DL for large data. Fig. 11 
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illustrates the performance gain of Flink as the input data growth. We are leading another 

experiment with a bigger cluster to test the impact of larger datasets on this.

3.4 Real-time user feedback

We tested the performance of D-r1DL on the HLPNI as introduced in section 2.3 for 

individual-level analysis. Using individual fMRI matrix (with dimensions 176×223,945) as 

input and the same parameter setting as for group-wise analysis (K=100, r=0.07), the 

combined time cost for decomposing one network, generating network visualizations, and 

reporting web pages averaged around 4 seconds on our in-house server. Such a time cost is 

short enough for real-time visualizations on the decomposition results, thereby providing a 

useful feedback mechanism for the users. One sample result from the individual-level 

analysis and the comparison with GLM activation detection results is shown in Fig. 10.

4 Conclusion and Discussion

The neuroscience has entered into the bigdata era just as other leading sciences. This arrival 

though requires a cultural shift among the community from enormous isolated efforts 

applying a single technique to the smaller problems in laboratories toward more horizontal 

approaches researchers integrate data collected using a variety of techniques to solve bigger 

problems addressing the central questions of how the brain functionally and structurally 

connected. We have categorized the current computational efforts of neuroscience experts 

for in dealing with the bigdata challenges in 6 groups of data management, data 

visualization, Cloud storage, computing platforms, processing pipelines and processing 

engines.

In this work, we introduced our endeavors to address each of the above categories, notably 

for fMRI data types. We introduced HELPNI as an efficient neuroinformatics platform for 

data storage, processing pipelines, and data visualization. We used our HAFNI method to 

represent the fMRI data through a dictionary learning algorithm, and then we developed and 

implemented the D-r1 DL framework on Spark for distributed functional network analysis 

on large-scale neuroimaging data. We tested its performance on both the individual and 

group-wise fMRI data from HCP Q1 release dataset and demonstrated the results through an 

online visualization tool. The results show that the framework can meet the desired 

scalability and reproducibility requirements for fMRI bigdata analysis and serve as a useful 

tool for the community. The framework and the neuroinformatics system are both online as a 

web service for public usage and testing. Currently, we are working on applying the same 

algorithm using the Apache Flink framework on larger data. While Spark is vastly superior 

to Hadoop MapReduce for highly iterative computations, Flink possesses a few domain-

specific advantages over Spark that yields additional performance gains for D-r1DL. We are 

also working on a general solution for fRMI signals to combine deep learning techniques 

with parallel processing engines to exhibit a new processing method for fMRI signals.
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Fig. 1. 
Illustration of the mapReduce model applied to counting words problem. A potentially large 

list of words is processed into key-value pair records of form (word, 1) in parallel during the 

Map step. During the Reduce step, records with the same key (word) will be combined and 

an associative operator computes a sum for each word.
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Fig. 2. 
Illustration of the spark stack with its components. Spark offers a functional programming 

API to manipulate Resilient Distributed Datasets (RDDs). RDDs represent a collection of 

items distributed across many compute nodes that can be manipulated in parallel. Spark 

Core is a computational engine responsible for scheduling, distribution and monitoring 

applications which consists of many computational tasks across worker machine(s) on a 

computation machine/cluster.
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Fig. 3. 
Illustration of the HELPNI diagram and components. (a) shows the core part of HELPNI. 

This part consists of web application, file archiving, pipeline scheduler, local data storage, 

database and data visualization tools. All the external components interact with HELPNI 

core to transfer data. (b) demonstrates the data processing and cloud storage architecture of 

the platform. Based on the analysis procedure, user can define how the pipeline descriptor 

interacts with the computation machines. This includes Amazon EC2 linked to the S3 

storage, GACRC high performance computing cluster and its networking file storage and 

our local server with 2 virtual machines. (c) shows different way of importing data to the 

platform. Platform can either feed from datasets or it can obtain the information directly 

from PACS server. (d) Illustrates the data sharing capacity of system from which researchers 

can interact with the system and access the raw, preprocessed or fully processed fMRI data. 

They can also implement their own Pipeline with obtaining special access to the system.
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Fig. 4. 
The generated networks as being computed will appear on a dynamically-generated result 

screen linked to the report webpage.
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Fig. 5. 
Illustration of the D-r1DL framework. (a) Running example showing the input data S (one 

volume from the 4-D volumetric matrix), learned vector v (3-D volumetric matrix as a 

vector) and vector u (time series). (b) Algorithmic pipeline of r1DL. Red arrow shows the 

updating loop for learning each [u, v], blue arrow shows the updating loop for deflation of S 

and learning next dictionary. (c) Parallelization steps for the three operations from (b).
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Fig. 6. 
Spatial maps of the four pairs of group-wise functional networks obtained by r1DL (upper) 

and GLM (lower) from Emotion dataset. The temporal pattern of the functional networks are 

shown below the spatial patterns.
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Fig. 7. 
Visualization of the spatial patterns of a sample functional networks learned from group-

wise aggregated fMRI data with different sampling rates.
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Fig. 8. 
Time cost (measured in seconds) for decomposing 100 functional networks from group-wise 

aggregated fMRI data with different sampling rates. The original dataset has the sampling 

rate of 100% (rightmost).
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Fig. 9. 
Average time cost (measured in seconds) for functional network decomposition from 

individual tfMRI data during 7 tasks across 68 subjects, using the three dictionary learning 

methods.
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Fig. 10. 
Spatial maps and temporal variation patterns of the functional networks decomposed by D-

r1DL (left) and GLM (right) on the tfMRI data during Emotion Processing task from a 

randomly-selected subject.
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Fig. 11. 
Run time comparison of D-r1DL using Flink and Spark wih varying input data sizes.
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