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Abstract—Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a

dataset and classification task at hand. However, the gain in performance comes together with the lack of comprehensibility, posing a

challenge to understand how each model affects the classification outputs and from where the errors come. We propose a tight visual

integration of the data and the model space for exploring and combining classifier models. We introduce an interactive workflow that

builds upon the visual integration and enables the effective exploration of classification outputs and models. The involvement of the

user is key to our approach. Therefore, we elaborate on the role of the human and connect our approach to theoretical frameworks on

human-centered machine learning. We showcase the usefulness of our approach and the integration of the user via binary and

multiclass classification problems. Based on ensembles automatically selected by a standard ensemble selection algorithm, the user

can manipulate models and alternative combinations.

Index Terms—Classification, ensemble learning, data visualization, graphical user interfaces

1 INTRODUCTION

G IVEN a set of known categories (classes), Classification is
defined as the process of identifying to which category

a new observation belongs [36]. In the context of machine
learning, classification is performed on the basis of a training
set that contains observations whose categories are known.
A key challenge in classification is to improve the perfor-
mance of the classifiers, hence new observations are correctly
assigned to a category. Classification can be performed with
a variety of different methods tailored to the data or the task
at hand. Examples include, among others, decision trees,
support vector machines, or neural networks.

Research proposes to improve the accuracy of classifica-
tion using Ensemble Learning [12], [44], also known as Multi-
ple Classifier Systems (MCS) [34]. Such systems suggest
combining different classifiers, potentially expanding the
space of representable functions by using distinct learning
philosophies at the same time. Well-known approaches for
building ensembles propose to either train the same model
successively with different subsets of the data [5], [14], to
combine different model types [21], [41], or to combine dif-
ferent strategies such as bagging [5] with random feature
combinations in Random Forests [6]. Generally speaking,
the application of ensembles increases the complexity of
the classification process bringing in the inherent problem
of decreasing comprehensibility. In particular, it is challeng-
ing to understand how and to what extent the models
contribute to the classification, as well as which models pro-
duce a significant number of classification errors.

Visual and automatic methods for the analysis of Classi-
fication outputs in Ensemble Learning do not provide a
direct link from the data space back to classification model
spaces with other candidates for experimenting with new
ensemble configurations. Regarding the visual methods,
they also do not scale properly to represent a greater num-
ber of classifiers in ensemble model spaces. For example,
in [39] Silva and Ribeiro show how the models contribute
individually, but the analysis is limited to inspect the
ensemble after making the decision of which models will
take part on it. In [40], Talbot et al. present a system in
which is possible to interact and combine models and their
classification outputs through confusion matrices, but with a
limited set of model candidates. However, we can build
classification data spaces and connect them with model
spaces covering a wide range of the parameter space for
the classification problem at hand. By linking model and
data spaces, we foster an analysis process with a feedback
loop that allows the effective exploration of these spaces
driven by the user notion of importance. To the best of our
knowledge, this workflow is not supported by any visual
or automatic method for analyzing and exploring ensem-
bles of classifiers.

In this work, we aim to address the research question:
How to integrate data and model space to enable visual analysis of
classification results in terms of errors in Ensemble Learning?

We propose an interactive visual approach for the explo-
ration of classification results (data space) in close integra-
tion with the model space. Its main goal is to give direct
access to models in classifier ensembles, thus enabling to
experiment with alternative configurations and seek for local
classification patterns that are not visible through aggregate
measures. We visualize each classified data point and then
provide direct access to each individual model that is part of
the ensemble. Fig. 1 depicts our approach. We use data and
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planar projections to reveal linear (PCA [15], MDS [11]) or
non-linear patterns (t-SNE [27]) in the data points or models.
Besides, we also offer binned visualizations of the data space
to show characteristics of each class that the projections can
occlude. The data points are binned per class label and data
dimension (or data similarity, see details in Fig. 4). This
representation enables the identification in each class of local
areas of classification errors and areas of high classification
certainty or uncertainty, respectively.

In this work, we claim the following two-fold contribu-
tion towards enabling the visual analysis of classification
results in Ensemble Learning: First, the tight visual integra-
tion of the data and the model space. Second, a workflow that
builds upon the visual integration and enables the effective explo-
ration of models and classification outputs. The visual integra-
tion allows to manipulate and explore the impact of each
data object and model in a straight-forward manner. Key to
our concept is the role of the user, who aims at forming
hypotheses and gaining new insight based on the task at
hand. Therefore, we relate our contributions to existing the-
oretical frameworks on human-centered machine learning
and provide visual guidance to identify effective models
not selected by the automatic search in first place. One can
then experiment with alternative ensemble model selections
and seek for local improvements based on the constraint
that the overall performance is not impaired. The views
update on the fly, enabling the user to retrace the impact on
the classification outputs. We apply our approach to binary
and multiclass classification problems.

Our target users are model developers that can benefit
from the explorative capabilities of our approach, as well as
domain experts in their classification problem of choice.
These experts can express preferences concerning one class
or region of the data space, and our tool takes care of finding
a proper combination of models to fit these needs.

2 RELATED WORK

Our work builds upon the idea of visually integrating the
space of machine learning models and the data space, thus
enabling the exploration of the impact of each data object
and model. Following, we discuss related work from

ensemble learning and interactive model space visualiza-
tion. Our approach does not aim at retraining the models
but at finding effective model combinations that were not
given by the automatic search.

2.1 Ensemble Learning

Classifier ensembles aim at combining the strengths of each
classification model. To build ensembles, it is necessary to
generate a variety ofmodels and then to combine their results.
The first step—generating the diversity of models—can be
accomplished by making use of different strategies. Several
ensemble learning philosophies [17] andmethods for combin-
ing the classification outputs [31] exist. For example, the same
model can be trained successively with different subsets of
the data [5], [14], with different types ofmodels [21], [41] (e.g.,
Decision trees, K-nearest neighbors), or with combinations of
strategies such as the mixture of bagging [5] and random
combinations of strategies in the RandomForests [6].

In our case, we follow the strategy of producing distinct
types of model. With multiple types of classifiers, it is neces-
sary to define which of these types will take part in the
ensemble, and this model generation procedure and the
multitude of possible combinations motivated the use of
data visualization to support this task. Conversely, the
model diversity produced by the other strategies is often
given by the design of the respective algorithms. In these
cases, it is only necessary to set a base classifier, and an
automatic process generates all the other models in the
background (e.g., the AdaBoost M1 method [14], in which
usually Decision Stump trees are the base classifier to pro-
duce ensembles using a boosting strategy).

In particular, we worked with Multiple Classifier Sys-
tems, in which there is an overproduction phase and the
generation of big model libraries (with hundreds or even
thousands of models because the analyst typically does not
know beforehand which model types will perform well
together). Then, with the big model libraries, there are sev-
eral search algorithms that were developed to look for the
best possible combination of models automatically (e.g.,
GRASP [26], [43], evolutionary algorithms [1]), without
experimenting with all the possible combinations due to the
complexity of this combinatorial problem. In our work, we
use a search selection algorithm developed by Caruana
et al. [10]. However, using visualization and interaction we
enable the user to update on-the-fly the ensemble selection
and instantly see the changes in classification outputs. This
workflow fits into the interactive machine learning concept
presented by Amershi et al. in [2], in which the authors refer
to the user updates as rapid and focused. Conversely, the
fully automated selection method requires to restart the
algorithm from the beginning if the user is not satisfied
with the results, a time-consuming process.

2.2 Interactive Model Space Visualization

Following, we provide an overview of visualization techni-
ques to represent the model space, also called themodel land-
scape. Building upon the well-known visualization methods,
we then discuss interactive approaches introduced to steer
the performance of classifier ensembles.

Rieck et al. [33] used scatter plots for representing reg-
ression models and to perform a comparative analysis of

Fig. 1. Visual integration of the data and ensemble model space. Left:
The classification results are displayed in scatter plots. The user can
decide between a linear (MDS, PCA) or non-linear (t-SNE) projection
technique that transforms the results to a two-dimensional scatter plot. A
manual selection in the data space triggers a data selection update.
Right: The model space depicts every single model and allows to com-
pare them by customizing the axes; herein, we contrast the overall per-
formance with the performance w/ data selection. The interactions in the
model space trigger an ensemble update with immediate impact on the
data space.
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competing models. In contrast, Olah [29] also shows groups
of models using scatter plots, but for representing distinct
Neural Network architectures to classify images of hand-
written digits. Similarly, Padua et al. [30] represented collec-
tions of Decision Trees using several linked visualizations, in
which the users can explore large portions of the parameter
space of these models and assess the predictive quality of
trees derived from several combinations of parameters. In
all cases, a positive aspect of building compact visual repre-
sentations of models is that one can then easily link them to
the data, an essential step in better understanding machine
learning models [4]. However, it is still missing the exten-
sion of these ideas to ensemble learning applications.

The analysis of classifier models through interactive
visual interfaces is an active area of research [25]. Talbot
et al. [40] present EnsembleMatrix, in which the user can
interactively build and steer the performance of ensembles
of classifiers. In [18], Kapoor et al. also present an interactive
tool called ManiMatrix, in this case for the improvement of
individual classifiers. In both cases, confusion matrices
appear as a central component. InManiMatrix, the users can
express their preferences w.r.t. decision boundaries among
classes using a confusion-matrix. In EnsembleMatrix, the
matrices support the decision of which combination of clas-
sifiers works better when building ensembles.

However, despite the compact and efficient information
about the class confusion that the matrix-based approaches
convey, it is still aggregated data about performance that
does not go until the bottom level of the errors with individ-
ual data points. To provide this level of access and better
visualize where are the errors coming from, we worked
with a representation of the data space that shows this level
of detail. Also, due to scalability issues, the use of one con-
fusion matrix for every classifier in EnsembleMatrix is not
applicable to our case, in which we had libraries with hun-
dreds of models for building MCS.

In EnsembleMatrix, the ensembles were built from a lim-
ited and small number of candidate models, and not in the
same way that happens in our context of building MCS.
Regarding giving access to the data instead of only showing
aggregated information about model errors, Ren et al. [32]
pointed recently this limitation of most current systems.
They presented a solution for multiclass problems in which
they visually compare different models with similar perfor-
mance but with very distinct behavior w.r.t. to the classes
and local regions of the data space. ModelTracker [3] also

provided access to the data level for model performance
analysis.

We go in the same direction of revealing errors that are
not visible when aggregated but we do that in an ensemble
learning context. While our interactive visual approach sup-
ports the overall improvement of classifier models, we
mainly focus on the integration between classification
results and models and propose a workflow for effective
analysis. With our approach, we give direct access to any
model or data point, thus enabling the direct manipulation
of these objects and bringing the possibility of locally adjust
the ensemble behavior accordingly to the user preferences,
when several alternative model selections are possible.

3 INTEGRATING DATA AND CLASSIFICATION

MODEL SPACES

We propose a visual analytics approach for the exploration
of model and data spaces in ensembles of classifiers. We
work with Multiple Classifier Systems (MCS) and introduce
a data-guided and user-centered process for interacting
with data and models in this context (see Fig. 2). In addition,
the direct linkage of data and models is a central component
of our workflow, because it allows the user to manipulate
objects in any side and see the impacts on the other side
instantly, by means of interaction and data visualization.

MCS are often generated from huge model libraries of
several types of classifiers with different parameter set-
tings. The process does not depend on previous knowledge
about which models perform better for the data and classi-
fication task at hand. Several models are produced and an
automatic search step looks for the best possible combina-
tion of models that deliver higher performance when com-
bined in an ensemble of classifiers. In our workflow, we
build a MCS using the standard automatic approach previ-
ously described. Then, we initialize our tool, in which we
can visualize the models and the classification outputs pro-
duced by the initially automatically selected ensemble. Our
starting point with our visual analytics approach is after
the automatic construction of MCS.

In our tool, we have a visualization panel that represents
the classification outputs (the data space, see Fig. 3 (1)), and
two linked other ones that show the classification models
accordingly to selectable performance and diversity meas-
ures (the model space, Fig. 3 (3)). Importantly, we show
not only the models that were automatically selected and

Fig. 2. Our process for exploring ensembles of classifiers starts with the visualization of the classification outputs and the combination of models that
produced the corresponding classification (1). Then, it allows the user to explore and select regions of interest in the data space (2), updates the
model space to show how each model classifies the current data selection, and allow inclusion, replacement or removal of models from the ensemble
(3). At each change in the ensemble configuration, the visualization of the classification outputs is updated accordingly, which introduces a feedback
loop that can lead to new rounds of interaction with the system.
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correspond to the initial ensemble configuration, but also
show the whole model library that was used in the begin-
ning of the construction. Therefore, it is possible to add,
replace or remove models at any time in the ensemble. With
our approach, the process of exploring the model space is
driven by the user interest in particular regions of the data
space. We present our model space exploration process and
its feedback loop with greater detail in the next subsections.

3.1 Representing Models and Data

We aim at enabling the user to directly manipulate each
data point and each model in our visualizations. With
respect to scalability, we have to consider that the model
libraries for building MCS can have hundreds of classifiers.
Regarding the data space, we visualize a validation or test
dataset with unseen data during the training phase of the
models. In any case, models or data, we need a visualization
that can accommodate these objects at scale. For this reason,
we decided to use scatter plots to visualize both. In the
model space, each dot corresponds to a classifier model and
the color shows if the model is part of the current selected

ensemble or not. Analogously, in the data space, each dot
corresponds to one instance of the dataset, and the color
indicates the actual label. Besides, a white outline represents
mislabeled points.

In our tool (Fig. 3), the left-side panel is the data space.
The user can decide to start the exploratory data analysis
and search for clusters of errors in the classification outputs
by selecting to project the data dimensions to the two-
dimensional space using data or planar projections.

In addition to the projections, we support the exploration
of classification outputs vertically aligned per data similar-
ity or data dimension, and in both cases horizontally
aligned by model uncertainty (the Binned per class visualiza-
tion type; see details in Fig. 4). For instance, the user can
select one dimension at each time (e.g., age) and visualize
how the ensemble classifies the data regarding this dimen-
sion (see Fig. 5). The user can also decide to see the data
points organized by a one-dimensional data similarity mea-
sure. The visualization that uses this similarity measure pro-
vides the advantage of producing one single plot for the
classification outputs instead of having to alternate among
plots for each data dimension while keeping the binned per
class layout. To obtain the similarity score for each data
point given a dataset for classification, we project all data
dimensions using PCA and take the first component.

Still on the Binned per class visualization of the data space,
besides using the vertical axis of the scatter plot to show the
dimension or similarity score values, we also compute the
classification probabilities of the predicted class for each
data point and map to the horizontal axis. In addition, we
display each class in a different region of the plot and side-
by-side, to better distinguish the classification outputs per
class (see Fig. 5, in which we have a binary classification
problem and the green and orange colors distinguish the
data instances from both classes.). However, in scatter plots
the overplotting can occur and make it difficult to better
identify dense regions in the data. To overcome this prob-
lem, we implemented and included a heat map visualiza-
tion in the data space. At any time, the user can switch
between the standard scatter plot and the heat map to show
the same data. With this heat map, the clusters with classifi-
cation errors become more distinguishable.

Concerning the models, we represent them in our tool in
the right-side scatter plots (Fig. 3). We precompute measures

Fig. 3.Overview of our tool. The user can select regions of the classifica-
tion outputs (1), see how the models classified these areas (2), interact
with a preloaded collection of models adding, replacing or removing
them to update the ensemble (3), and track the performance while inter-
acting with the models (4). Above, we also show the icons we use
throughout this paper to identify the two tasks we support: Exploratory
analysis of data and models spaces, andModel Selection.

Fig. 4. Visualization and Interaction types. To visualize the data space, we provide two alternatives. The first one, binned per class, shows the data
aligned by measures of model uncertainty and a one-dimensional similarity score or a data attribute value. The second way to visualize the classifica-
tion outputs is by choosing data or planar projections. The model space also offers two visualization possibilities: the models organized by perfor-
mance measures or data and planar projections of a model distance matrix. Regarding the interactions, the user can directly select models or data
points in the visualization. With the models, there is the additional capability of automatically adding, removing or deleting them based on the current
user selection of data, by clicking on the corresponding buttons in the interface.

486



of performance and diversity for each model and let the user
decide which one should be assigned to each axis. We have
two linked panels for the models because this layout gives
more flexibility to the user. It allows the simultaneous visual-
ization of the model library from different perspectives by
assigning different measures to each of the panels. For over-
all performance, we compute the weighted Area Under ROC
and weighted F-Measure scores. The user can also choose the
F-Measure score per class. Regarding the model diversity, we
use the Q-statistics [22], a pair-wise measure that compares
the classification of each data point between two classifiers
and captures if the models similarly classify the data or not.
Then, we build a distance matrix using the Q-statistics mea-
sure and project this matrix to the two-dimensional space
using MDS. In the end, we let the user visualize the outputs
of this projection. We can read the model diversity scatter
plot in the following way: models more close to each other
classify the data in a similar way. Models far away from each
other classify regions of the data space differently, despite
the fact that they can have similar overall performance.

In the context of ensemble learning, model diversity is an
important aspect. Very often, we want to find models that
classify distinct regions of the data space not in the same
way, because then we can combine the model strengths in a
good ensemble. There is research about the role of diversity
in ensembles [8] and it is not guaranteed that we can always
use this measure to get the best model combination. How-
ever, it is still a relevant metric to consider when comparing
and visualizing classifiers in ensemble model spaces.

3.2 Interacting with Data and Model
Representations

The previously mentioned model-data linkage is a central
component of our approach. With this link, we can have the
visualization of the data space as an entry point for the user
to find regions of interest in the data and the corresponding
performance of the models for these regions. This behavior
is backed, naturally, by a series of interactions that we
implemented in both model and data panel visualizations.

We have, at the end, a process that contains a feedback loop
(Fig. 2), in which for any data selection we have correspond-
ing model candidates, and them for any model selection the
classification outputs in the data space change again, poten-
tially allowing new rounds of interaction.

When the user interacts with the data space and selects
items, we compute the performance of each individual
model for the current data selection (percentage of correctly
classified data items). Then, the user can decide to use in
one axis of the model scatter plots this local performance,
and the model space will update accordingly to the selec-
tion. In addition, it is also possible to activate a filter that
selects only the points that were wrongly classified by the
ensemble. This functionality makes it easier to take care of
the errors in separate, by facilitating a fast selection of these
data instances. The data space always represents the classifi-
cation outputs (actual class, model uncertainty, and misclas-
sified items) for the current ensemble selection in the model
space visualization.

The user can also interact with the models. This can occur
in two ways: by direct manipulation, in which the user
directly select/deselect models in the scatter plots, based on
their position and corresponding metrics assigned to the
axes. We also provide the add, del and replace buttons in the
interface, which automatically update the ensemble selection
accordingly to a previously selected region of interest in the
data space (see Fig. 4, Interaction types). This functionality
facilitates the interaction because if we have several models
close to each other in the scatter plots, the direct manipul-
ation is not always a convenient way to precisely pick one of
them in particular. To give an example of using the buttons,
the user can select a cluster of errors in the data space,
and then press the model replace button, for instance.
This action triggers a method that accesses the performance
of all available classifiers in the model space and returns the
best and the worst performing model for the currently
selected data points. Then, it removes this worst model from
the ensemble and includes the best. If the best model for the
current data selection is already part of the ensemble, then it

Fig. 5. On the left pair of images, we see the classification outputs for a dataset of individuals that earned less or more than 50K per year. There is a
concentration of mislabeled data points in the >50k class (circulated in yellow). In these cases, the ensemble assigned low classification probability,
which makes these errors more easy to fix. The smaller image shows the same data with the addition of a heat map. On the right pair of images, we
see the classification outputs for a dataset of individuals that tested negative or positive for diabetes. There is a cluster circulated in yellow of misla-
beled data points in the positive class (dots with a white outline) that corresponds to individuals with lower age. In these cases, the ensemble
assigned high classification probability, which makes these errors more difficult to fix.

487



is considered for reinsertion, giving it more weight in this
case. We add the constraint that we only pick the best model
for the current data selection if it also lies into the last two
deciles of overall classification performance. If this condition
is not satisfied, our search looks for the next candidate that
both performs well locally and globally. Independently of
the interaction type of preference, whenever an interaction
occurs with the model space and the ensemble changes, we
compute the classification outputs for the new model selec-
tion and update the corresponding linked panels.

The accuracy of the ensemble with the points in the data
space is updated at each interaction with the models and dis-
played in a text panel with the percentage of correctly classi-
fied instances. This computation is very fast to do becausewe
already have precomputed the results for each available clas-
sifier in the model space, so it is only necessary to combine
the results of the selected models at each time the selection
changes.We use the arithmeticmean of probabilitiesmethod,
which is a standard procedure to combine classification
results in an ensemble (for more details and other possible
methods, see [23]). To get more significant results about the
ensemble performance, we also have a button that the user
can press to perform a 5-fold cross-validation evaluation and
get the overall and per class ensemblemodel performance.

Lastly, there is also another filter that makes only the cur-
rent selected classifiers in the model space accessible, to
allow the detailed analysis of the models that are part of the
ensemble.

4 THE ROLE OF THE USER IN THE VISUAL

EXPLORATION OF CLASSIFICATION MODEL AND

DATA SPACES

In this section, we connect our workflow with theoretical
frameworks that describe the role of the user in machine
learning pipelines. We identify two main tasks supported
by our approach: the exploratory analysis of model and
data spaces (hypotheses forming) and the ensemble model
selection , in this case by experimenting with alternative
ensemble configurations guided by the interplay between
those spaces and how the data reacts to model changes
(WHAT-IF analysis).

In [35], Sacha et al. use the expression Human-Centered
Machine Learning to present a conceptual framework
that describes human interactions with machine learning
(ML) components. The authors focus on the combination of
ML methods with human feedback through interactive

visualization. The proposed conceptual framework fits any
ML method besides classification and describes the role of
the analyst in any step of a complete visual analytics/ML
pipeline. Other authors also highlight opportunities to com-
bine ML algorithms with human expert knowledge through
interactive graphical interfaces. In [2], Amershi et al. discuss
the role of humans in Interactive Machine Learning, in com-
parison with traditional machine learning workflows. Still
in [35], the role of the analyst in a human-centered ML pro-
cess loop is shown in more details and considers six analytic
scenarios: Confirmatory Analysis, Hypothesis Forming, Con-
fronting ML Results, Adapting ML Pipelines, What-IF Analysis
and Expert Verification.

Two of the mentioned scenarios are within the scope of
our work, namely the Hypothesis Forming and What-IF Anal-
ysis. The first one corresponds to the Exploration task in our
categorization. The second, What-IF Analysis, corresponds
to ourModel selection task (see Fig. 6).

4.1 Exploratory Analysis

Our workflow suggests that one can explore either the
model space, the data space, or both spaces combined. This
brings flexibility to the user, who can start the exploration
by interacting with the data or classifier models. The explor-
atory analysis capabilities of our approach go hand in hand
with the proposed scenario Hypothesis Forming introduced
by Sacha et al. [35]. The main idea is to form new hypothe-
ses without having specific knowledge about the data or the
models. A means to form new hypotheses is to seek for pat-
terns that reveal trends, clusters, outliers, or any other struc-
ture of interest. Such structures help to generate insight and
provide helpful information towards understanding data
and models. Following, we outline all three scenarios: the
model space exploration, the data space exploration, and
the combined exploration.

4.1.1 Model Space Exploration

The user explores the model space by assigning different
precomputed measures to the scatter plot axes. Going one
step further, one can identify clusters of models that per-
form similarly by deciding to investigate their dissimilar-
ities at a glance. To do so, the user can project the models in
a two-dimensional space using MDS. In this particular case,
MDS is the rational choice, because it is a linear projection
technique that preserves the distances and provides a global
view of the models. MDS is applied to the model distance
matrix, which we derive using the pair-wise Q-statistics
model diversity measure. This measure captures differences
in the way classifiers label the data points. This way, the
user can inspect the impact of the model diversity concern-
ing a particular ensemble selection (see Figs. 7 and 8). If all
the ensemble selected models are clustered in the scatter
plot representation, this indicates that this ensemble does
not have a diverse set of classifiers, and performance played
a major role. Such information can support the decision to
not spend additional time training alternative model types
that can result in new diversity score ranges. We applied
our visual approach to analyze model spaces ranging from
100 to 1000 trained classifiers of different types and distinct
parameter settings. One can combine these models in sev-
eral ways to build ensembles.

Fig. 6. We show which analysis scenarios we support in a human-cen-
tered machine learning framework of reference. Namely, we support the
hypothesis forming and theWHAT-IF Analysis scenarios.
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4.1.2 Data Space Exploration

In the second scenario, and analogous to model space explo-
ration, the user can decide to explore the data space and
corresponding outputs of the current ensemble selection as
depicted in Fig. 5. The analysis of the classification outputs
with the binned per class visualization type (see Fig. 4) reveals
the distribution of classification errors. At any point in time,
the user can change the visual alignment of the data instan-
ces by selecting either a data dimension or the precomputed
data similarity measure. While the data dimension supports
the identification of classification errors that occur in a partic-
ular value range, the data similarity measure reveals errors
that can be considered as similar based on the first compo-
nent of the PCA. We choose PCA over other projection tech-
niques because it is a linear technique, which captures global
patterns of the data based on the pair-wise co-variances (a
measure of the joint variability). It also tends to retain in the
first component more information about the data variance
than other methods. This choice provides us with the neces-
sary means to identify similar data points, as well as outliers
on a global scale, which were misclassified. Digging into the
characteristics of similarly misclassified data points can also
give an idea of why they are mislabeled. For example, a sin-
gle model could be responsible for the misclassification of a
point cluster, which is not visible in another view. Note that
the application of a planar projection technique has no
impact on the classification results at all. The projection does
not determine the classification results but facilitates to draw
conclusions based on the data characteristics. In both cases,
classification errors next to the decision boundaries are typ-
ically easier to correct by experimenting with alternative
ensemble selections compared with errors where the model
assigned a high probability to the predicted class. To change
the classification of mislabeled data instances with a high
probability, more significant changes in the ensemble selec-
tion are necessary. These changes typically propagate across
all classification outputs.

Besides, the user can also visualize the data and find clus-
ters of errors by exploring two-dimensional data or planar
projections. This alternative has the advantage of using both
the vertical and horizontal axes of the scatter plots to repre-
sent data similarity, thus preserving more information about
how similar or dissimilar are the data. In the end, we tackle a
combinatorial problem with multiple candidate solutions,
which are combinations of models in ensembles of classifiers.
Therefore, we offer distinct views on the data, giving more
possibilities to the user in identifying regions of interest in the
data space that lead to that alternativemodel combinations.

4.1.3 Exploration of the Interplay Between Model and

Data Space

Besides the possibility of exploring both, models and data
separately, the full functionality of our approach comes to
light when exploring both spaces combined (see the feedback
loop in Fig. 2). The user can explore the reaction of the
data space to the model space, and vice versa. For example,
the user can investigate how the ensemble selected models
perform with the most prominent clusters of errors in the
data space. By choosing a region of interest in the data
space, the user can adjust the model space to show the per-
formance of all models regarding the data selection. The
user can then focus on the ensemble selected models and
see if the models classify clusters of errors similarly or if
there are significant differences between models. This infor-
mation is crucial to get an initial idea of the reason for the
misclassification. Either all the ensemble models’ perform
poorly with the data selection or only a subset of them. In
the latter case, it is more likely that an alternative ensemble
selection help to fix mislabeled items in the data space.

4.2 Model Selection in Ensemble Learning

Apart from the Exploration task, our workflow also supports
Model selection . This capability brings power to our tool
because it enables the user to construct ensemble models

Fig. 7. Model diversity in a multiclass problem. The right scatter plot
shows an MDS projection of the models automatically selected to clas-
sify the Vehicle dataset in ensembles of classifiers, marked in yellow. In
this case, we run the ensemble automatic selection [10] using a back-
ward and forward search strategy. Even though the neural networks
have the best overall accuracy individually and outperform decision
trees, a J48 Decision Tree was also selected because in combination
with the others it improves the classification globally. In our tool, the indi-
vidual model performance is accessible in auxiliary text panels and
linked visualizations.

Fig. 8. Model diversity in binary classification problems. In the above
examples, we use two binary classification datasets, the Adult and the
Bank Marketing datasets. Both scatter plots show MDS projections of
models automatically selected to classify each dataset in ensembles of
classifiers, marked in yellow. In comparison, the right case shows
greater model diversity, represented by the greater distance among
models in the projection. The Bank Marketing dataset is highly unbal-
anced, and most of the models with better overall performance show
poor performance with the smaller class. Then, a very diverse model
appears in the automatic ensemble selection because of its excellent
performance with the class with fewer instances, while not hurting the
ensemble overall performance.
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interactively. The user experiments with alternative ensem-
ble configurations and introduces changes in the ensemble
model selection, which affect the respective classification
outputs. The experimentation typically occurs right after a
previous exploration phase. However, here the user ends
up with a different ensemble of classifiers compared with
the state of the system at the beginning.

We correlate the model selection capabilities of our
approach to the What-IF Analysis scenario described in [35].
Applying this type of exploration, the analyst can interact
with the ML pipeline and observe its reaction to changes.
According to our workflow for model selection in ensemble
learning, the changes correspond to the modifications that
are introduced by the user in the selection of classifiers in
the model space.

As mentioned in Section 2.1, the automatic ensemble
selection procedure is a huge combinatorial problem and,
therefore, does not experiment with all possible model com-
binations. On that score, it is natural to expect alternative
ensemble selections to be in favor of a given class and also
preserve the overall classification performance at the same
time. In a multiclass problem, the user has a greater chance
to improve the performance of the model for one or another
class than for all classes together.

The user notion of importance helps to prioritize and
decide on trade-offs. Often, it is not possible to improve all
regions of the data space at the same time. The chance of
identifying clusters of errors through several visualization
types, select and inspect the raw data in linked text tables
and experiment with alternative ensemble model combina-
tions with on-the-fly feedback about model performance is
central in our approach. Thus, the user has comprehensive
information at hand to decide which region of the data
space should be prioritized, taking into account that fre-
quently there is no chance to fix all points together. We refer
to this process of prioritizing regions in the data space, as
well as looking for alternative ensemble selections, as a task
of setting up constraints in the data. Constraints, thereby,
refer to areas that the user wants to protect from poor classi-
fication performance. A full example and walk-through of
this type of exploration appear in the following section.

5 VISUAL ANALYSIS OF CLASSIFICATION RESULTS

IN BINARY AND MULTICLASS PROBLEMS

In this section we showcase the full capabilities of our pro-
posed workflow by building Multiple Classifier Systems
(MCS) for binary and multiclass application problems. We
use state of the art benchmark datasets from the UCI
machine learning repository [24], and a collection of existing
classification models [16] to build MCS for binary and mul-
ticlass problems. For the binary classification problem, we
work with two set-ups: a model library with 1,045 classi-
fiers, and a stratified sample with 200 models, for fast train-
ing. In both cases, we have 13 different model types and
varying parameter settings. With the multiclass experiment,
we work with 200 classifiers sampled from a library with
986 models. This library has eleven different model types
with varying parameter settings.

We use the ensemble selection algorithm of Caruana
et al. [10] to perform initial automatic ensemble selections.

At the beginning of each experiment, our tool initializes
with the classifier libraries, the automatic ensemble selec-
tion performed by Caruana’s algorithm, and the initial
classification outputs. Users can freely experiment with
alternative ensemble selections in the model space, and
see how the data space reacts to these changes.

In Section 5.1, we group and describe all we have done to
prevent overfitting, a common issue that comes with the
usage of ensembles. In Sections 5.2 and 5.3, we describe
two experiments following the workflow presented in
Fig. 2, contemplating the interactions with models and data
described in Section 4.

5.1 Overfitting and Model Generalization

Ensembles can overcome the performance of individual
classifiers, but the benefit comes with the higher risk of
overfitting [9]. This problem happens, for instance, when a
model captures some peculiarities of the training data, such
as those caused by noise in collecting the learning examples
[44]. Then, these are wrongly recognized by the learner as
the underlying truth. An ensemble can be complex enough
to fit the training data perfectly, but too much model com-
plexity leads to a poor generalization with new data.

To prevent the problem mentioned above, the main func-
tionality we introduce is the chance of replacing existing
models in an ensemble. By keeping it compact, we avoid
excessive model complexity, which would have been the
case if we employ only an additive approach. However,
besides preventing the overfitting and aiming to keep an
optimum global model performance with new data, we
allow the user to favor one particular class as Kapoor et al.
did in [18]. In this work, the authors refer to existing classifi-
cation problems with distinct mislabeling costs.

Regarding the evaluation of the ensemble selection
obtained after user interaction, we use twomethods to assess
model generalization. In the binary classification problem
(Section 5.2), we split the data into train, validate, and test
sets. The first split we use to train the individual classifiers.
The second, validate data, is the one the user interacts with
to adjust the ensemble and get instant updates on the model
performance metrics. Then, we compare the performance of
the automatically selected ensemble and the user-adjusted
ensemble using a held-out test dataset and report the results
in the following subsection. With the multiclass problem
(Section 5.3), we use only the train/test data splits because
the dataset is not big enough for more splits. The user inter-
acts with the test data and modifies the ensemble. Then,
we update the performance metrics using a 5-fold cross-
validation evaluation on all the data.

Finally, we use bias/variance decomposition and report
these measures to collect additional evidence that the user
does not go in the overfitting direction after adjusting the
ensemble selection. This method also allows inspecting if
the efforts to avoid overfitting (variance) do not fall into the
opposite error of underfitting (bias) [13].

5.2 Ensemble Model Selection in a Binary
Classification Problem

In the following experiments, we showcase how we support
ensemble model selection in a binary classification prob-
lem, using model libraries of 200 and 1045 classifiers.

490



5.2.1 Adult Dataset with a 200-Models Library

We use in this example the binary classification Adult data-
set, in which the task is to predict whether the income of an
individual exceeds 50k US dollars per year based on census
data. We work with train, validate, and test (held-out) data-
sets, with 5000, 2500 and 2500 instances, respectively. To
assess model generalization, we use the test (held-out) data-
set to compute the performance metrics of the model
obtained after user interaction with the validate set.

We start with a model library of 200 classifiers, and the
automatic selection procedure gives an ensemble with three
models at the beginning (a Bayes Net, a Decision Stump base
model using AdaBoost and a REPTree base model with bag-
ging).We experimentwith different visualizations of the clas-
sification outputs, and the PCA projection enables us to
identify clusters of errors in the data space easily. We try
selecting the most prominent cluster and improve the classifi-
cation in this region (see Fig. 9(1)). After selecting the biggest
cluster, we adjust the model space to show the best models
for the current data selection. Next, we press themodel replace
button once (Fig. 9(2)). This interaction removes the worst
model for the current data selection and searches for the best
one for inclusion. In this case, the Bayes Net was replaced by
anothermodel of the same typewith different parameters set-
tings, available in the model library but not automatically
selected at the beginning. These changes improve the classifi-
cation of the>50k class by six percent while keeping the over-
all performance (0.91 using theROC score).

The Adult dataset is unbalanced, with more instances in
the first class (<50k/year). Most of the classifiers in the
model library perform better with this class, which gives
room for improvement with the other one (>50k/year). To
assess how well the new ensemble selection generalizes
after user interaction, we estimate the bias and variance for
the new ensemble selection (see the table in Fig. 12). The

bias is the same, which shows that the new model selection
is as accurate as the initial one. The variance almost does
not change, which gives us the information that the new
selection potentially generalizes well to unseen data and
overfitting is not a major risk.

5.2.2 Adult Dataset with a 1045-Models Library

In the second example with the Adult dataset, we use a dif-
ferent model setup. In this case, we use a model library with
1045 classifiers, instead of 200. The automatic ensemble
selection picks seven decision tree models from the initial
collection: two base-classifier trees with AdaBoostM1, three
with bagging and two standard J48 decision tree models.
Regarding the preparation of the datasets, we use the same
setup of the previous experiment (train, validate, and test
(held-out) datasets, with 5000, 2500 and 2500 instances,
respectively).

We start the interactive exploration of the data space by
selecting the Age data dimension on the vertical axis of the
data space plot with the aim of finding clusters of mislabeled
items by this dimension. In the visualization of the data (see
Fig. 10(1)), we have the two classes positioned horizontally
in opposite areas of the scatter plot. The classification proba-
bility, indicated by the horizontal position of each data point,
allows the analysis of the error distribution per class. So far,
we identified areas that are likely to contain more errors in
the classification than others. Although, the visualization
suffers from overplotting, which hinders us from perceiving
the actual data point density in the corresponding regions of
the scatter plot. To overcome this limitation, we enriched the
point-based scatter plot visualization with an inverse dis-
tance weighting-based point density visualization [38]. The
actual density of data points can be perceived efficiently
using the resulting heat map. In areas with overplotting
caused by clusters of mislabeled data, the heat map helps to

Fig. 9. Binary classification with theAdultdataset. The user interacts with the data and models to find a model selection that improves the >50k class
without hurting the overall performance. The automatically selected ensemble (1) has a 0.91 overall performance ROC score, a 0.90 F-Measure
score for the <50k class, and a 0.67 F-Measure for the >50k class. After user interaction (2), the corresponding scores with the new ensemble
selection are 0.91, 0.9 (0.897) and 0.71.
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distinguish significant variations in the quantity of these
errors.

Then, we choose the class that worsens the ensemble per-
formance (>50k class, Fig. 10(1)) and select the densest
regions using the heat map to identify areas with clusters of
mislabeled data points. To do so, we adjust the model space
scatter plots to show both the performance of the ensemble
with the current data selection and the overall performance.
In the top-right area of the models scatter plot, the region
that shows classifiers with good local and overall perfor-
mance, we discover models that were not included by the
automatic selection procedure (Fig. 10(2)). The automatic
ensemble selection [10] does not take all possible combina-
tions of models into account. In consequence, it is always
possible to find competitive new ensemble configurations.

We start the interaction with the models by replacing the
worst performing model for the current data selection.
Next, we repeat this procedure by pressing the replace but-
ton again, backed by the performance statistics panel and
the data space visualization updates. Last, we make the
ensemble even more compact to reduce the chances of over-
fitting and press the del button once. This action removes
from the current ensemble the worst model for the initially
selected data points. We see in the data space that we
reduced the errors in the >50k class significantly, with the
cost of increasing the errors in the <50k class by a fraction
(see details in Fig. 10). The final ensemble selection contains

a new Bayesian Network model inserted twice, together
with decision trees we had at the beginning.

5.3 Ensemble Model Selection in a Multiclass
Problem

In this example, we showcase how we support ensemble
model selection in a multiclass problem using the Vehicle
dataset. The classification task is to label a given silhouette as
one of four types of vehicle, using a set of features extracted
from the silhouette. We divide the data into 564 training and
282 test instances. The user interacts with the test data. When
the model selection changes, we update on-the-fly the perfor-
mance statistics using 5-fold cross-validation on this data.
We initialize our tool with an automatically selected ensem-
ble with three neural networks models. We use the F-
Measure score throughout this experiment, both to compute
theweighted overall and per class performances.

We start the exploration of the data space by trying to
improve the classification in the region with most of the
points of theworse performing classes (see Fig. 11). The visu-
alizations that use dimensionality reduction allow to inspect
the mentioned region. We select among them the t-SNE pro-
jection because it provides the best class separation in this
case. Next, we select the points in this region with most
worse classified instances (opel and saab classes). We use the
linked data text panel to confirm the data labels. We try
replacing the model with the worst performance for the

Fig. 10. Visualizing clusters of errors and searching for alternative ensemble configurations based on user-defined regions of interest in the data
space. The automatically selected ensemble (1) has a 0.91 overall performance ROC score, a 0.91 F-Measure score for the <50k class, and a
0.67 F-Measure for the >50k class. After user interaction (2), the corresponding scores with the new ensemble selection are 0.91, 0.90 and 0.72
(7 percent class improvement). The improvement in the selected cluster of errors is 21 percent in this case. Besides reporting the performances,
we visualize how the interactively chosen ensemble performs with unseen data (in HELD-OUT DATA, A and B).
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current data selection with the best one. We press once the
button replace in the model space for that. Automatically, our
tool removes one of the neural networks from the ensemble
selection and insert one learner based on amultinomial logis-
tic function. We still have three models after the interaction,
but not all of them are neural networks anymore.

We evaluate the performance of the new ensemble
selection by performing cross-validation and verify it using
the statistics panel in our tool. The results are satisfactory,
because one of the classes show now a significantly better
classification accuracy, with 7 percent improvement (class

saab). Meanwhile, the overall performance is still as good as
the initial one, showing even a small increase (0.77 initially,
and 0.78 after user interaction).

The Vehicle dataset we use in this example is balanced,
with almost the same number of instances for all the classes.
However, the performance of the initial automatically
selected ensemble is way better with two of these classes
(bus and van, 0.96 and 0.91 respectively) than the other ones
(opel and saab, 0.66 and 0.60 respectively). So, there was
room for improvement in the worst classified classes. We
do that by experimenting with alternative configurations
using our approach, and we achieve this goal without hurt-
ing the overall performance. After user interaction, the new
ensemble selection shows a performance of 0.94 and 0.91
with the bus and van classes. With the opel and saab, the new
performance is 0.67 and 0.64, respectively. We observe that
the benefit of improving the saab class comes with a small
loss in performance in the bus class.

Very importantly, we estimate the bias and variance of the
initial ensemble (before interaction) and the final model
selection obtained after the user interaction (see table in
Fig. 12). The bias is almost the same, which confirms that the
new ensemble keeps the overall predictive performance of
the automatic model selection. Additionally, the variance is
the same, which tells us that the new ensemble has the same
capacity to deal with variations in unseen data distributions
than the initial one. The fact that we use the replace feature
instead of an additive approach is crucial to avoid data over-
fitting while bringing clear benefits to regions of the data
space initially worse classified.

6 DISCUSSION AND FUTURE WORK

In this section, we emphasize the main strengths of our
work and indicate directions for future research on the inte-
gration of classification model and data spaces.

Data versus Feature-Space: Many related works that use
visualization for the inspection, attribute selection (also
called feature selection), or in general the improvement of a
part of the classification problem exist [7], [20], [28]. Those

Fig. 11. Multiclass classification. In this example with the four-classes Vehicle dataset, we describe above how the user interacts with the data and
models (1) to find a better ensemble selection that improves one class without hurting the overall performance (2). We start with a model selection
produced by an automatic search algorithm and explore alternative combinations using our tool.

Fig. 12. We estimate the model bias and variance before and after user
interaction, with different data sets and corresponding experiments.
When we compare in each case (dataset) the values before and after
interaction, they almost do not change. This decomposition of the error
using both measures shows that the new ensembles obtained by the
user do not move substantially in the direction of overfitting (variance)
nor underfitting (bias).
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techniques stay at attribute level and allow the exploration of
the attribute space with respect of the importance or the
added value of an attribute. Typically, the goal is to adjust
the attribute set, and in consequence the re-training of classi-
fication models, which is fundamentally different to the
model selection task we are aiming at. We provide the com-
plete data space in two-dimensional scatter plots, as illus-
trated in Fig. 1, with focus on the exploration of classification
errors, as these are the starting point for further adoptions of
the ensemble. Compared to existing work, this effectively
reduces the abstraction between the data input and the clas-
sification problem, as we omit the attribute extraction and
the corresponding data transformation. Instead, we allow
the user to directly work with the data that is subject to the
classification, which fosters reasoning and enables findings
on data record level, which is the key feature of our work.

Interactive Exploration: A core part of our contribution is
the manual selection of regions of the data space, which is a
task that can be automated, for example, by utilizing an
interestingness measure. However, the search space enu-
meration is a very costly operation, in terms of computing
time and the required computing power, as there are many
different sets of data points to enumerate. To overcome this
problem, we present the user scatter plot visualizations,
where visual patterns created by the point positions as well
as their visual mapping, guide the user to interesting areas.
Additionally, the user can bring in expert or domain knowl-
edge about the data to make informed guesses of interesting
local regions as a starting point for further examination and
exploration. When it comes to interactive model selection,
i.e., the adaption of the classifier ensemble, we protect the
performance of the ensemble by providing a linked text
panel that shows if the global performance does not get
worse when the model selection changes. By doing that, we
do not require the user to understand all model differences
at all. Still, the user can decide to add, remove or replace
existing models in the ensemble, in correspondence with
the selection of a region in the data space. In the current
implementation, when the user presses the model add or
replace button more than once, our algorithm favors the rein-
sertion of the same best model for the current data selection.
Future work could extend this mechanism to support opti-
mization methods that perform a neighbor search, and offer
alternatives to reinsertion.

Generalization: Our approach is clearly suited for wider
application beyond the use that we illustrated in Section 5.
Formally, our proposed workflow is comprised of the
classification problem, the input data and a collection of
classifiers. The classification problem can be a binary or
multiclass problem, which makes the workflow applicable
to all kinds of classification problems. The collection of clas-
sifiers is not restricted to Multiple Classifier Systems. Ran-
dom forests, or more general, any other hybrid information
system, is also suitable for our approach. Additionally, we
also support varying parameter spaces, varying model fam-
ilies and arbitrary combinations of them. In consequence,
our workflow is not only suitable for the selection of model
families, as we demonstrated in this paper, but also for
parameter space exploration. An issue of classic feature-
based visualizations of classification problems is scalability.
Visually, we already introduced density-based heat maps

as a counter-measure to be able to scale to large data sets or
model spaces. Therefore, limitations are imposed only by
the available computing power, and in consequence the
ability to support interactions in the model and data space.

Visualization: As described in Section 3.1, we visualize the
data and model spaces using scatter plot visualizations,
where each point represents a data record, or a classification
model from the classifier model library, respectively. To get
an overview of the classification outputs, the user can gener-
ate the two-dimensional data space scatter plots by applying
state of the art dimensionality reduction, namely projection
techniques such as PCA, MDS, or t-SNE. The choice of the
projection technique depends on the data characteristics the
user aims to consider during analysis. Therefore, we have to
differentiate between linear (PCA, MDS) and non-linear (t-
SNE) projection techniques. While linear techniques provide
a global view on dissimilarities, non-linear techniques look
at local characteristics. Then, using a linear technique always
provides an overview of how all data records are connected
to each other. The visual proximity between data records has
a meaning, which is defined by the similarity measure. For
example, MDS is based on the pair-wise distances and PCA
is based on the pair-wise co-variances. In contrast, non-linear
techniques, such as t-SNE, look at local dependencies, where
visual distances have no specific meaning other than a sepa-
ration of dissimilar data records.

We also provide binned per class representations as
depicted, for example, in Fig. 10. We designed our data
exploration process taking into account the possibility of fil-
tering the data space by one dimension at each time, which
potentially allows the user to do meaningful selections and
identify particular regions of major interest. This enables the
user to deeply explore the classification outputs, understand
their relationship with the selected data dimension and iden-
tify clusters of errors that could not be distinguishable only
with overview visualizations (like the ones obtainedwith the
data and planar projections). The classification results
binned per class provide an additional way of finding local
patterns. The bins for each class have limitations regarding
their scalability, yet support a wide range of the existing clas-
sification problems (see the survey presented in [32]).

Scatter plots are prone for overplotting, which could
result in potentially wrong impressions of the data distribu-
tion, as it is nearly impossible to perceive the number of
overplotted data points correctly. To cope with this issue,
we integrated a heat map overlay, which displays the den-
sity of data points using a continuous interpolation, map-
ping point density to colors ranging from black over red
and yellow to white. Alternatives to this approach, such as
scatter plot matrices (SPLOMs), are available, although,
they do not support the idea of an integral data space visu-
alization. Instead, they display pairwise attribute combina-
tions, which are subsets of the data space. Similarly, small
multiples or glyph-like settings are possible, but still, it has
to be decided what information is shown by the visualiza-
tion, as well as how to order them meaningfully. Because
the two-dimensional position of the points in the scatter
plots indicates their position in the data space, we use in the
heat map the color of the data points to indicate errors, as
we are especially interested in data points that are classified
wrongly. Future work is necessary to assess how well our
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data and models visual integrative approach fits other visu-
alization techniques.

Overfitting: In our experiments, we noticed that adding
many models to the initial automatic ensemble selection can
increase the performance with a validate data subset, but
the new model selection often does not generalize well, and
model overfitting is a problem. In these cases, we got sub-
stantial differences in the variance values, when comparing
the distinct ensemble models before and after interaction, for
the same dataset. So, we recommend using the model replace
feature, which allows local improvements while adequately
generalizing with unseen data. For future work, we plan to
integrate additional visualizations that facilitate the analysis
of how well the model obtained through interaction per-
forms with new and unseen data, e.g., the bull’s eye diagram
to visualize model bias and variance [13].

Evaluation: We performed a quantitative evaluation of
our methods. We measure the gain in performance obtained
through local classification improvement of regions of the
data space. We also assess how well the user-adjusted
ensemble generalizes to new data. However, research on
the broader impacts of giving more roles to the human in
the model building process is still an open field [42]. We
plan to extend the scope of the evaluation we have done so
far, and perform controlled user studies to assess both qual-
itative and quantitative aspects related to human participa-
tion in the construction of classifiers.

7 CONCLUSION

We foster the use of visual methods for exploring model and
data spaces, thus enabling the experimentation with alterna-
tive models selection in ensemble learning. Our integrative
approach enables a feedback loop that keeps the user always
in control of anymodel selection change introduced in ensem-
bles of classifiers.We useMultiple Classifier Systems to instan-
tiate our ideas and explore those abstract spaces. However, we
can generalize and extend our workflow to any type of classi-
fier models, combined in ensembles or not, what gives plenty
of opportunities for visualization research on correlated topics.
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