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Abstract—Hierarchical density-based clustering is a powerful tool for exploratory data analysis, which can play an important role in the

understanding and organization of datasets. However, its applicability to large datasets is limited because the computational

complexity of hierarchical clustering methods has a quadratic lower bound in the number of objects to be clustered. MapReduce is a

popular programming model to speed up data mining and machine learning algorithms operating on large, possibly distributed

datasets. In the literature, there have been attempts to parallelize algorithms such as Single-Linkage, which in principle can also be

extended to the broader scope of hierarchical density-based clustering, but hierarchical clustering algorithms are inherently difficult to

parallelize with MapReduce. In this paper, we discuss why adapting previous approaches to parallelize Single-Linkage clustering using

MapReduce leads to very inefficient solutions when one wants to compute density-based clustering hierarchies. Preliminarily, we

discuss one such solution, which is based on an exact, yet very computationally demanding, random blocks parallelization scheme. To

be able to efficiently apply hierarchical density-based clustering to large datasets using MapReduce, we then propose a different

parallelization scheme that computes an approximate clustering hierarchy based on a much faster, recursive sampling approach. This

approach is based on HDBSCAN*, the state-of-the-art hierarchical density-based clustering algorithm, combined with a data

summarization technique called data bubbles. The proposed method is evaluated in terms of both runtime and quality of the

approximation on a number of datasets, showing its effectiveness and scalability.

Index Terms—Density-based hierarchical clustering, MapReduce, big data
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1 INTRODUCTION

CLUSTERING is an unsupervised learning task that aims to
decompose a dataset into distinct clusters of data objects

that help understand how a dataset is structured [1]. Den-
sity-based clustering is a category of algorithms where the
fundamental idea is that a dataset of interest represents a
sample from an unknown probability density function,
which describes the mechanism or mechanisms responsible
for producing the observed data. Clustering with a density-
based algorithm directly or indirectly involves the problem
of density estimation. Clusters are somehow detected from
this estimation as “high density regions separated by regions
of low density”, where the notions of “high” and “low”
density depend on some type of density threshold [2]. In par-
titioning algorithms this threshold is fixed, whereas in

hierarchical algorithms each hierarchical level corresponds
to a different threshold.

Partitioning density-based clustering algorithms, such as
DBSCAN [3], have fundamental limitations [2], [4]: (i) they
require a user-defined threshold, which is a critical parameter;
(ii) often, it is not possible to simultaneously detect clusters of
varied densities by using a single, global density threshold;
and (iii) a flat clustering solution alone cannot describe possi-
ble hierarchical relationships that may exist between nested
clusters lying on different density levels. Nested clusters at
varied levels of density can only be described by hierarchical
density-based clustering methods [5], [6], [7], which provide
more elaborated descriptions of a dataset at different degrees
of granularity and resolution.

Hierarchical models are indeed able to provide richer
descriptions of clustering structures than those provided
by flat models, but applications in which the user also
needs a flat solution are common, either for further man-
ual analysis by a domain expert or in automated KDD
processes in which the output of a clustering algorithm is
the input of a subsequent data mining procedure. In this
context, the extraction of a flat clustering from a hierar-
chy, as opposed to the extraction directly from data by a
partitioning-like algorithm, can be advantageous because
hierarchical models describe data from multiple levels of
specificity/generality, providing a means for exploration
of multiple possible solutions from different perspectives
while having a global picture of the clustering structure
available.

� J.A. dos Santos is with the Department of Computer Science, University of
S~ao Paulo, S~ao Carlos 13566-590, Brazil.
E-mail: joelsonn.santos@gmail.com.

� T.I. Syed and J. Sander are with the Department of Computing Science,
University of Alberta, Edmonton ABT6G 2R3, Canada.
E-mail: {TalatIqbal, jsander}@ualberta.ca.

� M.C. Naldi is with the Department of Computer Science, Federal University
of S~ao Carlos, S~ao Carlos, SP 13565-905, Brazil. E-mail: naldi@ufscar.br.

� R.J.G.B. Campello is with the School of Mathematical & Physical Sciences,
University of Newcastle, Newcastle, NSW 2308, Australia.
E-mail: campello@icmc.usp.br.

Manuscript received 11 July 2018; revised 12 Dec. 2018; accepted 19 Mar.
2019. Date of publication 26 Mar. 2019; date of current version 1 Mar. 2021.
(Corresponding author: Murilo Coelho Naldi.)
Recommended for acceptance by J. Cao.
Digital Object Identifier no. 10.1109/TBDATA.2019.2907624

102 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 1, JANUARY-MARCH 2021

2332-7790 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3107-8236
https://orcid.org/0000-0002-3107-8236
https://orcid.org/0000-0002-3107-8236
https://orcid.org/0000-0002-3107-8236
https://orcid.org/0000-0002-3107-8236
https://orcid.org/0000-0003-0266-3492
https://orcid.org/0000-0003-0266-3492
https://orcid.org/0000-0003-0266-3492
https://orcid.org/0000-0003-0266-3492
https://orcid.org/0000-0003-0266-3492
https://orcid.org/0000-0003-4068-7268
https://orcid.org/0000-0003-4068-7268
https://orcid.org/0000-0003-4068-7268
https://orcid.org/0000-0003-4068-7268
https://orcid.org/0000-0003-4068-7268
mailto:
mailto:
mailto:
mailto:


However, hierarchical clustering algorithms are typi-
cally much more computationally demanding than parti-
tioning algorithms. Indeed, the computational complexity
of hierarchical clustering methods has a quadratic lower
bound in the number of objects to be clustered. With very
large databases being generated in an increasing number
of real-world application scenarios, the analysis of such
data using hierarchical clustering becomes challenging. In
these scenarios, parallelization may increase computa-
tional performance and broaden the applicability of the
algorithms. To achieve this goal, programming models
must be used that allow large volumes of data to be
analyzed in a timely manner, while guaranteeing safety
against failures and scalability as the demand for data
analysis as well as the database sizes grow. One such pro-
gramming model, MapReduce, was presented in [8], [9].
This model is an abstraction that allows for simplified dis-
tributed and scalable programming, and it has been used
by companies such as IBM, Microsoft, Dell, Yahoo!, and
Amazon, among others [10], [11].

MapReduce frameworks and extensions have been
developed to deploy the concept in practice—e.g., Apache
Hadoop [12] and Spark [13], which have quickly spread
since their creation. Special libraries have been created with
algorithms to solve large-scale problems. Among those, the
Apache Mahout project [14] and the Machine Learning
Library (MLlib) [13] have a collection of machine learning
algorithms adapted for MapReduce. However, there are
only a few data clustering algorithms in these libraries,
mainly because most traditional clustering algorithms were
not originally designed to work in a distributed or parallel
fashion, and adapting them may not be doable or worth-
while due to restrictions imposed by the MapReduce model
or due to their high computational complexity. The pro-
gramming model requires that the algorithms split their
tasks into two main functions, called map and reduce, and
imposes an execution flow on them. These functions execute
parallel jobs independently on distributed parts of the data-
set, thus each job cannot share information about its portion
of data with other jobs in execution. This constraint can be a
burden for traditional clustering algorithms, specially hier-
archical ones as they are usually based on pairwise compar-
isons between data objects, which may require mapping the
whole dataset repeatedly a number of times proportional to
the square of its size. Such calculations tend to require pro-
hibitive amounts of computer power, network load and
processing time, specially for large amounts of data. For
this reason, few techniques for hierarchical clustering based
on MapReduce have been proposed in the literature [15],
[16], mostly for Single-Linkage. However, these techniques
have shortcomings that make their implementation in prac-
tice both challenging and inefficient, namely: (a) the large
number of managed partitions; and (b) redundant process-
ing, where calculations are repeated in different processing
units.

In this paper, we discuss why adapting previous approaches
to parallelize Single-Linkage clustering usingMapReduce leads
to inefficient solutions when it comes to computing density-
based clustering hierarchies. In order to efficiently apply hierar-
chical density-based clustering to large datasets using MapRe-
duce, we propose an alternative parallelization scheme, called

MapReduce HDBSCAN* or MR-HDBSCAN*, which efficiently
computes an approximate clustering hierarchy based on a
recursive sampling strategy preliminarily introduced in [17].
This method is based on the state-of-the-art hierarchical den-
sity-based clustering algorithm HDBSCAN* [7], which can be
seen as a generalization of Single-Linkage, combined with two
possible data summarization techniques, namely, random sam-
ples and data bubbles [18]. These two variants of MR-
HDBSCAN* were compared with an exact MapReduce
HDBSCAN* version using the Random Blocks approach, pre-
liminarily introduced in [17] and also presented in this paper,
both in terms of clustering quality and runtime. The experi-
ments show that, while the Random Blocks version provides
exact results (i.e., the same as the centralized version of
HDBSCAN* running in a single machine, if this machine could
cope with all data storage and processing), the proposed
approximate variants can obtain competitive results in terms of
clustering quality, while being orders of magnitude faster in a
distributed environment.

The remainder of this paper is organized as follows. In
Section 2 we review the related work. In Section 3 we present
the required background and briefly discuss an exact (yet
inefficient) preliminary solution to parallelize HDBSCAN*
based on the random blocks approach. In Section 4 we dis-
cuss in detail an efficient MapReduce implementation of
HDBSCAN*, following a recursive sampling approach. In
Section 5 we present our experimental results and analyses.
Finally, in Section 6 we address the conclusions and future
work.

2 RELATED WORK

MapReduce-based strategies to parallelize hierarchical clus-
tering algorithms have been proposed before in the literature.
For instance, PArallel, RAndom-partition Based hierarchicaL
clustEring (PARABLE) [15] is a two step algorithm in which
the first step computes local hierarchical clusterings on dis-
tributed nodes and the second step integrates the results by a
proposed dendrogram alignment technique. First, the dataset is
partitioned into random subsamples. The sequential algo-
rithm is then run in parallel on the resulting data subsets to
form intermediate dendrograms. These intermediate dendro-
grams are then aligned with each other to form the final den-
drogram by recursively aligning the nodes from the root to
the leaves, by comparing the nodes of two given dendro-
grams using a similarity measure. The authors claim that the
“alignment procedure is reasonable when the dendrograms
to be aligned have similar structure” [15] and that a good
sampling strategy can lead to local dendrograms being simi-
lar. During the dendrogram alignment technique, however,
the algorithm fails to address the fact that addition of new
branches in a dendrogram (addition of new data objects to
the dataset) also affects the height at which mergers occur.

Other parallel and distributed hierarchical clustering
algorithms have been studied in the literature, but most of
these studies [19], [20], [21], [22] were aimed at the Single-
LINKage (SLINK) clustering algorithm [23], which can be
seen as a special case of HDBSCAN* [7], [24]. In [25], the par-
allelization of SLINK was translated to the problem of paral-
lelizing a Minimum Spanning Tree (MST) with data objects
as vertices of a graph and the distance between objects as
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edge weights connecting the respective vertices. CLUstering
through MST in Parallel (CLUMP) [26] addresses the paral-
lelized construction of an MST on distributed nodes using a
collection of overlapping datasets. Different nodes are
responsible for processing different subsets of data with
each subset of data duplicated at least in another node. The
authors use the “Linear Representation” ðLRÞ, which is a list of
elements of a dataset Xwhose sequential order is the same as
the order in which the elements are selected for constructing
anMST using Prim’s algorithm.

SHaRed-memory SLINK (SHRINK) [27] is a scalable
algorithm to parallelize the Single-Linkage hierarchical clus-
tering algorithm. The strategy is to partition the original
dataset into overlapping subsets of data objects and com-
pute the hierarchy for each subset using Single-Linkage,
then construct the overall dendrogram by combining the
solutions for the different subsets of the data. Other
algorithms such as PINK [28] and DiSC [16] are based on
similar ideas as CLUMP and SHRINK. While PINK is
designed for a distributed memory architecture, Distributed
Single-Linkage Hierarchical Clustering (DiSC) is specifically
implemented using the MapReduce programming model.
DiSC divides the data into overlapping subsets of data that
are processed individually at different distributed nodes to
form partial sub-solutions. These sub-solutions are then iter-
atively combined to form an overall solution for the com-
plete dataset. The MapReduce implementation of DiSC
consists of two rounds of MapReduce jobs. The first round
consists of a Prim’s Mapper, which builds an MST on
the corresponding subset of data, and a Kruskal Reducer,
which uses a K-way merge to combine and get the interme-
diate result. The Kruskal Reducer uses a UnionFind data
structure [28] to keep track of the membership of all the con-
nected components and filter out any cycles. The second
MapReduce job, called the Kruskal-MR job, consists of a
Kruskal Mapper which is just an identity mapper (rewrites
the input as output) and a Kruskal Reducer, which essen-
tially does the same work as the reducer of the first round.

The aforementioned methods have been designed and
implemented for the Single-Linkage algorithm. Although
Single-Linkage is a particular case of HDBSCAN* [7], [24],
there are two main reasons as for why the above strategies
are very inefficient in the general case [17]. First, the number
of partitions to be processed in parallel increases rapidly as
the value of HDBSCAN*’s density estimate smoothing
parameter mpts increases. In addition, the number of dupli-
cate computations at various parallel nodes also increases
as mpts increases. For these reasons, the use of these strate-
gies to parallelize HDBSCAN* is not scalable for applica-
tions involving large datasets and practical values of mpts

(other than 1 or 2, in which case HDBSCAN* reduces to Sin-
gle-Linkage) [17]. In this context, the MapReduce frame-
work can facilitate data management, particularly in a
distributed computing environment, but it does not trivially
reduce the computational effort involved in the hierarchical
clustering calculations, among other reasons because many
partial copies of the data may have to be transmitted from
one processing unit to another and the total amount of
transmitted data can be many times larger than the dataset
size, unless a carefully designed algorithm and architecture
is in place, as we will discuss in this paper.

MapReduce implementations of partitioning density-
based clustering algorithms have been proposed in the liter-
ature, particularly for DBSCAN [29], [30], [31]. However,
DBSCAN and, accordingly, its MapReduce implementa-
tions, follow a density-based model that is limited to a sin-
gle density threshold and produces a “flat” clustering
solution based on a global density level, rather than a tree of
density-contour clusters and sub-clusters across multiple
different levels. This approach has well-known fundamen-
tal limitations, namely [2], [7]: the choice of the density
threshold is both difficult and critical; the algorithm may
not be able to discriminate between clusters of very differ-
ent densities; and, a flat clustering solution cannot describe
hierarchical relationships that may exist between nested
clusters at different density levels. HDBSCAN*, which con-
stitutes the main focus of this work, does not suffer from
these limitations.

3 BACKGROUND AND PRELIMINARIES

3.1 HDBSCAN* and FOSC

The HDBSCAN* algorithm [7], [24] has several advan-
tages over traditional partitioning and hierarchical clus-
tering algorithms. It combines the aspects of density-
based clustering and hierarchical clustering, producing a
complete density-based clustering hierarchy from which a
simplified hierarchy composed only of the most promi-
nent clusters can be straightforwardly extracted. Its results
can be visualized by means of a complete dendrogram, a
simplified cluster tree, and other visualization techniques
that do not require any critical parameter as input. In fact,
HDBSCAN*’s only parameter, mpts, is a just smoothing
factor of a non-parametric density estimate performed by
the algorithm, from which all DBSCAN-like solutions cor-
responding to any value of density threshold (radius
� 2 ½0;1Þ in DBSCAN) are automatically produced in a
nested way, without the need to specify a particular
threshold as input. The behavior of mpts is well under-
stood [7], [24] and methods that have an analogous param-
eter (e.g.,[5], [32], [33], [34]) are typically robust to it.
HDBSCAN* is also flexible in that a user can choose to
analyze the resulting hierarchy and cluster tree directly,
or perform local cuts through this tree to automatically
obtain a flat (non-hierarchical) solution that is optimal
according to a given criterion.

Given a dataset X ¼ fx1; x2; . . . ; xng with n data objects,
xi, and a particular value of the smoothing factor mpts, the
following definitions are used by HDBSCAN*:

Core Distance. The core distance of an object xp 2 X w.r.t.
mpts, dcoreðxpÞ, is the distance from xp to its mptsth nearest
neighbor (incl. xp).

The core distance of an object xi can be interpreted as the
minimum radius � (maximum density threshold) such that
a data object xp is considered a dense object, so-called core
object, for having at least mpts objects within its �-neighbor-
hood (a ball of radius � centered at xi, i.e., fx : dðx; xiÞ � �g,
where dð�; �Þ is an arbitrary dissimilarity measure).

Mutual Reachability Distance. The mutual reachability dis-
tance between two objects xp; xq 2 Xw.r.t.mpts is defined as

dmreach
ðxp; xqÞ ¼ max

�
dcoreðxpÞ; dcoreðxqÞ; dðxp; xqÞ

�
:
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The mutual reachability distance between two objects xp
and xq can be interpreted as the minimum radius � such that
both objects are core objects and fall within each other’s
�-neighborhood, which is equivalent to the maximum den-
sity threshold such that both objects are dense and directly
density connected.

Mutual Reachability Graph. A mutual reachability graph of
a dataset X w.r.t mpts is a (conceptual only) complete
weighted graph, Gmreach

, in which the data objects are the
vertices and the edge weight between each pair of vertices
is given by the mutual reachability distance between the
corresponding pair of objects.

Algorithm 1.HDBSCAN* (Main Algorithm)

Requires {X ¼ fx1; x2; . . . ; xng,mpts}.
Output {HDBSCAN* hierarchy}.

1) Given a dataset X, compute the core distances of all
the data objects in X.

2) Compute a Minimum Spanning Tree of the Mutual
Reachability Graph, Gmreach

(the graph does not need
to be materialized, as the edge weights can be com-
puted on demand).

3) Extend the MST, to obtain MSText, by adding a “self
edge” (i.e., a loop) to each vertex, with edge weight
equal to the vertex’s core distance, dcoreð�Þ.

4) Extract the HDBSCAN* hierarchy as a dendrogram
fromMSText.
a) All objects are initially assigned the same cluster

label (the root of the cluster tree).
b) Iteratively remove edges fromMSText in decreas-

ing order of weights.
i) Edges with the same weight are removed

simultaneously.
ii) After removal of an edge, cluster labels are

assigned to the two connected components
that contain one vertex of the removed
edge. A new cluster label is assigned if the
component has at least one (possibly self)
edge remaining in it, otherwise the object
(s) in the component are labeled as noise
(null label).

The main steps of HDBSCAN* are summarized in
Algorithm 1. It is worth noticing that the original algo-
rithm [7], [24] is also equipped with an optional parameter,
mclSize, which allows the user to specify the minimum size
for a component to be considered a cluster, in such a way
that components with fewer than mclSize objects are disre-
garded as noise. This represents an additional, optional
control that can significantly reduce the size of the result-
ing clustering hierarchy, if desired. By default,
HDBSCAN* uses mclSize ¼ mpts, so in practice only mpts

needs to be given as input.
Once theHDBSCAN* hierarchy is obtained, it is possible to

perform cluster analysis, outlier detection, and data visualiza-
tion using an integrated framework as presented in [7].
In particular, HDBSCAN* incorporates an optional dynamic
programming-based post-processing routine, called Frame-
work for Optimal Selection of Clusters from hierarchies

(FOSC) [35], that can automatically extract a “flat” clustering
solution consisting of the most prominent clusters according
to an optimization criterion. This flat solution is optimally
extracted from local, possibly non-horizontal cuts through the
cluster tree, which may correspond to different density levels
and whose clusters may not be detectable by a single, global
density threshold (a traditional horizontal cut through the
clustering hierarchy).

As the default optimization criterion for FOSC, HDBSCAN*
uses the total sum of Stability of the extracted clusters, which in
turn is a generalization, for density-based hierarchies, of the
classic notion of cluster lifetime in traditional dendrograms [1].
Stability is additive and local, which means that it can be
decomposed as a sum of components precomputed individu-
ally and independently for each candidate cluster in the cluster
tree. As computed by HDBSCAN*, the stability of a cluster Ci

is related to the statistical notion of (relative) excess of mass of a
mode of a density function

SðCiÞ ¼
P

xi2Ci

1
�minðxj;CiÞ � 1

�maxðCiÞ
� �

; (1)

where �minðxj;CiÞ is the minimum � value (height of hierar-
chical level) for which xj 2 Ci and �maxðCiÞ is the maximum
� value for which cluster Ci exists. Further details are dis-
cussed in [7], [24].

3.2 MapReduce Programming Model and
Frameworks

MapReduce is a programming model [8] to process large
scale data in a massively data parallel way. MapReduce has
several advantages over other existing parallel processing
models. The programmer is not required to know the details
related to data distribution, storage, replication and load
balancing, thus hiding the implementation details and
allowing the programmers to develop applications/
algorithms that focus more on processing strategies. The
programmer is required to specify two functions: a map and
a reduce. The programming model (detailed in [36]) is sum-
marized as follows:

1) The map stage passes over the input file and outputs
<key/value> pairs.

2) The shuffling stage transfers the mappers output to
the reducers based on the key.

3) The reduce stage processes the received pairs and
outputs the final result.

Due to its scalability and simplicity, MapReduce has
become a widespread tool for large scale data analysis.
Frameworks have been created to work with this model and
facilitate its implementation—e.g., Apache Hadoop [12],
which has quickly spread since its creation. A more recent
framework, Apache Spark [13], exhibits additional advan-
tages (besides the use of MapReduce), such as the use of an
abstraction called Resilient Distributed Data (RDD). This
abstraction allows scalable programs to carry out operations
with persistent data in main memory with high fault toler-
ance, being particularly suitable for use in iterative
algorithms [13], which is the case of several data mining
algorithms. Both frameworks interleave sequential and par-
allel computation, consisting of several rounds. Each round
transmits information among distributed systems (nodes),
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which perform the required computation using the data
available locally. The output of these computations is either
combined to form the final result or sent to another round
of computation depending on the application’s require-
ment. However, constraints are imposed to the MapReduce
workflow, as the calculations applied during each of its
functions must occur independently and no information
can be exchanged among jobs of the same function during
their parallel execution.

3.3 Exact MapReduce HDBSCAN*—The Random
Blocks Approach

MapReduce limits the algorithms to splitting their tasks into
two main functions, called map and reduce, and imposes an
execution flow on them. Most traditional algorithms were
not originally designed to work in a distributed or parallel
fashion, especially when these restrictions are imposed. Tra-
ditional hierarchical clustering algorithms are usually based
on pairwise comparisons between objects of the dataset,
which implies mapping the whole dataset repeatedly a num-
ber of times that grows with its size. For this reason, exact
versions of these algorithms may not be doable in practice
due to the aforementioned restrictions or due to their prohib-
itive computational requirements. The HDBSCAN* algo-
rithm is no exception. It requires the whole dataset to be
available in order to calculate the mutual reachability distan-
ces between all pairs of data objects and compute the MST of
the Mutual Reachability Graph,Gmreach

, in order to obtain the
HDBSCAN* hierarchy. This requirement makes it difficult to
parallelize HDBSCAN*.

A simple approach to parallelize the computation of the
exact HDBSCAN* hierarchy across multiple distributed
nodes is known as the Random Blocks approach, prelim-
inarily proposed by one of our authors in [17] and described
here in this paper as a baseline for comparisons. It essen-
tially adapts CLUMP [26] for parallel computation of the
extended MST, MSText, from which the HDBSCAN* hierar-
chy is extracted. To parallelize and distribute an MST in the
same spirit as in [26], the Random Blocks approach divides
the complete dataset into k “base partitions”, which then
have to be combined into so-called “data blocks”, so that for
any pair of objects ðp;qÞ the edge weight between p and q
(in the complete graph upon which the MST is built) can be
exactly determined within one of the data blocks. Hence,
MSTs can be computed within data blocks independently
and in parallel at different processing units, and these inde-
pendently computed MSTs can then be combined to obtain
an exact MST for the complete dataset.

To parallelize the MST for Single-Linkage computation
as in [26], one has to generate k

2

� �
data blocks in total (all k

choose 2 pairwise combinations of the k base partitions). In
this case, it is guaranteed that every pair of objects ðp;qÞ is
together in at least one data block, such that the exact dis-
tance between p and q can be determined. This is the edge
weight between p and q, needed to compute the Single-
Linkage hierarchy.

HDBSCAN*, however, is not based on an MST computed
in the original distance space. Instead, it is built upon an
MST computed in the transformed space of mutual reach-
ability distances, i.e., edge weights correspond to mutual

reachability distances rather than original distances. In
order to determine the mutual reachability distance
between two objects p and q, one needs to be able to com-
pute the core distance for both p and q w.r.t. mpts, as well as
the distance between p and q. The core distance of an object
p is defined as the distance from p to its mptsth nearest
neighbor, including p itself (Definition 3.1). To determine
this distance in a single data block, p and the other mpts � 1
objects closest to p have to be present in that data block.
Consequently, to determine the mutual reachability dis-
tance between p and q, if their neighborhoods do not share
any objects, 2�mpts different objects have to be present in a
single data block. In the worst case, each of those 2�mpts

different objects belongs to a different base partition. Conse-
quently, given a set of k base partitions and the parameter
mpts, to guarantee that the mutual reachability distance
between any two objects p and q can be determined in at
least one data block, k

2�mpts

� �
unique data blocks (all k

choose 2�mpts combinations of base partitions) have to be
generated and distributed to different processing units. In
practice, this leads to an unacceptable computational bur-
den, especially for larger values of mpts, which are necessar-
ily larger than 2 for practical purposes.1 This burden may be
tolerated for small datasets that fit the main memory of a
single machine, but it is prohibitive for larger datasets,
which require the data to be distributed and processed
across multiple nodes.

While an exact version of the HDBSCAN* hierarchy
based on Random Blocks cannot be efficiently computed in
a distributed environment, in the next section we show that
it is possible to efficiently compute an approximate version of
the hierarchy using MapReduce, which trades only a small
amount of accuracy for a large gain in scalability.

4 EFFICIENT MAPREDUCE HDBSCAN*—
RECURSIVE SAMPLING APPROACH

The way we propose to parallelize HDBSCAN* within a
Map-Reduce framework is based on a “recursive sampling”
approach. Unlike the parallelization of an MST computa-
tion, our Recursive Sampling Approach eliminates the proc-
essing of overlapping datasets at multiple processing
units. This is achieved by an “informed” data subdivision
that divides the data to be processed at different process-
ing units taking into account the structure of the data
themselves.

4.1 General Idea

Fig. 1 shows the flow of the Recursive Sampling Approach.
The general idea of clustering data that cannot be processed
entirely in a single node is to use a subsample that cap-
tures the most prominent clusters as a very coarse repre-
sentation of the structure contained in the dataset. Those
clusters constitute the higher levels of a cluster hierarchy.
We capture the most prominent clusters in a sample by
first clustering the sample using HDBSCAN* and then
extracting the major clusters using the FOSC framework,

1. HDBSCAN* can be seen as a generalized, robust version of Single-
Linkage that addresses its undesirable sensitivity to the “chaining effect”.
Formpts � 2, HDBSCAN* is equivalent to Single-Linkage.
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as described in Section 4.4. Based on the extracted partition
of the sample, one can induce a partition of the whole
dataset into subsets corresponding to the major clusters in
the data (by assigning each data object to the same cluster
as its nearest sample representative), and each of these
subsets is then sent to different processing units for further
refinement. Depending on the capacity of the processing
units, these subsets will be recursively partitioned into
smaller subsets representing the next levels of the cluster-
ing hierarchy, by applying the same strategy, until the
data blocks are of sizes that can be processed completely
by a processing unit to obtain exact MSTs for these subsets
of the data. The edges that connect these local MSTs hier-
archically are determined during the recursive partition-
ing, so that at the end a spanning tree of the whole data is
obtained, which is “locally minimal” for the subsets that
are small enough to be processed at a single node. This
spanning tree can be used by the HDBSCAN* algorithm in
the same way as an MST in order to obtain a clustering
hierarchy (as a dendrogram or simplified cluster tree).
Implementation details are discussed in Section 4.3.

4.2 Using Data Summarizations Instead of a Sample

Fig. 1 illustrates the Recursive Sampling Approach using
just simple samples. While this is a possible approach, it
has been observed that applying density-based hierarchi-
cal clustering to samples can lead to inferior results when
the sample size is small compared to the whole dataset,
due to the fact that (1) distances between “representative”
sample objects represent poorly the distances between the
objects that they represent, and (2) density estimates using
only a sample of the data approximates poorly the density
in the whole dataset [37]. To alleviate these problems, the
concept of “data bubbles” has been introduced in [37], and
it has been shown to vastly improve clustering quality of
the density-based hierarchical clustering algorithm
OPTICS. In this paper, we focus on data bubbles for points
in an euclidean vector space, although data bubbles have
been also extended for data from general metric spaces
(see [18]).

Constructing data bubbles starts with drawing a small
sample S of size m of the whole dataset. Conceptually, each

sample point o “represents” all objects in the dataset that
are closer to o than to any other sample point in S. This cor-
responds conceptually to a (Voronoi) partition of the dataset
intom subsets. In a single sequential scan of the whole data,
for each of those m subsets, Xb, sufficient statistics of the
form ðn; LS; SSÞ are computed, where n is the number of
objects in the subset Xb, LS ¼ P

xi2Xb
~xi is the Linear Sum of

the points in Xb, and SS ¼ P
xi2Xb

~xi
2 is the Sum of Squares

of the points in Xb.
For clustering, each of the m subsets Xb is then repre-

sented by a data bubble, which is a tuple BXb
¼

ðrep; n; extent; nnDistÞ, where rep ¼ LS=n is the mean of
the objects in Xb, n is the number of objects in Xb,

extent ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i¼1;...;n

P
j¼1;...;n

ðxi�xjÞ2
nðn�1Þ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n�SS�2�LS2

nðn�1Þ
q

is the

“radius” of the subset Xb, and nnDist is an estimate of aver-
age k-nearest neighbor distances within the set of objects Xb

for values of k ¼ 1; . . . ;mpts. Assuming a uniform distribu-
tion within the subset Xb, this estimate is given by
nnDistðkÞ ¼ k

n

1
d � extent, where d is the data dimension.

The above representation allows: (1) the definition of an
appropriate distance between two data bubbles B and C,
distðB;CÞ, as described in detail in [37]; (2) the definition
of an appropriate core distance, dcoreðBÞ, for a data bubble
B by estimating the mpts-nearest neighbor distance of its
representative rep, using function nnDist (and if B
contains less than mpts many points, the distance to the
next closest data bubble that would the include the
mpts-nearest neighbor of rep); (3) the definition of mutual
reachability distance, required by HDBSCAN*, analogously
to the mutual reachabiltiy distance between points, as
dmreach

ðB;CÞ ¼ maxðdcoreðBÞ; dcoreðCÞ; distðB;CÞÞ. The core
distance of a data bubble also acts as a core distance for all
the points in the bubble, and the excess of mass of a cluster in
the cluster tree from a sample can thereby be better esti-
mated by taking into account the estimated mass of all the
points in the cluster, which improves the FOSC extraction
of the most prominent clusters (Section 4.4).

It has been shown in [37] that data bubbles allow recov-
ering the clustering structure of large datasets from
extremely low samples, where clustering just the sample
would generate meaningless results. The experiments in
[37] were based on the algorithm OPTICS. We will show in
our experimental evaluation that similar conclusions can
be draw from the use of data bubbles alongside with
HDBSCAN*.

4.3 Implementation Using MapReduce

HDBSCAN* can be implemented in a parallel and distrib-
uted way using smart mapping and aggregation strategies,
provided by the MapReduce framework. Here, we call
our implementation MapReduce HDBSCAN* or MR-
HDBSCAN*. MR-HDBSCAN* is composed of three main
steps: first, the data is partitioned until each partition fits
into a single processing unit capacity (represented by t) and
an MST is calculated for each part; subsequently, all MSTs
and inter-cluster edges are combined into a single MSText;
finally, the HDBSCAN* hierarchy is extracted as a dendro-
gram from MSText. These steps are described below and

Fig. 1. Execution flow of Recursive Sampling Approach.
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further detailed in the Appendix, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TBDATA.2019.2907624.

The first step of MR-HDBSCAN* is based on the Recur-
sive Sampling Approach, presented in Section 4.1. A truly
recursive implementation of this approach would require a
function to call itself to recursively partition the data, until
the data size is small enough to be processed by a single
processing unit. However, such a recursive function cannot
be directly parallelized by the MapReduce model.For this
reason, we have instead developed an alternative imple-
mentation of this sampling process, based on an iterative
partitioning of the data.

The first step of MR-HDBSCAN* partitions the data until
it fits a single processing unit. This step is divided into four
parts: a MapPartitionsToPair function, designed to build a
local MST over the space of mutual reachability distances or,
if the data is too big to be processed locally, calculate the
nearest sample representative of each data object; Combining
functions, applied over the samples to create data bubbles
and update information; a ReduceByKey function, responsible
for partitioning the data bubbles/samples with HDBSCAN*
and FOSC; and a Mapper function, which maps the data
objects represented by the bubbles/samples into the previ-
ously obtained partition.

An overview of the first step of MR-HDBSCAN* is illus-
trated in Fig. 2. It assumes that the data resides in the Dis-
tributed File System (DFS) of the MapReduce framework.
The algorithm starts with a single cluster containing the
whole dataset X. At each iteration, every cluster in the DFS
is loaded to be processed in parallel and independently by a
MapPartitionsToPair function. This function receives a par-
tition of the data and maps the objects of each cluster Xi into
<key/value> pairs. If Xi is small enough to be processed by
a single processing unit, the function computes an MST (w.
r.t. mutual reachability distances) for Xi, extends it with
self-edges, and stores (persists) all edges in the DFS. If Xi is
too big to fit a single processing unit, a sample Si is drawn
from Xi and the distances between the remaining objects of
Xi and the sampled objects in Si are calculated. These dis-
tances are sent to a Combining function, which calculates
the statistics ðn; LS; SSÞ for each sampled object, as

described in Section 4.2, and can optionally build data bub-
bles over the samples.2

The Combining function sends the combined statistics of
the samples or data bubbles to a ReduceByKey function,
which applies HDBSCAN* to construct an MST and, from
that MST, it builds the cluster hierarchy Hi. Next, FOSC
with the Excess of Mass (EOM) as quality measure is used
to extract the most prominent clusters (Ci1; . . . ;Cik) and
noise (Ni). Each noise sample/bubble of Ni is inserted into
the nearest prominent cluster, resulting in the local partition
Pwhich is sent to a Mapper function.

The Mapper function partitions the objects in Xi

according to the clusters of P extracted by the ReduceBy-
Key function, by assigning each object to the cluster that
contains the representative data bubble, or the closest
sample representative if data bubbles are not adopted.
This process is repeated iteratively for each level of the
hierarchy Hi. In the end, the Mapper stores (persists) rel-
evant information about the mapped partition Pi into the
distributed file system, including the inter-clusters and
intra-cluster edges.

The second step of MR-HDBSCAN* is used to combine
all edges from the stored partial MSTs and inter-cluster
edges into a global extended spanning tree (MSText), i.e, a
spanning tree that connects all objects extended with self-
edges. Each edge is represented as a vector ½u; v; dreachðu; vÞ�,
where u and v are the vertices connected by the edge, and
dreachðu; vÞ is the mutual reachability distance between these
vertices. This combination is made by a ReduceByKey func-
tion, illustrated in Fig. 3, where the edges are paired with
the key “1” to be reduced to a single result. The edges are
combined in descending order of weight (dreach) and stored
(persisted) in the DFS. In particular, in Fig. 3, four local
MSTs were obtained in different processing units and com-
bined by the ReduceByKey task into a single global MSText,
to be stored in the DFS.

After MSText is constructed, MR-HDBSCAN* builds a
hierarchy (as a dendrogram) over all objects of the dataset.

Fig. 2. Illustration of the first step of MR-HDBSCAN*.

Fig. 3. Example of combining persisted MSTs from data partitions and
inter-cluster edges to obtain an overall extended spanning tree. (a)
MSTs and inter-cluster edges distributed across four processing units.
(b) ReduceByKey edges combining scheme.

2. The use of data bubbles is optional and user defined in this work,
i.e., MR-HDBSCAN* can work directly with samples instead of data
bubbles.
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This third step can be implemented using one of two
approaches: a top-down approach, which is the MapReduce
version of the original method described in [24], or a bot-
tom-up approach, based on the Union-Find algorithm [38].

4.3.1 Hierarchy Construction

The idea behind the HDBSCAN* hierarchy construction
using the divisive (or top-down) approach [24] consists of
assuming that initially all objects are members of the same
cluster and then iteratively building the next hierarchical
level by splitting clusters until all data is considered noise.
Clusters are split by removing fromMSText the edge(s) with
the highest weight (dreach) and detecting the resulting con-
nected components as clusters at the new level of the
hierarchy.

In a distributed environment, searching for the connected
components is challenging, since the vertices of MSText may
be scattered across different processing units. Thus, the top-
down approach proposed in this work uses a sophisticated
MapReduce method, known as CC-MR [39], to detect con-
nected (sub)components in large scale graphs. The basic idea
of the CC-MRmethod [39] is to iteratively alter growing local
parts of the graph until each connected component is pre-
sented by a star-like subgraph [40], where all vertices are
connected to the central vertex. In order to do so, each node
receives an unique ID 2 Z. In each iteration, edges are added
and deleted such that vertices with larger IDs are assigned to
the reachable vertex with smallest ID. In the end, all vertices
of the connected components form a star subgraph, with the
vertexwith the smallest ID as center.

The connected components found by CC-MR are used to
determine the clusters at each hierarchical level of MR-
HDBSCAN*. When the optional parameter mclSize is consid-
ered, a connected component is a valid cluster if its size is
equal to or larger thanmclSize. If not valid, the connected com-
ponent is a set of noise objects. When removing the edges
with the highest weight, the original cluster can (a) be divided
into two new smaller valid clusters, (b) undergo “spurious”
fragmentation (shrinking) so it “survives” at the next level of
the hierarchy, or (c) become noise. The following information
about each sub-component is maintained: (a) the number of
vertices (objects), and (b) if it is a spurious component (a set of
noise objects), an existing cluster that has “shrunk”, or a new
cluster that has resulted from a true cluster split [7], [24].

With the connected components, the hierarchy is updated
with a new level using a map and a reduce function. The
Mapper function receives an edge of the connected compo-
nents, the size of the component it belongs to and whether
that component comes from a valid split. Additionally, a
data structure with the information of the clusters assessed
so far is consulted, i.e., the labels of the clusters, their stability
and size, the level of their appearance and disappearance in
the hierarchy, their relationship and relevant information
[24]. Then, it maps each vertex of the components to the
appropriate cluster or labels it as noise, returning the infor-
mation needed to update the hierarchy. The ReduceByKey
function combines the information mapped from the vertices
and objects to define what happens with the clusters of the
current level at the next hierarchical level. Such information
allows the function to assess the behavior of each cluster: it
may be divided into new clusters, undergo spurious

fragmentation (shrinking) or be considered noise. This infor-
mation is used to build the next level of the hierarchy and
connect it to the current level. One important information
that is assessed at this point is the stability of the clusters of
the current level, which is used by FOSC when one wants to
extract the most prominent clusters from the hierarchy. The
whole process is repeated to assess the next levels of the hier-
archy, until all the connected components resulting from the
removals of edges are noise.

Although the top-down approach follows the original
proposal of HDBSCAN* [24], constructing each hierarchical
level according to this method using MapReduce may be
computationally expensive. As the CC-MR transforms the
MSText into star-graphs, a duplicate of the hierarchies must
be made and used as input to CC-MR at each level. Addi-
tionally, the CC-MR works with digraphs, i.e., edges from
the MSText must be duplicated to represent edges in both
directions between connected vertices. Thus, the top-down
approach requires additional computing power and storage
for these functionalities.

On the other hand, the general idea of the bottom-up (or
agglomerative) approach is to consider all vertices of the
distributed MSText as independent (sub)trees and merge
them according to an increasing order of weight (dreach) of
their connecting edges. Each merger results in a new cluster
in a higher hierarchical level. The process is performed iter-
atively until a single cluster containing every object is
obtained at the top of the hierarchy. If the optional parame-
ter mclSize > 1 is used, all objects are initially considered as
noise. If the number of merged objects is lower than mclSize,
the result is considered to be noise, otherwise, a valid clus-
ter is obtained. The latter may arise from noise, from merg-
ing two valid clusters, or from “expanding” a valid cluster
with the insertion of former “spurious” data points.

In this work, the MapReduce implementation of our bot-
tom-up method is based on the ReduceByKey function. This
reducer receives all edges of the local MSTs along with the
inter-cluster edges and sorts them in ascending order of
mutual reachability distances dreach. The main idea behind
sorting algorithms for MapReduce frameworks is to sort the
edges “locally” in parallel, and then apply MergeSort [41] to
the locally sorted edges to obtain a global solution. As an
example, one sorting algorithm suited for this type of appli-
cation is the TimSort [42]. After sorting, each edge in
ascending order of dreach is used to build the global hierar-
chy, by iteratively merging the clusters of the objects it con-
nects at the dreach level of the hierarchy. During the merging
process, the stabilities of the clusters are calculated as
described in Equation (1).

A computationally efficient way of building and merging
MSTs is by using a disjoint set data structure [38]. These
data structures manage disjoint sets of data objects, which
may represent a “flat” partition of the dataset, allowing the
fast merging of these sets using union-find operations. In
particular, the parallel union-find data structure introduced
in [43] can be adapted to our proposal.

4.4 Cluster Extraction by FOSC

Once the HDBSCAN* hierarchy is obtained, the extraction
of the most prominent clusters is performed using the FOSC
framework [7], [35], instantiated with the excess of mass in
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Equation (1) as quality measure. This is a bottom-up
dynamic programming optimization procedure. The gen-
eral idea consists of traversing the cluster hierarchy bottom-
up starting from the leaves, comparing the quality (stability)
of parent clusters against the aggregated quality of the
respective children (sub-clusters), carrying the optimal
choices upwards until the root is reached. The method is
comprehensively presented and discussed in [7], [35].
Details of its distributed implementation using MapReduce
are provided in the Appendix, available in the online sup-
plemental material.

5 EXPERIMENTAL EVALUATION

The main goal of the experiments presented in this section is
to compare the exact MapReduce version of HDBSCAN*,
based on the Random Blocks method, against the two
approximate versions proposed in this work, namely, MR-
HDBSCAN* with sampling and MR-HDBSCAN* with data
bubbles. The source codes for MR-HDBSCAN* are available
at www.dc.ufscar.br/�naldi/source. We compare these
three variants based on the quality of their results as well as
their overall runtime. The former is assessed by comparing a
reference clustering solution (a ground truth) against the
optimal non-hierarchical clustering solutions extracted from
the hierarchies produced by the compared algorithms, using
the FOSC extraction method discussed in Section 4.4 [7]. To
do so, each algorithm is run to build an MST in the trans-
formed space of mutual reachability distances w.r.t. mpts,
and the resulting MST gives rise to a clustering hierarchy by
using the top-down method described in Section 4.3.1, from
which a flat solution is extracted by FOSC. For the sake of
simplicity, the exact version of HDBSCAN* will be referred
to hereafter as Random Blocks.

5.1 Datasets

Three artificial and eight real datasets were used in the
experiments presented in this section. The three artificial
datasets were created using Gaussian mixtures, provided
by the MixSim R package [44], with increasing number of
objects and clusters. Most of the real datasets are available
from the UCI machine learning repository [45], and they are
from different domains. Two additional datasets are the
Yelow 1 and 2 datasets, collected from the yellow taxi trip

records of January and February 2018, respectively, both
available at the New York City website.3 The main charac-
teristics of the datasets are summarized in Table 1.

5.2 Experimental Setup

HDBSCAN* has a single compulsory parameter mpts, as
well as an optional additional parameter, mclSize. Parameter
mpts can be shown to be a smoothing factor of the density
estimates performed by the algorithm (defined in Section 3),
whereas mclSize is a minimum threshold for the number of
objects that characterize a valid cluster. When this optional
threshold is used, the default setting as proposed by the
original authors is mpts ¼ mclSize [7], [24], which is also
adopted in this paper. The values for mpts (and mclSize) are
determined empirically for each dataset, and presented in
Table 2. Those values will also be considered for the top-
down method adopted to build the hierarchies.

The parameter p of Random Blocks represents the num-

ber of data split partitions for constructing p
2�mpts

� �
non-

overlapping data blocks to be processed in parallel by each

processing unit [17]. The size of the data blocks must be
small enough to be processed smoothly by the processing
unit capacity (t). Thus, the number of data partitions (p) can
be calculated as p ¼ n

np
, where n represents the number of

objects in the whole dataset and np represents the maximum
number of objects any of these partitions should have,
which is calculated as np ¼ t

2�mpts
.

The parameter s represents the number of sampled
objects from the data subset used to build any local
HDBSCAN* model during MR-HDBSCAN* iterations. The
values of s were determined based on the processing capac-
ity (t) and the sizes of the data subsets to be processed by
MR-HDBSCAN*bubbles and MR-HDBSCAN*sampling, so that
the number of sampled objects does not exceed the capacity
of the processing unit.

All experiments were executed in a computer cluster
with 10 machines interconnected by a local Gigabyte Ether-
net network. Each computer has 8 GB of working memory
(RAM) with an AMD FX(tm)-6100 six-core processor and 1
terabyte (1T) of secondary memory. The cluster was config-
ured with Apache Spark 2.1.1 with Hadoop 2.7 over Linux.

TABLE 1
Characteristics of Artificial and Real Datasets Used in the

Experiments

Datasets Number of
objects

Number of
attributes

Number of
clusters

Gauss1 1� 106 10 20
Gauss2 3� 106 10 30
Gauss3 5� 106 10 50
YearPrediction 515,345 90 89

Poker 1,025,010 11 10
HT Sensor 919,438 11 3
Skin 245,057 4 2
Yellow1 1,600,000 17 6
Yellow2 8,000,000 17 6
HEPMASS 10,500,000 28 2
HIGGs 11,000,000 28 2

TABLE 2
Parameters Setup of the Algorithms Random Blocks,
MR-HDBSCAN*bubbles andMR-HDBSCAN*sampling

Datasets Shared Parameters Random Blocks MR-HDBSCAN	

mpts ¼ mclSize p s (%)

Gauss1 50 10,000 0.9
Gauss2 50 30,000 0.3
Gauss3 50 50,000 0.2
YearPrediction 30 2,783 1.9
Poker 50 10,251 0.9
HT Sensor 30 5,506 1
Skin 40 1,961 4
Yellow1 20 4,194 0.3
Yellow2 20 33,968 0.08
HEPMASS 50 105,000 0.09
HIGGs 30 66,000 0.02

3. www.nyc.gov
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5.3 Quality Evaluation

Each dataset chosen for our experiments has a “reference
solution”, i.e., a flat partition based on the known categories
of the dataset, which can be used as ground truth to evalu-
ate results from clustering algorithms. These reference parti-
tions can then be compared with the flat clustering solutions
extracted from the hierarchies by the compared algorithms
(FOSC extraction—see Section 4.4). For the comparison of
the extracted solutions against the ground truth partitions,
we use the well known Adjusted Rand Index (ARI) [46];
objects left unclustered as noise in the evaluated clustering
solutions are considered as singletons (a cluster with a sin-
gle object) during the ARI computation. The maximum ARI
value is 1, which is only achieved when the result under
evaluation is identical to the ground truth partition. The
expected value of the ARI for a random solutions is 0 (due
to adjustment for chance).

The clustering quality comparison was conducted for
each dataset described in Section 5.1. Random blocks is the
exact MapReduce version of HDBSCAN*, which has deter-
ministic behavior, resulting in a single hierarchical cluster-
ing for a given dataset. However, MR-HDBSCAN*sampling

and MR-HDBSCAN*bubbles are based on random sampling
of the data, which may incur variations in their results. For
this reason, these approximations were run 45 times for
each dataset, resulting in 45 flat partitions extracted from
the corresponding clustering hierarchies. The ARI value of
the partition from Random blocks and the mean and
standard deviation (in brackets) of the ARI evaluations
over the MR-HDBSCAN*sampling and MR-HDBSCAN*bubbles
are presented in Table 3. The best results are
shown in bold. Additionally, the paired t-test was
applied to statistically assess the differences in the results
from MR-HDBSCAN*sampling and MR-HDBSCAN*bubbles,
with 95 percent confidence level [47]. The p-values resulting
from the tests are also shown in Table 3. We can see from
the very low p-values that the null hypothesis is rejected in
all datasets, and this would still be the case even if a much
higher confidence level was adopted. The test supports the
conclusion that MR-HDBSCAN*bubbles achieves superior
quality results when compared to MR-HDBSCAN*sampling

for all the chosen datasets, but its ARI values are lower than
those of the “exact” Random Blocks approach.

The results in Table 3 show that Random Blocks achieves
the best quality results, which is not surprising as it is an exact
version of the original HDBSCAN*. In contrast, whenever sam-
pling or summarization is used, information loss occurs.
However, the use of bubbles as a more sophisticated data sum-
marization technique partially mitigates this issue, incurring
much less noticeable losses. Indeed,MR-HDBSCAN*bubbles pro-
duces results that are very close to the exact results obtained
by Random Blocks. When comparing the ordinary sampling
performed by MR-HDBSCAN*sampling with the data bubbles
summarization performed by MR-HDBSCAN*bubbles, the latter
preserved most of the information and structure of clusters. It
also incurred less variability of the results, which shows as
smaller values of standard deviation for most datasets.

In absolute terms, the variability of results observed from
both approximate versions of MR-HDBSCAN* are very
small, with standard deviations of ARI values lower than
0.025 for the sampling variant and lower than 0.015 for the
data bubbles variant. Since these variants are orders of
magnitude faster than the exact method, they are still com-
putationally advantageous even if one wants to perform
multiple runs of the algorithms from which some unsuper-
vised model selection procedure could be applied to select
the best out of these runs. However, the small variability in
the results observed from Table 3 suggests that this proce-
dure may not be required in practice.

Finally, it is worth remarking that, except for the Gauss1
dataset, all partitions extracted using the optimal extraction
method FOSC discussed in Section 4.4 contain clusters from
multiple levels of the corresponding HDBSCAN* hierar-
chies. Those partitions cannot be obtained by partitioning
methods, such as DBSCAN and other related algorithms.

5.4 Runtime Evaluation

As previously discussed, an exact MapReduce version of
HDBSCAN* is computationally burdensome due to pairwise
distance calculations. One of the goals of this work is to show
how much data abstractions can improve the computational
performance of HDBSCAN* in MapReduce architectures. In
Table 4 we present the computational time needed to execute
Random Blocks as well as the mean computational time
(followed by standard deviation) of MR-HDBSCAN*sampling

and MR-HDBSCAN*bubbles executions. Additionally, in order

TABLE 3
Clustering Quality Comparison—ARI Values for All Algorithms
and p-Values of the t-Test betweenMR-HDBSCAN*bubbles and

MR-HDBSCAN*sampling

Datasets Random Blocks Sampling Data Bubbles t-test

ARI mean(std) ARI mean(std) ARI p-value

Gauss1 0.881 0.690(0.001) 0.864(0.000) 5.83e-86
Gauss2 0.820 0.588(0.001) 0.759(0.002) 1.40e-81
Gauss3 0.801 0.602(0.006) 0.777(0.002) 7.77e-64
YearPrediction 0.403 0.301(0.005) 0.388(0.004) 2.95e-48
Poker 0.310 0.196(0.005) 0.297(0.001) 1.08e-58
HT Sensor 0.359 0.287(0.001) 0.330(0.000) 1.22e-62
Skin 0.441 0.360(0.004) 0.425(0.002) 3.43e-51
Yellow1 0.328 0.250(0.011) 0.290(0.014) 7.60e-11
Yellow2 0.426 0.362(0.024) 0.407(0.011) 1.38e-14
HEPMASS 0.546 0.408(0.005) 0.529(0.000) 8.70e-62
HIGGS 0.235 0.210(0.008) 0.227(0.006) 2.70e-12

TABLE 4
Runtimes (in Minutes) of All Compared Algorithms and p-Values

of the t-Test betweenMR-HDBSCAN*bubbles and
MR-HDBSCAN*sampling

Datasets Random Blocks Sampling Data Bubbles t-test

time mean(std) time mean(std) time p-value

Gauss1 13312.24 67.35(18.11) 82.75(31.48) 0.0042
Gauss2 28393.65 162.07(30.50) 225.40(23.45) 7.09e-13

Gauss3 1+ month 115.39(0.076) 182.05(0.077) 5.75e-13

YearPrediction 11622.61 106.57(17.62) 109.89(21.30) 0.2147

Poker 28955.89 52.81(5.84) 97.06(35.32) 7.23e-11
HT Sensor 31450.89 42.54(4.74) 82.07(25.89) 7.23e-14

Skin 1743.93 21.14(4.99) 60.19(26.00) 2.13e-12

Yellow1 1+ month 106.44(8.44) 265.50(17.15) 2.03e-45

Yellow2 1+ month 474.69(43.26) 776.67(7.40) 2.95e-38
HEPMASS 1+ month 385.67(26.62) 695.29(28.01) 1.82e-40

HIGGS 1+ month 752.17(48.05) 887.54(46.18) 2.71e-19
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to assess the statistical significance of the differences
between the runtimes of MR-HDBSCAN*sampling and
MR-HDBSCAN*bubbles, a paired t-test was applied with 95 per-
cent confidence level [47]. The p-value results are also shown
in Table 4. Clearly, sampling and data bubbles allowed the
approximate algorithms to be much faster (up to 700 times,
240 times on average) than Random Blocks. Although the
standard deviation of their runtimes is relatively large when
compared to the mean value, it is still very low when com-
pared with the runtime of the Random Blocks approach.
MR-HDBSCAN*sampling has the lowest average execution
times, closely followed byMR-HDBSCAN*bubbles. Experiments
using the random blocks approach that executed for more
than one month in our original cluster, described at the begin-
ning of Section 5.2, were interrupted and re-executed in a sys-
tem with a far superior computational power to achieve
results in an acceptable running time for this publication.
These results are described as “1+ month” in Table 4.

Considering the t-test results, the only dataset for which
the null hypothesis was not rejectedwith 95 percent of signif-
icance wasYearPrediction, where both algorithms had similar
performance. In the majority of the datasets, building data
bubbles significantly increased the computational times in
relative terms. When compared to the runtimes of the exact,
Random Blocks approach, however, MR-HDBSCAN*bubbles
still is much much faster, at the price of only a small loss in
quality of the result, suggesting that this algorithm repre-
sents the best trade-off between quality and computational
performance formany practical application scenarios involv-
ing large datasets.

5.5 Top-Down and Bottom-Up Hierarchy
Construction Evaluation

The compared MapReduce variants of HDBSCAN* build an
MST in the transformed space of mutual reachability distan-
ces, which must be translated into a clustering hierarchy of
the dataset. Here, we compare the top-down approach
(denoted as divhierarchy) and the bottom-up approach
(denoted as agghierarchy) to build the HDBSCAN* hierarchy.
Since both approaches build the very same hierarchy, the
comparison is made in terms of computational time only.
They were both applied to the 45 MSTs produced by MR-

HDBSCAN*bubbles. The mean and standard deviation of their
runtimes are presented in Table 5.

Note that, on average, agghierarchy outperformed divhierarchy
for all analyzed datasets. This is because, unlike the top-
downmethod, the bottom-up approach does not need to per-
form a number of iterations, until convergence, to find con-
nected sub-components at each hierarchical level. If the
process to find the sub-components requires several itera-
tions, the execution time of divhierarchy can increase consider-
ably. In contrast, agghierarchy, rather than performing several
iterations to find sub-components at each given hierarchical
level, joins the sub-components in a single iteration per hier-
archical level using efficient union-find strategies. Another
aspect that increases the runtime of divhierarchy is related to
many duplicated edges to find connected sub-components.
In summary, the bottom-up approach (agghierarchy) should be
preferred to the top-down approach (divhierarchy).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we described an exact as well as two com-
putationally efficient, approximate MapReduce implemen-
tations of HDBSCAN*. By definition, the exact version,
which is based on a random blocks approach, is capable
of constructing in a distributed and parallel fashion the
same hierarchy that would result from a centralized
HDBSCAN* implementation running in a single machine
with access to the whole dataset. As expected, this is the
result with the highest quality in our experiments. The
exact MapReduce computation of this result is, however,
computationally prohibitive. As for the approximate var-
iants, which are based on a recursive sampling scheme,
our experiments show that applying density-based
hierarchical clustering directly over data subsamples may
lead to inferior quality, although the computational time
improved vastly (hundreds of times, for the datasets in
our experiments). To mitigate quality loss, we applied
data bubbles as a data pre-processing step.

With data bubbles, the quality of the obtained results
became competitive with the exact version of the algorithm,
while the runtimes were much lower, comparable to those
obtained by using only subsamples. These results allow to
conclude that approximate versions of HDBSCAN* are a
viable choice for large scale distributed frameworks and
datasets.

In addition, two different approaches for building the
HDBSCAN* hierarchy were compared. Although the top-
down approach may be more intuitive, the bottom-up
approach is a more natural choice for the MapReduce
framework, as map functions can deal with a large granu-
larity of objects and reduce functions work analogously
to merge functions. Such characteristics reflected in
the superior performance obtained by the bottom-up
implementation.

As future work, the parallelization of HDBSCAN* for
shared memory architectures may be an interesting choice
for applications involving amounts of data that could be
handled in the main memory of a single machine with
multiple processing units. In this case, a MapReduce
implementation may be too burdensome as the redundan-
cies and safety mechanisms may not be required, so

TABLE 5
Runtimes (in Minutes) of Different Hierarchy Construction

Methods (divhierarchy and agghierarchy)

Datasets divhierarchy agghierarchy

mean (std) mean (std)

Gauss1 206.87 (28.57) 136.38 (10.59)
Gauss2 356.00 (21.53) 266.95 (2.36)
Gauss3 520.17 (17.52) 402.20 (46.51)
YearPrediction 106.59 (5.68) 67.65 (4.52)
Poker 212.72 (11.35) 135.37 (12.94)
HT Sensor 188.90 (5.80) 124.82 (8.61)
Skin 51.21 (2.80) 32.95 (2.11)
Yellow1 505.00 (33.46) 486.00 (38.32)
Yellow2 778.09 (6.87) 734.00 (12.85)
HEPMASS 692.87 (27.18) 532.63 (8.73)
HIGGS 938.60 (3.23) 875.00 (14.18)
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improvements in the computational time of the original
HDBSCAN* may be achieved.
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