1912.11757v1 [cs.LG] 26 Dec 2019

arxXiv

Multi-Label Graph Convolutional Network
Representation Learning

Min Shi', Yufei Tang', Xingquan Zhu'! and Jianxun Liu?
! Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, USA
2 School of Computer Science and Engineering, Hunan University of Science and Technology, China
Email: {mshi2018, tangy, xzhu3} @fau.edu, 1jx529@gmail.com

Abstract—Knowledge representation of graph-based systems
is fundamental across many disciplines. To date, most existing
methods for representation learning primarily focus on networks
with simplex labels, yet real-world objects (nodes) are inherently
complex in nature and often contain rich semantics or labels,
e.g., a user may belong to diverse interest groups of a social
network, resulting in multi-label networks for many applications.
The multi-label network nodes not only have multiple labels
for each node, such labels are often highly correlated making
existing methods ineffective or fail to handle such correlation
for node representation learning. In this paper, we propose a
novel multi-label graph convolutional network (ML-GCN) for
learning node representation for multi-label networks. To fully
explore label-label correlation and network topology structures,
we propose to model a multi-label network as two Siamese GCNs:
a node-node-label graph and a label-label-node graph. The two
GCNs each handle one aspect of representation learning for
nodes and labels, respectively, and they are seamlessly integrated
under one objective function. The learned label representations
can effectively preserve the inner-label interaction and node
label properties, and are then aggregated to enhance the node
representation learning under a unified training framework.
Experiments and comparisons on multi-label node classification
validate the effectiveness of our proposed approach.

Index Terms—Multi-label learning, network embedding, deep
neural networks, label correlation

I. INTRODUCTION

Graphs have become increasingly common structures for
organizing data in many complex systems such as sensor
networks, citation networks, social networks and many more
[1]]. Such a development raised new requirement of efficient
network representation or embedding learning algorithms for
various real-world applications, which seeks to learn low-
dimensional vector representations of all nodes with preserved
graph topology structures, such as edge links, degrees, and
communities efc. The graph edges inherently reflect semantic
relevance between nodes, where nodes with similar neigh-
borhood structures usually tend to share identical labeling
information, i.e., clustering together characterized by a single
grouping label. For examples, in a scientific collaboration net-
work, two connected authors often belong to a common area of
science [2], [3]], and in a protein-protein interaction network,
proteins co-appeared in many identical protein complexes are
likely to serve with the similar biological functions.

To date, a large body of work has been focused on the
representation learning of graphs with simplex labels [4]], [15]],
where each node only has a single label which is used to

model node relationships, i.e., two nodes in a neighborhood
are forced to have an identical unique label in the learning
process. However, graph nodes associated with multiple labels
are ubiquitous in many real-world applications. For example,
in an image network, a photograph can belong to more than
one semantic class, such as sunsets and beaches. In a patient
social network, a patient may be suffering from diabetes and
kidney cancer at the same time. Similarly, in many social
networks, such as BlogCatalog and Flickr, users are allowed
to join various groups that respectively represent their multiple
interests. For all these networks, each node not only has
content (or features), it is also associated with multiple class
labels.

In general, multi-label graphs primarily differ from simplex-
label graphs in twofold. First, every node in a multi-label graph
could be associated with a set of labels, thus graph structures
usually encode much more complicated relationships between
nodes with shared labels, i.e., an edge could either reflect a
simple relationship of some single label or interpret a very
complex relationship of multiple combined labels. Second,
it has been widely accepted that label correlations and de-
pendencies are widespread between multiple labels [6]], [7]],
i.e., the sunsets are frequently correlated with the beaches,
and diabetes could finally lead to kidney cancer. Therefore,
the correlation and interaction between labels could provide
implicit and supplemental factors to enhance and differentiate
node relationships that cannot be explicitly captured by the
discrete and independent labels in a simplex-label graph.

Indeed, multi-label learning is a fundamental problem in the
machine learning community [8|], with significant attentions
in many research domains such as computer vision [9], text
classification [10] and tag recommendation [11]. However,
research on multi-label graph learning is still in its infancy.
Existing methods either consider graphs with simplex labels
[S]], [[12]] or treat multiple labels as plain attribute information
to enhance the graph learning process [[13]], [[14]. Such learning
paradigms, however, neglect the fact that the information of
one label may be helpful for the learning of another related
label [|6]—the label correlations may provide helpful extra
information especially when some labels have insufficient
training examples. To address this constrain and meanwhile
move forward the graph learning theory a litter, we propose
multi-label graph representation learning in this paper, where
each node has a collection of features as well as a set of labels.

Multi-label Node
Classification

Single-label Node
Classification

EEEEE
D
Pt

V1 V2 \Z) V3 V5 V6
Node Representation Node Representation
Learning

DEEE

I | I
| | |
| | |
I | I
I | I
I | I
| | I
I | I
I | I
I | I
: Learning : :
I | I
I | I
I | I
I | I
I | I
I | I
I | I
I | I
i | |
! I

L

Fig. 1: Illustration of the difference between simplex-label
graph learning vs. multi-label graph learning, where the labels
of each node are highlighted. In a simplex-label graph, each
node is associated with only one label and performs single-
label classification based on learned representations. In a
multi-label graph, each node may be associated with multiple
labels and these node labels are often highly correlated to
represent node semantics.

Figure [T]illustrates the difference between our studied problem
and the traditional simplex-label graph learning. We argue the
key for multi-label graph learning is to efficiently combine
network structures, node features and label correlations for
enriched node relationships modeling in a mutually reinforced
manner.

Incorporating labels and their correlations with graph struc-
tures for graph representation learning is a nontrivial task.
First, in a multi-label graph, two linked nodes may share one
or multiple identical labels, thus their affinity cannot be simply
determined by one observed edge that is indistinguishable
from others. Second, while each label can be seen as an
abstraction of nodes sharing similar network structures and
features, the label-label correlations would bring about dra-
matic impact on the node-node interactions, thus it is hard to
constrain and balance the two aspects of relations modeling for
an optimal graph representation learning as a whole. Recently,
a general class of neural network called Graph Convolutional
Networks (GCN) [15] shows good performance for learning
node representations from graph structures and features by per-
forming the supervised single-label node classification train-
ing. GCN operates directly on a graph and induces embedding
vectors of nodes based on the spectral convolutional filter that
enforces each node to aggregate features from all neighbors
to form its representation.

In this paper, we advance this emerging tool to multi-
label node classification and propose a novel model called
Multi-Label GCN (ML-GCN) to specifically handle the multi-
label graph learning problem. ML-GCN contains two Siamese
GCNs to learn label and node representations from a high-
layer label-label-node graph and a low-layer node-node-label
graph, respectively. The high-layer graph learning serves to
model label correlations, which only updates the label repre-
sentations with preserved labels, label correlations and node

community information by performing a single-label classi-
fication. The derived label representations are subsequently
aggregated to enhance the low-layer graph learning, which car-
ries out node representation learning from graph structures and
features by performing a multi-label classification. Learning in
these two layers can enhance each other in an alternative train-
ing manner to optimize a collective classification objective.
Our main contributions are summarized as follows:

1) We advance the traditional simplex-label graph learning
to a multi-label graph learning setting, which is more
general and common in many real-world graph-based
systems.

2) Instead of treating multiple labels as flat attributes, like
many existing methods do, We propose to leverage
label correlations to strengthen and differentiate edge
relationships between nodes.

3) We propose a novel model ML-GCN to handle multi-
label graphs. It can simultaneously integrate graph struc-
tures, features, and label correlations for enhanced node
representation learning and classification.

The rest of this paper is organized as follows. Section II
surveys the related work. Section III reviews some prelimi-
naries, including definition of the multi-label graph learning
problem and the graph convolutional networks used in our ap-
proach. The proposed model for multi-label graph embedding
is introduced in Section IV. Section V reports experiments
and comparisons to validate the proposed approach. Finally,
Section VI concludes the paper.

II. RELATED WORKS

This section presents existing works related to our studied
problem in this paper, including multi-label learning and graph
representation learning.

A. Multi-label Learning

Multi-label learning is a classical research problem in the
machine learning community with applications ranging from
document classification and gene function prediction to au-
tomatic image annotation [[16]. In a multi-label learning task,
each instance is associated with multiple labels represented by
a sparse label vector. The objective is to learn a classifier that
can automatically assign an instance with the most relevant
subset of labels [8]]. Techniques for multi-label classification
learning can be broadly divided into two categories [|17]:
the problem transformation-based and the algorithm adaption-
based. The former class of methods generally transforms the
multi-label classification task into a series of binary classifi-
cation problems [6], [18] while adaption-based methods try
to generalize some popular learning algorithms to enable a
multi-label learning setting [[19], [20].

Multi-label learning methods for graph-based data did not
attract much attention in the past. DeepWalk [21] was pro-
posed to learn graph representations that are then used for
training a multi-label classifier. However, DeepWalk only

exploits graph structures, with valuable label and label cor-
relation information not preserved in learned node embed-
dings. Wang et al. [4] and Huang et al. [14] proposed to
leverage labeling information along with graph structures
for enriched representation learning. However, these methods
either consider simplex-label graphs or treat multiple labels
as plain attribute genes to support graph structure modeling.
Such paradigms still neglect frequent label correlations and
dependencies which are demonstrably helpful properties in
multi-label learning problems [9], [10].

B. Graph Representation Learning

Graph representation learning [1]], [22] seeks to learn low-
dimensional vector representations of a given network, such
that various downstream analytic tasks like link prediction and
node classification can be benefited. Traditional methods in
this area are generally developed based on shallow neural
models, such as DeepWalk [21], Node2vec [23] and LINE
[24]. To preserve the node neighborhood relationships, they
typically perform truncated random walk over the whole graph
to generate a collection of fixed-length node sequences, where
nodes within the same sequences are assumed to have semantic
connections and will be mapped to be close in the learned
embedding space. However, above methods only consider
modeling the edge links to constrain node relations, which
may be insufficient especially when the network structures
are very sparse. To mitigate this issue, many methods [3]],
[25] are proposed to additionally embed the rich network
contents or features associated such as the user profiles in
a social network and the publication descriptions in a cita-
tion network. For example, TriDNR [26] was proposed to
learn simultaneously from the network structures and textual
contents, where structures and texts are mutually boosted to
collectively constrain the similarities between learned node
representations. In general, most real-word graphs are sparse
in connectivity (e.g., each node only connects several others
in the huge node space), while node contents or features can
be leveraged to either enhance node relevance or repair the
missing links in the original network structures [27].

However, above representation learning methods belong to
the class of shallow neural models, which may have limitations
in learning complex relational patterns between graph nodes.
Recently, there is growing interest in adapting deep neural
networks to handle the non-Euclidean graph data [12], [28].
Several works seek to apply the concepts of convolutional
neural networks to process arbitrary graph structures [15],
[24], with GCN [15] achieving state-of-the-art representation
learning and node classification performance on a number
of benchmark graph datasets. Following this success, Yao el
al. [29] proposed a Text GCN for document embedding and
text classification based on a constructed heterogeneous word-
document graph. Graph Attention Networks (GAN) [12] are
another recently proposed end-to-end neural network structure
similar to GCNs, which introduce attention mechanisms that
assign larger weights to the more important nodes, walks,
or models. Inspired by these deep neural models targeted

at mostly the simplex-label graphs, we generalize GCN and
propose a novel training framework, ML-GCN, to address the
multi-label graph learning problem in this paper.

III. PROBLEM DEFINITION & PRELIMINARIES
A. Problem Definition

A multi-label graph is represented as G = (v,e, 1, A, B, X),
where v = {v;}i=1,....n is a set of unique nodes, e =
{eij}ij=1,---.n; i=j is a set of edges and 1 = {c, },=1,... s is a set
of unique labels, respectively. n is the total number of nodes
in the graph and m is the total number of labels in the labeling
space. A is a n X n adjacency matrix with A;; = w;; > 0 if
eij€eand A; ; =0if e;; ¢ e. B is a n X m affiliation matrix
of labels with B;, = 1 if v; has label ¢, € 1 or otherwise
B;, = 0. Finally, X € R"™9 is a matrix containing all n nodes
with their features, i.e., X; € R4 represents the feature vector
of node v;, where d; is the feature vector’s dimension.

In this paper, the multi-label graph learning aims to repre-
sent nodes of graph G in a new m-dimensional feature space
H'™, embedding information of graph structures, features,
labels and label correlations preserved, i.e., learning a mapping
f + G — {h;}i=1,..., such that h; € H"™ can be used to
accurately infer labels associated with node v;.

B. Graph Convolutional Networks

GCN [22] is a general class of convolutional neural net-
works that operate directly on graphs for node representation
learning and classification by encoding both the graph struc-
tures and node features. In this paper, we focus on the spectral-
based GCN [16], which assumes that neighborhood nodes
tend to have identical labels guaranteed by each node gathers
features from all neighbors to form its representation. Given a
network G = (v, ¢, X), which has n nodes and each node has a
set of d;-dimensional features (X € R4 denotes the feature
vector matrix of all nodes), GCN takes this graph as input
and obtains the new low-dimensional vector representations
of all nodes though a convolutional learning process. More
specifically, with one convolutional layer, GCN is able to
preserve the 1-hop neighborhood relationships between nodes,
where each node will be represented as a m—dimension vector.
The output feature matrix for all nodes X! € R™™ can be
computed by:

XM = p(AX"Wo) (1)

where A = D’%(I + A)D’% is the normalized symmetric
adjacency matrix. D is the degree matrix of (I + A) and I
is an identity matrix with corresponding shape. X(© e R/
is the input feature matrix (e.g., X = X) for GCN and
W, € R%*™ is a weight matrix for the first convolutional
layer. p is an activation function such as the ReLU represented
by p(x) = max(0,x). If it is necessary to encode k-hop
neighborhood relationships, one can easily stack multiple GCN
layers, where the output node features of the jth (1 < j < k)
layer is calculated by:

XUt = p(AXY'W;))

The High-layer
Label-label-node Graph ~

\\
\ x
2 & ——
sl
‘/

I
L
I
I
x ! | |
| ! | Single-label Classification | Label Representation
I I
| ! ! |
| I | |
[1 i Label
| | - | o)
! | o Node ! /
| 2] /
--> Feature update | — 13 K L2
. 1 18\ 2]
_, Representation | \
learning L- ‘
The Low-layer Node
Node-node-label Graph = classification Node-node-label Graph Node Representation Multi-label Classification

(a) The layered multi-label graph

(b) The ML-GCN model

Fig. 2: The proposed ML-GCN model for multi-label graph learning. (a) shows a multi-label graph organized in two layers. (b)
shows the proposed architecture that contains two Siamese GCNs to learn from the label-label-node graph and node-node-label
graph, respectively. The upper panel uses label-label-node graph to learn label representation (from right to left), and the lower
panel uses node-node-label graph to learn node representation (from left to right).

where W; € R4>dn is the weight matrix for the jth layer
and dj, is the feature vector dimension output in the hidden
convolutional layer.

IV. THE PROPOSED APPROACH

In this section, we first present the proposed Multi-Label
Graph Convolutional Networks (ML-GCN) model, where the
node representations are learned and trained through the
supervised classification. Then, we provide the training and
optimization details which incorporate node and label repre-
sentation learning by a collective objective, followed by the
computation complexity analysis of the ML-GCN.

A. Multi-Label Graph Convolutional Networks

As discussed in previous sections, the key and challenge for
multi-label graph learning are to simultaneously learn from
the graph structures, features, labels and label correlations,
where different aspects of learning could enhance each other to
achieve a global good network representation. To support the
incorporation of labels, we can simply build a heterogeneous
node-label graph similar to the text GCN [29], where common
nodes and label nodes are directly connected by their labeling
relationships. However, such a diagram makes it hard to model
the higher-order label correlations since labels must reach each
other through common nodes, i.e., one cannot directly encode
k-hop neighborhood node relations and label correlations by
a GCN with k convolutional layers. To enable immediate
and flexible label interactions, we consider a stratified graph
structure shown in Fig. |Zka), which is defined as follows:
Label-label-node graph: In this graph, labels connect each
other by their co-occurrence relations, i.e., two labels have
an edge if they appear at the same time in the label set of
some common node. Meanwhile, common nodes are seen as
attributes that link with label nodes based on their correspond-
ing labeling relationships.

Node-node-label graph: In this graph, common nodes link
together to form the original graph structure. Meanwhile,
associated label nodes are seen as the attributes of the common
node-node graph.

Such a construction of the layered multi-label graph in
Fig. fa) could bring three main favorable properties. First,
the label-label connectivity allows direct and efficient higher-
order label interactions by simply adjusting the number of
convolutional layers in GCN. In addition, common nodes as
attributes of the label nodes enable to encode graph community
information in learned label representations, as nodes with
identical labels tend to form a cluster or community. Lastly,
the learned node representations can naturally preserve labels,
label correlations and graph community information by taking
label nodes as attributes of the node-node graph.

Fig. 2(b) shows the proposed ML-GCN model that contains
two Siamese GCNs to simultaneously learn the label and node
representations from the given multi-label graph, where input
feature vectors of both the attributed label and common nodes
will be regularly updated during the training. First, the high-
layer GCN learns label representations from the label-label-
node graph through supervised single-label classification. Let
Y € R4 be the input feature matrix of all m label nodes,
C be the m X m adjacency matrix recording the co-occurrence
relations between label nodes, and F be the (n + m) X (n +
m) adjacency matrix of the input label-label-node graph. The
first convolutional layer aggregates information from both the
neighborhood label nodes and the associated common nodes
(e.g., label node L1 in Fig. Eka)), where the new m-dimensional
label node feature matrix L) € R is computed by:

LY = p(F"Y"W)) 3)

where p is an activation function, such as the ReLU repre-

sented by p(x) = max(0, x), Wf) € R%*m is a weight matrix

for the first label-label-node GCN layer and Y* = [Y;X]” is a

vertically stacked (m +n) x d; feature matrix. F* is a truncated
normalized symmetric adjacency matrix obtained by:

~ _1 1 ~
F =F + Ly F =D 2FD 3 F = F[: m] 4)

where I, is the identity matrix, Dy is the degree matrix with
Drii = 2; Ffj One layer GCN only incorporates immediate
label node neighbors. When higher order label correlations
need to be preserved, we can easily stack multiple GCN layers
(e.g., the layer number k > 2) by:

LY = p(CL " DW)) 5)

where C = D;%(C + Im)D;% is the normalized symmetric
adjacency matrix and D.;; = };(C + L;);;. The last layer
output label embeddings have the same size as the total
number of labels, m, and are through a softmax classifier
to perform the single-label classification (e.g., assume we
consider a two-layer GCN) by:

O' = CReLU(F*Y*'W))W| (6)

exp(o?)
> exp(oh)

where W) e R4 and W) e R*™ are the weight
matrices for the first and second label-label-node GCN layers,
respectively. Let Y/ be the one-hot label indicator matrix of
all label nodes, the classification loss can be defined as the
cross-entropy error computed by:

L =-— Z;"zl Y, InZ), (8)

Then, the low-layer GCN learns node representations from
the node-node-label graph. Similarly, in the first layer each
convolution node aggregates information from both the neigh-
borhood common nodes and the associated attributed label
nodes (e.g., take node V2 in Fig. 2[a) as an example). Let
E be the (n+m) X (n+m) adjacency matrix of the input node-
node-label graph, the d,-dimensional node embeddings output
by the first GCN layer are computed as:

Z! = softmax(0') = @)

N = p(E'X*Wp) ©)
where Wy € R4>X™ i a weight matrix for the first node-
node-label GCN layer, X* = [X; Y]” and E* is a truncated
normalized symmetric adjacency matrix obtained by:

_1 1 ~
E'=E+1L,;E=D,’E'D,%;E* = E[:] (10)

where D, is the degree matrix with De;; = 2; Efj As in
the label-label-node graph, we can also incorporate k-hop
neighborhood information by stacking multiple GCN layers:

N® = p(AN*-DwY) (11)
- _1 _1

where A = D,*(A+L,)D,* and Dy ;; = ¥ ;(A+I,);;. The node

embeddings output by the last layer have size m and are passed

through a sigmoid transformation to perform supervised multi-

label classification with the collective cross-entropy loss (e.g.,

Algorithm 1: Training ML-GCNs
Input : A multi-label graph G = (v, e, 1, A, B, X)
Output: The node representations O = {A;}i=1.....n
Initialization: i = O, the training epoch I, the information
updating frequencies M and N

while i < I do
Feed the label-label-node graph to train label

representations;
Feed the node-node-label graph to train node
representations;
if i%M = 0 then
| Update the feature matrix by Eq. (15);
end
if i%N = 0 then
‘ Update the feature matrix by Eq. (16);
end
Optimize £L; and £, by the collective classification
objective of Eq. (17);
i=i+l.

end

the two-layer GCN are used in this paper) over all labeled
nodes computed by:

0" = AReLU(E"X*Wj)W)

‘EZ - Ziey ‘E;

where Wi € R4>dn and W) € R4>X™ are the weight
matrices for the first and second node-node-label GCN layers,
respectively, y is the set of node indices that have labels. Let
Y" be the one-hot label indicator matrix of all common nodes,
then L7 is calculated:

L5 =Y log(c(0})) + (1 = Y})log(l — o(0}))

(12)
(13)

=vos o)
; exp(-0;)
+(1-Y})log (m) (14)

= -Y/ log (1 + exp(-0Y}))
- (1-Y!)log (O} +1og (1 +exp(-0Y)))
= - (1-Y!) O} —log(1 + exp(-0})).

The above two aspects of representation learning for labels
and nodes are trained together and impact one another by
sharing the common classification labeling space of 1 from the
target graph G, and in the meantime a subset of input features,
i.e., through the attributed label nodes in the low-level node-
node graph and the attributed common nodes in the high-level
label-label graph. Let the total training epoch for ML-GCN
be I, after N-epoch training of common node representations,
the input feature matrix for the label-label-node graph will be
updated:

Xpew = p(O"W'); Y = [Y; Xpen], (15)

and in the meantime, after M-epoch training of label represen-
tations, the input feature matrix for the node-node-label graph
will be updated:

Yoew = p(O'W): X" = [X; Yew]” (16)
where WY € R”*% and W! € R"*% are weight matrices. The

collective training procedure for the ML-GCN model has been
summarized in Algorithm [T}

B. Algorithm Optimization and Complexity Analysis

As can be seen from Algorithm 1, the node representations
and label representations are not learned independently, but
depend on each other through shared embedding features
learned from two reciprocally enhanced GCNs. In addition,
the two level GCNs conduct two supervised classification tasks
within the same labelling space: the top label-label-node GCN
is doing a single-label classification and the bottom node-node-
label GCN is doing a multi-label node classification. Finally,
The global learning objective is to minimize the following
collective classification loss:

L=Li+L (17)
In this paper, all weight parameters are optimized using
gradient descent as in [15] and [29].

The training of ML-GCN is efficient in terms of the compu-
tational complexity. In this paper, we adopt a two-layer GCN
and one-layer GCN for learning the node and feature repre-
sentations, respectively. Since multiplication of the adjacency
matrix (e.g., A for the node-node graph and F for the label-
label graph) and feature matrix (e.g., Y* and X* in Egs. (6) and
(12), respectively) can be implemented as a product of a sparse
matrix with a dense matrix, the algorithm complexity of ML-
GCN can be represented as O((Ed;dpm+nd;)+(Ld;m+md;)),
where n and m are the number of nodes and labels, £ and L
are the number of edges in node-node-label graph and label-
label-node graph, respectively. d; is the dimension (for both
nodes and labels) of input feature vectors. dj, is dimension
of the hidden feature vectors produced in the first node-node-
label GCN layer of all common nodes. In addition, because
for most networks m, L and n are generally far more less than
E (e.g., as we will see in section V, for the Filckr dataset,
E is 4,332,620, compared with m, L and n are merely 194,
3,716 and 8,052, respectively), therefore the complexity of
ML-GCN is approximately equivalent to O(Ed;dym), which
is the same as GCN. Meanwhile, since Egs. (15) and (16)
are not computed in each epoch (e.g., every 50 epoch),
the complexity for our model is still O(Ed;dym), the same
theoretical asymptotic complexity as the GCN.

V. EXPERIMENTS & RESULTS

In this section, we compare the proposed approach against
a set of strong baselines on three real-world datasets by
conducting supervised node classification.

A. Benchmark Datasets

We collect three multi-label networks [13], [21], Blog-
Catalog, Flickr, and YouTube, as the benchmark. They are
described as follows.

BlogCatalog is a network of social relationships among
10,312 blogger authors (nodes), where the node labels repre-
sent bloggers’ interests such as Education, Food and Health.
There are 39 unique labels in total and each node may be
associated with one or multiple labels. It is easy to find that
users’ labels of interest often interact and correlate with each
other to enhance the affinities between blogger authors. For
example, food is highly related with Health in real life, where
two users have both labels food and life should be much
closer compared with those whom only share either label food
or label life. There are 615 co-occurrence relationships (e.g.,
correlations) among all 39 labels in this dataset.

Flickr is a photo-sharing network between users, where
node labels represent user interests, such as Landscapes and
Travel. There are 8,052 users and 4,332,620 interactions (e.g.,
edges) among them. Each user could have one or multiple
labels of interest from the same labeling space of 194 labels
in total.

YouTube is a social network formed by video-sharing
behaviors, where labels represent the interest groups of users
who enjoy common video genres such as anime and wrestling.
Table [l summaries their detailed statistic information. There
are 22,693 users and 192,722 links between them. Each pair of
linked users may share multiple identical labels out of the total
47 labels. The number of correlations between these labels is
1,079.

The detailed statistic information of the above three multi-
label networks are summarized in Table 1.

B. Comparative Methods

We compare the performance of the proposed method with
the following state-of-the-art methods for multi-label node
classification:

o DeepWalk [21] is a shallow network embedding model
that only preserves the topology structures. It captures
the node neighborhood relations based on random walks
and then derives node representations based on SkipGram
model.

« LINE [30] is also a structure preserving method. It
optimizes a carefully designed objective function that
preserves both the local and global network structures,
compared with the DeepWalk that encodes only the local
structures.

o Node2vec [23] adopts a more flexible neighborhood
sampling process than DeepWalk to capture the node
relations. The biased random walk of Node2vec can
capture second-order and high-order node proximity for
representation learning.

« GENE [13] is a network embedding method that si-
multaneously preserves the topology structures and label
information. Different from the proposed approach in this
paper, GENE simply models labels as plain attributes to

TABLE I: Dataset characteristics.

Items BlogCatalog Flickr YouTube
Nodes 10,312 8,052 22,693
Edges 333,983 4,332,620 | 192,722
Labels 39 194 47
Co-occur. 615 3,716 1,079

enhance structure-based representation learning process,
whereas our model considers multi-label correlation and
network structure for representation learning.

¢ GCN [15] is a state-of-the-art method that can naturally
learn node relations from network structures and features,
where each node forms its representation by adopting a
spectral-based convolutional filter to recursively aggre-
gate features from all its neighborhood nodes.

o Text GCN [29] is built on GCN that aims to embed
heterogeneous information network. In this paper, we
construct heterogeneous node-label graph, where com-
mon nodes and label nodes are directly connected by their
labeling relationships.

e ML-GCN,,,4. is a variant of the proposed ML-GCN
model that removes attributes of common nodes from
the label-label-node graph. Therefore, the community
information is not preserved in this method.

o ML-GCN;,, is a variant of the proposed ML-GCN model.
The only difference with ML-GCN is that ML-GCNy,
takes only one convolutional layer while learning from
the node-node-label graph.

« ML-GCNy is a variant of the proposed ML-GCN model,
which adopts a two consecutive convolutional layers to
learn from the label-label-node graph, compared with one
layer in GCN.

« ML-GCN is our proposed multi-label learning approach
in this paper. It considers a two-layer graph structure—a
high-level label-label-node graph which allows the preser-
vation of label correlations and meanwhile a low-level
node-node-label graph that enables the label correlation-
enhanced node representation learning.

The above baselines can be roughly separated into three
categories based on the types of information (e.g., network
structures and labels) and how it is incorporated in the
graph embedding models. The first class belongs to meth-
ods that only preserve graph structures, including DeepWalk,
Node2vec, LINE, GCN (e.g., we use the structure-based
identity matrix as the original features of all node). The second
class includes GENE and Text GCN that preserve both the
graph structures and label information, where the labels are
modeled as plain attribute information to enhance structure-
based representation learning. The proposed method MG-GCN
and its variants (ML-GCN,,,4., ML-GCN,,, and ML-GCNy;)
represent the thrid class, which not only preserve structural and
label information, but also the correlations between labels.

It is worth noting that we designed three variants of MG-

GCN (including ML-GCN,, 4., ML-GCNjy,,, and ML-GCNy;)
to validate its performance under different settings. This allows
us to fully observe ML-GCN’s performance and conclude
which part is playing major roles for multiple-label GCN
learning.

C. Experiment Setup

There are many hyper-parameters involved. Some are em-
pirically set [29] while others are selected through sensitivity
experiments. For ML-GCN, we use two-layer and one-layer
GCNs to learn from the node-node-label graph and the label-
label-node graph respectively. We test hidden embedding size,
dp, between 50 to 500, training ratios, a, of supervised labeled
instances between 0.025 and 0.2, and updating frequencies N
and M from 10 to 100, respectively. We also compare the
performance of ML-GCN through differing numbers of GCN
convolutional layers (e.g., ML-GCNj,, and ML-GCNy;). For
comparison, we set the learning rate n for gradient decent as
0.02, training epoch as 300, dropout probability as 0.5, L,
norm regularization weight decay as 0, and the default values
of dp, @, N and M as 400, 0.2, 50 and 50, respectively. After
selecting the labeled training instances, the rest is split into
two parts: 10% as validation set and 90% for testing set.

It is necessary to mention that all baselines are set to conduct
the multi-label node classification (e.g., each node can belong
to multiple labels) within the same environmental settings. As
metrics used in [21f] and [30], we adopt Micro-F1 and Macro-
F1 to evaluate the node classification performance, which are
defined as follows:

Micro — F1 = g : - - (18)
Y!, QTP + FPi + FN)
1 ! 2T P!
Macro — F1 = ~ =19
acto e QrP + FPi v FN))

where 1 is the set of labels from the target graph G. TP!, FN'
and FP' denote the number of true positives, false negatives
and false positives w.r.t the ith label category, respectively. All
experiments are repeated 10 times with the average results and
their standard deviations reported.

D. Experimental Results

Table [presents the comparative results of all methods with
respect to the multi-label classification performance within the
same environment settings, where the top three best results
have been highlighted. From the table, we have the following
four main observations.

« Among all methods that encode only the graph topology
structures, the shallow neural networks-based methods
(e.g., DeepWalk, LINE and Node2vec) perform poorly
with a wide gap compared with deep model GCN
over all three datasets, i.e., on BlogCatalog network,
the classification performance of GCN improved 30.6%
and 70.9% over Node2vec w.r.t Micro-F1 and Macro-
F1, respectively. This is because shallow models have
limitations in learning complex relational patterns among

TABLE II: Multi-label classification performance comparison. The 1%, 2nd and 3" best results are bold-faced, italic-formatted

and underscored respectively.

Metrics Micro-F1 (%) Macro-F1 (%)
Datasets BlogCatalog Flickr YouTube | BlogCatalog Flickr YouTube
DeepWalk 29.19:0.28 25.75:0.13 | 26.19z0.18 19.22:0.63 12.31:0.17 | 10.03z0.23
LINE 30.79+0.84 30.13£0.39 | 27.68+0.11 17.89+1.26 16.24+0.53 | 10.90+0.30
Node2vec 33.35+0.69 34.51+0.44 | 26.75+0.25 21.38+1.76 19.72+0.32 | 10.03z0.29
GENE 28.77+0.02 29.44+0.18 | 26.77+0.22 16.00+1.06 14.35+0.82 | 10.48:0.72
Methods GCN 43.57=0.11 40.3620.04 | 44.44+0.02 36.55+0.22 24.77+0.09 | 33.54:0.08
Text GCN 40.31+0.49 41.82+033 | 39.82:0.53 32.03+0.49 22.98:0.40 | 39.07x0.11
ML-GCN,,54¢ 43.72:0.31 39.99:0.07 | 44.14=x0.05 38.39:0.38 22.70:0.03 | 33.96z0.18
ML-GCNy,, 32.96=0.01 31.83:0.03 | 31.82x0.07 17.92+0.02 16.8920.21 | 27.48+0.33
ML-GCNy; 43.86=+0.07 38.41+0.23 | 42.3310.03 38.63+0.24 26.28+030 | 32.62<0.11
ML-GCN 45.17+0.20 43.74:0.20 | 45.71+0.02 42.53+0.72 30.71+0.12 | 42.77+0.31
-=- GCN
0.40 ¢ —— Text GCN
—— ML-GCN i
0.35
o @
o $ 0.30
J (¥}
= 2025
-=-- GCN
— Text GCN 0.20
0.25 = MLGCN 0.15
25 5 7.5 10 125 15 17.5 20 25 5 75 10 125 15 17.5 20

(a) Training ratio a (%)

nodes [1]]. For example, although Node2vec relies on a
carefully designed random walk process to capture the
node neighborhood relationships, it cannot differentiate
the affinities between a node and others within the same
walk sequence. In comparison, GCN uses a more efficient
way to constrain the neighborhood relations between
nodes, where each node only interact with its neighbors in
each convolution layer. Such a learning paradigm is more
accurate to maintain the actual node relevance reflected
by the edge links without introducing noise neighborhood
relationships as in Node2vec.

In terms of the performance of methods (GENE and Text
GCN) that have incorporated the labels to enhance the
structures modeling. GENE is built on DeepWalk to ad-
ditionally preserve the label information. We can observe
that GENE performs slightly better than DeepWalk on
both Flickr and YouTube datasets. The reason is that each
label is considered as the higher-level summation of a
group of similar nodes, thus can be used to supervise
and distinguish the neighborhood affinities between nodes
within the same random walk sequence. Nevertheless,
LINE and Node2vec can perform better than GENE in
most cases over three datasets, i.e., the Micro-F1 perfor-
mance of LINE and Node2vec on BlogCatalog increased
2.0% and 4.6%, respectively. The reason is probably that

(b) Training ratio a (%)

Fig. 3: Algorithm performance comparisons with respect to different percentage of training sample ratios (the x—axis denotes
the ratio of training samples comparing to the whole network).

they have adopted more efficient random walk process
to capture node neighborhood relationships. In addition,
as we can see from Table the label-preserved model,
Text GCN, has no advantages compared with the basic
GCN model. The reason is probably that the labels are
considered as attributes that have not been leveraged in
a meaningful manner. In other words, only the labeled
nodes have the attribute of labels in the supervised node
representation leaning and training, the scattered labels
could have become the noisy information to confuse the
neighborhood relationships modeling between nodes.

« For deep models that both preserved graph structures,

labels and label correlations, we can observe that ML-
GCN is consistently superior to the Text GCN in leaning
multi-label graphs over all three datasets. The reasons are
mainly in three-fold. First, ML-GCN allows immediate
and efficient label correlation modeling without depend-
ing on common nodes, ie., labels directly interact with
each other over the label-label graph in the proposed
model. Second, it is common to use different numbers of
convolutional layer (e.g., based on the results observed by
comparing ML-GCN and ML-GCNy;, where the former
performs far more better) to learn from the label and
node graphs respectively, since the node-node graph is
much more complicated than the label-label graph that

o
i
N

0.450

o
IS
ot

Micro-F1
e
IS
FY
&
Macro-F1
o
Y
o

o
w
@

0.440

o
w
o

0.435

e
S
w

0.450

e
S
Y]

o
s
o
)
e
i
ot

Macro-F1
o
£
[=]

Micro-F1

0.440

ot
w
o

0.435

e
w
©

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 &0 70 80 90 100

(a) Updating frequency N (b) Updating frequency N

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 &0 70 80 90 100

(c) Updating frequency M (d) Updating frequency M

Fig. 4: Impact of the information updating frequencies.

Micro-F1
Macro-F1

50 100 150 200 250 300 350 400 450 500
(b) Embedding size dj

50 100 150 200 250 300 350 400 450 500

(a) Embedding size dj

Fig. 5: Impact of the hidden node embedding size.

involves simple label interaction patterns. To obtain a
model that best fits the given label and node graphs of
different scales, one can easily change the number of
layers used by the two-layer graph modelings in ML-
GCN independently. But this is hard for Text GCN to
coordinate the layer settings that are most suitable to
model node relations and label relations simultaneously
in the node-label graph. Finally, in the structure design of
ML-GCN, each label has preserved the community infor-
mation by taking all related common nodes as attributes,
which make the node relations modeling and the label
correlations modeling more dependent on each other to
optimize the global network representation learning, i.e.,
the node representations of one label could refine the node
representation learning of another correlated label, as we
will demonstrate in the case study later.

« In terms of the performance of different variants for the
proposed ML-GCN, we can condlude that MI-GCN is
superior to ML-GCN,,p4., ML-GCNj,, and ML-GCNy,,
where the possible reasons are given as follows: 1)
The comparison between ML-GCN and ML-GCN,,,4.
demonstrates that taking the common nodes as attributes
of the label-label network is beneficial, where labels
could learn more enriched representations (with encoding
label correlations and the node communities) to refine
the neighborhood feature aggregation for node represen-
tation learning in the low-level node-node graph; 2) ML-
GCN performs better than ML-GCNy;, which illustrates
a single-layer GCN is appropriate to model the label
correlations, since compared with the node-node inter-
actions, the label-label interactions are generally simple
and explicit; 3) ML-GCNy; is poorly performed than ML-

GCN, which demonstrates that exploring the high-order
neighborhood relationships between nodes is important.

E. Parameter Sensitivity

We designed extensive experiments to test the sensitivities
of various parameters between a wider range of values, such
as the training ratio a of labeled nodes, the feature updating
frequencies N and M, and the embedding size of the first
hidden convolution layer while modeling the node-node-label
graph. Fig. 3 shows the impacts of different portions of labeled
training instances. In general, for all test models, we can
observe that both the Micro-F1 (e.g., Fig. 3(a)) and Macro-
F1 (e.g., Fig. 3(b)) performances increase with more labeled
training nodes. This is reasonable since all these models adopt
a supervised node representation learning and training manner,
where the model parameters can be fully trained with larger
labeled data [29]]. Fig. 4 shows the influence of the input
feature-updating frequencies controlled by N and M (e.g.,
used in Egs. (15) and (16)). We can see from Fig. 4(a) where
the performance changes with N but no clear patterns can be
observed in Micro-F1, while Fig. 4(b) shows an deceasing
trend with larger values of N in the Macro-F1 scores. In
comparison, from Fig. 4(c) and Fig. 4(d) the accuracy first
increases then decreases with larger values of M w.r.t. both
Micro-F1 and Macro-F1 scores. We also test the impact of
node embedding size generated by the first convolutional layer
with the trend shown in Fig. 5(a). The accuracy fluctuates
before peaking at 400 and 450 w.r.t. Micro-F1 and Macro-F1
results, followed by a sharp decline.

F. Case Study

To illustrate how label correlations affect the multi-label
graph learning performance, we present the classification
results through four related label categories shown in Fig. 6.
Fig. 7 presents their correlation matrix, where deeper colors
imply higher correlation between two corresponding labels,
i.e., L1 and L2 are highly correlated. We can see in Fig. 6
that ML-GCN and GCN perform similarly with respect to the
node classification of category L1. However, the accuracy of
MC-GCN improved over GCN with respect to categories L2,
L3 and L4. It is interesting to note how much these categories
improved (e.g., L2 > L3 > L4) is related to how frequently
they correlate with label L1 respectively. This phenomenon
might be caused by the fact that the L1 has an impact on its

0.5

Macro-F1
=]
w

0.0~

(b) Categories

Fig. 6: Classification performance (Macro-F1) with respect to
different label categories.

I I I I 1.0

L1
0.8

2 0.6
L -04

-02
L4

-00

Fig. 7: Pair-wise label correlation matrix. A higher gray
intensity value (excluding main diagonal values) indicates a
stronger correlation between two labels.

correlated labels during training. This also verifies that label
interaction is critical for multi-label graph learning, and our
proposed ML-GCN model can effectively capture and utilize
this property.

VI. CONCLUSIONS

In this paper, we formulated a new multi-label network
representation learning problem, where each node of the
network may have multiple labels. To simultaneously explore
label-label correlation and the network topology, we proposed
a multi-label graph convolution network (ML-GCN) to build
two siamese GCNs, a node-node-label graph and a label-
label-node graph from the multi-label network, and carry out
learning of node representation and label representation from
the two GCNs simultaneously. Because the two GCNs are
unified to achieve one optimization goal, the learning of node
representation and label representation can mutually benefit
each other for maximum performance gain. Experiments on
three real-word datasets verified the effectiveness of ML-GCN
in combining labels, label correlations, and graph structures for
enhanced node representation learning and classification.

REFERENCES

[1] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation
learning: A survey,” IEEE Trans. on Big Data, 2018.

[2] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
no. 1, pp. 181-213, 2015.

[3]

[4]

[5]
[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social network
embedding,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 12, pp. 2257-2270, 2018.

X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

S.-J. Huang and Z.-H. Zhou, “Multi-label learning by exploiting label
correlations locally,” in Twenty-sixth AAAI conference on artificial
intelligence, 2012.

W. Bi and J. T. Kwok, “Multilabel classification with label correlations
and missing labels,” in Twenty-Eighth AAAI Conference on Artificial
Intelligence, 2014.

V. Kumar, A. K. Pujari, V. Padmanabhan, S. K. Sahu, and V. R.
Kagita, “Multi-label classification using hierarchical embedding,” Expert
Systems with Applications, vol. 91, pp. 263-269, 2018.

J. Zhang, Q. Wu, C. Shen, J. Zhang, and J. Lu, “Multilabel image classi-
fication with regional latent semantic dependencies,” IEEE Transactions
on Multimedia, vol. 20, no. 10, pp. 2801-2813, 2018.

S. Burkhardt and S. Kramer, “Online multi-label dependency topic
models for text classification,” Machine Learning, vol. 107, no. 5, pp.
859-886, 2018.

M. Shi, J. Liu, D. Zhou, and Y. Tang, “A topic-sensitive method for
mashup tag recommendation utilizing multi-relational service data,”
IEEE Transactions on Services Computing, 2018.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
J. Chen, Q. Zhang, and X. Huang, “Incorporate group information to
enhance network embedding,” in Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowledge Management.
ACM, 2016, pp. 1901-1904.

X. Huang, J. Li, and X. Hu, “Label informed attributed network
embedding,” in Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining. ACM, 2017, pp. 731-739.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

W. Liu and I. W. Tsang, “Large margin metric learning for multi-label
prediction,” in Tiventy-Ninth AAAI Conf. on Artificial Intelligence, 2015.
M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algo-
rithms,” IEEE transactions on knowledge and data engineering, vol. 26,
no. 8, pp. 1819-1837, 2014.

M.-L. Zhang, Y.-K. Li, X.-Y. Liu, and X. Geng, “Binary relevance
for multi-label learning: an overview,” Frontiers of Computer Science,
vol. 12, no. 2, pp. 191-202, 2018.

M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to
multi-label learning,” Pattern recognition, vol. 40, no. 7, pp. 2038-2048,
2007.

J. Nam, J. Kim, E. L. Mencia, I. Gurevych, and J. Fiirnkranz, “Large-
scale multi-label text classification-revisiting neural networks,” in Joint
european conference on machine learning and knowledge discovery in
databases. Springer, 2014, pp. 437-452.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701-710.

Z. Wu, S. Pan, E. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehen-
sive survey on graph neural networks,” arXiv preprint arXiv:1901.00596,
2019.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2016, pp. 855-864.
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in neural information processing systems, 2016, pp. 3844-3852.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network representa-
tion learning with rich text information,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network
representation,” Network, vol. 11, no. 9, p. 12, 2016.

T. M. Le and H. W. Lauw, “Probabilistic latent document network
embedding,” in 2014 IEEE International Conference on Data Mining.
IEEE, 2014, pp. 270-279.

(28]

[29]

(30]

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61-80, 2009.

L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification,” arXiv preprint arXiv:1809.05679, 2018.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
international conference on world wide web. International World Wide
Web Conferences Steering Committee, 2015, pp. 1067-1077.

	I Introduction
	II Related Works
	II-A Multi-label Learning
	II-B Graph Representation Learning

	III Problem Definition & Preliminaries
	III-A Problem Definition
	III-B Graph Convolutional Networks

	IV The Proposed Approach
	IV-A Multi-Label Graph Convolutional Networks
	IV-B Algorithm Optimization and Complexity Analysis

	V Experiments & Results
	V-A Benchmark Datasets
	V-B Comparative Methods
	V-C Experiment Setup
	V-D Experimental Results
	V-E Parameter Sensitivity
	V-F Case Study

	VI Conclusions
	References

