IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 1, JANUARY-MARCH 2021

COVID-19-CT-CXR:
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Image Collection on COVID-19 From
Biomedical Literature
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Abstract—The latest threat to global health is the COVID-19 outbreak. Although there exist large datasets of chest X-rays (CXR) and
computed tomography (CT) scans, few COVID-19 image collections are currently available due to patient privacy. At the same time,
there is a rapid growth of COVID-19-relevant articles in the biomedical literature, including those that report findings on radiographs.
Here, we present COVID-19-CT-CXR, a public database of COVID-19 CXR and CT images, which are automatically extracted from
COVID-19-relevant articles from the PubMed Central Open Access (PMC-OA) Subset. We extracted figures, associated captions, and
relevant figure descriptions in the article and separated compound figures into subfigures. Because a large portion of figures in COVID-
19 articles are not CXR or CT, we designed a deep-learning model to distinguish them from other figure types and to classify them
accordingly. The final database includes 1,327 CT and 263 CXR images (as of May 9, 2020) with their relevant text. To demonstrate
the utility of COVID-19-CT-CXR, we conducted four case studies. (1) We show that COVID-19-CT-CXR, when used as additional
training data, is able to contribute to improved deep-learning (DL) performance for the classification of COVID-19 and non-COVID-19
CT. (2) We collected CT images of influenza, another common infectious respiratory illness that may present similarly to COVID-19,
and fine-tuned a baseline deep neural network to distinguish a diagnosis of COVID-19, influenza, or normal or other types of diseases
on CT. (3) We fine-tuned an unsupervised one-class classifier from non-COVID-19 CXR and performed anomaly detection to detect
COVID-19 CXR. (4) From text-mined captions and figure descriptions, we compared 15 clinical symptoms and 20 clinical findings of
COVID-19 versus those of influenza to demonstrate the disease differences in the scientific publications. Our database is unique, as
the figures are retrieved along with relevant text with fine-grained descriptions, and it can be extended easily in the future. We believe
that our work is complementary to existing resources and hope that it will contribute to medical image analysis of the COVID-19
pandemic. The dataset, code, and DL models are publicly available at https://github.com/ncbi-nlp/COVID-19-CT-CXR.

Index Terms—COVID-19, chest X-ray, CT

1 INTRODUCTION

THE latest threat to global health is the ongoing outbreak
of the COVID-19 caused by SARS-CoV-2 [1]. So far,
pneumonia appears to be the most frequent and serious
manifestation, and major complications, such as acute
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respiratory distress syndrome (ARDS), can present shortly
after the onset of symptoms, contributing to the high mor-
tality rate of COVID-19 [2], [3], [4]. Chest X-rays (CXR) and
chest computed tomography (CT) scans are playing a
major part in the detection and monitoring of these respira-
tory manifestations. In some cases, CT scans have shown
abnormal findings in patients prior to the development of
symptoms and even before the detection of the viral
RNA [5], [6], [7].

With the shortage of specialists who have been trained to
accumulate experiences with COVID-19 diagnosis, there
has been a concerted move toward the adoption of artificial
intelligence (Al), particularly deep-learning-based methods,
in COVID-19 pandemic diagnosis and prognosis, in which
well-annotated data always play a critical role [8]. Although
there exist large public datasets of CXR [9], [10], [11] and
CT [12], there are few collections of COVID-19 images to
effectively train a deep neural network [13], [14], [15]. Nev-
ertheless, we have seen a growing number of COVID-19 rel-
evant articles in PubMed [16], [17]. In addition, there is a
recent COVID-19 initiative to expand access via PubMed
Central Open Access (PMC-OA) Subset to coronavirus-
related publications and associated data (https://www.
ncbi.nlm.nih.gov/pmc/about/covid-19-faq/). As a result,
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more articles (> 10,000 as of May 9, 2020) relevant to the
COVID-19 pandemic or prior coronavirus research were
added through PMC-OA with a free-reuse license for sec-
ondary analysis.

Non-textual components (e.g., figures and tables) pro-
vide key information in many scientific documents and are
considered in many tasks, including search engine and
knowledge base construction [18], [19]. As such, we have
recently seen a growing interest in mining figures within
scientific documents [20], [21], [22]. In the medical domain,
figures also are a topical interest because they often contain
graphical images, such as CXR and CT [23], [24]. Extracting
CXR and CT from biomedical publications, however, is nei-
ther well studied nor well addressed.

For the above reasons, there is an unmet need to con-
struct the COVID-19 image dataset from PMC-OA to allow
researchers to freely access the images along with a descrip-
tion of the text. In this paper, we thus introduce an effective
framework to construct a CXR and CT database from PMC-
OA and propose a public database, termed COVID-19-CT-
CXR. In contrast to previous approaches that relied solely
on the manual submission of medical images to the reposi-
tory, in this work, figures are automatically collected by
using the integration of medical imaging and natural-
language processing with limited human annotation efforts.
In addition, figures in this database are partnered with text
that describes these cases with details, a feature not found
in other such datasets.

The framework consists of three steps. First, we extracted
figures, associated captions, and relevant figure descrip-
tions in the PMC-OA article. Such extraction is non-trivial
due to the diverse layout and large volume of articles in the
PMC-OA subset. Second, we separated compound figures
into subfigures, as medical figures often comprise multiple
image panels [21], [24]. Third, we classified subfigures into
CXR, CT, or others because a large portion of figures in
COVID-19 articles are not CXR or CT. To this end, we
designed a deep-learning model to distinguish them from
other figure types and to classify them accordingly.

We further demonstrate the utility of COVID-19-CT-
CXR through a series of case studies. First, using this
database as additional training data, we show that exist-
ing deep neural networks can receive benefits in the task
of COVID-19/non-COVID-19 classification of CT images.
Second, we demonstrate that the database can be used to
develop a baseline model to distinguish COVID-19, influ-
enza, and other CT, a less-studied topic. Third, we train
an unsupervised one-class classifier from non-COVID-19
CXRs and performed anomaly detection to detect
COVID-19 CXRs. Fourth, we extract symptoms and clini-
cal findings from the text, using the natural language-
processing methods. The symptoms and clinical findings
not only confirm the results that radiologists have found
but also potentially identify other findings that may have
been overlooked.

The remainder of the paper is organized as follows.
Section 2 presents the material and methods to build the data-
set. Section 3 contains the details of the statistics of the dataset,
results of the image type classification, and the use cases.
Finally, Sections 4 and 5 provide the discussion, conclusions,
and recommendations for future work.
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TABLE 1
An Overview of the COVID-19 Relevant
Articles as of May 9, 2020

Characteristics n
COVID-19 relevant articles in PMC-OA 5,381
Prevention 2,089
Mechanism 577
Diagnosis 546
Case Report 355
Transmission 354
General 238
Epidemic Forecasting 64
Others 1,158
Journals 1,145
Figures 4,407

2 MATERIAL AND METHODS

2.1 COVID-19 Relevant Articles on PMC-OA

Articles in this study were collected from the PMC-OA Subset.
PubMed Central (PMQ) is a free, full-text archive of biomedi-
cal and life sciences journal literature (https://www.ncbi.
nlm.nih.gov/pmc/). PMC-OA is a well-known portion of the
PMC articles under a Creative Commons license (or custom
license of the Public Health Emergency COVID-19 Initiative
in PMC due to the COVID pandemic) that allows for text min-
ing, secondary analysis, and other types of reuse (https://
www.ncbi.nlm.nih.gov/pmc/about/covid-19-faq/). In this
study, we collected COVID-19 relevant articles using LitCo-
vid [16], a curated literature hub for tracking up-to-date scien-
tific information about the 2019 novel coronavirus. LitCovid
screens the search results of the PubMed query:
"coronavirus” [All Fields] “ncov” [All Fields] OR
"cov” [All Fields] OR “2019-nCoV” [All Fields] OR
“COVID-19”[All Fields] OR “SARS-CovV-2~[All
Fields]. Relevant articles are identified and curated with
assistance from an automated machine-learning and text-clas-
sification algorithm. As of May 9, 2020, there were 5,381 PMC-
OA articles in the collection (Table 1). The topics of articles
ranged from diagnosis to treatment to case reports.

2.2 Overview of the COVID-19-CT-CXR Construction
Fig. 1 shows the overview pipeline of the development. For a
given PMC-OA article, we first extract figures, associated
captions, and relevant figure descriptions in the PMC-OA
article. Then, if figures are compound, we separate them into
subfigures. We further classify the individual figures into CT,
CXR, or other types of scientific images, using a deep-learn-
ing model. The final database includes figures with their
types and relevant descriptions in the manuscript.

2.3 Text Extraction

In this step, we identify figure captions and relevant text
with the referenced figures. To facilitate the automated
processing of full-text articles in PMC-OA, [25] convert
PMC articles to BioC format, a data structure in XML for
text sharing and processing. Each article in BioC format is
encoded in UTF-8, and Unicode characters are converted to
strings of ASCII characters. The article also includes section
types, figures, tables, and references [26]. In this study, we
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PMC

A rapid advice guideline for the diagnosis and
treatment of 2019 novel coronavirus (2019-
nCoV) infected pneumonia (standard version)

In December 2019, a new type viral pneumonia
cases occurred in Wuhan, Hubei Province; and then
named “2019 novel coronavirus (2019-nCoV)” by
the World Health Organization (WHO) on 12
January 2020.

=)

Text extraction

segmentation
(Tsutsui et al., 2017)

Database

Figure

—

Atypical CT / X-ray imaging manifestation (case 1). An
83 years old female with fever for 4 days...

Single, or multiple, or extensive subpleural grid-like
or honeycomb-like thickening of interlobular septum,
thickening of the bronchial wall, and tortuous and
thick strand-like opacity. Several patchy
consolidations, occasionally with a small amount
pleural effusion or enlargement of mediastinal lymph
nodes, can be seen (Fig. 4: 6 cases, 7.2% in a total of
83 cases). This is mostly seen in the elderly.

Fig. 1. The overview of the pipeline to collect the images with text.

downloaded the PMC-OA articles through the RESTful
web service (https://www.ncbi.nlm.nih.gov/research/
bionlp/APIs/BioC-PubMed /). We parsed these articles to
locate figures with their figure numbers and their captions.
We then used the figure number and regular expressions
to find where the figure is cross-referenced in the docu-
ment. Fig. 2 shows an example of a typical biomedical
image in the article, “A rapid advice guideline for the diag-
nosis and treatment of 2019 novel coronavirus (2019-nCoV)
infected pneumonia (standard version)” [27]. The examples
contain CXR, CT, a figure caption, and text that describes
the case with rich information, such as fever, symptoms,
and clinical findings.

2.4 Subfigure Separation

Most of the figures in the PMC-OA articles are compound
figures. A key challenge here is that one figure may have
individual subfigures of the same category (e.g., four CT
images) or several categories (e.g., one CXR and one CT

Fig.4

Atypical CT / X-ray imaging manifestation (case 1). An 83 years old female with fever for 4 days
(maximum temperature of 38.8 °C). cough, chills, sore throat, dry cough for 1 week, chest tightness and
shortness of breath aggravating for 1 week. Laboratory test: normal white blood cells (4.6 x 10°1),
normal neutrophil percentage (65.8%), decreased lymphocytes percentage (19.9%). Imaging
examination: a and b showed diffuse interlobular septum thickening in both lungs to form a grid
opacity, thickening of bronchial wall, and consolidation in the left sublobal lung. ¢ showed diffused

grid-like opacities in both lungs, especially in the left lung

Fig. 2. Examples of CT and CXR that are positive for COVID-19. The fig-
ures are from the article, “A rapid advice guideline for the diagnosis and
treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia
(standard version)” [27].

Caption

Referred text

image placed side by side). For example, Fig. 2 contains a
compound figure with three subfigures [27]. Figs. 2a and 2b
are CT images, and Fig. 2c is a CXR. Notably, it is a require-
ment to decompose compound figures into subfigures
before modality classification. In this study, we used a con-
volutional neural network developed by [24] to separate
compound figures. The model was pretrained on the Image-
CLEF Medical dataset with an accuracy of 85.9 percent [28].

We applied the model on the figures obtained in previous
steps and filtered the subfigures with a size smaller than 224
x 224 pixels. We consider that subfigures with fewer pixels
might be deformed, and most state-of-the-art neural net-
works in image analysis, such as Inception-v3 [29] and Den-
seNet [30], require an input size of 224 or larger.

2.5 Image Modality Classification

A large portion of figures in the PMC-OA articles are not
CXR or CT images. To distinguish them from other types of
scientific figures, we designed a scientific figure classifier
that was fine-tuned on a newly created dataset (https://
github.com/ncbi-nlp/COVID-19-CT-CXR). Table 2 shows
the breakdown of the figures by their category in the train-
ing and test set. This dataset consists of 2,700 figures in three
categories: CXR, CT, and Other scientific figure types. A
total of 500 CXRs are randomly picked from the NIH Chest

TABLE 2

Summary of the Dataset for Image Modality Classification
Modality Training Test
CXR
NIH Chest X-ray [11] 399 101
PMC-OA 38 7
CT
DeepLesion [12] 415 85
PMC-OA 225 21
Other scientific document figures
DocFigure [31] 386 114
PMC-OA 737 172
Total 2,200 500
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TABLE 3

Summary of the COVID-19-CT-CXR Dataset
Characteristics n
PMC-OA articles with figures 1,831
Subfigures 10,650
CXR 263
CT 1,327
Others 9,060

X-ray [11], and 500 CT images are randomly picked from
DeepLesion [12]. Other scientific figures are randomly
picked from DocFigure [31]. The original DocFigure anno-
tated figures of 28 categories, such as Heat map, Bar plots,
and Histogram. Here, we combined these categories into
one for simplicity of training the classifier. In addition, we
curated 1,200 figures from PMC-OA, using the annotation
tool developed by [32].

Our framework uses DenseNet121 to classify image
types [33]. The weights (or parameters) were pretrained on
ImageNet [34]. We replaced the last classification layer with
a fully connected layer with a softmax operation that out-
puts the approximate probability that an input image is a
CXR, CT, or other scientific figure type. All images were
resized to 224 x 224 pixels. The hyperparameters include a
learning rate of 0.0001, a batch size of 16, and 50 training
epochs. All experiments were conducted on a server with
an NVIDIA V100 128G GPU from the NIH HPC Biowulf
cluster (http://hpc.nih.gov). We implemented the frame-
work using the Keras deep-learning library with Tensor-
Flow backend (https://www.tensorflow.org/guide/keras).

2.6 Qualification and Statistical Analysis

The performance metrics include the area under the
receiver operating characteristic curve (AUC), sensitivity,
specificity (recall), precision (positive predictive value),
and F1 score. For the classification problem, we chose the
label with the highest probability when required in com-
puting the metrics. Each of the models was fine-tuned and
tested five times, using the same parameters, training, and
testing images each time. The validation set was randomly
selected from 10 percent of the training set. Fisher’s exact
test was used to determine whether there are nonrandom
associations between COVID-19 and influenza’s symptoms
and clinical findings [35]. We conduct above statistical
analysis using numpy, scipy, matplotlib, and scikit-learn
built on Python.

3 REsuLTS

3.1 COVID-19-CT-CXR Characteristics

Table 3 shows the breakdown of the figures by modality. We
obtained 1,327 CT images and 263 CXR text-mined labeled as
positive for COVID-19 from 1,831 PMC-OA articles. These
images have different sizes. The minimum, maximum, and
average heights are 224, 2,703, and 387.5 pixels, respectively.
The minimum, maximum, and average widths are 224, 1,961,
and 472.4, respectively. For each article, we also include major
elements, such as DQOJ, title, journal, and publication date for
reference. Fig. 3 A shows the cumulative numbers of articles
and figures on a weekly basis. We analyzed the proportional
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Fig. 3. Characteristics of the COVID-19-CT-CXR. (A) The rapid growth of
the number of COVID-19-relevant articles, CT, and CXR in PMC-OA from
January 1, 2020 (Week 1). (B) The distribution of categories in COVID-
19-relevant PMC-OA articles and articles with figures, CT, and CXR.

distribution of categories in COVID-19 relevant PMC-OA
articles, and articles with figures, CT, and CXR. Fig. 3 B shows
that the “Case Report” category contains higher proportional
articles with CXR/CT.

3.2 Image Modality Classification

Table 4 shows the performance of the model to classify
image modality. The macro average F-score is 0.996. The F-
score was 0.993 4+ 0.004 for CT, 1.000 + 0.000 for CXR, and
0.998 £ 0.001 for other scientific figure types.

3.3 Use Cases

To demonstrate the utility of COVID-19-CT-CXR, we con-
ducted four case studies. (1) We combined COVID-19-CT-
CXR with previously curated data at https://github.com/
UCSD-AI4H/COVID-CT [36] and fine-tuned a deep neural
network to perform the classification of COVID-19 and non-
COVID-19 CT. (2) We collected CT of influenza, using a sim-
ilar method, and fine-tuned a deep neural network to distin-
guish among the diagnoses of COVID-19, influenza, and
normal or other types of diseases on CT. (3) We fine-tuned
an unsupervised one-class learning model, using only non-
COVID-19 CXR to perform anomaly detection, to detect
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TABLE 4
The Performance of Image Type Classification
Metrics CT CXR Other scientific figures Macro Avg
Precision 0.989 £ 0.004 1.000 £ 0.000 0.999 £ 0.001 0.996 £ 0.002
Recall/Sensitivity 0.998 + 0.004 1.000 + 0.000 0.996 + 0.001 0.998 + 0.002
Specificity 0.997 £ 0.001 1.000 £ 0.000 0.999 + 0.002 0.999 £ 0.001
F-score 0.993 + 0.004 1.000 + 0.000 0.998 + 0.001 0.997 + 0.002

The test set is the combination of NIH Chest X-ray, DeepLesion, DocFigure, and PMC-OA.

COVID-19 CXR. (4) We extracted 15 clinical symptoms and
26 clinical findings from the captions and relevant descrip-
tions. We then compared their frequencies to those
described in articles on influenza, another common infec-

tious respiratory illness that may present similarly to
COVID-19.

3.3.1 Classification of COVID-19 and non-COVID-19

onCT

In the context of the COVID-19 pandemic, it is important to
separate patients likely to be infected with COVID-19 from
other non-COVID-19 patients. As it is time-consuming for
specialists to both accumulate experiences and read a large
volume of CT scans to diagnose COVID-19, many studies
use machine learning to separate COVID-19 patients from
non-COVID-19 patients [14], [37], [38], [39], [40]. In this
work, we hypothesize that our creation of additional train-
ing data from existing articles can improve the performance
of the system and reduce the effort of manual image annota-
tion. To test this hypothesis, we compared the performance
of deep neural networks fine-tuned on the existing bench-
mark [36] and COVID-19-CT-CXR (Table 5). For a fair com-
parison, we added additional training examples only in the
training set and used the same test set as described in [14].

In this experiment, DenseNet121 was pre-trained on
ImageNet, fine-tuned, and evaluated on the training and
test sets. We then replaced the last classification layer with a
single neuron with sigmoid that outputs the approximate
probability that an input image is COVID-19 or non-
COVID-19. Other experimental settings are the same as that
of fine-tuning the image modality classifier. Fig. 4 shows
that the model significantly outperforms the baseline when
PMC-OA CT figures were added for fine-tuning. Specifi-
cally, we achieved the highest performance of 0.891 £ 0.012
in AUC, 0.780 £ 0.074 in recall, 0.816 £ 0.053 in precision,
and 0.792 + 0.015 in F-score (Table 6).

3.3.2 Classification of COVID-19, Influenza, and Other
Types of Disease on CT

As the COVID-19 outbreak continues to evolve, there is an
increasing number of studies that compare COVID-19 with

TABLE 5
Summary of the Dataset for Classification of COVID-19
and non-COVID-19 CT

Dataset COVID-19 Non-COVID-19

Training [36] 251 292
COVID-19-CT 542 67

Test [36] 98 105

other viral pneumonias, such as influenza [41]. Distinguish-
ing patients infected by COVID-19 and influenza is impor-
tant for public health measures because the current
treatment guidelines are different [42]. This task is non-
trivial because both viruses have a similar radiological pre-
sentation. To assist clinicians at triage, several studies have
proposed to use deep learning to distinguish COVID-19
from influenza and no-infection with 3D CT scans [43]. In
this paper, we aim to establish a baseline model to distin-
guish COVID-19 from influenza on single CT figures. To
collect CT figures with influenza, we searched the PMC
using the query “(Influenza[Title] OR (flu[Title]
AND pneumonia[Title]) AND open access[Filter]”
and extracted the most recent 10,000 PMC-OA articles. We
used the same method to extract CT and its caption and rel-
evant text from the articles (called Influenza-CT). Taken
together, we construct a dataset with 983 CT for training
and 242 CT for testing (Table 7).

To obtain the baseline model, we use the same model and
experimental settings as described in the “Image modality
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Fig. 4. Comparison of AUC and F-score by models fine-tuned with and
without using additional COVID-19 CT extracted from PMC-OA. *: P <
0.05; **: P < 0.001 (t-test).

TABLE 6
Performance Metrics for Classification of COVID-19
and non-COVID-19 CT

Metrics Without using Using COVID-19-CT
COVID-19-CT

AUC 0.811 £ 0.017 0.891 + 0.012

Precision 0.742 £+ 0.029 0.816 £ 0.053

Recall/Sensitivity 0.714 £ 0.083 0.780 £ 0.074

Specificity 0.764 £+ 0.059 0.827 £ 0.073

F-score 0.724 £+ 0.034 0.792 + 0.015
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TABLE 7 TABLE 9
Summary of the Dataset for Classification of COVID-19, Summary of Dataset Used for Anomaly Detection of COVID-19
Influenza, and Others in CT in CXR in Unsupervised One-Class Classification
Dataset COVID-19 Influenza Normal or Dataset COVID-19 Non-COVID-19
other diseases Training 0 37,829
Training 488 177 318 Test 184 184
Test 118 45 79
3
]
g v
@ 3
v G
2 &
e S
2
’_
0.21 —— COVID-19 mean ROC (AUC=0.8550.012) -
Influenza mean ROC (AUC=0.889+0.014) 00 b~ —— COVID-19 mean ROC (AUC=0.8280.019)
_+”/—— Normal or other diseases mean ROC (AUC=0.904+0.011) " 0.0 02 04 0.6 08 10
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Fig. 5. Receiver operating characteristic (ROC) curves of the classifica-
tion of COVID-19, influenza, and normal or other types of diseases in
CT. The model was fine-tuned and tested 5 times, using the same train-
ing and testing images each time. The mean ROC curve is shown
together with its standard deviation (shaded area).

classification” section. Fig. 5 shows the performance of the
deep-learning model by its receiver operating characteristic
(ROC) curves. The AUC was 0.855 £ 0.012 for COVID-19
detection and 0.889 + 0.014 for influenza detection. Table 8
shows more detail for the results. We achieved the highest
precision (0.845 + 0.026) for COVID-19 detection and high
recall (0.711 £ 0.053) for influenza detection.

3.3.3 Anomaly Detection of COVID-19 in CXR Using
One-Class Learning

As they lack annotated COVID-19 CXR for training power-
ful deep-learning classifiers, unsupervised and semi-super-
vised approaches are highly desired for automated COVID-
19 diagnosis. The presence of COVID-19 can be considered
a novel anomaly in CXR for the NIH Chest X-ray dataset, in
which no COVID-19 cases are available. In this experiment,
we performed anomaly detection [44], [45] to detect
COVID-19 CXR. We trained a one-class classifier, using
only non-COVID-19 CXR, and used this classifier to

Fig. 6. Receiver operating characteristic (ROC) curves of the classifica-
tion of COVID-19 anomaly detection in CXR. The model was fine-tuned
and tested 5 times, using the same training and testing images each
time. The mean ROC curve is shown together with its standard deviation
(shaded area).

distinguish COVID-19 CXR from non-COVID-19 CXR. The
non-COVID-19 images were a subset extracted from the
NIH Chest X-ray dataset by combining 14 abnormalities
and a no-finding category. The detailed numbers of training
and testing CXR are shown in Table 9. We adopted the gen-
erative adversarial one-class learning approach from [46].
Fig. 6 shows the performance of the unsupervised one-class
learning by its ROC curves. Table 10 shows more detail for
the results. Our model achieved 0.828 4 0.019 in AUC, 0.767
=+ 0.020 in precision, 0.772 + 0.017 in recall, and 0.769 =+
0.018 in F-score for COVID-19 anomaly detection.

3.3.4  Extraction of Clinical Symptoms and Findings
Using Text-Mining

In this case, we extracted clinical symptoms or signs from the
figure captions and relevant text that describes the case. A
total of 15 symptoms or signs were collected from [3] and
the CDC website (https://www.cdc.gov/coronavirus/2019-
ncov/symptoms-testing /symptoms.html), including chest
pain, constipation, cough, diarrhea, dizziness, dyspnea,

TABLE 8
Performance Metrics for Classification of COVID-19, Influenza, and Normal or Other Types of Diseases in CT
Metrics COVID-19 Influenza Normal or other diseases Macro Avg
AUC 0.855 + 0.012 0.889 + 0.014 0.904 + 0.011 0.879 +0.010
Precision 0.845 + 0.026 0.609 + 0.033 0.642 + 0.021 0.699 £+ 0.019
Recall/Sensitivity 0.597 £+ 0.030 0.711 £ 0.053 0.861 £ 0.033 0.723 +0.022
Specificity 0.895 + 0.024 0.895 + 0.013 0.767 + 0.025 0.852 £+ 0.009
F-score 0.699 +0.018 0.655 + 0.034 0.735 + 0.015 0.696 +0.018
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TABLE 10
Anomaly Detection Performance of COVID-19
Versus non-COVID-19 Using Unsupervised
One-Class Learning

Metrics COVID-19 vs Non-COVID-19
AUC 0.828 + 0.019
Precision 0.767 + 0.020
Recall/Sensitivity 0.772 £ 0.017
Specificity 0.765 £+ 0.023
F-score 0.769 + 0.018

fatigue, fever, headache, myalgia, proteinuria, runny nose,
sputum production, throat pain, and vomiting.

Extracting these symptoms from text is a challenging task
because their mentions in the text can be positive or nega-
tive. For example, “fever” is negative in the sentence, “She
experienced headache and pharyngalgia but no fever on 29
January.” To discriminate between positive and negative
mentions, we applied our previously developed tool, Neg-
Bio, on the figure caption and referred text [47]. In short,
NegBio utilizes patterns in universal dependencies to iden-
tify the scope of triggers that are indicative of negation;
thus, it is highly accurate for detecting negative symptom
mentions. Fig. 7 A shows the proportion of symptoms for
COVID-19 and influenza. The most common symptoms are
fever, cough, dyspnea, and myalgia.

We then extracted the radiographic findings from the figure
caption and text. The findings (and their synonyms) are based
on 20 common thoracic disease types, which are expanded
from NIH Chest X-ray 14 labels [11]. Fig. 7 B shows the 20 find-
ings in both COVID-19 and influenza datasets. Both illnesses
can result in lung opacity, pneumonia, and consolidation.
COVID-19 more likely results in ground-glass opacification
(GGO), while influenza more likely results in infiltration than
does COVID-19 (Fisher’s exact test, p < 0.0001).

4 DISCUSSION

In this abrupt outbreak of SARS-CoV-2, the demand for
chest radiographs and CT scans is growing rapidly, but
there is a shortage of experienced specialists, radiologists,
and researchers. Further, we are still new to this virus and
have yet to discover the full radiologic features and progno-
sis of this disease. The tremendous increase in the number
of patients has led to a substantial increase of COVID-19-
related PMC-OA articles over the past few months (Figur 3
A), especially in the case report and diagnosis-relevant
articles (Fig. 3 B). These articles contain rich chest radio-
graphs and CT images that are helpful for scientists and
clinicians in describing COVID-19 cases. Thus, it is impor-
tant to analyze these images and text to construct a large-
scale database. By using the quickly increasing dataset, Al
methods can help to find significant features of COVID-19
and speed up the clinical workload. Among others, deep
learning is undoubtedly a powerful approach in dealing
with a pandemic outbreak of COVID-19.

Although deep learning has shown promise in diagnos-
ing/screening COVID-19, using CT, it remains difficult to
collect large-scale labeled imaging data, especially in the
public domain. In this work, we present a set of repeatable
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Fig. 7. The frequencies of (A) 15 symptoms and (B) 20 clinical findings
text mined from the figure captions and relevant text from the collection
of COVID-19- and influenza-relevant articles. ****: p < 0.0001 (Fisher
exact test).

techniques to rapidly build a CT and CXR dataset of
COVID-19 from PMC-OA COVID-19-relevant articles. The
strength of the study lies in its multidisciplinary integration
of medical imagining and natural-language processing. It
provides a new way to annotate large-scale medical images
required by deep-learning models.

An additional strength includes a highly accurate model
for image type classification. As a large portion of figures in
the PMC-OA articles are not CXR or CT images, we pro-
vided a model to classify these two types from other scien-
tific figure types. Our model achieved both high precision
and high recall (Table 4).

To assess the hypothesis that deep neural network fine-
tuning on this additional dataset enables us to diagnose
COVID-19 with almost no hand-labeled data, we conducted
several experiments. First, we showed that this additional
data enable significant performance gains to classify COVID-
19 versus non-COVID-19 lung infection on CT (Fig. 4 and Sup-
plementary Table 6, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TBDATA.2020.3035935). For our own system,
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we show that our baseline performance compares favorably
to the results in [14]. Then, we added more automatically
labeled training data and achieved the highest performance of
0.891 £ 0.012 in AUC. The comparison shows that, with addi-
tional data, both precision and recall substantially improve
(7.4 and 6.6 percent, respectively). This observation indicates
that additional COVID-19 CT helps to not only find more but
also to restrict the positive predictions to those with the high-
est certainty in the model.

In a more challenging scenario, we built a baseline sys-
tem to distinguish COVID-19, influenza, and no-infection
CT, which is a more clinically interesting but also more chal-
lenging task. We observed that we could achieve high AUCs
for both COVID-19 and influenza detection. The recall of
COVID-19 detection and the precision of influenza, how-
ever, are low (0.597 £ 0.030 and 0.609 + 0.033, respectively).
Although several studies have tackled this problem [43], to
the best of our knowledge, there is no publicly available
benchmarking. The differentiation between COVID-19 and
influenza on CXR/CT without associated context is chal-
lenging. In the experiment on classification of COVID-19,
influenza, and other types of disease on CT, we found that
although many of the CT findings had overlapping find-
ings, “mixed GGO (Ground glass opacity)” were mostly
found in the COVID-19 dataset and “pleural thickening”
and “linear opacities” were mostly found in the influenza
dataset. It is also worthy to note that the images from PMC-
OA may not represent the typical pool of influenza pneu-
monia real-world images, since researchers may report
extreme cases instead of typical cases. While our work only
scratches the surface of the classification of COVID-19, influ-
enza, and normal or other types of diseases, we hope that it
sheds light on the development of generalizable deep-learn-
ing models that can assist frontline radiologists.

In addition, we presented a one-class learning model for
anomaly detection of COVID-19 in CXR by learning only from
non-COVID-19 radiographs. Compared to the CT-based
method, the one-class model achieves comparable performance,
showing great potential in discriminating COVID-19 from CXR.
The performance of our model, however, is worse than that
of [45], suggesting that this weakly labeled dataset should be
used as additional training data obtained without additional
annotation cost from existing entries in curated databases.

The unique characteristic of our database is that figures
are retrieved along with relevant text that describes these
cases in detail. Thus, text mining can be applied to extract
additional information that confirms the existing results
and potentially identifies other findings that may have been
overlooked. As proof of this concept, we extracted clinical
symptoms and findings from the text. We found that the
most common symptoms of COVID-19 were fever and
cough (Fig. 7 A), which are consistent with the clinical char-
acteristics in [15]. Other common symptoms include dys-
pnea (shortness of breath), fatigue, and throat pain. These
symptoms are consistent with those reported by the CDC.
When comparing the frequencies of these 20 clinical find-
ings to those described in articles on influenza, Fig. 7 shows
that both conditions cause lung opacity, pneumonia, and
consolidation. Further, GGO appears more frequently for
COVID-19, whereas “infiltration” appears more frequently
for influenza. This is because radiologists use the term GGO
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to describe most COVID-19 findings. In addition, the influ-
enza articles are older than are the COVID articles, and,
according to Fleischner Society recommendations, the use
of the term infiltrate remains controversial, and it is recom-
mended that it no longer be used in reports [48].

In terms of limitations, first, the subfigure segmentation
model needs to be improved. In this study, we applied a
deep-learning model that was pretrained on an ImageCLEF
Medical dataset to this task [24]. Although this model is
robust to variations in background color and spaces
between subfigures, it sometimes fails to recognize similar
subfigures that are aligned very closely. Unfortunately,
these cases appear more frequently in our study than in
others (e.g., several CT images are placed in a grid). Other
errors occur when the model incorrectly treated the spine as
spaces in the anteroposterior (AP) chest X-ray and split the
large figure into two subfigures. In the future, the figure
synthesis approach should be applied to augment the train-
ing datasets. Another limitation is that this work extracted
only the passage that contains the referred figure. Some-
times, the case is not described in this passage. In the future,
we plan to text mine the associated case description in the
full text. Finally, while a figure is typically copyrighted with
the original article and using previously published figures
is not a common practice in scholarly publications, it is pos-
sible that one image is reused in different papers or reused
in one paper for different purposes. In the future, we plan
to develop a model to remove duplicated images in the
collection.

5 CONCLUSION

We have developed a framework for rapidly constructing a
CXR/CT database from PMC full-text articles. Our database
is unique, as figures are retrieved along with relevant text
that describes these cases in detail, and it can be extended
easily in the future. Hence, the work is complementary to
existing resources. Applications of this database show that
our creation of additional training data from existing articles
improves the system performance on COVID-19 versus non-
COVID-19 classification in CT and CXR. We hope that the
public dataset can facilitate deep-learning model develop-
ment, educate medical students and residents, help to evalu-
ate findings reported by radiologists, and provide additional
insights for COVID-19 diagnosis. With an ongoing commit-
ment to data sharing, we anticipate increasingly adding CXR
and CT images to be made available as well in the coming
months. The code that extracts the text from PMC, segments
subfigures, and classifies image modality is openly available
at https:/ /github.com/ncbi-nlp/COVID-19-CT-CXR.

ACKNOWLEDGMENTS

This work was supported in part by the Intramural
Research Programs of the National Library of Medicine
(NLM) and National Institutes of Health (NIH) Clinical
Center. This work also was supported by NLM under Grant
4RO00LMO013001. This work wutilized the computational
resources of the NIH HPC Biowulf cluster (http://hpc.nih.
gov). This material is also based upon the work supported
by Google Cloud.


https://github.com/ncbi-nlp/COVID-19-CT-CXR
http://hpc.nih.gov
http://hpc.nih.gov

PENG ET AL.: COVID-19-CT-CXR: A FREELY ACCESSIBLE AND WEAKLY LABELED CHEST X-RAY AND CT IMAGE COLLECTION ON... 11

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A.S. Fauci, H. C. Lane, and R. R. Redfield, “COVID-19 - Navigat-

ing the uncharted,” New England ]J. Med., vol. 382, pp. 1268-1269,

Mar. 2020.

N. Chen ef al., “Epidemiological and clinical characteristics of 99

cases of 2019 novel coronavirus pneumonia in Wuhan, China: A

descriptive study,” Lancet, vol. 395, pp. 507-513, Feb. 2020.

W.-J. Guan et al., “Clinical characteristics of coronavirus disease

2019 in China,” New England ]. Med., vol. 382, pp. 1708-1720, Apr.

2020.

D. Wang et al., “Clinical characteristics of 138 hospitalized

patients with 2019 novel coronavirus-infected pneumonia in

Wuhan, China,” J. Amer. Med. Assoc., vol. 323, pp. 1061-1069,

Feb. 2020.

H. Shi et al., “Radiological findings from 81 patients with COVID-

19 pneumonia in Wuhan, China: A descriptive study,” Lancet

Infect. Dis., vol. 20, pp. 425-434, Apr. 2020.

X. Xie, Z. Zhong, W. Zhao, C. Zheng, F. Wang, and ]. Liu,

“Chest CT for typical 2019-nCoV pneumonia: Relationship to

negative RT-PCR testing,” Radiology, vol. 12, Feb. 2020, Art. no.

200343.

X. Mei et al., “ Artificial intelligence-enabled rapid diagnosis of patients

with COVID-19,” Nat. Med., vol. 26, no. 8, pp. 1224-1228, Aug. 2020.

F. Shi et al., “Review of artificial intelligence techniques in imaging

data acquisition, segmentation and diagnosis for COVID-19,” IEEE

Rev. Biomed. Eng., to be published, doi: 10.1109/RBME.2020.2987975.

J. Irvin ef al., “CheXpert: A large chest radiograph dataset with

uncertainty labels and expert comparison,” in Proc. AAAI Conf.

Artif. Intell., 2019, pp. 590-597.

A. E. W. Johnson et al., “MIMIC-CXR-JPG, A large publicly

available database of labeled chest radiographs,” 2019,

arXiv:1901.07042.

X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,

“ChestX-Ray8: Hospital-scale chest X-ray database and bench-

marks on weakly-supervised classification and localization of

common thorax diseases,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., 2017, pp. 3462-3471.

K. Yan, X. Wang, L. Lu, and R. M. Summers, “DeepLesion: Auto-

mated mining of large-scale lesion annotations and universal

lesion detection with deep learning,” |. Med. Imag., vol. 5, Jul.

2018, Art. no. 036501.

J. P. Cohen, P. Morrison, and L. Dao, “COVID-19 image data

collection,” 2020, arXiv:2006.11988.

X. He et al., “Sample-efficient deep learning for COVID-19 diagno-

sis based on CT scans,” to be published, doi: 10.1101/

2020.04.13.20063941.

K. Zhang et al., “Clinically applicable AI system for accurate diag-

nosis, quantitative measurements, and prognosis of COVID-19
neumonia using computed tomography,” Cell, vol. 181,

pp. 1423-1433, 2020.

Q. Chen, A. Allot, and Z. Lu, “Keep up with the latest coronavirus

research,” Nature, vol. 579, Mar. 2020, Art. no. 193.

L. L. Wang et al., “CORD-19: The COVID-19 open research data-

set,” 2020, arXiv: 2004.10706. PMID: 32510522.

S. R. Choudhury et al., “A figure search engine architecture for a

chemistry digital library,” in Proc. 13th ACM/IEEE-CS Joint Conf.

Digit. Libraries, 2013, pp. 369-370.

C. L. Smith, J. A. Blake, J. A. Kadin, J. E. Richardson, C. J. Bult, and

M. G. D. Group, “Mouse Genome database (MGD)-2018: Knowl-

edgebase for the laboratory mouse,” Nucleic Acids Res., vol. 46, pp.

D836-D842, Jan. 2018.

Z. Ahmed, S. Zeeshan, and T. Dandekar, “Mining biomedical

images towards valuable information retrieval in biomedical and

life sciences,” Database, vol. 2016, 2016, Art. no. baw118.

P. Li, X. Jiang, and H. Shatkay, “Figure and caption extraction

from biomedical documents,” Bioinformatics, vol. 35, pp. 4381-

4388, Nov. 2019.

N. Siegel, N. Lourie, R. Power, and W. Ammar, “Extracting scien-

tific figures with distantly supervised neural networks,” in Proc.

18th ACM/IEEE Joint Conf. Digit. Libraries, 2018, pp. 223-232.

L. D. Lopez et al., “A framework for biomedical figure segmenta-

tion towards image-based document retrieval,” BMC Syst. Biol.,

vol. 7 2013, Art. no. S8.

S. Tsutsui and D. Crandall, “A data driven approach for com-

pound figure separation using convolutional neural networks,” in

Proc. IAPR Int. Conf. Document Anal. Recognit., 2017.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

D. C. Comeau, C.-H. Wei, R. I. Dogan, and Z. Lu, “PMC text
mining subset in BioC: About three million full-text
articles and growing,” Bioinformatics, vol. 35, pp. 3533-3535,
Sep. 2019.

S. Kafkas, X. Pi, N. Marinos, F. Talo’, A. Morrison, and
J. R. McEntyre, “Section level search functionality in europe PMC,”
J. Biomed. Semantics, vol. 6,2015, Art.no. 7.

Y.-H. E. A. Jin, “A rapid advice guideline for the diagnosis and
treatment of 2019 novel coronavirus (2019-nCoV) infected pneu-
monia (standard version),” Mil. Med. Res., vol. 7, Feb. 2020,
Art. no. 4.

A. G. S. De Herrera, S. Bromuri, R. Schaer, and H. Muller,
“Overview of the medical tasks in ImageCLEF 2016,” CLEF Work.
Notes. Evora, Portugal, 2016.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2818-2826.
F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “DenseNet: Implementing efficient convnet descriptor
pyramids,” 2014, arXiv:1404.1869.

K. V. Jobin, A. Mondal, and C. V. Jawahar, “DocFigure: A dataset
for scientific document figure classification,” in Proc. Int. Conf.
Document Anal. Recognit. Workshops, 2019, pp. 74-79.

Y.-X. Tang et al., “Automated abnormality classification of chest
radiographs using deep convolutional neural networks,” NPJ
Digit. Med., vol. 3, 2020, Art. no. 70.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 4700-4708.

O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” Int. |. Comput. Vis., vol. 115, no. 3, pp. 211-252,
2015.

R. A. Fisher, “On the interpretation of x2 from contingency tables,
and the calculation of P,” J. Roy. Statist. Soc., vol. 85, no. 1, Jan.
1922, Art. no. 87.

J. Zhao, Y. Zhang, X. He, and P. Xie, “COVID-CT-Dataset: A CT
scan dataset about COVID-19,” 2020, arXiv:2003.13865.

J. Chen et al., “Deep learning-based model for detecting 2019 novel
coronavirus  pneumonia on  high-resolution = computed
tomography,” Scientific Rep., vol. 10, no. 1, pp. 1-11, 2020.

C. Jin et al., “Development and evaluation of an Al system for
COVID-19 diagnosis,” MedRxiv Reprint, to be published,
doi: 10.1101/2020.03.20.20039834.

S. Wanget al., “A deep learning algorithm using CT images to screen
for corona virus disease (COVID-19),” MedRxiv Preprint, to be pub-
lished, doi: 10.1101/2020.02.14.20023028.

C. Zheng et al., “Deep learning-based detection for COVID-19
from chest CT using weak label,” 2020.

Y. Luo et al., “Using a diagnostic model based on routine labora-
tory tests to distinguish patients infected with SARS-CoV-2 from
those infected with influenza virus,” Int. |. Infect. Dis., vol. 95,
pp- 436-440, May 2020.

D. Kimberlin, Red Book 2018-2021: Report of the Committee on Infec-
tious Diseases. Elk Grove Village, IL, USA: Amer. Acad. Pediatrics,
2018.

X. Xu et al., “Deep learning system to screen coronavirus disease
2019 pneumonia,” Engineering, to be published, doi: 10.1016/j.
eng.2020.04.010.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection,”
ACM Comput. Surv., vol. 41, no. 3, pp. 1-58, Jul. 2009.

J. Zhang, Y. Xie, Y. Li, C. Shen, and Y. Xia, “COVID-19 screening
on chest X-ray images using deep learning based anomaly
detection,” 2020, arXiv:2003.12338.

Y.-X. Tang, Y.-B. Tang, M. Han, J. Xiao, and R. M. Summers,
“Abnormal chest X-Ray identification with generative adversarial
one-class classifier,” in Proc. IEEE 16th Int. Symp. Biomed. Imag.,
2019, pp. 1358-1361.

Y. Peng, X. Wang, L. Lu, M. Bagheri, R. Summers, and Z. Lu,
“NegBio: A high-performance tool for negation and uncertainty
detection in radiology reports,” AMIA Joint Summits Translational
Sci. Proc., vol. 2017, pp. 188-196, 2018. [Online]. Available: https:/ /
arxiv.org/abs/1712.05898

J. Bueno, L. Landeras, and J. H. Chung, “Updated fleischner soci-
ety guidelines for managing incidental pulmonary nodules: Com-
mon questions and challenging scenarios,” Radiographics, vol. 38,
pp. 1337-1350, 2018.


http://dx.doi.org/10.1109/RBME.2020.2987975
http://dx.doi.org/10.1101/2020.04.13.20063941
http://dx.doi.org/10.1101/2020.04.13.20063941
http://dx.doi.org/10.1101/2020.03.20.20039834
http://dx.doi.org/10.1101/2020.02.14.20023028
http://dx.doi.org/10.1016/j.eng.2020.04.010
http://dx.doi.org/10.1016/j.eng.2020.04.010
https://arxiv.org/abs/1712.05898
https://arxiv.org/abs/1712.05898

12

Yifan Peng received the PhD degree. He is cur-
rently an assistant professor with Weill Cornell
Medicine. He was a research fellow with the
National Center for Biotechnology Information
(NCBI), National Library of Medicine (NLM),
National Institutes of Health (NIH). His main
research interests include biomedical and clinical
natural language processing and medical image
analysis. He has published many papers in top
journals and conferences, including the Nucleic
Acids Research, npj Digital Medicine, Journal of
the American Medical Informatics Association, CVPR, and MICCAI. He
is also an academic editor of the PLoS ONE.

Yuxing Tang received the BS and MS degrees
from the Department of Information and Telecom-
munication Engineering, Beijing Jiaotong Univer-
sity, Beijing, China, in 2009 and 2011, respectively,
and the PhD degree in computer science from the
Department of Mathematics and Computer Sci-
ence, Ecole Centrale de Lyon, Ecully, France, in
2016. He is a postdoctoral fellow with the Imaging
Biomarkers and Computer-Aided Diagnosis (CAD)
Laboratory, National Institutes of Health (NIH) Clini-
cal Center. His main research interests include
computer vision and machine leaming, in particular, deep learning techni-
ques for visual category recognition, object detection, image segmentation
and their application in medical imaging.

Sungwon Lee received the MD and PhD degrees.
She is currently a radiologist and research fellow
with the National Institutes of Health (NIH). Her
research interests include segmentation and clas-
sification of medical imaging, especially chest,
body, and musculoskeletal images of CT and MRI.

IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 1, JANUARY-MARCH 2021

Yingying Zhu received the PhD degree. She is
currently a staff scientist with the Department of
Radiology, Clinical Center, National Institutes of
Health (NIH). Her main research interests include
computer vision, medical image analysis, and
machine learning. She has published many
papers in top journals and conferences, including
the IEEE Transaction on Medical Imaging, the
Medical Image Analysis, IEEE Transactions on
Pattern Analysis and Machine Intelligence,
ECCV, CVPR, IPMI, and MICCAI.

Ronald M. Summers received the MD and PhD
degrees. He is currently a senior investigator
with the NIH. He joined the Diagnostic Radiology
Department, NIH Clinical Center, in 1994. He
directs the Imaging Biomarkers and Computer-
Aided Diagnosis (CAD) Laboratory. His research
interests include virtual colonoscopy, CAD,
multi-organ multi-atlas registration, and develop-
i ment of large radiologic image databases. His
| clinical areas of specialty are thoracic and gas-
trointestinal radiology and body cross-sectional
imaging. His current research focuses on developing fully-automated
interpretation of abdominal CT scans.

Zhiyong Lu received the PhD degree. He is cur-
rently a deputy director for Literature Search at
the National Center for Biotechnology (NCBI),
leading its overall efforts of improving literature
search and information access in NCBI’s produc-
tion resources. He is also an NIH senior investi-
gator (early tenure) and directs the Text Mining /
Natural Language Processing (NLP) Research
Program, NCBI/NLM where they are developing
computational methods and software tools for
analyzing and making sense of unstructured text
data in biomedical literature and clinical notes towards accelerated dis-
covery and better health.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


