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Abstract—Counterfactual inference is a useful tool for comparing outcomes of interventions on complex systems. It requires us to

represent the system in form of a structural causal model, complete with a causal diagram, probabilistic assumptions on exogenous

variables, and functional assignments. Specifying such models can be extremely difficult in practice. The process requires substantial

domain expertise, and does not scale easily to large systems, multiple systems, or novel system modifications. At the same time, many

application domains, such as molecular biology, are rich in structured causal knowledge that is qualitative in nature. This article

proposes a general approach for querying a causal biological knowledge graph, and converting the qualitative result into a quantitative

structural causal model that can learn from data to answer the question. We demonstrate the feasibility, accuracy and versatility of this

approach using two case studies in systems biology. The first demonstrates the appropriateness of the underlying assumptions and the

accuracy of the results. The second demonstrates the versatility of the approach by querying a knowledge base for the molecular

determinants of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm, and performing

counterfactual inference to estimate the causal effect of medical countermeasures for severely ill patients.

Index Terms—Biological expression language, structural causal model, counterfactual inference, causal biological knowledge graph,

systems biology, SARS-CoV-2
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1 INTRODUCTION

EACH time a cell senses changes in its environment, it
marshals a complex choreography of molecular interac-

tions to initiate an appropriate response. When a virus
infects the cell, this delicate balance is disrupted and can
result in a cascade of systemic failures leading to disease. In
particular, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the novel pathogen responsible for the
COVID-19 pandemic, has a complex etiology that differs in
subtle and substantial ways from previously studied
viruses. To make informed decisions about the risk that a
new pathogen presents, it is imperative to rapidly predict
the determinants of pathogenesis and identify potential

targets for medical countermeasures. Current solutions for
this task include systems biology data-driven models, which
correlate biomolecular expression to pathogenicity, but can-
not go beyond associations in the data to reason about
causes of the disease [1], [2]. Alternatively, hypothesis-
driven mathematical models capture causal relations, but
are hampered by limited parameter identifiability and
predictive power [3], [4].

We argue that counterfactual inference [5] helps bridge the
gap between data-driven and hypothesis-driven approaches. It
enables questions of the form: “Had we known the eventual
outcome of a patient, what would we have done differently?”
At the heart of counterfactual inference is a formalism known
as a structural causal model [5], [6]. It represents prior domain
knowledge in terms of causal diagrams, assumes a probability
distribution on exogenous variables, and assigns a determin-
istic function to endogenous variables. SCM are particularly
attractive in systems biology, where structured domain knowl-
edge is extracted from the biomedical literature and is readily
available through advances in natural language processing [7],
[8], [9], large-scale automated assembly systems [10], and semi-
automated curation workflows [11]. This knowledge is curated
bymultiple organizations [12], [13], [14], [15], [16] and stored in
structured knowledge bases [17], [18], [19], [20]. It can be
brought to bear for answering causal questions regarding
SARS-CoV-2.

This manuscript contributes a three-part algorithm that
leverages existing structured biological knowledge to
answer counterfactual questions about viral pathogenesis.
Algorithm 1 formalizes biologically relevant questions as
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queries to an existing causal knowledge graph. Algorithm 2
converts the query result into a structural causal model.
Algorithm 3 operationalizes the counterfactual inference by
interrogating the model with the observed data to estimate
a causal effect.

We illustrate the benefits of this approach using two case
studies. Case study 1 illustrates the increased precision of
counterfactual estimates, as compared to the ODE- and
SDE-based forward simulation, in a situation with known
ground truth mechanisms of data generation. Case study 2
demonstrates the automated construction of an SCM and
the value of counterfactual reasoning in novel situations
with limited treatment options (as is the case for SARS-
CoV-2). It shows that counterfactual inference enables more
precise predictions regarding who would be likely to sur-
vive without receiving treatment, who would be likely to
die even if they did receive treatment, and who would likely
survive only if they received treatment.

2 BACKGROUND

Biological Signaling Pathways. Signaling pathways are com-
posed of entities that engage in activities [21]. Examples of
entities are proteins and metabolites, but also higher level
biological processes such as an immune response. Activities
are the producers of change. Examples include catalytic
activity, kinase activity, or transcriptional activity.

The basic unit of causality in signaling pathways is a
directed molecular interaction, where the activity of an
upstream molecule increases or decreases the activity of a
downstream molecule. For example, the mitogen-activated
protein kinase (MAPK) intracellular signaling pathway is a
causal chain of directed molecular interactions shown
in eq. (1)

aðS1Þ ! kinðpðRafÞÞ ! kinðpðMekÞÞ ! kinðpðErkÞÞ: (1)

The interactions transmit information about a stimulus at
the cell surface to the nucleus, where proteins called tran-
scription factors activate an appropriate biological pro-
cess [22]. A causal diagram of MAPK consists of a signaling
molecule S1 and three proteins Raf , Mek, and Erk, each of
which engage in kinase activity. We represent signaling
molecule abundance with aðÞ, protein abundance with pðÞ
and the kinase activity of a protein with kinðÞ. In the case of
MAPK, the abundance or activity of an upstream entity
causes the abundance or activity of a downstream entity to
increase, and is represented with a sharp edge ! . The dia-
gram is a abstraction showing that the abundance of the sig-
naling molecule S1 increases the kinase activity of Raf ,
which increases the kinase activity of Mek, which increases
the kinase activity of Erk. In other cases, if the abundance
or activity of an upstream entity causes the abundance or
activity of a downstream entity to decrease, we represent
this with a blunt edge.

Viral Dysregulation. Viral disruptions of a signaling path-
way take form of overactivation or repression of its activi-
ties. For example, by amplifying the release of intercellular
signaling molecules that overstimulate the immune
response, known as Cytokine Release Syndrome (cytokine
storm), a virus can cause severe system-level cellular
damage.

Quantitative Modeling of Biological Processes With ODE/
SDE. Temporal dynamics of biological processes can be
expressed quantitatively using ordinary (or stochastic) dif-
ferential equations. A small number of high quality, vali-
dated models have been published in the literature and
stored in a computable form in repositories such as Biomo-
dels [23], [24]. For example, the MAPK signaling pathway
in eq. (1) is well characterized. We denote RðtÞ, MðtÞ, and
EðtÞ as the respective amounts of active Raf , Mek, and Erk
at time t; We denote TR, TM , and TE as their total amounts,
which we assume do not change during the considered
timeframe; vactR , vinhR , vactM , vinhM , vactE , and vinhE are experi-
mentally derived activation or inhibition kinetic rate con-
stants; and S1 is the amount of the input signal. The system
of ordinary differential equations (ODEs) is specified as fol-
lows [25], [26]:

dR

dt
¼ vactR S1ðTR �RðtÞÞ � vinhR RðtÞ

dM

dt
¼ ðvactM Þ2

vinhM

RðtÞ2ðTM �MðtÞÞ � vactM RðtÞMðtÞ � vinhM MðtÞ

dE

dt
¼ ðvactE Þ2

vinhE

MðtÞ2ðTE � EðtÞÞ � vactE MðtÞEðtÞ � vinhE EðtÞ:

(2)

Given initial conditions, forward simulations from the
ODEs can be used to generate the temporal trajectories of
the amounts of activated proteins , such as RðtÞ, MðtÞ, and
EðtÞ in the MAPK example. In this manuscript we refer to
such simulated data as observational data. We define an ideal
intervention as an event that fixes the amount of an activated
protein. For example, if we fix the kinase acivity of Mek at
MðtÞ ¼ m, the second equality dM

dt in eq. (2) becomes zero.
We can simulate data from eq. (2) with dM

dt ¼ 0, and refer to
these as interventional data. Contrasting observational and
interventional data helps evaluate the outcome of the
intervention [27].

The deterministic ODE ignore the fact that at low concen-
tration, stochasticity becomes a significant factor in deter-
mining the reaction [28]. As the collisions between
molecules participating in biochemical process become sto-
chastic, a stochastic model is required. In contrast to ODE, a
stochastic differential equation model or stochastic differen-
tial equation (SDE) specifies biological process as a random
process. For example, in the case of MAPK, the random pro-
cess of the reactionMek ! Erk is specified with

dPEðtÞ
dt

¼ gEðt; vactE ; vinhE ;MðtÞÞ; Eð0Þ ¼ e0 (3)

where PEðtÞ is marginal probability density of EðtÞ, func-
tion gE determines the probability of a state change
between EðtÞ and EðsÞ; s > t, e0 is initial condition, and
MðtÞ is the value of its parent Mek at t. Once stochastic
differential equation are fully specified, one can use, e.g.,
Gillespie’s stochastic simulation algorithm [29] to simu-
late observational and interventional data, and evaluate
the outcomes of interventions.

Unfortunately, even simple ODEs such as the one in the
MAPK example are difficult to build de novo. This is nearly
impossible for novel and poorly studied systems that lack
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the existence or findability of experimental information
describing the structure or boundaries of the process,
kinetic equations governing their dynamics [30], rate con-
stants for these equations, or rules governing each agents’
states and functions.

Equilibrium Enzyme Kinetics. Simpler and more general
quantitative models can be specified when a reaction
reaches the state of chemical equilibrium [31]. One com-
monly used such model is Hill function in the form of

X ¼ b
PAn

X

Kn þ PAn
X

; (4)

where X is the abundance of a protein in a causal dia-
gram (such as Erk in eq. (1)), PAX is the set of its
parents, n is a parameter interpreted as the number of
ligand binding sites of the protein, and b is the total
number of molecules of the protein. A special and fre-
quently used case of the Hill function, called Michaelis-
Menten function, occurs when n ¼ 1. Although simple to
use, these models are deterministic, and do not describe
the stochasticity that is a distinctive property of biologi-
cal systems at low concentrations.

Modeling Biological Processes With Structural Causal
Models. The stochastic nature of biological processes at
steady-state can be represented by an SCM such as in
Fig. 1a [27], [32]. SCMs represent the dependencies between
a child node X and its parents PAX in terms of a determin-
istic function X ¼ fXðPAX;NXÞ called structural assignment,
and a noise variable NX . In Fig. 1a, fMek and fErk are linear
or non-linear structural assignments, and NRaf , NMek, and
NErk are statistically independent noise variables with
defined probability distributions

Raf ¼ NRaf ; Mek ¼ fMekðRaf;NMekÞ
Erk ¼ fErkðMek;NErkÞ;

(5)

An ideal intervention in an SCM is performed on a func-
tional assignment. For example, an ideal intervention on
Mek setsMek ¼ m0, defining a new SCM

Raf ¼ NRaf ;Mek ¼ m0;Erk ¼ fErkðMek;NErkÞ: (6)

An ideal intervention can also be thought of as a process of
mutilating the causal graph. For example, intervening on
Mek eliminates its dependence upon Raf , and therefore the
edge from Raf toMek is removed as shown in Fig. 1b.

Counterfactual Inference With SCM. Beyond direct model-
based predictions, SCMs enable counterfactual inference, i.e.,
the process of inferring the unseen outcomes of a hypotheti-
cal intervention given data observed in absence of the inter-
vention [5]. In the context of SCM, counterfactuals are
defined as operations

YdoðT¼t0ÞðuÞ , YMdoðT¼t0 Þ ðuÞ; (7)

In other words, the outcome Y that individual uwould have
had she received treatment t0 is defined as the value that Y
would have in a structural causal model M mutilated to
replace T ¼ fT ð�Þwith T ¼ t0.

For example, in the MAPK signaling pathway, we may
be interested in the counterfactual question: Having observed
the kinase activities of Raf ¼ r,Mek ¼ m, Erk ¼ e, what would
be the kinase activity of Erk in a hypothetical experiment where
the kinase activity of Mek was fixed to m0? This counterfactual
query is more formally translated into

P ðErkdoðMek¼m0ÞjRaf ¼ r;Mek ¼ m;Erk ¼ eÞ: (8)

The probability distribution in eq. (8) is estimated with the
following steps:

1) Abduction: Given observational data, estimate the
posterior distribution of the noise variables. In the
MAPK example, we estimate the posterior distribu-
tion of the noise variables:

N̂Raf ¼fNRaf jRaf ¼ r;Mek ¼ m;Erk ¼ rg
N̂Erk ¼fNErkjRaf ¼ r;Mek ¼ m;Erk ¼ rg

Several inference algorithms are available for this
task, e.g., Markov Chain Monte Carlo [33], Gibbs
sampling [34], or no-u-turn Hamiltoninan Monte
Carlo (HMC) [35]. In recent years, gradient-based
inference algorithms such as stochastic variational
inference [36] have become popular, because they
can scale to larger models by converting an inference
problem into an optimization problem.

2) Intervention: Apply the intervention to the SCM to
generate a mutilated SCM as in Fig. 1b. In the MAPK
SCM, Mek ¼ fMekðRaf;NMekÞ is replaced with
Mek ¼ m0 as shown in Fig. 1b.

3) Prediction: Generate samples from the mutilated
SCM using the estimated posterior distribution over
the exogenous variables N̂Raf and N̂Erk to obtain the
counterfactual distribution, as shown in Fig. 1b.

Causal Effects. We distinguish between two causal effects.
The first is the average treatment effect (ATE), defined as
the difference between the outcome of a hypothetical inter-
vention and the observed outcome in the entire population.
In the MAPK example, the ATE of Erk upon an intervention

Fig. 1. Causal modeling of MAPK signaling pathway. Circles are varia-
bles, double circles are variables intervened upon, squares are deter-
ministic functional assignments, gray nodes are observed variables, and
white nodes are hidden variables. (a) Structural causal model. NRaf ,
NMek and NErk are statistically independent noise variables. Root node
Raf is only dependent on noise variable NRaf . Non-root nodes Mek and
Erk are dependent on their parent and on the associated noise variable.
(b) Counterfactual model. The intervention fixes the count of phosphory-
lated Mek to m0, such that Mek is no longer dependent on Raf and
NMek. Given an observed data point, counterfactual inference infers the
noise variables N̂Raf , and N̂Erk.
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fixing Raf ¼ r0 is:

ErkdoðRaf¼r0Þ � Erk
� �

: (9)

This requires no observational data, and therefore the ATE
can be inferred with forward simulation.

On the other hand, the individual treatment effect (ITE)
is defined as the difference between the outcome of a hypo-
thetical intervention and the observed outcome for a specific
individual or context. In the MAPK example, the individual
treatment effect of Erk upon an intervention fixing Raf ¼ r0

in a context where Raf ¼ r,Mek ¼ m, Erk ¼ e is:

ErkdoðRaf¼r0Þ � Erk
� �jRaf ¼ r;Mek ¼ m;Erk ¼ e (10)

The ITE shares stochastic components of the noise variables
between observational and interventional data, and is there-
fore often more precise than a comparison based on a direct
simulation [27].

In cases where domain knowledge is available to
describe the systems dynamics in the form of an SDE, the
system at equilibrium can be translated into an SCM to
enable counterfactual reasoning and estimation of the indi-
vidual treatment effect [27], [37]. Unfortunately, this process
is challenging in novel and poorly studied systems, due to
our limited ability to establish the structure of the causal
graph.

Structured Knowledge Graphs. Although there exist a mul-
titude of biological knowledge bases that are manually
curated from the literature [12], [13], [14], [15], [16], the sys-
tems biology community has coalesced around a small
number of structured knowledge representations that differ
mainly in their intended purpose. For example, the Biologi-
cal Pathway Exchange Language (BioPAX) was designed
for pathway database integration [17], and the Systems Biol-
ogy Graphical Notation (SBGN) was designed for graphical
layout [19].

In contrast, the Biological Expression Language (BEL)
was specifically designed for manual extraction and auto-
mated integration of author statements about causal rela-
tionships among biological entities, biological processes,
and cellular-level observable phenomena [11]. The syntax of
a BEL statement is comprised of a triple in the form of {sub-
ject, predicate, object}. Each subject and object represents an
activity or abundance whose entities are grounded using
terms from standard namespaces. If the subject directly
increases the abundance or the activity of the object, we rep-
resent this with =>, and for directly decreasing relation-
ships, we use =|. BEL statements can be chained together
from the object of the first statement to the subject of the
next statement, as shown in Fig. 2 for the case of the MAPK
pathway.

BEL provides a number of valuable features for causal
modeling. First, the restriction of BEL edges to causal rela-
tions implies the topology of the BEL graph can be reflected
in the topology of the causal model. Second, the language is
expressive enough for humans to manually curate a wide
range of biological concepts, but formal enough to serve as
a training corpus for corpus for natural language processing
of biomedical literature competitions [38]. Third, the BEL
ecosystem is sufficiently mature that causal knowledge

represented in other languages can be readily converted to
BEL [39], [40].

3 METHODS

3.1 Notation, Definitions, and Assumptions

Let X ¼ fXig be a set of variables, such as molecular activi-
ties in a signaling pathway. Let P ¼ fPjg be a set of causal
predicates that link these variables, such as increases, or
regulates. Using this notation, we define a knowledge graph
K as a set of k triples

K ¼ fXi; Pj;Xi0 jXi 2 X; Pj 2 P; Xi0 2 fX nXiggkj¼1: (11)

We define a causal query Q as a set fXc; Xe; Xzg of variables
that are potential causes, effects and covariates of interest
for the biological investigation, where

Xc � X; Xe � XnXc; and Xz � XnXcnXe:

A pathway PðX1; Xk0þ1Þ, k � k0 is a sequence of a subset of
triples fromK, where the object of the previous triple is sub-
ject of the next triple

X1; P1; X2ð Þ; X2; P2; X3ð Þ; . . . ; Xk0 ; Pk0 ; Xk0þ1ð Þf g: (12)

Our goal is to query the knowlege graph to generate a
qualitative causal model B that links the causes, the effects
and the covariates of interest. Importantly, the query result
B induces a directed acyclic graph G with p variables from
X as nodes, and causal relations from P as edges.

We assume that every variable in B is continuous. We
denote D ¼ fX1j; X2j; . . . ; Xpjgmj¼1 the observational data of
m samples from the joint distribution PðX; uÞ. The distribu-
tion is specified in terms of parameters u. We denote R � X
a set of nodes in Gwithout parents.

3.2 Querying a Knowledge Graph to Obtain a
Qualitative Causal Model

Given a biological knowledge graphK and a causal query of
interest Q, our first objective is to generate a qualitative
causal model B capable of answering the query. To this end,
we need to explore all potential directed acyclic paths in K

from the cause to the effect in Q, and then consider all cova-
riates that may act as confounders of the causal question.
This is done with the steps in Algorithm 1. The algorithm
can be implemented on any knowledge graph that repre-
sents causal relationships as directed edges, such as BEL or
the Systems Biology Graphical Notation Activity Flow
(SBGN-AF) language [41].

In the case of MAPK, the qualitative causal model that
is capable of answering the counterfactual question
in eq. (8) corresponds to the result of this query: Q ¼ fXc ¼
kinðpðMEKÞÞ; Xe ¼ kinðpðERKÞÞ;Xz ¼ kinðpðRAFÞÞg.

Fig. 2. Example BEL statement. The statement details the processes in
the MAPK signaling pathway in eq. (1). The first line states that the
kinase activity of RAF directly increases the kinase activity of MEK. The
second line states that kinase activity of MEK directly increases the
kinase activity of ERK.
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Algorithm 1. Causal query to Biological Expression Language
(QUERY2BEL) algorithm

Inputs: knowledge graph K

causal query Q ¼ fXc; Xe; Xzg
Outputs: B
1: procedure QUERY2BEL(Xc;Xe;Xz;K)
2: " Get all pathways from cause to effect
3: for each causeXc

i 2 Xc and for each effectXe
j 2 Xe do

4: find all pathways fPðXc
i ; X

e
jÞg

5: " Get all pathways from covariates to causes
6: for each covariateXz

i 2 Xz and for each causeXc
j 2 Xc do

7: find all pathways fPðXz
i ; X

c
jÞg

8: " Get all pathways from covariates to effects
9: for each covariateXz

i 2 Xz and for each effectXe
j 2 Xe do

10: find all pathways fPðXz
i ; X

e
jÞg

11: B ¼ fPðXc
i ; X

e
jÞg [ fPðXz

i ; X
c
jÞg [ fPðXz

i ; X
e
jÞg

12: return B

We execute Algorithm 1 step 2 to obtain all pathways
from the cause to the effect:

kinðpðMEKÞÞ ! kinðpðERKÞÞ:

We execute Algorithm 1 step 6 to obtain all pathways from
the covariate to the cause:

kinðpðRAFÞÞ ! kinðp(MEK)Þ:

We execute Algorithm 1 step 10, but since there are no
new pathways from the covariate kinðp(RAF)Þ to the effect
kinðpðERKÞÞ, we obtain the empty set. The final returned
model is:

kinðp(RAF)Þ ! kinðp(MEK)Þ ! kinðp(ERK)Þ:

3.3 Compiling a Qualitative Causal Model to a
Quantitative Structural Causal Model

Our second objective is to express the qualitative causal
structure in B into a quantitative SCM, and estimate the
parameters of the SCM from experimental data. These steps
are described in Algorithm 2.

Input. The algorithm takes as input a BEL causal query
result B and observed measurements on its variables D.

Get Network Structure G From B (Algorithm 2 Line 3). Since
a set of BEL statements identifies parents and children, it
induces a causal network structure. We determine this
structure by traversing BEL statements with the breadth
first search approach, starting with root variables (such as
Raf in Fig. 2). For all the non-root variables, the algorithm
waits until all the parents are traversed.

For Each Root Node R, Use D to Estimate Parameters u of
PðR; uÞ(Algorithm 2 Line 5). In order to specify the SCM, we
need to define the type and parameters of themarginal prob-
ability distributions of the root variables PðR; uÞ. The BEL
statements provide prior knowledge about the distribution
in a parametric form. Therefore, this step involves techni-
ques such asmaximum likelihood to estimate the parameters
of this distribution.

Algorithm 2. Biological Expression Language to Structural
Causal Models (BEL2SCM) algorithm

Inputs: BEL statements B
D � P ðX1; . . . ; XpÞ
Outputs: SCM M ¼ ffiðPAi; NiÞgpi¼1

1: procedure BEL2SCM(B, D)
2: M ¼ fg
3: Get network structure G from B.
4: for each R 2 R in G do
5: " Use D to estimate parameters u of PðR; uÞ
6: u ¼ argmaxuPðR; u jDÞ
7: " Reparameterize PðR; uÞ in terms of fR andNR

8: NR � Nð0; 1Þ
9: fRðNRÞ ¼ F�1

PðR;uÞðNRÞ
10: M.Add(fRðNRÞ)
11: for eachX 2 fX n Rg in G do
12: " Estimate parametersw and b of sigmoid function
13: log ð X

bX�XÞ ¼ w0PAX þ b
14: " Define distribution of NX from model residuals.
15: residual ¼ X � bX

1þexpð�w0PAX�bÞ
16: NX � Nð0;MSEðresidualÞ)
17: " Get fXðPAX;NXÞ with additive NX .

18: fXðPAX;NXÞ ¼ bX
1þexpð�w0

X
PAX�bXÞ þNX

19: M.Add(fXðPAX;NXÞ).
20: returnM

For example, in a stochastic MAPK system at equilibrium
the root variable the number of active Raf in a cell follows
a Binomial distribution. When the maximum number of
active or inactive particles in the system is large, the
Binomial distribution can be approximated with a Normal
distribution with uRaf ¼ ðmRaf ; s

2
RafÞ. We then estimate uRaf

using maximum likelihood from the observed Raf in D.
For Each Root Node R, Reparameterize PðR; uÞ in Terms of fR

and NR (Algorithm 2 Line 7). The specification of an SCM
requires us to separate the deterministic and the stochastic
components of variation of each variable as shown in Fig. 1.
We accomplish this using a reparameterization technique
popularized by variational autoencoders [42], which was
shown to make counterfactual inference consistent with
core biological assumptions [43]. In the case of root nodes,
we reparameterize PðR; uÞ with Uniform(0,1), and then pass
it to the inverse CDF of PðR; uÞ, as follows

Original : R � PðR; uÞ
Reparametrized :NR � Uniformð0; 1Þ

fRðNRÞ ¼ F�1
PðR;uÞðNRÞ;

(13)

where F�1
PðR;uÞðNRÞ is the inverse cumulative distribution

function of PðR; uÞ. In the case of MAPK, since Raf follows
a Normal distribution with parameters uRaf , the reparame-
terization simplifies even further to

Original : Raf � NðmRaf ; s
2
RafÞ

Reparametrized : NRaf � Nð0; 1Þ
fRafðNRafÞ ¼ sRafNRaf þ mRaf :

(14)

Add R to M (Algorithm 2 line 10) For each root node, we
add the corresponding function fRðNRÞ and its noise
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variable NR to M. For example, since MAPK has only one
root node Raf , the Algorithm adds fRafðNRafÞ toM.

For Each X 2 fX n Rg, Estimate Parameters w and b of
Sigmoid Function (Algorithm 2 Line 12). In order to specify
the SCM for non-root nodes, we need to define the form
(polynomial, linear, non-linear, sigmoid, etc.) of functional
assignments linking the measurements on the parent nodes
to the measurements on the child. We chose the functional
assignment in the form of a sigmoid function

log
X

bX �X

� �
¼ w0PAX þ b; (15)

where bX is the maximum number of activated protein mol-
ecules. For a node X with q parents, PAX is a q � 1 vector of
measurements on the parent nodes, w is a 1� q vector of
weights, w0 is the transpose of w, and b is a scalar bias.
Parameters w and b of the sigmoid function are estimated
from the data, e.g., using smooth L1 loss function.

In the example of the MAPK pathway, fMek has only one
parent. Therefore fMek has the form

fMekðRaf;NMekÞ ¼ bMek

1þ expð�wMekRaf � bÞ þNMek:

(16)

We use the sigmoid function in eq. (15) as a special case of
the Hill equation. The full parametric description of the Hill
equation has a nuanced precise biochemical interpretation.
For example, the parameter n represents the number of
times a protein must be phosphorylated before it becomes
active and can therefore be obtained from domain knowl-
edge. However, it is difficult to estimate this parameter
from data. The sigmoid function maintains the Hill equa-
tion’s functions, but with a reduced set of parameters that
are easier to estimate. Fig. 3 shows that the approximation
is reasonable for a range of parameter values.

Define Distribution ofNX FromModel Residuals (Algorithm 2
Line 14). Similarly to the root variables, for non-root varia-
bles we assume that the noise variables follow Normal dis-
tribution with 0 mean. The variance of this distribution is
estimated from the residuals of the model fit in the previous
step. For example, in the MAPK pathway, fMek has only one
parent Raf . Therefore, the residuals of the sigmoid curve fit
forMek are defined as

residualMek ¼ Mek� bMek

1þ expð�wMekRaf � bÞ ; (17)

and the distribution of the noise variable is defined as
NMek � Nð0;MSEðresidualMekÞÞ

Get fXðPAX;NXÞ With Additive NX (Algorithm 2 Line 17).
The step combines the sigmoid functional assignment and
the independent noise variable. In the example of Mek in
the MAPK pathway, the step outputs

fMekðRaf;NMekÞ ¼ bMek

1þ expð�wMekRaf � bÞ þNMek

(18)

Add fXðPAX;NXÞ to SCM (Algorithm 2 Line 19). The step iter-
atively adds ðfX;NXÞ for allX 2 X.

Output (Algorithm 2 Line 20). The algorithm returns a
generative structural causal model M ¼ ffiðPAi; NiÞgpi¼1

where PAi � X. For example, in the case of the MAPK
model, it returns ½NRaf ;NMek;NErk; fRafðNRafÞ; fMekðRaf;
NMekÞ; fErkðMek;NErkÞ	.

3.4 Counterfactual Inference Procedure

The generated SCM enables counterfactual inference using
a standard procedure [5]. Given a new observation Dnew,

1) Abduction: Update the probability P ðNXÞ to obtain
P ðNXjDnewÞ.

2) Action: Replace the equations determining the varia-
bles in set Xc by Xc ¼ xc0.

3) Prediction: Sample from the modified model to gener-
ate the target distribution Xe

doðXc¼xc0Þ.
After generating the target distribution of the interven-

tion model, we estimate causal effects. Algorithm 3
describes the detailed steps of both counterfactual inference
(with Dnew) and forward simulation (if Dnew is empty)

3.5 Implementation

QUERY2BEL was implemented manually using a publicly
available instance of BioDati Studio, then validated using
Integrated Dynamical Reasoner and Assembler (INDRA)’s
[10] interactive dialogue system Bob with BioAgents [10].
Parameter estimation in BEL2SCM was implemented in
PyTorch. Let C be the number of nodes in causal graph G
with parents. Let k be the number of iterations for gradient
descent, let N be the number of samples in data, and let d be
the maximum number of parents in graph G. Computa-
tional complexity of parameter estimation step is given by
OðCkNdÞ.

SCM-based counterfactual inference was performed with
Pyro [44], due to its ability to perform interventions on
probabilistic models and scalability to larger models, as
described in Algorithm 3. Specifically, the implementation

Fig. 3. Examples of hill function and sigmoid function for two variables.
X is a single node that has a single parent PAX . We use the Hill function

(X ¼ b
PAn

X
KnþPAn

X
) and sigmoid function as in eq. (15) to predict the value of

X given its parent value. In the Hill function, K is the activation rate, n
defines the steepness of function and b is fixed at 100. Blue lines
correspond to Hill equation with K ¼ 30 and n 2 f1; 2; 3g. Brown lines
correspond to sigmoid function where b 2 f0:4; 0:3; 0:4g and w 2 f0:025;
0:1; 0:5g.
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relies on the following functionalities in Pyro. The pyro.do
method is an implementation of Pearl’s do-operator used
for causal inference. The pyro.infer.SVI method per-
forms abduction using stochastic variational inference with
ELBO loss. The pyro.infer.Importance method per-
forms posterior inference by importance sampling. The
pyro.infer.EmpiricalMarginal method performs
empirical marginal distribution from the trace posterior’s
model.

Algorithm 3. Estimate causal effect on XE upon intervening
on XC

Inputs:New data point Dnew

effect nodeXE

observational data for effect node DE 2 Dnew

intervention value c
node to intervene uponXC

number of iteration I
network structure G
SCMM

Outputs: Causal Effect CE
1: procedure GETCAUSALEFFECT(Dnew; E;DE;XC; c; I; G;M)
2: N̂ ¼ fg
3: " Interventional data for effect nodeXE

4: IDE ¼ fg
5: for I do
6: for eachX 2 fX nXCg in G do
7: " Abduction: Apply stochastic variational inference
8: N̂X ¼ SVIðDnewÞ
9: N̂ .Add(N̂X)
10: " Action: Apply intervention onXC

11: CM ¼ pyro:doðM; XC ¼ cÞ
12: " Get posterior of CM with importance sampling
13: CMP ¼ pyro:infer:ImportanceðCM; N̂Þ
14: " Prediction: Get EmpiricalMarginal (EM) forXE

15: CMM ¼ pyro:infer:EMðCMP;XEÞ
16: IDE .Add(CMM)
17: CE ¼ IDE � DE

18: return CE

Experiments in this manuscript took between 13 to 82
seconds depending on the graph size on a system with Intel
Core i7 8th Gen CPU, 16 GB RAM and Ubuntu 18.04 Oper-
ating System. The code is available at https://github.com/
bel2scm.

4 CASE STUDIES

Below we introduce two biological case studies investigated
using the approach proposed in this manuscript. The first
case study allows us to evaluate the accuracy of the results
based on known ground truth. The second uses counterfac-
tual reasoning to pinpoint the mechanism by which SARS-
CoV-2 infection can lead to a cytokine storm in severely ill
coronavirus disease 2019 (COVID- 19) patients. The details
of the case studies, parameter values of the simulations, and
of the results are at https://github.com/bel2scm.

4.1 Case Study 1: The IGF Signaling System

The System. The IGF signaling pathway (Fig. 4) regulates
growth and energy metabolism of a cell. The IGF system

has been extensively investigated, and its dynamics are well
characterized in form of ODE and SDE models [25]. Acti-
vated by external stimuli, insulin-like growth factor (IGF) or
epidermal growth factor (EGF) triggers a signaling event,
which includes the MAPK signaling pathway in eq. (1). Sim-
ilarly to eq. (1), nodes in the system are kinase activities, and
edges represent whether the kinase activity of the upstream
protein directly increases or decreases the kinase activity of
the downstream protein. However, the system is larger and
more complex. It includes two different paths from Ras to
Erk, one direct and the other through PI3K and Akt. This
challenges estimates of outcomes of interventions. In this
case study, we assume that the IGF system has no unob-
served confounders.

Intervention. We considered two interventions. The first
fixes the kinase activity of Mek to 40. The second fixes the
kinase activity of Ras to 30.

Causal Effects of Interest. We are interested in two causal
questions. First, what would have been the kinase activity of Erk
had we intervened to fix the kinase activity of Mek to 40? The
second query is as above, but with the intervention fixing
the kinase activity of Ras to 30. More formally, we are inter-
ested in the average treatment effect

ErkdoðMek¼40Þ � Erk
� �

(19)

ErkdoðRas¼30Þ �Erk
� �

: (20)

Next, we introduce a new piece of information about a spe-
cific data point generated from the ODE-based simulation.
We wish to estimate the causal effect of intervention for this
specific data point. More formally, we are interested in the
individual treatment effect

ErkdoðMek¼40Þ � Erk
� �jDnew (21)

ErkdoðRas¼30Þ � Erk
� �jDnew; (22)

Fig. 4. Case Study 1: the IGF signaling system. The insulin-like growth
factor (IGF) and epidermal growth factor (EGF) are receptors of external
stimuli, triggering downstream signaling pathways that include the
MAPK pathway. All the relationships between abundances of activated
proteins in this network are of the type increase, except for the relation-
ship between Akt and Raf which is of the type decrease.
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where Dnew is a new data point. We note that this counter-
factual inference can only be performed with an SCM. We
wish to compare these estimates of causal effects, in order
to characterize the ability of counterfactual inference via
Dnew to improve the precision of the estimates.

Evaluation. The kinetic equations described by the ODE
and SDE represent the true underlying dynamics of the IGF
signaling pathway. Since the ODE and the SDE can estimate
the causal effects by forward simulation, we view the esti-
mates as the ground truth. We then wish to compare the
estimates from the SCM against the ground-truth estimates
from the ODE and the SDE. Since an SCM represents causal
relationships at steady state, we train the parameters of the
SCM using data generated from the ground-truth SDE after
it has reached steady state.

We consider two types of evaluations. First, we compare
the estimates of the forward simulation of the ODE and
SDE with the forward simulation of the SCM. This allows
us to characterize the impact of SCM specification and esti-
mates of weights on the accuracy of causal effects. We do
not expect to see a substantial difference between these two
approaches for a correctly specified SCM. We then compare
the SCM-based counterfactual inference of causal effects
with the estimates based on forward simulation. We expect
that the counterfactual inference will provide more precise
estimates, illustrating the statistical efficiency of counterfac-
tual inference as compared to the forward simulation.

4.2 Case Study 2: Host Response to Viral Infection

The System. Retrospective studies have indicated that high
levels of pro-inflammatory cytokine Interleukin 6 (IL6) are
strongly associated with severely ill COVID-19 patients [45].
One recently proposed explanation for this is the viral
induction of a positive feedback loop, known as Interleukin
6 Amplifier (IL6-AMP) [46]. IL6-AMP is stimulated by
simultaneous activation of nuclear factor kappa-light-chain-
enhancer of activated B cell (NF-kB) and Signal Transducer
and Activator of Transcription 3 (STAT3) [47]. This in turn
induces various pro-inflammatory cytokines and chemo-
kines, including Interleukin 6, which recruit activated T
cells and macrophages. This strengthens the Interleukin 6
Amplifier into a positive feedback loop leading to a cytokine
storm [48], which is believed to be responsible for the tissue
damage observed in patients with acute respiratory distress
syndrome (ARDS) [46].

Intervention. Originally developed to treat autoimmune
disorders such as rheumatoid arthritis [49], Tocilizumab
(Toci) is an immunosuppressive drug consisting of a recom-
binant monoclonal antibody that targets the soluble Inter-
leukin 6 receptor and can effectively block the IL6 signal
transduction pathway [50]. Tocilizumab has emerged as a
promising drug repurposing candidate to reduce mortality
in severely ill COVID-19 patients [51], [52].

Causal Effect of Interest.We define a severely ill COVID-19
patient as someone with CytokineStorm > 65. We are inter-
ested in the individual treatment effect (ITE)

CytokineStormdoðToci¼0Þ � CytokineStorm
n o

jDnew; (23)

where Dnew is an observed patient who received Tocilizu-
mab treatment and became severely ill. We wish to

characterize the severity of cytokine storm which would
have occurred had she not received the treatment. We fur-
ther wish to compare the ITE with the ATE

CytokineStormdoðToci¼0Þ � CytokineStorm
n o

: (24)

Evaluation. Tocilizumab is known to have a strong inhibi-
tory effect on soluble Interleukin 6 receptor. We therefore
expect that the severity of the cytokine storm would have
been worse had the patient not received treatment. Unfortu-
nately, at the time of writing, there were no ODE or SDE-
based models of the pathway, nor were there publicly avail-
able COVID-19 datasets quantifying the kinase activity of
the Interleukin 6 Amplifier pathway at the single-cell level.
Therefore, we simulated data from a “ground-truth” sig-
moidal structural causal model, where the topology reflects
the causal structure of the pathway, and the numeric values
of the parameters were fixed to reflect our prior qualitative
knowledge of the IL6-AMP pathway.

We evaluate the ITE the proposed approach in two ways.
First, we train the parameters of the SCM using the simu-
lated data, and compare the counterfactual inference of the
ITE obtained from the “trained” SCM to the counterfactual
inference of the ITE from the “ground-truth” SCM. This
comparison allows us to characterize the impact of weight
estimation on the accuracy of causal effects. We expect that
the need to estimate the weights will inflate the variance of
the estimates. Second, we compare the estimates of ITE to
the estimates of the ATE using the trained SCM. This com-
parison allows us to characterize the statistical efficiency of
counterfactual inference when estimating causal effects.
We expect that the ITE will provide much more precise
estimates.

5 RESULTS

5.1 Case Study 1: The IGF Signaling System

Generating BEL Causal Model. The BEL representation of the
IGF system was manually curated using PyBEL [40], to
match the existing ODE and SDE. The BEL representation
of the IGF system specified all the node types as in category
abundance. All the relationships between parents and chil-
dren nodes were of type increase, except for the parent node
Akt, where the relationship was of type decrease.

Observational Data. We mimicked the process of collect-
ing observational data by simulating kinase activity from
the corresponding ODE and SDE. The initial number of par-
ticles for the receptor was 37 for EGF and 5 for IGF . The
deterministic simulation numerically solved the ODE using
the deSolve [53] R package. The stochastic simulation used
the Gillespie algorithm [29] from the smfsb [54] R package.

Appropriateness of Model Assumptions. SCM-based esti-
mates of functional assignments with sigmoid approxima-
tions were well within the range of the SDE-based data (as
shown for Raf and Mek in Fig. 5). Similar results were
obtained for estimates of Ras, PI3K, AKT , Raf , and Erk.
The fitted functional assignment had little curvature. This
indicates that a more complicated function with more
parameters, such as Hill equation, was unnecessary in this
case.
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To further evaluate the plausibility of the assumptions,
Fig. 6 shows the histograms of the SDE-generated abundan-
ces of root nodes, which were not affected by functional
assignments in SCM. The shape of the histograms indicate
that the assumption of Normal distribution was plausible.

Accuracy of Causal Effects. Figs. 7c and 7d show that the
average treatment effects (ATEs) on Erk of fixing Mek and
Raf , based on forward simulation of ODE, SDE and SCM,
were consistent. Figs. 7a and 7b show that the based on
counterfactual inference has a smaller variance than the
ATE. Since counterfactual inference reduces nuisance varia-
tion by sharing stochastic components in contexts with and
without intervention, it increases the statistical efficiency of
the estimation.

The individual treatment effect on Erk by fixingMekwas
much stronger than the ITE on Erk by fixing Ras for the fol-
lowing reason. While Mek directly influences Erk (i.e., there
is a single path from Mek to Erk), Ras has two pathways to
Erk. The path through AKT has an inhibiting (deactivation)
effect onRaf , and estimated negativeweights in the sigmoid
function in eq. (15). The alternative path, a cascade from Ras
to Erk, has the opposite (activating) effect on Erk. The two
pathsmitigate the overall causal effect ofRas onErk.

5.2 Case Study 2: Host Response to Viral Infection

Generating BEL Causal Model. The steps of the proposed
Algorithm 1 produced the qualitative causal model in
Fig. 8, and the corresponding BEL causal model B, as fol-
lows. In accordance with the inputs to Algorithm 1, we
defined the knowledge base K as the Covid-19 knowledge
network automatically assembled from the Covid-19

document corpus using the INDRA workflow. We defined
the cause Xc as sIL6Ra, the effect Xe as cytokine storm, and
the covariates Xz as SARS-CoV- 2 and Toci.Therefore the
causal query of interest was defined as Q = sIL6R a, Cytoki-
neStorm, SARS-CoV-2,Toci}}.

Algorithm 1 line 2 generated all pathways from Interleukin
6 to Cytokine Release Syndrome, resulting in kinðpðsIL6R
a))Þ ! kinðp(IL6-STAT3)) Þ ! bpðIL6�AMPÞ(CytokineStorm),
where bp() is a biological process. Next, line 5 generated all
pathways from Tocilizumab to Interleukin 6: aðTociÞkin
ðpððsIL6RaÞÞÞ, where aðÞ is the dosage level of Tocilizumab.
We then generated all pathways from severe acute respiratory
syndrome coronavirus 2 to Interleukin 6 receptor: popðSARS-
CoV-2Þcat(ACE2)a(Angiotensin II)! kinðp(AGTR1)Þ ! kinðp
(ADAM17)Þ ! kinðpðsIL6Ra)), where popðÞ is the viral load of
SARS-CoV-2 and catðÞ is the normal catalytic activity of Angio-
tensinConverting Enzyme 2.

Line 8 found no new branches from Tocilizumab to Cyto-
kine Release Syndrome. Finally, we generated all pathways
from severe acute respiratory syndrome coronavirus 2 to
Cytokine Release Syndrome, which resulted in three new
branches popðSARS-CoV-2Þ ! kin(p(PRR))! kin(p(NF-
kB))! bp((IL6-AMP)); kin(p(ADAM17))! p((EGF))! kin(p
(EGFR))! kin(p(NF-kB)); andkin(pEGFR)! kin(p(TNF a))
! kin(p(NF-kB)).

Observational Data. We simulated observational data
from a “ground-truth” sigmoidal structural causal model,
where the topology reflects the causal structure in Fig. 8,
and the parameters reflect our prior qualitative knowledge
of the IL6-AMP pathway. The root nodes SARS-CoV-2 and
Tocilizumab were sampled from a Normal distribution

Fig. 5. Case Study 1: IGF Model Scatter Plot of Mek Versus Raf. Blue
points are the data points generated by SDE. Yellow points are the esti-
mates from SCM. The red line is the fitted sigmoid curve in Algorithm 2
line 12.

Fig. 6. Case Study 1: Probability distributions of the root nodes of IGF
Model (a) Histogram of SOS generated from SDE simulation (b) As in
(a), for PI3K.

Fig. 7. Case Study 1: Estimated causal effects of the IGF signaling
pathway using algorithm 3. The ODE and SDE represent the true under-
lying dynamics of the IGF signaling pathway. The ODE and SDE-based
forward simulation can only estimate the average treatment effect.
These estimates are viewed as ground truth. In contrast, an SCM can
estimate both the average treatment effect (ATE) and the individual
treatment effect (ITE). (a) Comparison of ITE vs ATE for Erk when Mek
is fixed. (b) Comparison of ITE vs ATE for Erk when Ras is fixed.
(c) Comparison of SCM, SDE and ODE estimates of the ATE for Erk
when Mek is fixed. (d) Comparison of SCM, SDE and ODE estimates of
the ATE on Erk when Ras is fixed.
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with mean of 50 and standard deviation of 10. The non-root
nodes were sampled from a sigmoid function as in eq. (15).
Since we have prior qualitative knowledge that IL6-AMP is
only activated due to simultaneous activation of NF-kB and
IL6-STAT3, we set the threshold for activation above what
could be achieved by NF-kB or IL6-STAT3 alone. Since we
also know that Toci is a strong inhibitor of sIL6Ra, we set
the inhibition coefficient to a large negative number. The
parameters of the sigmoid function were chosen to ensure
that the variables were in the desired range of 0–100.
Finally, we randomly generated two new individuals Dnew

with Cytokine Release Syndrome > 65 to represent
severely ill patients. The first patient had a higher viral load
of SARS-CoV-2 and received a lower dose of Toci. The sec-
ond patient had a lower viral load of and received a higher
dose of Toci.

Estimation of Individual-Level Treatment Effect. Fig. 9 eval-
uates the SCM-based estimates of the individual treatment
effect of withholding treatment from two COVID-19
patients who were severely ill. The distribution of the indi-
vidual treatment effect obtained with the SCM trained using
Algorithm 2 was consistent with, but had a slightly larger
variance then, the distribution of ITE obtained with the
“ground truth” SCM with known weights. Even though
both patients had the same severity of illness prior to the
intervention, patient B was estimated to have a more severe
cytokine storm after Toci was withheld.

Fig. 10 further compared the individual treatment effect
obtained with the SCM trained using Algorithm 2 with the
average treatment effect estimated from the same model
using forward simulation. The distribution of the individual
treatment effect was patient-specific and had smaller vari-
ance, thus illustrating the statistical efficiency of counterfac-
tual inference.

6 DISCUSSION

We proposed a general approach that leverages structured
qualitative prior knowledge, automatically generates a
quantitative SCM, and enables answers to counterfactual
research questions. In both case studies, the use of the

Biological Expression Language allowed us to leverage
large repositories of structured biological knowledge to
specify an SCM and perform counterfactual inference in an
automated manner, which would otherwise require a sub-
stantial manual effort. The application to the IGF signaling
system demonstrated the appropriateness of the underlying
assumptions, and the accuracy of the results when com-
pared to ODE- and SDE-based forward simulation. The
application to a study of host response to SARS-CoV-2 infec-
tion demonstrated the feasibility, versatility and usefulness
of this approach as applied to an urgent public health issue.
In particular, the approach can help determine the amount
of Tocilizumab (Toci) required to reduce the severity of
each individual’s cytokine storm. Furthermore, in situations
where treatment options are limited (as is the case SARS-
CoV-2), counterfactual estimates enable a more precise con-
clusion regarding who would likely live without receiving
the treatment, who would likely die even if they did receive
the treatment, and who would likely live only after receiv-
ing the treatment.

The approach opens multiple directions for future
research. In particular, future work can extend the configu-
rability of the BEL2SCM algorithm by incorporating the rich
type information in BEL, mapping parent-child type signa-
tures to functional forms such as post-nonlinear models,
neural networks, mass action kinetics and Hill equations,
and incorporating additional data types such as binary

Fig. 8. Case Study 2: Host response to viral infection pointed edges rep-
resent relationships of type increase; flat-headed edges represent rela-
tionships of type decrease. Nodes SARS-COV2 and Toci are external
stimuli.

Fig. 9. Case Study 2: SCM-Based estimates of the using algorithm 3.
Blue histogram: the ITE estimated from the ground-truth SCM using
Algorithm 3. Yellow histogram: the ITE estimated from the Algorithm 3-
trained SCM using Algorithm 3. (a) Patient has a high viral load and
received a low dose of Tocilizumab. (b) Patient has a low viral load and
received a high dose of Tocilizumab. Both patients were severely ill.

Fig. 10. Case Study 2: SCM-Based estimates of the ATE and of the ITE
using algorithm 3. Yellow histogram: the ITE estimated using counterfac-
tual inference. Brown histogram: the ATE estimated using forward simu-
lation. (a) Patient has a high viral load and received a low dose of
Tocilizumab. (b) Patient has a low viral load and a received a high dose
of Tocilizumab. Both patients were severely ill.
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variables, categorical variables, and continuous variables
with constraints on their domains. In some cases, the varia-
bles in the model may not be directly observable, but may
nonetheless be characterized by means of detectable molec-
ular signatures. For example, even if interferon signaling
may not be directly observable using transcriptomics meas-
urements, it may still be possible to infer the activity of
interferon signaling by an upregulation of interferon stimu-
lated genes (ISG). Future work will focus on leveraging
molecular signature databases to infer the activity of varia-
bles in the model, and on learning and/or evaluating the
models using experimental data [55].

We also note that experimentalists typically formulate
biological processes as linear pathways (e.g., from S1 to Erk
in the MAPK example) that can be effectively perturbed
and measured in a laboratory setting. Yet such boundaries
of biological processes are quite arbitrary, and are therefore
highly susceptible to confounders. One way to address this
issue is to search the knowledge graph for all common
causes of variables in the causal model, use an identification
algorithm [56] to find the minimal valid adjustment set of
the augmented model, and then prune all common causes
that do not contribute to that set. This approach will require
us to tackle the issues of parameter and causal identifiability
in the presence of confounders.

In addition to unobserved confounders, the validity of
causal inferences can be threatened by feedback loops,
model misspecification, missing data, and out-of-sample
distributions. To address the possibility of feedback loops,
we must consider the time scale at which these feedbacks
reach steady-state: fast timescale feedback loops can be
addressed with the chain graph interpretation of SCMs [57],
[58]; intermediate timescale feedbacks can be addressed
with non-recursive structural causal models [5]; slow time-
scale feedback loops can be handled by unrolling the struc-
ture of the SCM as is done with dynamic Bayesian
networks [59], or simply by representing the entire feedback
loop as a biological process, as we did with IL6-AMP. In the
case of model misspecification, we will investigate the abil-
ity of counterfactual inference to improve the estima-
tion [43]. For missing data, we can leverage causal inference
recoverability algorithms that have been published recently
[60], and for handling out-of-sample distributions, we can
leverage recent results applying causal inference to the
problem of external validity [61]. Future work will focus on
addressing these threats to validity when applied to real
biological data.
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