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Towards Efficient Local Causal Structure
Learning

Shuai Yang, Hao Wang, Kui Yu∗, Fuyuan Cao, and Xindong Wu

Abstract—Local causal structure learning aims to discover and distinguish direct causes (parents) and direct effects (children) of a
variable of interest from data. While emerging successes have been made, existing methods need to search a large space to
distinguish direct causes from direct effects of a target variable T. To tackle this issue, we propose a novel Efficient Local Causal
Structure learning algorithm, named ELCS. Specifically, we first propose the concept of N-structures, then design an efficient Markov
Blanket (MB) discovery subroutine to integrate MB learning with N-structures to learn the MB of T and simultaneously distinguish direct
causes from direct effects of T. With the proposed MB subroutine, ELCS starts from the target variable, sequentially finds MBs of
variables connected to the target variable and simultaneously constructs local causal structures over MBs until the direct causes and
direct effects of the target variable have been distinguished. Using eight Bayesian networks the extensive experiments have validated
that ELCS achieves better accuracy and efficiency than the state-of-the-art algorithms.

Index Terms—Bayesian network, Markov Blanket, Local causal structure learning.
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1 INTRODUCTION

CAUSAL discovery has always been an important goal in
many scientific fields, such as medicine, computer science

and bioinformatics [1], [2], [3], [4]. There has been a great
deal of recent interest in discovering causal relationships between
variables, since it is not only helpful to reveal the underlying
data generating mechanism, but also to improve classification and
prediction performance in both static and non-static environments
[5]. However, in many real-world scenarios, it is difficult to
discover causal relationships between variables since true causality
can only be identified using controlled experimentation [6].

Statistical approaches are useful in generating testable causal
hypotheses which can accelerate the causal discovery process
[7]. Learning a Bayesian network (BN) from observational data
is the popular method for causal structure learning and causal
inference. The structure of a BN takes the form of a directed
acyclic graph (DAG) in which nodes of the DAG represent the
variables and edges represent dependence between variables. A
DAG implies causal concepts, since they code potential causal
relationships between variables: the existence of a directed edge
X→Y means that X is a direct cause of Y, and the absence of
a directed edge X→Y means that X cannot be a direct cause of
Y [8]. When a directed edge X→Y in a BN indicates that X is
a direct cause of Y, in this case, the BN is known as a causal
Bayesian network. Given a set of conditional dependencies from
observational data and a corresponding DAG model, we can infer
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a causal Bayesian network using intervention calculus [9]. Then
learning BN structures (i.e. DAGs) from observational data is the
most important step for causal structure learning.

In recent years, many causal structure learning (i.e. DAG
learning) methods have been designed [10], which can be roughly
divided into global causal structure learning and local causal
structure learning. The first type of methods aims to learn the
casual structure of all variables, such as MMHC [11], NOTEARS
[12] and DAG-GNN [13]. However, in many practical scenarios,
it is not necessary to waste time to learn a global structure
when we are only interested in the causal relationships around
a given variable. To tackle this issue, the second type of methods
is proposed, with the aim to discover and distinguish the direct
causes (parents) and direct effects (children) of a target variable,
such as PCD-by-PCD [14] and CMB [15].

PCD-by-PCD (PCD means Parents, Children and some De-
scendants) [14] and CMB (Causal Markov Blanket) [15] first
learn the PCD or MB (Markov Blanket) of a target variable
and construct a local structure among the target variable and
the variables in the PCD or MB, then sequentially learn PCDs
or MBs of the variables connected to the target variable and
simultaneously construct local structures among variables in PCDs
or MBs until the parents and children of the target variable have
been distinguished.

While emerging successes have been made, existing local
causal structure learning methods suffer from the following lim-
itations. They need to search a large space to distinguish parents
from children of a target variable. That is to say, existing local
causal structure learning methods not only need to learn the PCD
or MB of the target variable, but also may need to learn PCDs
or MBs of the variables connected to the target variable. In the
worst case (e.g. the target variable has all single ancestors) all
existing methods may be required to learn PCDs or MBs of all
variables in a dataset. This leads to that existing local causal
structure learning methods are often computationally expensive or
even infeasible especially with a large-sized BN. For instance, as
shown in Fig. 1, there is an N-structure (see Definition 9) formed
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Fig. 1. A sample Bayesian network. The MB of T includes E and J
(parents), A, B, L and K (children), C and D (spouses).

by four variables T, A, B, and C. Given the target variable T, in
order to determine the causal relationship between T and B: PCD-
by-PCD is required to learn the PCD of T and PCDs of A and B.
For CMB, if only the MB of T is learnt, the edge direction between
T and B cannot be determined since there is no V-structures around
B. CMB needs to further learn the MBs of B and A to orient
the edge between T and B. In a word, both PCD-by-PCD and
CMB need to search a large space to determine the edge direction
between T and B. A larger search space will result in performing
more conditionally independence (CI) tests for discovering the
causal relationships around a given variable. More CI tests not
only increase computational time, but also lead to more unreliable
tests. It will be beneficial to local causal structure learning if the
edge direction between B and T can be determined in learning the
PCD or MB of the target variable T without learning PCDs or
MBs of the other variables.

Then a question naturally arises: can we reduce the search
space in determining the edge directions between a given variable
and its children to speed up the local causal structure learning?
To address this problem, our main contributions of the paper are
summarized as follows.

• We propose the concept of N-structures, a special local
structure for edge directions in local causal structure learn-
ing. Then we propose a new local causal structure learning,
called ELCS. Through leveraging the N-structures, ELCS
learns the MBs of the variables as few as possible to
distinguish parents from children of a given variable as
many as possible, which improves the efficiency of local
causal structure learning and simultaneously reduces the
impact of unreliable CI tests.

• To integrate MB learning with N-structures to infer edge
directions as many as possible during the MB learning
procedure, we design an efficient MB discovery subroutine
(EMB) and its efficient version EMB-II. EMB not only is
able to learn the MB of a variable, but also has an ability
to distinguish parents from children of the variable.

• We have conducted extensive experiments on eight bench-
mark BNs, and have compared ELCS with five existing
causal structure learning algorithms, including three state-
of-the-art global structure learning and two local structure
learning algorithms, to demonstrate the effectiveness and
efficiency of the ELCS algorithm.

The remainder of this paper is organized as follows. Section

2 reviews the related work, and Section 3 gives the notations and
definitions. Section 4 describes the proposed ELCS algorithm in
detail. Section 5 reports and discusses the experimental results.
Section 6 summarizes the paper.

2 RELATED WORK

Our work focuses on local causal structure learning and is also
related to MB learning and global causal structure learning. So
this section briefly introduces the related work in the three areas.

MB learning. Learning Markov Blanket (MB) plays an es-
sential part in the skeleton learning during BN structure learning.
Existing MB learning methods can be categorized into two types:
constraint-based methods and score-based methods. The former
employs independence tests to find the MB of a given variable
[16], [17], whereas the latter learns the MB using score-based BN
structure learning algorithms [18], [19].

Constraint-based methods can be roughly grouped into simul-
taneous MB learning and divide-and-conquer MB learning. Given
the target variable T, the simultaneous MB learning algorithm aims
to learn parents, children, and spouses of T simultaneously, and
does not distinguish spouses of T from its PC, such as GSMB [20],
IAMB [21], Inter-IAMB [22] and Fast-IAMB [23]. To reduce the
sample requirement of the simultaneous MB learning algorithm,
the divide-and-conquer MB learning algorithm is proposed, with
the aim to find PC and spouses of the target variable separately.
The representative divide-and-conquer MB learning algorithms
include CCMB [16], BAMB [17], MMMB [24], HITON-MB [25],
PCMB [26] and STMB [27]. Recently, a comprehensive review of
the state-of-the-art MB learning algorithms are discussed in [28].

However, existing MB learning methods only learn a local
skeleton around a target variable and do not distinguish parents
from children in the learnt MB of a target variable.

Global causal structure learning. A large amount of methods
have been designed for global causal structure learning. Recent
methods can be roughly categorized into two types: local-to-global
structure learning methods and continuous optimization based
learning methods. The local-to-global structure learning approach,
such as MMHC [11], SSL±C/G [18] and GSBN [29], first learns
the MB or PC of each variable, then constructs a skeleton of a
DAG using the learnt MBs or PCs, and finally orients edges of
the learnt skeleton using score-based or constraint-based causal
learning algorithms. Instead of learning the MB of each variable
first, GGSL [30] starts with a randomly selected variable, and then
uses a score-based MB learning algorithm to gradually expand the
learnt structure through a series of local structure learning steps.
Based on GGSL, a parallel BN structure learning algorithm (PSL)
is designed to improve the efficiency [31].

Recently, several continuous optimization based learning ap-
proaches have been proposed for global causal structure learning
[12], [13], [32], [33]. Zheng et al. consider a BN structure
learning problem as a purely continuous optimization problem
and propose the NOTEARS algorithm [12]. DAG-GNN uses a
graph neural network based deep generative model to capture
the complex data distribution to learn BN structures [13]. RL-
BIC uses reinforcement learning to search for a directed acyclic
graph (DAG) with the best score [32]. Zhang et al. propose a DAG
variational autoencoder (D-VAE) for BN structure learning [33].

However, global causal structure learning methods are time
consuming or even infeasible when the number of variables of
a BN is large. In fact, in many practical settings, we are only
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TABLE 1
Summary of Notations

Notation Meanings
U a set of random variables
W a subset of U
P a joint probability distribution over U
G a direct acyclic graph over U

DAG direct acyclic graph
X, Y, Z, T a single variable in U

Z,S a conditioning set within U
X⊥⊥Y X and Y are independent given Z
X 6⊥⊥Y X and Y are dependent given Z
MBT Markov Blanket of T
PCT a set of parents and children of T
PT a set of parents of T
CT a set of children of T

UNT undistinguished variables in PCT

SPT a set of spouses of T
SPT{X} a spouses of T with regard to T’s child X
SepT{X} a set that d-separates X from T

SepT a set that contains the sets SepT{·} of all variables
CSPT a set that contains the candidate spouse sets of all PCT variables
Que a circular queue(first in fist out)
| · | the size of a set

interested in distinguishing parents from children of a variable of
interest. In this case, it is unnecessary and wasteful to find an
entire BN structure.

Local causal structure learning. Local causal structure learn-
ing aims to learn and distinguish the parents and children of a
target variable. Although many algorithms have been designed
for learning a whole structure, only several algorithms have been
proposed for local causal structure learning. PCD-by-PCD first
discovers the PCD of a target variable, then sequentially discovers
PCDs of the variables connected to the target variable and si-
multaneously finds V-structures and orients the edges connected
to the target variable until all the parents and children of the
target variable are identified [14]. CMB first learns the MB of
a target variable using HITON-MB and orients edges by tracking
the conditional independence changes in the MB of the target
variable, then sequentially learns MBs of the variables connected
to the target variable and simultaneously construct local structures
along the paths starting from the target variable until the parents
and children of the target variable have been identified or they
cannot be identified further by continuing the process [15].

As we discussed in Section 1, both PCD-by-PCD and CMB
encounter the time inefficient problem since they need to learn a
large number of PCDs or MBs of the variables for distinguishing
parents from children of a target variable. To tackle this issue, in
this paper, we aim to develop a new method through learning the
MBs of variables as few as possible while orienting edges as many
as possible.

3 NOTATIONS AND DEFINITIONS

In this section, we will briefly introduce some basic definitions
and notations frequently used in this paper (see Table 1 for a
summary of the notations). Let U denote a set of random variables.
P represents a joint probability distribution over U, and G is a
DAG over U. In a DAG, X is a parent of Y and Y is a child of X if
there exists a directed edge from X to Y. X is an ancestor of Y (i.e.,
non-descendant of Y) and Y is a descendant of X if there exists a
directed path from X to Y.

Definition 1 (Conditional Independence [34]). Given a condi-
tioning set Z, X is conditionally independent of Y if and only if
P (X|Y,Z) = P (X|Z).

Definition 2 (Bayesian Network [34]). The triplet <U,G,P> is
called a Bayesian network (BN) if <U,G,P> satisfies the Markov
condition: each variable is conditionally independent of variables
in its non-descendant given its parents in G.

Definition 3 (Casual Bayesian Network [9]). A BN is called a
causal Bayesian network (CBN) if a directed edge in G has causal
interpretation, that is, X→Y indicates that X is a direct cause of Y.

Definition 4 (Causal Structure Learning). Global causal structure
learning aims to learn a DAG over U from observational data,
where edges represent potential causal relationships between
variables, that is, X is a direct cause of Y if there exists a directed
edge from X to Y [9]. Local causal structure learning aims to
discover and distinguish direct causes and direct effects of a
variable of interest [15].

Definition 5 (V-structure [34]). If there is no an edge between X
and Y, and Z has two incoming edges from X and Y, respectively,
then X, Z and Y form a V-structure (X → Z ← Y ).

In a BN, Z is a collider if there are two directed edges from X
to Z and from Y to Z, respectively. V-structures play an important
role in determining the edge directions between variables. For
example, if there is a V-structure (X → Z ← Y ) formed by X, Y
and Z, we can identify X and Y as parents of Z using conditional
independence (CI) tests.

Definition 6 (D-separation [34]). Given a set S ⊆ U\{X,Y},
a path π between X and Y is blocked, if one of the following
conditions is satisfied: 1) there is a non-collider variable within
S on π, or 2) there is a collier variable Z on π, while Z and any
its descendants are not in S. Otherwise, π between X and Y is
unblocked. X and Y are d-separation given S if and only if each
path between X and Y is blocked by S.

In a DAG, given a conditioning set, we can determine whether
two variables are conditionally independent using Definition 6.

Definition 7 (Faithfulness [35]). Given a BN <U,G,P>, G is
faithful to P if and only if all the conditional independencies
appear in P are entailed by G. P is faithful if and only if there
is a DAG G such that G is faithful to P.

Definition 7 indicates that in a faithful BN, if X and Y are
d-separated given the conditioning set S in G, then they will be
conditionally independent given S in P.

Definition 8 (Markov Blanket [34]). In a faithful BN, the MB
of a target variable T is denoted as MBT , which is uniqueness
and consists of parents, children and spouses (other parents of the
target’s children) of T. All other variables in U \MBT \{T} are
conditionally independent of T given MBT , ∀ X ⊆ U \MBT \{T},
X ⊥⊥ T | MBT , where X ⊥⊥ T | MBT denotes X and T are
conditionally independent conditioning on MBT .

Definition 9 (N-structure). In a faithful BN, if there exists four
variables T, A, B and C, and T is a parent of A and B, C is a
parent of A, there is no an edge between C and T, A is an ancestor
of B, the other parents of B are in PC set of T. Then, the local
structure formed by the four variables is called an N-structure.
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Fig. 2. Examples of N-structures.

Fig. 2 gives examples of the N-structures. In Fig. 2 (a), there
is an N-structure formed by T, A, B and C. In Fig. 2 (b), variables
T, A, B and C construct an N-structure, and variables T, A, E and
C construct an N-structure. Given the target variable T, we can
leverage the N-structures to determine edge directions between T
and its children (i.e. B and E) during learning the MB of T without
learning MBs of the other variables.

Theorem 1 [35]. In a faithful BN, for any two variables X ∈ U
and Y ∈ U, if there exists an edge between X and Y, then ∀ S ⊆ U
\ {X,Y}, X 6⊥⊥Y | S holds.

Theorem 1 demonstrates that if X is a parent (or a child) of
Y if X and Y are not conditionally independent conditioning any
subsets excluding X and Y.

4 THE PROPOSED METHOD

4.1 The ELCS Algorithm

We propose the Efficient Local Causal Structure learning algo-
rithm (ELCS) to distinguish parents from children of a target
variable, as shown in Algorithm 1. ELCS starts from the target
variable, sequentially finds MBs of variables connected to the tar-
get variable and simultaneously constructs local causal structures
over MBs until all the parents and children of the target variable
have been distinguished or it is clear that they cannot be further
distinguished by continuing the process. In the following, we first
summarize the main idea of ELCS, then give the details of ELCS.

To improve the efficiency of local causal structure learning,
in ELCS, we propose the following two acceleration strategies.
First, ELCS finds the N-structures, and then leverages those found
N-structures to infer edge directions between the target variable T
and its children during learning the MB of T. Second, two rules in
Lemma 1 are used to further infer edge directions between T and
its PC during learning the MB of T.

As described in Algorithm 1, given the target variable T, ELCS
first initializes the variable set W and the queue Que to empty sets
(line 1 in Algorithm 1), where W is used to store variables that
their MBs have been learnt, and Que is utilized to store variables
that their MBs need to be learnt in next phase. Then, T enters
Que (line 2 in Algorithm 1). Next, lines 4-13 in Algorithm 1
will be executed. At line 4 in Algorithm 1, the header element
in Que is out of queue, that is, X = T. Since the MB of T has
not been learnt, T is added to the set W (lines 5-6 in Algorithm
1). The EMB (Efficient Markov Blanket discovery) subroutine is
executed to learn the MB of T (line 7 in Algorithm 1). Given a
variable X, the EMB subroutine not only is able to find the PC
(PCX) and MB (SPX ∪ PCX), but also has an ability to distinguish
parents from children of X. The details of EMB are described

Algorithm 1: ELCS
Input: Data D, target variable T , random variables set U
Output: PT, CT, UNT
1: W ← ∅, Que = ∅
2: Que.push(T)
3: Repeat
4: X = Que.pop()
5: if X 6∈ W then
6: W ← W ∪ {X}
7: [PX, CX, UNX, SPX, PCX] = EMB(D, X)
8: Orienting edge directions between X and its PC nodes

according to PX and CX
9: for each Y ∈ UNX do

10: Que.push(Y)
11: end for
12: end if
13: Using Meek rules to orient other edge directions between

variables in W
14: Until (1) all parents and children of T can be determined, or

(2) Que = ∅, or (3)W = U

Algorithm 2: EMB
Input: Data D, target variable T
Output: PT, CT, UNT, SPT, PCT

/*Step 1: find the PC set of T*/
1: [PCT, SepT]← RecogPC(T, D)

/*Step 2: find spouses of T*/
2: [SPT, CSPT]← RecogSpouses(D, T, PCT, SepT)

/*Step 3: remove false positive PC from PCT */
3: for each Y ∈ PCT do
4: if T⊥⊥ Y | Z, Z ⊆ SPT{Y} ∪ PCT \ {Y} then
5: PCT ← PCT \ {Y}
6: SPT{Y} ← ∅
7: end if
8: end for

/*Step 4: find PT , CT */
9: [PT, CT, UNT]← DistinguishPC(D, T, PCT, SPT, CSPT)

in Section 4.2. Let PX represent a set of the identified parents
of X. CX denotes a set of the identified children of X. The set
containing undistinguished PC variables of X is denoted as UNX.
After executing the line 7 in Algorithm 1, the sets of PT, CT,
UNT, SPT, PCT are obtained. If UNT is empty, that is, parents and
children of T are all distinguished, the learning process will be
terminated. Otherwise, the undistinguished variables within UNT

will be put in Que (lines 9-11 in Algorithm 1). Then, Meek rules
[36] are used to orient other edge directions between variables
in W (line 13 in Algorithm 1). Lines 4-13 in Algorithm 1 will
be repeated until all the parents and children of T have been
distinguished or Que is empty or the size of W equals to that
of the entire variable set.

4.2 EMB Subroutine

ELCS depends on the MB learning methods for local causal
structure learning, but existing MB learning algorithms have
the following shortcomings. First, existing MB learning methods
cannot be directly combined with the N-structures to infer edge
directions between the target variable and its children. Second,
existing MB learning methods only focus on learning the MB
of the target variable and are not able to distinguish parents
from children. Third, existing MB learning methods may be
computationally expensive. In order to help ELCS to leverage N-
structures and the rules in Lemma 1 for efficiently learning local
causal structures, we design an Effective MB discovery subroutine
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Algorithm 3: RecogSpouses
Input: Data D, target variable T, PCT, SepT
Output: SPT, CSPT
1: SPT ← ∅
2: for each X ∈ U\{T}\PCT do
3: Temp← ∅
4: for each Y ∈ PCT do
5: if X 6⊥⊥ Y | ∅ then
6: Temp← Temp ∪ {Y}
7: end if
8: end for
9: if X 6⊥⊥ T | Temp then

10: for each Y ∈ Temp do
11: if X 6⊥⊥ T | {Y} ∪ SepT{X} then
12: CSPT{Y} ← CSPT{Y} ∪ {X}
13: end if
14: end for
15: end if
16: end for
17: SPT ← CSPT
18: for each Y ∈ PCT do
19: for each X ∈ SPT{Y} do
20: if X⊥⊥ Y | Z, Z ⊆ SPT{Y} ∪ {T} ∪ PCT \ {X,Y} then
21: SPT{Y} ← SPT{Y} \ {X}
22: end if
23: end for
24: end for

Algorithm 4: DistinguishPC
Input: Data D, target variable T , PCT, SPT, CSPT
Output: PT, CT, UNT
1: CT ← ∅, PT ← ∅
2: for each Y ∈ PCT do
3: if SPT{Y} is nonempty then
4: CT ← CT ∪ {Y}
5: end if
6: end for
7: UNT ← PCT \ CT
8: for each X ∈ UNT do
9: if CSPT{X} ∩ CT is nonempty then

10: CT ← CT ∪ {X}
11: end if
12: end for
13: for each X ∈ PCT \ CT do
14: for each Y ∈ PCT \ CT do
15: if X⊥⊥ Y | ∅ and X 6⊥⊥ Y | T then
16: PT ← PT ∪ {X} ∪ {Y}
17: end if
18: end for
19: end for
20: UNT ← PCT \ PT \ CT
21: for each X ∈ UNT do
22: for each Y ∈ PT do
23: if X 6⊥⊥ Y | ∅ and X⊥⊥ Y | T then
24: CT ← CT ∪ {X}
25: break
26: end if
27: end for
28: end for
29: UNT ← PCT \ PT \ CT

(EMB) to learn the MB of a target variable and distinguish parents
from children of the target variable simultaneously.

As shown in Algorithm 2, EMB consists of four steps as
follows. Given a target variable T, EMB first learns the PC of
T (PCT) using an existing PC learning algorithm. Second, EMB
obtains spouses of T using a RecogSpouses subroutine. Then,
EMB removes false PC from PCT. Finally, EMB orients edges
between T and its PC as many as possible using a DistinguishPC
subroutine. Specifically, to find the N-structures, EMB first deter-
mines which variable within U\{T}\PCT is a candidate spouse

of T, and obtains the candidate spouse set CSPT{Y} of each
variable Y within PCT, and then obtains the spouses of T. Based
on the learnt CSPT{Y} and spouses, we can find the N-structures.
Through leveraging the found N-structures, EMB can distinguish
some children of T with regard to the found N-structures. In
addition, two rules in Lemma 1 are used in the DistinguishPC
subroutine to further distinguish parents from children of T. In the
following, we will give the details of these four steps.

Lemma 1. The PC (parents and children) set of a given variable
T (T ∈ U) is denoted as PCT . Let X ∈ PCT , Y ∈ PCT . We can get
the following two dependence relationships between X and Y.

(a) X⊥⊥ Y | ∅ and X 6⊥⊥ Y | T⇒ X and Y are both parents of T.
This shows that there is a V-structure (X → T ← Y ) formed by
variables X, Y and T, and T is a collider.

(b) X is a direct cause of T, X 6⊥⊥ Y | ∅ and X⊥⊥ Y | T ⇒
Y is a direct effects of T. This shows that there is only one path
(X → T → Y ) from X to Y, and the path is blocked by T.

Step 1 (line 1 in Algorithm 2): EMB obtains PCT and SepT of
a target variable T by utilizing an existing PC learning algorithm,
where SepT is a set that contains the sets SepT{·} of all variables.
In this paper, we use HITON-PC [25] to find the PC of T (any
other state-of-the-art PC learning algorithms can be used here to
instantiate the RecogPC() function at Step 1 in Algorithm 2).

Step 2 (line 2 in Algorithm 2): At this step, EMB learns
spouses of T. We design a RecogSpouses subroutine for learning
spouses. The details of RecogSpouses are described in Algorithm
3. RecogSpouses first finds candidate spouses from all variables
within U\{T}\PCT that are conditionally independent of T. If X
and T are conditionally independence, then we construct a set
Temp that consists of variables which belong to PCT and are
dependent of X given an empty set (lines 3-8 in Algorithm 3). If X
and T are conditionally independent conditioning on Temp, then
X cannot be a spouse of T. Otherwise, X is regarded as a candidate
spouse and lines 9-15 in Algorithm 3 will be executed. If X and
T are dependent conditioning on SepT{X} ∪ Y (Y ∈ Temp), then
X will be added to CSPT{Y} (lines 9-15 in Algorithm 3). Since
some non-parent variables of Y will be added to CSPT{Y}, non-
parent variables of each Y ∈ PCT will be removed from CSPT{Y}
and the spouse set SPT{Y} will be obtained after executing lines
17-24 in Algorithm 3.

Step 3 (lines 3-8 in Algorithm 2): At this step, EMB removes
false positives from the candidate set of PC of T. For each variable
Y within PCT, if there exists a subset Z of the union SPT{Y} ∪
PCT such that Y and T are conditionally independent conditioning
on Z, Y will be removed from PCT, and SPT{Y} will be set to an
empty set.

Step 4 (line 9 in Algorithm 2): At this step, EMB distinguishes
parents from children of T as many as possible. We propose a
DistinguishPC subroutine to accomplish this goal. DistinguishPC
first identifies some children of T with the help of spouses of
T. Second, DistinguishPC uses the found N-structures to infer
edge directions between T and its children. Finally, DistinguishPC
distinguishes parents from children of T using Lemma 1.

The details of DistinguishPC are described in Algorithm 4.
First, DistinguishPC uses the learnt spouses to identify some
children of T (lines 2-6 in Algorithm 4). For example, in Fig.
1, C and D are spouses of T, SPT{A} = {C}, SPT{K} = {D},
and DistinguishPC identifies A and K as children of T. There
exists an N-structure which is formed by C, A, B and T in Fig.
1, DistinguishPC can determine the edge direction between T and
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B with the help of SPT and CSPT. At Step 2, C will be added
to CSPT{A} and CSPT{B}, and C will be removed from SPT{B}
because C is not a parent of B (lines 17-24 in Algorithm 3). Since
C is a spouse of T and C is within the set CSPT{B}, DistinguishPC
identifies B as a child of T (lines 8-12 in Algorithm 4). Theorem 2
gives the theoretical analysis. In addition, in order to orient more
edges between T and its PC, two rules in Lemma 1 are used. If X
⊥⊥ Y | ∅ and X 6⊥⊥ Y | T, we can conclude that X and Y are both
parents of T. Therefore, DistinguishPC identifies parents of T as
many as possible using Lemma 1 (a) (lines 13-19 in Algorithm 4).
If X is a parent of T, X 6⊥⊥ Y | ∅ and X⊥⊥ Y | T, then Y is a child
of T. DistinguishPC uses the identified parents of T to determine
edge directions between T and its children using Lemma 1 (b)
(lines 21-28 in Algorithm 4).

We also propose a variant of EMB to further improve the effi-
ciency of MB learning, which is referred to as EMB-II. Compared
with EMB, in learning MB, instead of directly executing line 20
in Algorithm 3, EMB-II first ranks the variables within SPT{Y}
in descending order according to the dependency with variable Y,
then executes line 20 in Algorithm 3.

We also propose a variant of ECLS to further improve the
efficiency of local causal structure learning, which is referred to
as ELCS-II. Compared with ECLS, ELCS-II uses EMB-II for MB
learning instead of using EMB.

In the following, we will give the details of Theorem 2 and its
proof.

Theorem 2. In a faithful BN, given an N-structure consisting of
four variables T, A, B, C. T is a parent of A and B, C is a parent
of A, there is no an edge between C and T, A is an ancestor of B,
and the parents of B are in PC set of T, then EMB identifies B as
a child of T during learning the MB of T.

Proof. Under the faithfulness assumption, the PC of a target vari-
able T only contains parents and children of T. Since C is a parent
of A, there is no an edge between C and T, then EMB identifies C
as a spouse of T since there is a V-structure (C→ A← T) around
A. At step 2 of EMB, C will be added to CSPT{B} (lines 2-16 in
Algorithm 3) since C and T are conditionally dependent given the
conditioning set {B} ∪ SepT{C}. If B is a parent of T, then C and
T are conditionally independent given the conditioning set {B} ∪
SepT{C}, since all paths from T to C are blocked by conditioning
set {B} ∪ SepT{C}. Therefore, B is a child of T.

4.3 Tracing
We first trace the execution of EMB using the example in Fig. 3,
then trace the execution of ELCS using the example in Fig. 4.

4.3.1 Tracing EMB
We utilize the example in Fig. 3 to trace the execution of EMB.
Suppose that we have a dataset for variable set U = {A, B, C, D,
E, F, X, H, I, J, K, L, T}. The independence relationships between
variables can be represented by the Bayesian Network structure in
Fig. 3. In the following, we regard T as the target variable, and
give the execution process of EMB.

(1) step 1: referring to the simple network, i.e., the left network
in Fig. 3. First, HITON-PC is used to find the PC of T. According
to Theorem 1, A, B, L, K, E and J will be added to PCT. Note that
D is conditionally independent of T given an empty set, hence
D will not be in any of the conditioning sets for higher order
conditional independence tests. As a result, I will be added to PCT

since T and I are conditionally dependent given conditioning set
{K}. Then, as shown in Fig. 3 (a), PCT = {A, B, L, K, E, J, I}.

(2) step 2: as shown in Fig.3 (b), EMB discovers the spouses
of T. X and each variable within Temp = {A, B, L, K, E,
I} are conditionally dependent given an empty set, while X is
conditionally independent of T given the conditioning set Temp,
so that X cannot be a candidate spouse of T since each path from X
to T is blocked by Temp. Similarly, both F and H are not candidate
spouses. C and each variable within Temp = {A, B, L, K, E, I} are
conditionally dependent given an empty set, and C is dependent
of T given Temp, and we need to conduct further tests. Owning to
C⊥⊥ T | E, C 6⊥⊥ T | {E, A}, C 6⊥⊥ T | {E, B}, C⊥⊥ T | {E, L}, C
⊥⊥ T | {E, K} and C⊥⊥ T | {E, I}, hence C is added to CSPT{A}
and CSPT{B}, CSPT{A} = {C}, CSPT{B} = {C}. Similarly, D is
added to CSPT{K} and CSPT{I}, CSPT{K} = {D}, CSPT{I} =
{D}. In the following, C will be removed from SPT{B} since C⊥⊥
B | {A, T} (lines 17-24 in Algorithm 3). After this step, SPT{A}
= {C}, SPT{K} = {D}, SPT{I} = {D}.

(3) step 3: as shown in Fig. 3 (c), after checking at line 4 in
Algorithm 2, I will be removed from PCT since I⊥⊥ T | {K, D}.
After this step, PCT = {A, B, L, K, E, J}, SPT = {C, D}, and MBT

={A, B, L, K, E, J, C, D}.
(4) step 4: as shown in Fig. 3 (d), EMB orients the edge

directions between T and its PC as many as possible. Since C
is a spouse of T, and C has been added to SPT{B} at step 2, based
on Theorem 2, B is a child of T. In addition, according to Lemma
1, E and J are parents of T since E⊥⊥ J | ∅ and E 6⊥⊥ J | T. L is a
child of T since E is a parent of T, E 6⊥⊥ L | ∅ and E⊥⊥ L | T.

4.3.2 Tracing ELCS
We use the example in Fig. 4 to trace the execution of ELCS.

Suppose that we have a dataset for variable set U = {A, B, C,
D, E, F, X, H, I, J, K, L, T, Y}. The independence relationships
between variables can be represented by the BN structure in Fig.4.
In the following, we regard T as the target variable, and give the
execution process of distinguishing parents from children of T
using ELCS. We use the G(X,Y ) = -1 to represent that X is
a parent of Y, G(X,Y ) = 1 represents that X is adjacent to Y,
G(X,Y ) = 0 represents that there is no an edge between X and Y.

(1) step 1: referring to the simple network, i.e., the left network
in Fig. 4. We first use EMB to distinguish parents from children
of T. After learning the MB of T, as shown in Fig. 4 (a), the
PCT = {A, B, L, K, E, J, Y} and SPT = {C, D} are obtained.
Then, G(T,A) = -1, G(T,B) = -1, G(T, L) = -1, G(T,K) = -1,
G(E, T ) = -1, G(J, T ) = -1 and G(Y, T ) = 1. The edge direction
between Y and T is unsure.

(2) step 2: to resolve G(Y, T ), as shown in Fig. 4 (b), we need
to make a further search. In the following, the MB of Y is extracted
using EMB, and G(X,Y ) = -1, G(F, Y ) = -1. After updating the
current local structure using Meek rules, we can learn that Y is a
parent of T, that is, G(Y, T ) = -1.

4.4 Theoretical Analysis
In the following, we first theoretically analyze the correctness of
EMB, then theoretically analyze the correctness of ELCS.

Theorem 3 (Correctness of EMB). Under the faithfulness as-
sumption, and all CI tests are reliable, EMB finds all and only the
MB of a given variable.

Proof. At step 1, EMB finds all the true PC variables. According
to Theorem 1, the variables which are dependent with the target
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Fig. 3. An example of the execution process of EMB.

Fig. 4. An example of the execution process of ELCS.

variable T will be added to PCT. PCT contains the true parents and
children of T, since the true PC variables are always dependent
of T. In addition, PCT also contains some descendants of T [27].
Then, based on the results of step 1, EMB finds all the true spouses
of T at step 2. If Y is a collider, X is regarded as a candidate spouse
if there exists a V-structure (X → Y ← T) formed by X, Y and
T, and X will be added to CSPT{Y} (lines 1-16 in Algorithm
3). Owning to an exhaustive search, EMB will not miss any true
spouses of T. In the following, the variable X ∈ SPT{Y} that is
a non-parent of Y will be removed from SPT{Y} (lines 17-24 in
Algorithm 3). According to the Markov condition, the variable
X ∈ SPT{Y} will be removed if it is not a parent of Y, since
conditioning set SPT{Y} ∪ T ∪ PCT \ {X,Y} contains all true
parents of Y. Therefore, SPT contains all the true spouses of T.
The learnt PCT may contain some false PC variables. T and each
false PC variable are conditionally independent given the spouses
of the false PC variable and PCT. At the step 3, the false PC
variables found at step 1 and false spouses found at step 2 will be
removed (lines 3-8 in Algorithm 2). Then, EMB contains all and
only the true PC variables PCT and spouses SPT after executing
Algorithm 2, and PCT and SPT together form all and only true MB
variables. At step 4, based on Theorem 2 and Lemma 1, parents
and children of T are learnt by EMB are correct.

Theorem 4 describes the correctness of the proposed ELCS
algorithm. In the following, we will introduce Theorem 4 and its
proof in detail.

Theorem 4 (Correctness of ELCS). Under the faithfulness
assumption, and all CI tests are reliable, ELCS distinguishes all
parents from children of a given variable.

Proof. Under the causal faithfulness assumption, given a target
variable, EMB finds all and only the true MB variables and the
true PC variables of the target variable. The learnt PC set contains
all and only the parents and children of the target variable. Based
on Definition 5, the children identified by the learnt spouses are
correct. Base on Theorem 2, the children identified by the found
N-structures are correct. All the parents and children identified by
Lemma 1 are correct. ELCS updates the local causal structures
until the parents and children of the target variable have been
distinguished. Meek rules [36] are used to orient other undirected
edges between the target variable and the variables that are
adjacent to the target variable during learning the local causal
structure, and all the edge directions determined by Meek rules
are correct. Thus, all the parents and children of a given target
variable distinguished by ELCS are correct.

4.5 Computational Complexity

The computational complexity of ELCS algorithm depends on
the steps of discovering MB. In the following, we will give the
computational complexity of EMB and ELCS.

The computational complexity of EMB: The computational
complexity of EMB depends on its four steps. Given a target
variable T, at step 1, the computational cost is dominated by
HITON-PC which takes at most O(|U|2|PCT|) CI tests to find
the PC. Step 2 takes O(|SPT|2|PCT|+|SPT|) CI tests, step 3 takes
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TABLE 2
Computational Complexity of Each Markov Blanket Learning Algorithm

Algorithms IAMB MMMB HITON-MB STMB BAMB EMB

Complexity O(|U|2) O(|U||PC|2|PC|) O(|U||PC|2|PC|) O(|U|2|U|) O(|U|2|PC|) O(|U|2|PC|)

TABLE 3
Computational Complexity of Local and Global Causal Structure

Learning Algorithms

Algorithm Worst Case Best Case

PCD-by-PCD O(|U|22|PC|) O(|U||PC|2|PC|)
CMB O(|U|2|PC|2|PC|) O(|U||PC|2|PC|)
ELCS O(|U|22|PC|) O(|U|2|PC|)

MMHC O(|U|22|U|) O(|U|22|PC|)
NOTEARS O(m2|U|2 +m3 +mt|U|2)
DAG-GNN O(nht|U|4)

O(|PCT|2|PCT|+|SPT|) CI tests, step 4 takes O(2|PCT|2) CI tests.
Thus, the complexity of EMB is O(|U|2|PCT|+|SPT|2|PCT|+|SPT| +
|PCT|2|PCT|+|SPT| + 2|PCT|2) = O(|U|2|PCT|). Let |PC| represent
the largest size of the PC sets of all the variables, the complexity
of EMB is O(|U|2|PC|).

We summarize the computational complexity of EMB and its
rivals in Table 2. From the table, IAMB is the fastest among
all MB learning algorithms. MMMB and HINTON-MB are the
slowest two algorithms, since they need to find the PC sets
of all target variable’s parents and children. The computational
complexity of EMB is lower than STMB. In general, most of
the BNs have a large number of variables but a small-sized PC
set of each variable, so that EMB is faster than STMB. The
computational complexity of BAMB is the same with EMB.

The computational complexity of ELCS: In the best case,
the complexity of ELCS isO(|U|2|PC|). But in the worst case (e.g.
the target variable has all single ancestors), ELCS needs to learn a
whole structure, hence the complexity of ELCS is O(|U|22|PC|).

Table 3 reports the computational complexity of ELCS and its
rivals. Note that m� |U| is the memory size of L-BFGS [12]. n
and t are the number of samples in data and iterations, respectively.
h is the number of neurons in the hidden layer [13]. The compu-
tational complexity of global causal structure learning algorithms
is higher than that of local causal structure learning algorithms,
since they learn the whole structure of all variables. PCD-by-
PCD uses MMPC for PC learning, and CMB uses HITON-MB
for MB learning. In the best case, the complexity of PCD-by-
PCD is consistent with that of MMMB, it is O(|U||PC|2|PC|).
The complexity of CMB is consistent with that of HITON-MB, it
is O(|U||PC|2|PC|). In the worst case, since MMPC can discover
the separating sets while learning PC, the complexity of PCD-
by-PCD is consistent with that of using MMPC to find PCs of all
variables, it isO(|U|22|PC|). The complexity of CMB is consistent
with that of using HITON-MB to find MBs of all variables, it is
O(|U|2|PC|2|PC|). ELCS is the fastest algorithm in both best and
worst cases, since the complexity of ELCS relies on that of EMB
which only takes O(|U|2|PC|) CI tests to find the MB.

5 EXPERIMENTS

In this section, we evaluate the performance of the proposed
ELCS algorithm, and this section is organized as follows. Section

5.1 gives the experimental settings, Section 5.2 summarizes and
discusses the experimental results, Section 5.3 analyses the reason
why ELCS is efficient and effective.

5.1 Experimental Settings
5.1.1 Datasets
We use eight benchmark BNs to evaluate ELCS against its rivals.
Each benchmark BN contains two groups of data, one group
containing 10 data sets with 5000 data examples, and the other one
including 10 data sets with 1000 data examples. The number of
variables of these BNs ranges from 20 to 801. A brief description
of the eight benchmark BNs is listed in Table 4.

5.1.2 Comparison Methods
We compare our approach ELCS with three state-of-the-art
global causal structure learning algorithms, including MMHC
[11], NOTEARS [12] and DAG-GNN [13], and two local causal
structure learning algorithms, including PCD-by-PCD [14] and
CMB [15]. In addition, we also compare ELCS with ELCS-II.

5.1.3 Implementation Details
PCD-by-PCD and CMB algorithms are implemented by our-
selves in MATLAB (https://github.com/kuiy/CausalLearner). For
MMHC, we use the implementation in the software tool of Causal
Explorer [37]. For NOTEARS and DAG-GNN, we use the source
codes provided by the authors. In the experiments, G2-test with
the significance level of 0.01 is utilized to measure the conditional
independence between variables. All experimental results are
conducted on Windows 10 with Intel(R) i7-8700, 3.19 GHz CPU,
and 16GB memory.

5.1.4 Evaluation Metrics
In the experiments, we evaluate the performance using the follow-
ing metrics.

• ArrP: The number of true directed edges in the output (i.e.,
the variables in the output belonging to the true parents and
children of a target variable in a test DAG) divided by the
number of edges in the output of an algorithm.

• ArrR: The number of true directed edges in the output
divided by the number of true directed edges (i.e., the
number of parents and children of a target variable in a
test DAG).

• SHD: SHD is the number of total error edges, which
contains undirected edges, reverse edges, missing edges
and extra edges. The smaller value of SHD is better.

• FDR: The number of false edges in the output divided by
the number of edges in the output of an algorithm.

• Efficiency: The number of CI tests and the running time
(in seconds) are utilized to measure the efficiency.

In the following Tables, the results are reported in the format
of A±B, where A denotes the average results, and B represents
the standard deviation. The best results in each setting have been
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TABLE 4
Summary of Benchmark BNs

Network Num.
Vars

Num.
Edges

Max In/Out
Degree

Min/Max
|PCset|

Domain
Range

Alarm 37 46 4 / 5 1 / 6 2 - 4
Insurance 27 52 3 / 7 1 / 9 2 - 5

Child 20 25 2 / 7 1 / 8 2 - 6
Alarm10 370 570 4 / 7 1 / 9 2 - 4

Insurance10 270 556 5 / 8 1 / 11 2 - 5
Child10 200 257 2 / 7 1 / 8 2 - 6

Pigs 441 592 2 / 39 1 / 41 3 - 3
Gene 801 972 4 / 10 0 / 11 3 - 5

marked in bold. ”-” means that the output of the corresponding
BN cannot be generated in two days by the algorithm. Note that
NOTEARS and DAG-GNN do not perform CI tests.

5.2 Experimental Results of ELCS and Its Rivals
We compare ELCS with MMHC, NOTEARS, DAG-GNN, PCD-
by-PCD, CMB and ELCS-II on the eight BNs as shown in Table
4. The average results of ArrP, ArrR, SHD, FDR, CI tests and
running time of each algorithm are reported in Tables 5-6. Table 5
summarizes the experimental results on the eight BNs with 5,000
data examples, and Table 6 reports the experimental results on
the eight BNs with 1,000 data examples. From the experimental
results, we have the following observations.

ELCS versus MMHC. Regardless of the number of samples
(5000 or 1000), ELCS is significantly better than MMHC. On
the ArrP and ArrR metrics, ELCS is superior to MMHC, which
means that ELCS finds more true causal edges and less false casual
edges. In addition, on the SHD metric, the value of SHD of ELCS
is significantly lower than that of MMHC. On the FDR metric,
ELCS performs better than MMHC. Furthermore, ELCS always
uses less CI tests than MMHC. To learn the local causal structure
of a target variable, MMHC needs to learn the whole DAG over all
variables in a dataset, hence MMHC performs much more CI tests
than ELCS. Thus, we can conclude that ELCS is more efficient
and effective than MMHC.

ELCS versus NOTEARS and DAG-GNN. NOTEARS and
DAG-GNN are global causal learning algorithms, they need to
learn the global structure over all variables, and then obtain the
parents and children of a given variable. ELCS achieves better
performance than NOTEARS and DAG-GNN using both 5,000
data samples and 1,000 data samples, especially using 5,000 data
samples. On the ArrP, ArrR, SHD and FDR metrics, ELCS is
significantly better than NOTEARS and DAG-GNN. The values
of ELCS on ArrP and ArrR metrics are higher than that of
NOTEARS and DAG-GNN, and lower on the SHD and FDR
metrics. Since NOTEARS and DAG-GNN adopt a continuous
optimization strategy to obtain the DAG from observational data,
and the experimental results are susceptible to the influence of
parameters. Additionally, NOTEARS and DAG-GNN need to
spend much time in learning the DAG, since they obtain the
optimal solution by means of a large number of iterations. In a
word, ELCS is superior to NOTEARS and DAG-GNN.

ELCS versus PCD-by-PCD and CMB. Both PCD-by-PCD
and CMB are local causal learning algorithms. Using 5,000 data
samples, ELCS performs better than PCD-by-PCD and CMB.
Except on Child, ELCS achieves highest ArrP and ArrR values,
and lowest SHD and FDR values on the other BNs. In addition,

TABLE 5
Comparison of ELCS with State-of-the-art Causal Structure Learning

Algorithms on Eight Benchmark BNs (size=5,000)

Network Algorithm ArrP(↑) ArrR(↑) SHD(↓) FDR(↓) CI Tests(↓) Time(↓)

Alarm

MMHC 0.19±0.02 0.08±0.02 4.58±0.02 0.60±0.01 13860±4971 7.03±2.74
NOTEARS 0.61±0.01 0.74±0.04 2.84±0.17 0.48±0.02 - 541.95±27.18
DAG-GNN 0.66±0.03 0.54±0.04 2.02±0.17 0.36±0.05 - 1.1e3±1.1e2

PCD-by-PCD 0.77±0.03 0.64±0.05 0.94±0.15 0.27±0.04 2110±92 0.81±0.04
CMB 0.77±0.05 0.72±0.06 0.76±0.14 0.22±0.04 2111±207 0.69±0.07
ELCS 0.86±0.01 0.81±0.01 0.44±0.06 0.07±0.02 648±55 0.20±0.02

ELCS-II 0.86±0.01 0.81±0.01 0.44±0.06 0.07±0.02 607±52 0.19±0.02

Insurance

MMHC 0.21±0.02 0.03±0.02 5.87±0.17 0.67±0.02 2603±271 1.18±0.12
NOTEARS 0.46±0.01 0.24±0.01 4.64±0.12 0.72±0.02 - 420.89±22.92
DAG-GNN 0.54±0.03 0.21±0.01 4.35±0.25 0.67±0.05 - 518.84±37.24

PCD-by-PCD 0.68±0.02 0.45±0.02 2.07±0.09 0.34±0.03 3038±300 1.48±0.16
CMB 0.70±0.04 0.54±0.04 2.31±0.25 0.37±0.05 11553±4827 5.44±2.29
ELCS 0.85±0.04 0.69±0.04 1.61±0.06 0.18±0.05 1686±276 0.75±0.12

ELCS-II 0.85±0.04 0.69±0.04 1.61±0.06 0.18±0.05 1637±275 0.75±0.12

Child

MMHC 0.22±0.03 0.19±0.07 3.63±0.25 0.48±0.03 8600±632 5.32±0.46
NOTEARS 0.52±0.02 0.39±0.03 2.99±0.17 0.70±0.03 - 140.74±36.59
DAG-GNN 0.50±0.04 0.29±0.06 2.08±0.10 0.44±0.06 - 384.73±30.76

PCD-by-PCD 0.71±0.02 0.59±0.04 0.86±0.09 0.26±0.04 2432±78 1.24±0.04
CMB 0.82±0.05 0.75±0.08 0.72±0.18 0.25±0.08 9424±4106 4.58±1.96
ELCS 0.71±0.12 0.61±0.16 1.08±0.36 0.09±0.08 2093±287 0.93±0.10

ELCS-II 0.71±0.12 0.61±0.16 1.08±0.36 0.09±0.08 2087±287 0.93±0.10

Alarm10

MMHC 0.19+0.00 0.02+0.00 5.63+0.05 0.63+0.00 9.7e7+8.9e6 4.6e4+4.8e3
NOTEARS 0.73±0.01 0.50±0.01 2.27±0.04 0.28±0.01 - 1.6e4±1.8e3
DAG-GNN - - - - - -

PCD-by-PCD 0.73±0.01 0.54±0.01 1.48±0.03 0.21±0.01 25795±1770 8.18±0.57
CMB 0.72±0.01 0.58±0.01 1.57±0.04 0.34±0.01 14011±565 3.69±0.15
ELCS 0.83±0.01 0.68±0.02 1.26±0.07 0.14±0.02 6893±483 1.77±0.12

ELCS-II 0.83±0.01 0.68±0.02 1.26±0.07 0.14±0.02 6916±480 1.77±0.12

Insurance10

MMHC 0.22±0.00 0.00±0.00 6.72±0.04 0.70±0.00 1.9e5±2.0e4 81.66±10.39
NOTEARS 0.30±0.01 0.20±0.00 8.67±0.44 0.85±0.01 - 1.7e4±1.5e4
DAG-GNN - - - - - -

PCD-by-PCD 0.68±0.01 0.46±0.01 2.10±0.05 0.41±0.01 9581±224 4.38±0.13
CMB 0.64±0.01 0.49±0.01 2.58±0.06 0.48±0.02 39932±3898 16.04±1.54
ELCS 0.80±0.02 0.67±0.02 1.75±0.11 0.23±0.01 10809±1528 3.92±0.55

ELCS-II 0.80±0.02 0.67±0.02 1.75±0.11 0.23±0.01 10605±1499 3.91±0.55

Child10

MMHC 0.15±0.01 0.03±0.01 5.29±0.09 0.58±0.01 7.9e5±2.7e5 439.79±169.28
NOTEARS 0.61±0.01 0.74±0.04 2.84±0.17 0.48±0.02 - 541.95±27.18
DAG-GNN - - - - - -

PCD-by-PCD 0.77±0.01 0.68±0.02 0.82±0.04 0.22±0.01 11341±1470 4.44±0.57
CMB 0.75±0.02 0.68±0.02 1.03±0.07 0.31±0.02 22861±2648 8.11±0.95
ELCS 0.83±0.05 0.76±0.07 0.73±0.20 0.14±0.03 13129±2613 3.98±0.79

ELCS-II 0.83±0.05 0.76±0.07 0.73±0.20 0.14±0.03 13104±2605 3.98±0.79

Pigs

MMHC 0.26±0.00 0.00±0.00 6.85±0.07 1.00±0.00 4.3e5±1.4e4 207.96±6.88
NOTEARS 0.43±0.00 0.26±0.00 2.77±0.03 0.77±0.00 - 3.1e4±1.2e3
DAG-GNN - - - - - -

PCD-by-PCD - - - - - -
CMB - - - - - -
ELCS 0.91±0.00 0.99±0.00 0.42±0.02 0.15±0.01 13374±8660 8.91±6.84

ELCS-II 0.91±0.00 0.99±0.00 0.42±0.02 0.15±0.01 11467±5659 8.38±5.12

Gene

MMHC - - - - - -
NOTEARS - - - - - -
DAG-GNN - - - - - -

PCD-by-PCD - - - - - -
CMB - - - - - -
ELCS 0.76±0.01 0.79±0.01 0.79±0.03 0.32±0.01 36950±7876 11.03±2.35

ELCS-II 0.76±0.01 0.79±0.01 0.79±0.03 0.32±0.01 36051±7696 11.02±2.08

ELCS uses less CI tests than PCD-by-PCD and CMB on most
of BNs. Using 1,000 data samples, ELCS is superior to PCD-by-
PCD and CMB on Alarm, Child, Alarm10, Pigs and Gene. ELCS
is better than CMB and worse than PCD-by-PCD on Insurance
on the ArrP, ArrR, SHD and FDR metrics, while ELCS has
advantages in terms of CI tests and running time. On Insurance10,
ELCS is worse than PCD-by-PCD and CMB on the ArrP, ArrR,
SHD and FDR metrics. The reason may be that EMB learns
inaccurate MBs on small data samples. ELCS is better than PCD-
by-PCD and little worse than CMB on Child10 on the ArrP, ArrR,
SHD and FDR metrics. Generally, ELCS performs better than
PCD-by-PCD and CMB.

ELCS versus ELCS-II. ELCS-II is superior to ELCS. ELCS-
II further improves the efficiency of EMB while maintaining the
same performance as measured by the ArrP, ArrR, SHD and FDR
metrics, which indicates the efficiency of ELCS-II.

In summary, it can be seen from Tables 5-6, ELCS is
significantly better than MMHC, NOTEARS and DAG-GNN.
Additionally, ELCS outperforms PCD-by-PCD and CMB on the
ArrP, ArrR, SHD, FDR metrics. Specifically, compared with PCD-
by-PCD and CMB, ELCS not only achieves higher ArrP and
ArrR values, but also achieves lower SHD and FDR values.
Furthermore, ELCS is the fastest algorithm among all structure
learning algorithms. ELCS is significantly better than MMHC
and NOTEARS in terms of running time. MMHC, NOTEARS
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TABLE 6
Comparison of ELCS with State-of-the-art Causal Structure Learning

Algorithms on Eight Benchmark BNs (size=1,000)

Network Algorithm ArrP(↑) ArrR(↑) SHD(↓) FDR(↓) CI Tests(↓) Time(↓)

Alarm

MMHC 0.22±0.03 0.12±0.04 4.32±0.20 0.57±0.03 8884±4471 1.64±0.81
NOTEARS 0.59±0.03 0.72±0.06 3.14±0.21 0.51±0.04 - 232.28±22.13
DAG-GNN 0.48±0.04 0.26±0.06 2.01±0.10 0.17±0.03 - 241.19±23.82

PCD-by-PCD 0.66±0.07 0.49±0.05 1.33±0.10 0.22±0.04 1737±265 0.39±0.05
CMB 0.67±0.06 0.52±0.06 1.32±0.13 0.34±0.07 3171±410 0.50±0.07
ELCS 0.72±0.07 0.61±0.08 1.06±0.14 0.11±0.04 901±172 0.13±0.03

ELCS-II 0.72±0.07 0.61±0.08 1.06±0.14 0.11±0.04 861±162 0.13±0.03

Insurance

MMHC 0.22±0.02 0.04±0.02 5.72±0.18 0.65±0.03 2110±293 0.44±0.05
NOTEARS 0.43±0.02 0.24±0.01 4.90±0.12 0.75±0.03 - 220.97±44.51
DAG-GNN 0.49±0.06 0.15±0.05 3.78±0.19 0.39±0.13 - 151.75±18.26

PCD-by-PCD 0.68±0.04 0.40±0.04 2.43±0.15 0.30±0.06 1370±104 0.33±0.02
CMB 0.69±0.06 0.46±0.05 2.55±0.22 0.38±0.08 4457±1196 0.76±0.20
ELCS 0.69±0.12 0.44±0.15 2.49±0.40 0.37±0.19 1188±566 0.17±0.08

ELCS-II 0.69±0.12 0.44±0.15 2.49±0.40 0.37±0.19 1106±513 0.17±0.08

Child

MMHC 0.24±0.02 0.18±0.04 3.41±0.14 0.45±0.03 4583±898 0.90±0.19
NOTEARS 0.49±0.02 0.37±0.05 3.31±0.23 0.72±0.04 - 66.32±25.78
DAG-GNN 0.34±0.05 0.15±0.03 2.20±0.05 0.29±0.09 - 87.70±8.96

PCD-by-PCD 0.52±0.05 0.34±0.06 1.61±0.12 0.33±0.08 2085±183 0.39±0.02
CMB 0.74±0.09 0.59±0.10 1.27±0.29 0.33±0.12 4991±1145 0.65±0.14
ELCS 0.82±0.05 0.69±0.06 1.01±0.18 0.21±0.06 2882±815 0.34±0.10

ELCS-II 0.82±0.05 0.69±0.06 1.01±0.18 0.21±0.06 2592±723 0.33±0.10

Alarm10

MMHC 0.19±0.00 0.03±0.01 5.69±0.07 0.63±0.00 3.9e6±3.5e5 700.63±55.38
NOTEARS 0.39±0.01 0.47±0.01 9.27±0.49 0.69±0.02 - 1.6e4±1.2e3
DAG-GNN - - - - - -

PCD-by-PCD 0.66±0.01 0.44±0.02 1.74±0.06 0.20±0.02 26572±3414 4.87±0.63
CMB 0.68±0.01 0.48±0.02 1.90±0.06 0.39±0.02 10827±643 1.51±0.08
ELCS 0.75±0.02 0.53±0.02 1.72±0.06 0.20±0.03 8800±1218 1.18±0.16

ELCS-II 0.75±0.02 0.53±0.02 1.72±0.06 0.20±0.03 8745±1209 1.18±0.16

Insurance10

MMHC 0.24±0.01 0.05±0.01 6.57±0.05 0.63±0.01 9.6e5±1.2e5 236.11±25.93
NOTEARS 0.20±0.02 0.20±0.00 14.11±0.92 0.91±0.01 - 9.0e3±1.1e3
DAG-GNN - - - - - -

PCD-by-PCD 0.63±0.01 0.37±0.01 2.66±0.05 0.46±0.02 8461±1809 1.60±0.35
CMB 0.62±0.01 0.45±0.01 2.95±0.05 0.45±0.02 20895±2158 3.23±0.33
ELCS 0.50±0.01 0.26±0.00 3.18±0.04 0.65±0.00 4333±1736 0.60±0.25

ELCS-II 0.50±0.01 0.26±0.00 3.18±0.04 0.65±0.00 3966±1423 0.59±0.25

Child10

MMHC 0.22±0.01 0.19±0.02 4.37±0.11 0.48±0.01 7.7e6±2.0e6 1.5e3±3.9e2
NOTEARS 0.49±0.01 0.34±0.02 2.99±0.10 0.65±0.02 - 3.3e3±1.9e2
DAG-GNN - - - - - -

PCD-by-PCD 0.55±0.02 0.36±0.03 1.69±0.06 0.38±0.03 15698±3819 2.82±0.71
CMB 0.71±0.04 0.59±0.03 1.58±0.12 0.35±0.03 26986±3942 3.71±0.54
ELCS 0.67±0.03 0.55±0.02 1.56±0.07 0.36±0.02 5074±658 0.67±0.09

ELCS-II 0.67±0.03 0.55±0.02 1.56±0.07 0.36±0.02 4889±631 0.66±0.09

Pigs

MMHC 0.26±0.00 0.00±0.00 6.72±0.02 1.00±0.00 4.6e5±9.9e3 90.35±2.90
NOTEARS 0.42±0.00 0.22±0.01 2.85±0.03 0.80±0.01 - 2.4e4±1.7e3
DAG-GNN - - - - - -

PCD-by-PCD - - - - - -
CMB - - - - - -
ELCS 0.91±0.01 0.99±0.00 0.40±0.03 0.15±0.01 11793±3279 0.84±0.13

ELCS-II 0.91±0.01 0.99±0.00 0.40±0.03 0.15±0.01 11685±3272 0.84±0.13

Gene

MMHC - - - - - -
NOTEARS - - - - - -
DAG-GNN - - - - - -

PCD-by-PCD - - - - - -
CMB - - - - - -
ELCS 0.77±0.00 0.78±0.01 0.78±0.02 0.31±0.01 31753±3432 4.37±0.47

ELCS-II 0.77±0.00 0.78±0.01 0.78±0.02 0.31±0.01 31430±3406 4.36±0.47

and DAG-GNN are global causal learning algorithms, they need
to find the global structure of a BN. In particular, ELCS is 10
times faster than MMHC and 1000 times faster than NOTEARS
and DAG-GNN on average. Additionally, ELCS is also superior
to PCD-by-PCD and CMB in terms of running times. ELCS is
2 times faster than PCD-by-PCD and 3 times faster than CMB
on average. Specifically, MMHC, NOTEARS, PCD-by-PCD and
CMB fail to generate the output on several BNs, whereas ELCS
can be successful applied in learning the local causal structure of
each variable within two days. But beyond that, ELCS uses the
smallest number of CI tests. Overall, ELCS is superior to its rivals
in both efficiency and accuracy.

5.3 Why ELCS is Efficient and Effective?
In this section, we analyse the reason why ELCS is efficient and
effective from the following two aspects. First, we give a case
study to evaluate the effectiveness of utilizing the N-structures to
infer edge directions between a given variable and its children.
Second, we evaluate the effectiveness of the proposed EMB
subroutine, since the proposed ELCS algorithm relies on EMB.

5.3.1 Case Study
To illustrate the benefit of utilizing the N-structures, we do not
use the N-structures to distinguish the children of a given variable
in learning the MB of the variable, that is, in the DistinguishPC

TABLE 7
Comparison of ELCS with “ECLS w/o N” on Eight Benchmark BNs

(size=5,000)

Network Algorithm ArrP(↑) ArrR(↑) SHD(↓) FDR(↓) CI Tests(↓) Time(↓)

Alarm ELCS 0.86±0.01 0.81±0.01 0.44±0.06 0.07±0.02 648±55 0.20±0.02
ELCS w/o N 0.87±0.01 0.81±0.01 0.40±0.06 0.05±0.02 701±99 0.22±0.03

Insurance ELCS 0.85±0.04 0.69±0.04 1.61±0.06 0.18±0.05 1686±276 0.75±0.12
ELCS w/o N 0.85±0.04 0.68±0.03 1.61±0.14 0.18±0.05 1924±257 0.84±0.11

Child ELCS 0.71±0.12 0.61±0.16 1.08±0.36 0.09±0.08 2093±287 0.93±0.10
ELCS w/o N 0.70±0.13 0.59±0.16 1.13±0.36 0.09±0.09 2143±277 0.94±0.09

Alarm10 ELCS 0.83±0.01 0.68±0.02 1.26±0.07 0.14±0.02 6893±483 1.77±0.12
ELCS w/o N 0.84±0.01 0.68±0.02 1.24±0.06 0.14±0.02 7579±524 2.12±0.14

Insurance10 ELCS 0.80±0.02 0.67±0.02 1.75±0.11 0.23±0.01 10809±1528 3.92±0.55
ELCS w/o N 0.86±0.02 0.73±0.02 1.42±0.10 0.17±0.01 11300±1713 4.49±0.55

Child10 ELCS 0.83±0.05 0.76±0.07 0.73±0.20 0.14±0.03 13129±2613 3.98±0.79
ELCS w/o N 0.83±0.06 0.76±0.07 0.74±0.21 0.13±0.03 13491±2559 4.32±0.77

Pigs ELCS 0.91±0.00 0.99±0.00 0.42±0.02 0.15±0.01 13374±8660 8.91±6.84
ELCS w/o N 0.91±0.00 0.99±0.00 0.40±0.02 0.15±0.01 14343±8657 9.70±6.75

Gene ELCS 0.76±0.01 0.79±0.01 0.79±0.03 0.32±0.01 36950±7876 11.03±2.35
ELCS w/o N 0.76±0.01 0.78±0.01 0.79±0.03 0.32±0.01 38061±8041 12.52±2.62

subroutine, we remove lines 8-12 in Algorithm 4, and we denote
this version of ELCS as “ECLS w/o N”. Table 7 summarizes the
experimental results of ECLS and “ECLS w/o N” on the eight
BNs with 5,000 data examples. From the experimental results, we
note that ELCS achieves comparable performance against “ECLS
w/o N” in terms of ArrP, ArrR, SHD and FDR on average but
ELCS performs less CI tests. Specifically, on Alarm, for each
variable, the number of CI tests is reduced by 53 on average.
On Gene, for each variable, the number of CI tests is reduced by
1111 on average. We observe that there are significant differences
between the number of CI tests of ELCS and “ECLS w/o N” on
Insurance, Alarm10, Insurance10, Pigs and Gene, but there is a
little difference between them on the other BNs. The reason may
be that ELCS makes use of the N-structures to speed up children
identification, and there are few N-structures existing in Alarm,
Child and Child10, leading to that the number of CI tests of ELCS
and “ECLS w/o N” on these three BNs are close to each other. The
efficiency performance of ECLS will improve a little on the BNs
with few N-structures, this is a limitation of ELCS. In summary,
ELCS is more efficient and provides better local structure learning
quality than “ECLS w/o N”, which indicates the effectiveness of
leveraging the N-structures for local casual structure learning.

5.3.2 Experimental Results of EMB and Its Rivals

We evaluate the effectiveness of the proposed EMB by comparing
it with five state-of-the-art MB learning algorithms, including
BAMB [17], IAMB [21], MMMB [24], HITON-MB [25] and
STMB [27].

For MB learning algorithms, we use precision, recall, F1,
distance [26] [27], CI tests, and running time (in seconds) as the
evaluation metrics.

• Precision: The number of true positives in the output (i.e.,
the variables in the output belonging to the true MB of a
target variable in a test DAG) divided by the number of
variables in the output of an algorithm.

• Recall: The number of true positives in the output divided
by the number of true positives (the number of the true
MB of a target variable in a test DAG).

• F1 = 2 * Precision * Recall / (Precision + Recall): The F1
score is the harmonic average of the precision and recall,
where F1 = 1 is the best case (perfect precision and recall)
while F1 = 0 is the worst case.

• Distance =
√
(1− Precision)2 + (1−Recall)2 [26]

[27], where distance = 0 is the best case (perfect precision
and recall) while distance =

√
2 is the worst case.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 11

TABLE 8
Comparison of EMB with State-of-the-art MB Learning Algorithms on

Eight Benchmark BNs (size=5,000)

Network Algorithm Distance(↓) F1(↑) Precision(↑) Recall(↑) CI Tests(↓) Time(↓)

Alarm

IAMB 0.15±0.03 0.90±0.02 0.94±0.02 0.89±0.01 142±2 0.05±0.00
MMMB 0.10±0.02 0.94±0.02 0.92±0.02 0.97±0.01 604±26 0.24±0.01

HITON-MB 0.06±0.02 0.96±0.01 0.97±0.02 0.97±0.01 394±12 0.13±0.00
STMB 0.30±0.02 0.78±0.02 0.73±0.02 0.96±0.01 531±15 0.19±0.01
BAMB 0.09±0.03 0.94±0.02 0.96±0.03 0.95±0.01 351±11 0.14±0.00
EMB 0.06±0.01 0.96±0.01 0.99±0.01 0.95±0.01 318±7 0.10±0.00

EMB-II 0.06±0.01 0.96±0.01 0.99±0.01 0.95±0.01 298±5 0.09±0.00

Insurance

IAMB 0.36±0.02 0.76±0.01 0.94±0.02 0.67±0.01 104±2 0.04±0.00
MMMB 0.31±0.02 0.79±0.02 0.88±0.03 0.76±0.02 1186±124 0.60±0.07

HITON-MB 0.33±0.03 0.78±0.02 0.88±0.03 0.74±0.02 679±62 0.31±0.04
STMB 0.49±0.03 0.65±0.02 0.64±0.04 0.77±0.03 703±47 0.33±0.02
BAMB 0.30±0.02 0.80±0.01 0.89±0.03 0.77±0.02 619±39 0.33±0.02
EMB 0.31±0.01 0.79±0.01 0.92±0.02 0.73±0.01 370±23 0.16±0.01

EMB-II 0.31±0.01 0.79±0.01 0.92±0.02 0.73±0.01 360±20 0.15±0.01

Child

IAMB 0.15±0.02 0.90±0.02 0.95±0.03 0.88±0.01 63±1 0.03±0.00
MMMB 0.05±0.02 0.97±0.01 0.96±0.02 0.99±0.01 897±25 0.47±0.01

HITON-MB 0.04±0.03 0.98±0.02 0.97±0.03 0.99±0.01 499±16 0.24±0.01
STMB 0.17±0.04 0.89±0.03 0.84±0.04 0.98±0.02 374±35 0.17±0.02
BAMB 0.09±0.03 0.95±0.02 0.93±0.02 0.98±0.02 376±11 0.19±0.01
EMB 0.05±0.02 0.97±0.02 0.97±0.02 0.98±0.02 205±8 0.09±0.00

EMB-II 0.05±0.02 0.97±0.02 0.97±0.02 0.98±0.02 204±8 0.09±0.00

Alarm10

IAMB 0.36±0.01 0.75±0.01 0.83±0.01 0.74±0.00 1637±14 0.59±0.01
MMMB 0.26±0.01 0.82±0.01 0.88±0.01 0.81±0.00 1926±45 0.60±0.01

HITON-MB 0.25±0.01 0.84±0.01 0.90±0.01 0.82±0.00 1714±11 0.44±0.00
STMB 0.67±0.01 0.48±0.01 0.41±0.01 0.83±0.01 5049±39 1.89±0.02
BAMB 0.30±0.01 0.80±0.00 0.83±0.01 0.82±0.00 1802±12 0.57±0.01
EMB 0.25±0.01 0.83±0.01 0.91±0.01 0.81±0.00 1924±7 0.50±0.02

EMB-II 0.25±0.01 0.83±0.01 0.91±0.01 0.81±0.00 1908±7 0.49±0.02

Insurance10

IAMB 0.42±0.01 0.71±0.01 0.89±0.01 0.66±0.00 1210±8 0.50±0.01
MMMB 0.33±0.01 0.78±0.01 0.82±0.01 0.80±0.00 3274±45 1.53±0.03

HITON-MB 0.32±0.01 0.78±0.01 0.84±0.01 0.80±0.00 2348±18 0.93±0.01
STMB 0.77±0.01 0.40±0.01 0.30±0.01 0.79±0.00 6781±118 3.36±0.07
BAMB 0.34±0.01 0.77±0.00 0.80±0.01 0.80±0.00 2541±22 1.17±0.01
EMB 0.28±0.01 0.81±0.00 0.91±0.01 0.78±0.00 2189±15 0.78±0.01

EMB-II 0.28±0.01 0.81±0.00 0.91±0.01 0.78±0.00 2122±14 0.75±0.01

Child10

IAMB 0.24±0.01 0.84±0.01 0.87±0.01 0.88±0.00 750±10 0.31±0.00
MMMB 0.10±0.01 0.94±0.01 0.91±0.01 0.99±0.00 1622±21 0.70±0.01

HITON-MB 0.08±0.01 0.95±0.01 0.92±0.01 0.99±0.00 1194±11 0.43±0.01
STMB 0.56±0.02 0.56±0.02 0.45±0.02 0.99±0.00 2881±24 1.26±0.01
BAMB 0.24±0.01 0.84±0.00 0.76±0.01 0.99±0.00 1111±10 0.46±0.01
EMB 0.07±0.01 0.95±0.01 0.94±0.01 0.99±0.00 1062±8 0.33±0.00

EMB-II 0.07±0.01 0.95±0.01 0.94±0.01 0.99±0.00 1061±8 0.33±0.00

Pigs

IAMB 0.42±0.00 0.71±0.00 0.62±0.00 0.96±0.00 2616±7 1.28±0.00
MMMB 0.13±0.00 0.92±0.00 0.87±0.00 1.00±0.00 3.2e5±2.2e4 2.2e2±1.7e1

HITON-MB 0.14±0.00 0.92±0.00 0.86±0.00 1.00±0.00 46956±454 34.94±0.33
STMB 0.82±0.01 0.26±0.00 0.18±0.01 1.00±0.00 45770±2746 29.20±2.05
BAMB 0.18±0.01 0.89±0.01 0.82±0.01 1.00±0.00 29097±201 31.16±0.13
EMB 0.12±0.00 0.93±0.00 0.88±0.00 1.00±0.00 8784±3405 5.73±2.43

EMB-II 0.12±0.00 0.93±0.00 0.88±0.00 1.00±0.00 7335±209 4.94±0.26

Gene

IAMB 0.32±0.00 0.79±0.00 0.76±0.00 0.89±0.00 3463±10 1.36±0.00
MMMB 0.25±0.00 0.83±0.00 0.77±0.00 0.94±0.00 6035±48 2.21±0.02

HITON-MB 0.25±0.00 0.83±0.00 0.77±0.00 0.94±0.00 4576±22 1.44±0.00
STMB 0.88±0.00 0.18±0.00 0.13±0.00 1.00±0.00 17282±268 7.70±0.18
BAMB 0.39±0.00 0.73±0.00 0.64±0.00 0.94±0.00 4474±30 1.72±0.02
EMB 0.26±0.00 0.82±0.00 0.76±0.00 0.94±0.00 4486±9 1.28±0.00

EMB-II 0.26±0.00 0.82±0.00 0.76±0.00 0.94±0.00 4412±11 1.27±0.00

• Efficiency: The number of CI tests and the running time
(in seconds) are used to measure the efficiency.

Tables 8-9 report the experimental results of EMB and its
rivals. From the experimental results, we have the following
observations.

EMB versus IAMB, MMMB and HITON-MB. IAMB is
much faster than EMB, while IAMB is significantly worse than
EMB in terms of distance, F1, precision and recall on average.
Compared with MMMB and HITON-MB, EMB is more efficient.
EMB needs much less CI tests than MMMB and HITON-MB.
In addition, using 5,000 data samples, EMB is 2 times faster
than MMMB and 1.2 times faster than HITON-MB on average.
Moreover, EMB is more accurate than MMMB. In particular,
using 5,000 data samples, EMB achieves the lowest distance and
the highest F1 values on Alarm, Insurance10, Child10 and Pigs.
Using 1,000 data samples, EMB obtains the lowest distance and
the highest F1 values on Child, Child10, Pigs and Gene. Overall,
EMB is superior to IAMB, MMMB and HITON-MB.

EMB versus STMB and BAMB. From Tables 8-9, we note
that STMB achieves higher recall values than EMB, but on the
distance, F1 and precision metrics, STMB is significantly worse
than EMB. Compared with BAMB, EMB achieves lower distance
and higher F1 values. Additionally, the number of CI tests of EMB
is less than STMB and BAMB. More specifically, using 5,000 data
samples, EMB is 3.5 times faster than STMB and 1.5 times faster

TABLE 9
Comparison of EMB with State-of-the-art MB Learning Algorithms on

Eight Benchmark BNs (size=1,000)

Network Algorithm Distance(↓) F1(↑) Precision(↑) Recall(↑) CI Tests(↓) Time(↓)

Alarm

IAMB 0.27±0.01 0.81±0.01 0.93±0.01 0.76±0.01 120±2 0.02±0.00
MMMB 0.20±0.01 0.87±0.01 0.91±0.02 0.87±0.01 437±33 0.09±0.00

HITON-MB 0.16±0.01 0.90±0.01 0.95±0.02 0.87±0.01 315±12 0.05±0.00
STMB 0.39±0.03 0.72±0.02 0.71±0.02 0.85±0.02 392±12 0.06±0.00
BAMB 0.21±0.01 0.86±0.01 0.91±0.02 0.86±0.01 280±16 0.04±0.00
EMB 0.18±0.02 0.88±0.01 0.96±0.02 0.85±0.02 297±14 0.04±0.00

EMB-II 0.18±0.02 0.88±0.01 0.96±0.02 0.85±0.02 285±13 0.04±0.00

Insurance

IAMB 0.48±0.02 0.66±0.01 0.92±0.03 0.56±0.01 86±2 0.01±0.00
MMMB 0.42±0.03 0.71±0.02 0.83±0.03 0.66±0.02 511±47 0.12±0.01

HITON-MB 0.45±0.03 0.69±0.02 0.83±0.04 0.65±0.01 358±34 0.06±0.01
STMB 0.59±0.03 0.58±0.03 0.58±0.06 0.66±0.04 1138±1277 0.15±0.16
BAMB 0.45±0.02 0.69±0.02 0.76±0.04 0.68±0.01 404±51 0.06±0.01
EMB 0.46±0.03 0.68±0.03 0.81±0.08 0.64±0.02 395±82 0.06±0.01

EMB-II 0.46±0.03 0.68±0.03 0.81±0.08 0.64±0.02 371±76 0.05±0.01

Child

IAMB 0.27±0.03 0.82±0.02 0.94±0.03 0.76±0.02 54±1 0.01±0.00
MMMB 0.22±0.03 0.85±0.02 0.89±0.04 0.86±0.02 823±85 0.13±0.01

HITON-MB 0.20±0.03 0.87±0.02 0.90±0.03 0.87±0.02 469±53 0.06±0.01
STMB 0.23±0.07 0.85±0.05 0.86±0.05 0.87±0.04 221±7 0.04±0.00
BAMB 0.23±0.04 0.85±0.03 0.84±0.04 0.91±0.01 441±58 0.05±0.01
EMB 0.17+0.03 0.89+0.03 0.94±0.03 0.87±0.02 320±52 0.04±0.01

EMB-II 0.17+0.03 0.89+0.03 0.94±0.03 0.87±0.02 287±39 0.04±0.00

Alarm10

IAMB 0.52±0.01 0.63±0.01 0.78±0.01 0.60±0.01 1355±11 0.18±0.00
MMMB 0.39±0.01 0.73±0.01 0.84±0.01 0.70±0.00 1579±17 0.28±0.00

HITON-MB 0.37±0.01 0.75±0.01 0.86±0.01 0.70±0.01 1474±13 0.20±0.00
STMB 0.76±0.01 0.42±0.01 0.37±0.02 0.70±0.01 3668±29 0.76±0.00
BAMB 0.46±0.00 0.68±0.00 0.74±0.01 0.70±0.00 1551±16 0.23±0.00
EMB 0.38±0.01 0.74±0.00 0.88±0.01 0.69±0.00 1765±11 0.23±0.00

EMB-II 0.38±0.01 0.74±0.00 0.88±0.01 0.69±0.00 1756±12 0.23±0.00

Insurance10

IAMB 0.55±0.01 0.61±0.01 0.85±0.01 0.53±0.00 963±5 0.13±0.00
MMMB 0.49±0.01 0.66±0.01 0.70±0.01 0.70±0.01 2180±48 0.40±0.01

HITON-MB 0.45±0.01 0.68±0.01 0.74±0.01 0.70±0.01 1698±28 0.25±0.00
STMB 0.75±0.01 0.46±0.01 0.33±0.01 0.74±0.01 1443±14 0.21±0.01
BAMB 0.53±0.01 0.62±0.01 0.60±0.01 0.74±0.01 2243±59 0.34±0.01
EMB 0.65±0.06 0.53±0.05 0.47±0.07 0.71±0.01 4333±1736 0.57±0.23

EMB-II 0.65±0.06 0.53±0.05 0.47±0.07 0.71±0.01 3966±1423 0.55±0.23

Child10

IAMB 0.40±0.01 0.72±0.01 0.84±0.01 0.71±0.01 614±8 0.08±0.00
MMMB 0.28±0.02 0.81±0.01 0.82±0.02 0.86±0.01 1757±43 0.27±0.00

HITON-MB 0.25±0.02 0.83±0.01 0.84±0.02 0.87±0.01 1272±24 0.17±0.00
STMB 0.66±0.02 0.48±0.02 0.39±0.02 0.85±0.01 2186±41 0.39±0.00
BAMB 0.47±0.01 0.67±0.01 0.58±0.01 0.90±0.01 1460±43 0.20±0.01
EMB 0.22±0.02 0.85±0.01 0.87±0.02 0.88±0.01 1225±10 0.16±0.00

EMB-II 0.22±0.02 0.85±0.01 0.87±0.02 0.88±0.01 1182±8 0.16±0.00

Pigs

IAMB 0.34±0.00 0.79±0.00 0.82±0.00 0.84±0.00 1755±1 0.22±0.00
MMMB 0.15±0.01 0.91±0.01 0.85±0.01 1.00±0.00 197884±17879 8.44±0.71

HITON-MB 0.12±0.01 0.92±0.01 0.88±0.01 1.00±0.00 47028±1667 4.78±0.18
STMB 0.85±0.00 0.25±0.00 0.15±0.00 1.00±0.00 25626±3234 2.24±0.09
BAMB 0.31±0.01 0.80±0.01 0.69±0.01 1.00±0.00 40466±4419 11.22±1.55
EMB 0.11±0.01 0.93±0.00 0.89±0.01 1.00±0.00 7541±99 0.58±0.01

EMB-II 0.11±0.01 0.93±0.00 0.89±0.01 1.00±0.00 7466±193 0.56±0.01

Gene

IAMB 0.39±0.00 0.73±0.00 0.79±0.00 0.79±0.00 2887±10 0.36±0.00
MMMB 0.28±0.00 0.81±0.00 0.75±0.00 0.93±0.00 4569±36 0.75±0.01

HITON-MB 0.25±0.01 0.83±0.00 0.79±0.00 0.93±0.00 3918±26 0.54±0.01
STMB 0.86±0.00 0.21±0.00 0.14±0.00 0.99±0.00 10672±74 2.50±0.01
BAMB 0.46±0.01 0.67±0.00 0.57±0.01 0.94±0.00 3817±52 0.61±0.01
EMB 0.25±0.00 0.83±0.00 0.78±0.00 0.93±0.00 4228±18 0.57±0.00

EMB-II 0.25±0.00 0.83±0.00 0.78±0.00 0.93±0.00 4204±17 0.57±0.00

than BAMB on average. In a word, EMB performs better than
BAMB and STMB in both efficiency and accuracy.

EMB versus EMB-II. EMB is inferior to EMB-II. Compared
with EMB, EMB-II uses less CI tests for MB learning while
achieving the same performance as measured by the distance,
F1, precision and recall matrics, which indicates the efficiency
of EMB-II.

EMB is able to effectively find the MB of a target variable,
and simultaneously distinguish parents and children of the target
variable. We note that EMB uses less CI tests for MB learning,
which can reduce the impact of unreliable CI tests. In summary,
EMB is helpful to learn the local causal structure.

To further demonstrate the effectiveness of EMB, we propose
three variants of ELCS, which are referred to as ELCS-M, ECLS-
S, ELCS-B, respectively. ELCS-M uses MMMB to replace EMB
in ELCS. ECLS-S and ELCS-B use STMB and BAMB to replace
EMB in ELCS, respectively. Table 10 reports the experimental
results of ECLS and its three variants on the eight BNs with 5,000
data examples. From the table, we observe that ELCS outperforms
these three rivals in terms of both CI tests and running time, which
implies the efficiency of ELCS. We also note that ELCS achieves
better ArrP, ArrR, SHD and FDR values than that of these three
rivals, which shows the effectiveness of ELCS.

EMB has achieved encouraging performance, but it still suffers
from the following two drawbacks. First, to improve the effi-
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TABLE 10
Comparison of ELCS with ELCS-M, ECLS-S and ELCS-B on Eight

Benchmark BNs (size=5,000)

Network Algorithm ArrP(↑) ArrR(↑) SHD(↓) FDR(↓) CI Tests(↓) Time(↓)

Alarm

ELCS-M 0.71±0.02 0.59±0.03 1.14±0.06 0.26±0.03 1627±186 0.62±0.08
ELCS-S 0.79±0.03 0.72±0.05 0.88±0.14 0.13±0.04 1402±78 0.57±0.03
ELCS-B 0.78±0.03 0.66±0.05 0.92±0.09 0.26±0.03 778±46 0.30±0.02
ELCS 0.86±0.01 0.81±0.01 0.44±0.06 0.07±0.02 648±55 0.20±0.02

ELCS-II 0.86±0.01 0.81±0.01 0.44±0.06 0.07±0.02 607±52 0.19±0.02

Insurance

ELCS-M 0.76±0.03 0.59±0.03 1.87±0.15 0.31±0.04 6976±1183 3.28±0.62
ELCS-S 0.67±0.05 0.50±0.05 2.50±0.25 0.37±0.04 2653±476 1.39±0.25
ELCS-B 0.67±0.02 0.44±0.02 2.26±0.10 0.41±0.01 3182±447 1.78±0.27
ELCS 0.85±0.04 0.69±0.04 1.61±0.06 0.18±0.05 1686±276 0.75±0.12

ELCS-II 0.85±0.04 0.69±0.04 1.61±0.06 0.18±0.05 1637±275 0.75±0.12

Child

ELCS-M 0.68±0.11 0.56±0.12 1.18±0.31 0.06±0.04 8897±1247 4.43±0.62
ELCS-S 0.81±0.07 0.72±0.09 0.75±0.18 0.18±0.07 2451±516 1.28±0.28
ELCS-B 0.75±0.03 0.65±0.05 0.93±0.14 0.26±0.05 2252±195 1.16±0.10
ELCS 0.71±0.12 0.61±0.16 1.08±0.36 0.09±0.08 2093±287 0.93±0.10

ELCS-II 0.71±0.12 0.61±0.16 1.08±0.36 0.09±0.08 2087±287 0.93±0.10

Alarm10

ELCS-M 0.77±0.01 0.59±0.02 1.60±0.07 0.19±0.02 10570±1207 3.17±0.39
ELCS-S 0.69±0.01 0.46±0.01 1.65±0.03 0.32±0.01 8429±237 3.66±0.15
ELCS-B 0.68±0.01 0.44±0.00 1.85±0.02 0.46±0.01 7223±170 2.09±0.03
ELCS 0.83±0.01 0.68±0.02 1.26±0.07 0.14±0.02 6893±483 1.77±0.12

ELCS-II 0.83±0.01 0.68±0.02 1.26±0.07 0.14±0.02 6916±480 1.77±0.12

Insurance10

ELCS-M 0.75±0.01 0.61±0.01 1.85±0.04 0.33±0.01 14461±2927 6.35±1.27
ELCS-S 0.60±0.01 0.38±0.01 2.44±0.02 0.51±0.01 10338±533 5.78±0.55
ELCS-B 0.64±0.01 0.42±0.01 2.31±0.06 0.47±0.01 7556±224 3.55±0.11
ELCS 0.80±0.02 0.67±0.02 1.75±0.11 0.23±0.01 10809±1528 3.92±0.55

ELCS-II 0.80±0.02 0.67±0.02 1.75±0.11 0.23±0.01 10605±1499 3.91±0.55

Child10

ELCS-M 0.80±0.02 0.75±0.03 0.75±0.08 0.16±0.02 13438±1388 5.80±0.58
ELCS-S 0.66±0.01 0.48±0.02 1.17±0.03 0.45±0.02 15249±2335 6.86±0.70
ELCS-B 0.70±0.01 0.52±0.02 1.05±0.05 0.47±0.02 13880±1187 4.28±0.05
ELCS 0.83±0.05 0.76±0.07 0.73±0.20 0.14±0.03 13129±2613 3.98±0.79

ELCS-II 0.83±0.05 0.76±0.07 0.73±0.20 0.14±0.03 13104±2605 3.98±0.79

Pigs

ELCS-M - - - - - -
ELCS-S - - - - - -
ELCS-B - - - - - -
ELCS 0.91±0.00 0.99±0.00 0.42±0.02 0.15±0.01 13374±8660 8.91±6.84

ELCS-II 0.91±0.00 0.99±0.00 0.42±0.02 0.15±0.01 11467±5659 8.38±5.12

Gene

ELCS-M - - - - - -
ELCS-S - - - - - -
ELCS-B - - - - - -
ELCS 0.76±0.01 0.79±0.01 0.79±0.03 0.32±0.01 36950±7876 11.03±2.35

ELCS-II 0.76±0.01 0.79±0.01 0.79±0.03 0.32±0.01 36051±7696 11.02±2.08

ciency of EMB while maintaining competitive performance, EMB
chooses to remove non-spouses within U\{T}\PCT of the target
variable T as early as possible at lines 2-16 in Algorithm 3. The
size of the conditioning sets Temp (line 9 in Algorithm 3) and {Y}
∪ SepT{X} (line 11 in Algorithm 3) may be large, when the size
of data samples is finite, the results of CI tests may be unreliable,
leading to poor performance of EMB. Second, the performance
of EMB is limited by HITON-PC that is used for PC learning. If
HITON-PC has a lower quality of PC learning, inaccurate MBs
will be learnt by EMB.

6 CONCLUSION

A new local causal structure learning algorithm (ELCS) has
been proposed in this paper, which reduces the search space
in distinguishing parents from children of a target variable of
interest. Specifically, ELCS makes use of the N-structures to
distinguish parents from children of the target variable during
learning the MB of the target variable. Furthermore, to combine
MB learning with the N-structures to infer edge directions between
the target variable and its PC, we design an effective MB discovery
subroutine (EMB). We theoretically analyze the correctness of
ELCS. Extensive experimental results on benchmark BNs indicate
that ELCS not only improves the efficiency for learning the local
causal structure, but also achieves better performance in accuracy.
In future, we plan to extend the ELCS algorithm for global causal
structures learning and robust machine learning.
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