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Heterogeneous Graphs via Relation Embedding

Junfu Wang, Yuanfang Guo, Senior Member, IEEE,
Liang Yang, Yunhong Wang, Fellow, IEEE

Abstract—Graph Neural Networks (GNNs) have been generalized to process the heterogeneous graphs by various approaches.
Unfortunately, these approaches usually model the heterogeneity via various complicated modules. This paper aims to propose a
simple yet effective framework to assign adequate ability to the homogeneous GNNs to handle the heterogeneous graphs. Specifically,
we propose Relation Embedding based Graph Neural Network (RE-GNN), which employs only one parameter per relation to embed
the importance of distinct types of relations and node-type-specific self-loop connections. To optimize these relation embeddings and
the model parameters simultaneously, a gradient scaling factor is proposed to constrain the embeddings to converge to suitable values.
Besides, we interpret the proposed RE-GNN from two perspectives, and theoretically demonstrate that our RE-GCN possesses more
expressive power than GTN (which is a typical heterogeneous GNN, and it can generate meta-paths adaptively). Extensive
experiments demonstrate that our RE-GNN can effectively and efficiently handle the heterogeneous graphs and can be applied to
various homogeneous GNNs.

Index Terms—Graph Neural Network, Heterogeneous Graph Neural Network, Heterogeneous Graph.
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1 INTRODUCTION

G RAPH Neural Networks (GNNs) have shown great
expressive power in graph representation learning [1],

[2], [3], [4], [5]. They have been widely adopted in various
downstream applications, such as social network analysis
[6], [7], protein prediction [8], [9], traffic prediction [10], [11],
drug discovery [12], etc.

Unfortunately, the majorities of traditional GNNs are de-
signed for homogeneous graphs, which disregard the vari-
ations in both the node type and edge type. The potential
of GNNs in handling the data with complex relations has
not been fully exploited. Currently, heterogeneous graph,
a.k.a, heterogeneous information network, which possesses
more than one type of nodes or edges, has attracted more
attentions from researchers, due to its ability to represent
data with more complicated relations.

Recently, several literatures have generalized GNNs
to handle heterogeneous graphs. Existing heterogeneous
GNNs can be classified into two categories, based on their
mechanisms for handling the heterogeneity.

The first type of approaches utilizes the composite rela-
tions, i.e., meta-paths, to convert the heterogeneous graph to
several meta-path based homogeneous graphs, as shown in
Fig. 1b. For example, in the ACM dataset, the papers, which
are not directly connected in the original heterogeneous
graph yet connected with the same authors, are connected
via a composite relation (paper-author-paper). These meta-
path based heterogeneous GNNs [13], [14], [15], [16] utilize
the handcrafted or learned meta-paths as shortcuts to boost
the efficiency of the message passing among the target types
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(a) Heterogeneous graph (b) Meta-path based homoge-
neous graphs

(c) Relation based subgraphs (d) Homogeneous graph with
relation-specific weights

Fig. 1: Different mechanisms to handle the heterogeneous
graphs. A heterogeneous academic graph is utilized as an
example.

of nodes. However, they require certain prior knowledge to
either design the meta-paths [13], [14] or generate the meta-
paths with excessive computations [15], [16]. Besides, the
performances of these methods is highly correlated to the
quality of the constructed meta-paths.

The other kind of approaches directly models the hetero-
geneity, especially the heterogeneous relations. They usually
handle the subgraph of each type of relations (as shown in
Fig. 1c) separately, via constructing different modules [17],
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[18], [19], [20], [21]. Since their complexities are correlated
to the number of relation types, they are less efficient when
there exist many types of relations. Besides, [22] generates
the relation representations and utilizes them as a part
of the neighbor messages, i.e., concatenate them with the
node representations. Then, the node attributes and relation
representations are aggregated in a homogeneous manner.

Recently, [23] indicates that the homogeneous GNNs
possess more potential to handle the heterogeneous graphs
than previously reported [13], [14], [15]. It firstly reduces
the complexity of the heterogeneous graph by converting
its nodes and edges to a single type. Then, a specific ho-
mogeneous GNN, such as Graph Attention Network (GAT)
[2], can achieve a comparable performance with the well-
designed feature initialization strategies on certain datasets.
Although [23] then proposes an improvement to make
GAT more suitable for processing heterogeneous graphs,
it has not provided a general mechanism for handling
heterogeneity with various homogeneous GNNs. However,
different GNNs [1], [2], [3], [4], [24] usually possess unique
advantages in handling homogeneous graphs with different
properties, which may be suitable for different applications.
Thus, it is necessary to enable various homogeneous GNNs
to process different heterogeneous graphs while preserving
their advantages.

This paper aims to assign adequate abilities to the ho-
mogeneous GNNs for handling the heterogeneous graphs,
by proposing a simple yet effective framework. The key of
our work is to effectively convert the entire to-be-processed
heterogeneous graph to one homogeneous graph, i.e., to
homogenize the various types of nodes and relations. Gen-
erally, the attributes in different types of nodes are extracted
from different perspectives. To homogenize the graph, the
features in different types of nodes are firstly projected
into the same feature space, by assuming that different
types of nodes are correlated implicitly. For example, in
a typical heterogeneous academic network, all types of
nodes, e.g., papers, authors, conferences and subjects, are
actually correlated to a certain extent. Then, each type of
nodes can pass messages according to various relations.
Considering the heterogeneity of relations, in the neighbour-
hood aggregation step, the messages from the nodes with
different relations should not possess the same importance.
Therefore, we must determine the appropriate importance
for each relation in the neighbourhood aggregation step.

Specifically, we propose Relation Embedding based
Graph Neural Network (RE-GNN), where only one embed-
ding parameter is employed for each relation to model the
aggregation importance. Then, the heterogeneous graph is
adaptively converted to a weighted homogeneous graph by
the proposed relation embeddings, as shown in Fig. 1d. Sim-
ilar to the proposed relation embeddings, node-type-specific
self-loop embeddings are exploited to add the self-loop con-
nections. Then, the weighted graph with self-loops can be
directly processed by the traditional homogeneous GNNs,
such as [1], [2], [24]. Since the heterogeneity is embedded
into the weighted homogeneous graph, the importance of a
neighbor in the aggregation step is highly correlated with
the type of its relation to the current node. With this simple
yet effective framework, homogeneous GNNs can possess
adequate abilities to handle the heterogeneous graphs.

To effectively model the heterogeneity, the learned
weights of distinct relations are expected to be highly
distinguishable. However, since the numerical values of
relation embeddings are much larger than the other pa-
rameters, a straightforward simultaneous optimization of
the relation embeddings and the other parameters cannot
fully exploit the potential of relation embeddings. To tackle
this numerical inconsistency, a gradient scaling factor is pro-
posed to enlarge/suppress the updating modifications to
the embeddings in each iteration, which enables the relation
embeddings to gradually converge to the optimal values, to
generate effective weights for the relations.

The proposed RE-GNN can be interpreted from two
perspectives. Although RE-GNN is proposed from the per-
spective of spatial aggregations, it also possesses a meta-
path based explanation. Specifically, when utilizing GCN [1]
as backbone, we reveal that our RE-GCN can degenerate to
the Graph Transformer Network (GTN) [15], a typical meta-
path based heterogeneous GNN, which automatically gen-
erates composite relations. Besides, we theoretically demon-
strate that our RE-GCN possesses more expressive power
than GTN, without explicitly generating the meta-paths.

Extensive experiments demonstrate that our RE-GNN
can effectively and efficiently handle the heterogeneous
graphs and can be applied to various homogeneous GNNs.

Our contributions are summarized as follows:

• We propose a simple yet effective framework, named
RE-GNN, to assign adequate ability to the homoge-
neous GNNs for handling heterogeneous graphs.

• To tackle the numerical inconsistency, we propose a
gradient scaling factor to effectively optimize the
relation embeddings and other model parameters
simultaneously.

• We interpret the proposed RE-GNN from two per-
spectives, and theoretically demonstrate that our RE-
GCN possesses more expressive power than GTN, a
typical heterogeneous GNN.

• Extensive experiments demonstrate that our RE-
GNN can effectively and efficiently handle the het-
erogeneous graphs and can be easily applied to
various homogeneous GNNs.

2 RELATED WORK

2.1 Graph Neural Networks
Inspired by the traditional deep neural networks, Graph
Neural Networks [25] are designed to handle the irregu-
lar graph data. Typical GNNs are usually designed from
either the spectral or spatial perspectives. Spectral methods
employ the graph spectral theory [26] to define the graph
convolution operation [1], [27], [28], [29]. Spatial methods
design the graph convolution operation directly on the
graph, and aggregate the message from the spatial neigh-
bors [2], [3], [30], [31]. Unfortunately, most of them are only
designed to handle the homogeneous graphs.

2.2 Heterogeneous GNNs
To process the heterogeneous graph, researchers generalize
traditional GNNs to heterogeneous graphs. Currently, there
exist two types of approaches to model the heterogeneity.
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The first type of approaches is developed based on meta-
path constructions, which is firstly introduced by HAN
[13]. It converts a heterogeneous graph to multiple homo-
geneous graphs by various manually-designed meta-paths.
For each type of meta-paths, the meta-path based neighbors
are connected in the corresponding homogeneous graph.
Then, the results of each meta-path based homogeneous
graph are fused by an attention scheme. Based on the above
mechanism, MAGNN [14] utilizes the intermediate nodes
along the meta-path, instead of only considering the meta-
path based neighbors. These two methods require certain
prior domain knowledge to design the meta-paths for each
heterogeneous graph. GTN [15] firstly generates meta-paths
via a soft selection of edge types. Then, an ensemble of
GCNs is utilized to process the learned composite relations.
Subsequently, the neural architecture search (NAS) tech-
nique [32] is utilized in DiffMG [16] to seek for a suitable
meta-graph to model the more complicated composite rela-
tions.

The other type of approaches intends to model the
heterogeneity directly, via different kinds of nodes and
relations. R-GCN [17] models the relations in knowledge
graphs by employing specialized parameter matrices, which
separately constructs GNNs on each relation graph. R-GSN
[18] further improves it by leveraging attention-based intra-
and inter-relation aggregations. HetGNN [19] encodes node
heterogeneous content and aggregates the neighbors from
the same node type by using Bi-LSTMs, and combines
the node embeddings from different node types with an
attention scheme. HGT [20] utilizes a transformer network
for each relation to model the importance of each relation.
Besides, RSHN [22] constructs an edge-centric coarsened
line graph to generate the relation representations, and
then transfers the content of the node and relation rep-
resentations to the target nodes, in the message passing
process. R-HGNN [21] learns the relation representations
and fuse the relation-aware representations of the target
nodes semantically. All of these methods directly model
the heterogeneity via complicated mechanism and possess
excessive parameters. HGB [23] generalizes GAT [2] by
adding the edge type attention to the original pair-wise
self-attention mechanism. However, it does not provide a
general mechanism to enable the homogeneous GNNs to
handle the heterogeneity.

3 PRELIMINARIES

3.1 Heterogeneous Graph

A graph is defined as G = (V, E ,F ,R, φ, ϕ), where V and
E stand for the collections of nodes and edges, respectively.
φ : V → F and ϕ : E → R are the node type and edge
type mapping functions, respectively. F = {φ(v) : ∀v ∈ V}
represents the dynamic range of the node type projections
and R = {ϕ(e) : ∀e ∈ E} is the dynamic range of the
edge type projections. A typical heterogeneous graph [33]
contains more than one type of nodes or edges, i.e., |F| +
|R| > 2. Ai denotes the corresponding adjacency matrix
of the edge type i ∈ R. On the contrary, in homogeneous
graphs, both the node and edge types only possess one valid
value, i.e., |F| = |R| = 1.

3.2 Meta-path

Meta-path is widely adopted in the learning of heteroge-
neous graphs. A meta-path models a path passing through
multiple relations (which may belong to different types
of relations), e.g., v1

r1−→ v2
r2−→ ...

rl−→ vl+1, where
vi ∈ V and rj ∈ R. It describes a pair of nodes v1 and
vl+1, which is connected by a composite relation. Note that
R = r1�r2�...�rl, where� denotes the composite operator
on relations. v1 and vl+1 are the meta-path based neigh-
bors, and the corresponding composite adjacency matrix is
AP = Ar1Ar2 . . . Arl .

3.3 Graph Convolutional Network

Graph Convolutional Network (GCN) [1] has become the
most popular GNN in the past few years. Given a homo-
geneous graph G, its graph convolution operation can be
described as

H(l+1) = σ(ÃH(l)W (l)), (1)

where Ã = D̂−
1
2 ÂD̂−

1
2 is the normalized adjacency ma-

trix, Â = A + I denotes the adjacency matrix with self-
loops, and D̂ represents the corresponding degree matrix.
W (l) ∈ Rd

(l)
in×d

(l)
out contains the learnable parameters. H(l+1)

is the output of the l-th layer and the input of the (l + 1)-th
layer, and H(0) = X . σ stands for the non-linear activation
function, e.g., ReLU. For a directed graph (i.e., asymmetric
adjacency matrix), Â can be normalized by the inverse of
the degree matrix, i.e., D̂−1, as Ã = D̂−1Â.

3.4 Graph Transformer Network

Graph Transformer Network (GTN) [15] generates meta-
paths in an end-to-end manner, which possesses the ability
to search for the task-specific meta-paths from all the possi-
ble meta-paths. Since GTN is a typical meta-path based het-
erogeneous GNN and it will be compared to our approach
in latter sections, we give a brief review here.

Firstly, GTN learns an adjacency matrix of l-length meta-
paths via a GT layer

AP =

∑
r1∈R

α(1)
r1 Ar1

 · · ·
∑
rl∈R

α(l)
rl
Arl

 , (2)

where α(j)
ri = softmaxj (wjri) is the soft weight for the edge

type ri ∈ R and w is the learnable parameters.
Then, the learned adjacency matrix is fed into the stan-

dard GCN as

Z(l) = σ(D̃−1P Ã
(l)
P H

(l)W (l)), (3)

where Ã(l)
P = A

(l)
P + I and D̃P denotes the corresponding

degree matrix.
At last, the representations learned by multiple gener-

ated meta-paths are concatenated as

H(l+1) = ‖Ci=1Z
(l)
i , (4)

where ‖ denotes the concatenation operator and C repre-
sents the number of generated meta-paths. This architecture
can be viewed as an ensemble of GCNs on multiple gener-
ated meta-path relations.
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Fig. 2: The illustration of the Relation Embedding based Graph Neural Network (RE-GNN).

4 METHODOLOGY

To assign adequate abilities to the homogeneous GNNs
for handling the heterogeneous graphs, in this section, we
propose a simple yet effective framework, named Rela-
tion Embedding based Graph Neural Network (RE-GNN).
Specifically, by assuming that all types of nodes are associ-
ated in particular relations, the node features are projected
via a node-type-specific transformation matrix. Then, for the
heterogeneous topology, one embedding parameter per rela-
tion is exploited to learn the importance of different types of
relations and self-loop connections. Then, the heterogeneous
graph can be converted to a weighted homogeneous graph,
which can be handled by typical homogeneous GNNs.
Besides, to ensure that the proposed relation embeddings
can acquire effective information, a gradient scaling factor is
proposed to adjust the updates in each optimizing iteration,
which constrains the weights of the relations to converge
to a proper value. A detailed illustration of our RE-GNN is
presented in Fig. 2.

4.1 Feature Projection

Usually, the features in different types of nodes are extracted
via various schemes, while these nodes are always associ-
ated in certain conditions. Therefore, the features in each
node are firstly projected via a type-specific linear transfor-
mation [13], [15]. The projected features are represented as

x̃i = xiWφ(i), (5)

where xi is the original features in node i and Wφ(i) repre-
sents the learnable projection matrix for the node type φ(i).
Let X̃ = (x̃1, x̃2, ..., x̃n) be the matrix form of the features
after transformation.

4.2 Relation Embeddings

After projecting the attributes of each type of nodes into
the same feature space, nodes can exchange message with
all their neighbors from different types of relations. In the

aggregation step, the messages from different types of edges
should possess different weights (importances). Then, one
relation embedding value is utilized for each edge type to
learn its importance. The learned weighted adjacency matrix
is formulated as

A
(l)
H =

∑
i∈R

τ(e
(l)
i )Ai, (6)

where e(l)i ∈ R stands for the learnable relation embedding
of edge type i ∈ R for the l-th layer, and τ(·) is a function to
generate the aggregation importances from the embeddings.
For simplicity, we set τ(·) to be the LeakyReLU function
to ensure the importances of different relations to be non-
negative. In different layers, the relation embeddings can
learn different importances for various relation types.

Similarly, we consider the self-loop connections, which
connect the node with itself, as special types of relations.
Here, similar embedding values are employed to learn
the importances of node-type-specific self-loop connections.
The adjacency matrix with self-loops is formulated as

Â
(l)
H = A

(l)
H +

∑
j∈F

τ(s
(l)
j )Ij , (7)

where Ij is the diagonal matrix and (Ij)ii = 1, if and only
if φ(i) = j.

Then, the learned weighted adjacency matrix can be
utilized by the homogeneous GNN layers, i.e.,

H(l+1) = GNNLayer(Â
(l)
H , H

(l)), (8)

where H(0) = X̃ represents the projected node features
and GNNLayer(·, ·) can be the layers in any homogeneous
GNNs, such as GCN and GAT. If GCN is employed as the
baseline model, the RE-GCN layers can then be represented
by

H(l+1) = σ(Ã
(l)
H H

(l)W (l)), (9)

where Ã
(l)
H is the normalized version of Â(l)

H . Note that

the symmetric normalized version is ÃH = D̂
− 1

2

H ÂHD̂
− 1

2

H ,
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which is usually utilized in processing the undirected
graphs. Meanwhile, the asymmetric normalized version is
ÃH = D̂−1H ÂH , which is usually applied to the directed
graphs. Here, D̂H denotes the degree diagonal matrix cor-
responding to Â.

4.3 Gradient Scaling
In the optimization process, the relation embeddings are
firstly initialized as ones, where each type of relations has
identical importance. As the model training progresses, the
weights of the relations are expected to diversify. Since the
absolute values of the relation embeddings are much larger
than the other parameters, the learned embeddings are not
differentiable enough. For example, a regular parameterw is
initialized via the Xavier Uniform Initialization [34] method
by setting |w| < a, where a is a small value correlated to the
input and output dimensions and the relation embeddings
are set to ones. Due to the above numerical inconsistency,
it is difficult for the popular optimizers to simultaneously
optimize the relation embeddings and model parameters.
To tackle this problem, a gradient scaling factor is proposed
to enlarge the gradients of the weights of the relations.

Specifically, a pre-defined scaling factor λ > 0 is ex-
ploited on the original embeddings as

αi = λei. (10)

Then, the scaled weights are utilized to generate the adja-
cency matrix as

AH =
∑
i∈R

τ(αi)Ai. (11)

To initialize the scaled weights as ones, each embedding
parameter ei is initially set to 1.0

λ . The value of the scal-
ing factor λ will affect the updating modification to α. In
general, if λ ≥ 1, Eq. (10) serves as a gradient enlarging
machine and vice versa. To better illustrate the proposed
gradient scaling factor, here we reveal how this scaling
factor λ functions in the optimization process.

By denoting the loss function as L, the gradient of
each relation embedding ei in Eq. (6) is gi = ∂L

∂ei
. For the

gradient based optimizers, the parameters are updated via
enexti = ei − ∆ei, where ∆ei = κ(gi). By utilizing the
scaling factor in Eq. (10), the gradient to the embedding pa-
rameter ei is λgi. Then, the updating modification becomes
κ(λgi). For the common gradient optimizers, such as SGD,
Momentum [35], and Nesterov [36], κ(λgi) = λκ(gi). For
the adaptive optimizers like Adagrad [37] and Adam [38],
κ(λgi) = κ(gi), due to their adaptive learning strategies.
By considering the modifications of the weights, since the
scaling factor λ > 0, the modification ∆αi becomes λ2∆αi
for the common optimizers like SGD, and λ∆αi for the
adaptive optimizers like Adam. The detailed proof can be
found in Appendix A.

In general, with the proposed scaling factor λ, the
weights of the relations can be optimized within a suitable
numerical interval. Similarly, the adjacency matrix with self-
loops can be obtained via

ÂH =
∑
i∈R

τ(αi)Ai +
∑
j∈F

τ(βj)Ij , (12)

where βj = λsj .

4.4 Memory and Computational Complexities

Each RE-GNN layer only employs one parameter for each
relation type to model the importance of the corresponding
relation. Generally, our RE-GNN only introduces |F| + |R|
more parameters than the corresponding homogeneous
GNN in each layer. For the computational complexity, each
RE-GNN layer only introduces O(|E| + |V|) more calcula-
tions to compute the weighted adjacency matrix by Eq. (12),
which can usually be neglected by the computational com-
plexity of the corresponding homogeneous GNN layer, such
as [1], [2], [39]. Considering both the memory and computa-
tional complexities, our RE-GNN is indeed efficient.

5 ANALYSIS

In this section, we analyze the effectiveness of our RE-
GNN from two distinct perspectives. Firstly, we provide a
spatial analysis which intuitively illustrates the effectiveness
of our framework. Then, we reveal that our RE-GNN can
be interpreted as a meta-path based heterogeneous GNN.
Specifically, when employing GCN as the backbone, our RE-
GCN can degenerate to Graph Transformer Network (GTN)
[15], which is a powerful meta-path based heterogeneous
GNN and can generate meta-paths adpatively. At last, we
theoretically demonstrate that our RE-GCN possesses more
expressive power than GTN.

5.1 Spatial Analysis

Under the assumption that all types of nodes are implicitly
correlated, our RE-GNN firstly projects the raw features in
different types of nodes into the same feature space. Then,
RE-GNN learns a weighted relation adjacency matrix for
the homogeneous GNN, to model the importance of differ-
ent relations. For example, for a paper node in the ACM
network, different messages from different relations (e.g.,
Paper-Paper, Conference-Paper, Subject-Paper and node-
type-specific self-loop (Paper)) are aggregated based on the
corresponding relational importances. Similarly, for a con-
ference, the message passed by Paper-Conference relation
and self-loop (Conference) connection are aggregated based
on the weights of different relations. A detailed case study
can be found in Sec. 6.8.

5.2 Meta-Path based Analysis

Besides of explaining RE-GNN from the perspective of
spatial aggregations, RE-GNN can also be interpreted as a
meta-path based heterogeneous GNN, implicitly. For conve-
nience, Graph Transformer Network (GTN) [15] is selected
as the compared heterogeneous GNN in this subsection.
Our RE-GNN framework also employ GCN [1] as the back-
bone, similar to GTN. Here, we reveal that our RE-GCN
can degenerate to GTN in certain conditions. Besides, we
also theoretically demonstrate that RE-GCN possesses more
expressive power than GTN.

5.2.1 Simplifying RE-GCN
As stated in Sec. 3.4, GTN can be regarded as an ensemble
of GCNs on multiple generated composite relations. By
excluding the ensemble trick in Eq. (4), we consider a simple
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case, where GTN only learns a 2-length composite relation,
as below.

ZP = σ
(
Ã2H

(0)W
(0)
P

)
, (13)

where Ã2 = D̂−12 Â2, Â2 = A2 + I , and D̂2 rep-
resents the degree matrix of Â2. Note that A2 =(∑

i∈R α1,iAi
) (∑

i∈R α2,iAi
)

is the learned adjacency ma-
trix of 2-length meta-path. By stacking two RE-GCN layers,
we can obtain

ZH = σ
(
Ã

(1)
H σ

(
Ã

(0)
H H(0)W

(0)
H

)
W

(1)
H

)
, (14)

where Ã(i)
H = (D̂

(i)
H )−1Â

(i)
H , i = 0, 1, and Â(i) is calculated

via Eq. (12). If we simplify Eq. (14) by removing the nonlin-
earity and coarsening the weight matrices (like SGC [29]), it
will degenerate to

ZH,SGC = σ
(
ÃH,2H

(0)WH

)
, (15)

where ÃH,2 = D̂−1H,2ÂH,2 and ÂH,2 = Â
(1)
H Â

(0)
H . Note that

D̂H,2 = D̂
(1)
H D̂

(0)
H is the degree matrix of ÂH,2. After simpli-

fying 2 RE-GCN layers, we actually obtain a 2-length GTN
layer. Note that the only difference between RE-GCN and
GTN is ÂH (RE-GCN) and ÂP (GTN), which are generated
from different formulas. ÂH (RE-GCN) contains extra self-
loop relation embeddings, while ÂP (GTN) only adds an
identity self-loop matrix. The above observation indicates
that RE-GCN can implicitly learn the composite relations.

Since RE-SGC is a simplified version of RE-GCN, which
will give superior expressive power than RE-SGC, we can
intuitively conclude that the 2-layered RE-GCN in Eq. (14)
possesses more expressive powers than the 1-layered GTN
in Eq. (13). Then, we will prove it theoretically and extend it
to the general case.

5.2.2 Theoretical Analysis
Due to limited computing and storing resources, the values
of the input features and parameters are always finite for
any neural network. Usually, to ensure the stability and ro-
bustness of a neural network, the input and parameters are
normalized to small values. Under such circumstance, we
firstly introduce the bounded set to quantitatively analyze
the expressive power of neural network. Note that all the
proofs are provided in the appendices.
Definition 1 (Bounded set). A bounded set is a set D where
∀d ∈ D, |d| < k. k > 0 is a real number, which is the bound ofD.
D can be a set of value, vector or matrix and | · | is a corresponding
norm.

As stated above, we assume that the dynamic ranges
of the network inputs and parameters are both bounded
sets. For example, a multilayer perceptron (MLP) layer is a
function f : Hin → Hout, which is defined on a bounded
set Hin ⊂ Rdin and f ’s range is also a bounded set
Hout ⊂ Rdout . ∀hin ∈ Hin and ∀hout ∈ Hout, we can obtain
||hin||22 < kin and ||hout||22 < kout, respectively. ∀hin ∈ Hin,
f is defined as

f(hin) = σ(hinW + b), (16)

where W ∈ W ⊂ Rdin×dout is the learnable weight matrix
and σ(·) is a ReLU function. The bound of W is defined as
kw = |W | def

= max ||wj ||22, where wj is the column vector of

W . Note that b is a bias vector and its bound is defined as
kb = max |bi|.
Definition 2 (Bound of Multilayer Perceptron Layer). A
multilayer perceptron (MLP) layer f(W, b) : Hin → Hout is
defined on a bounded set Hin ⊂ Rdin . kin, kw, kb are the bounds
of the input hin, parameter W and bias b, respectively. The bound
of f is defined as k = max(kin, kw, kb).

Since it is usually necessary to constrain the bound of
input data when training or designing a neural network, we
take the bound of the input into account for an MLP layer.
According to the definition above, k is also the bound of the
input, parameters, and bias. Subsequently, we can infer the
rationality of an MLP layer based on its bound. Here, we
quantitatively analyze the expressive power of a composite
of two MLP layers, compared to that of only one MLP layer.
Lemma 3.

Given an MLP layer f : Hin → Hout bounded by k, there
exists a composite of two MLP layers (f1 ◦ f2) which equals to f ,
where f1 is also bounded by k and f2 is bounded by max{1, 2k}.

Since a particular solution of the layer f2 is W2 being
an identity matrix when b2 is bounded by 2k, the layer f2
is bounded by max(1, 2k) in Lemma 3. By considering that
the bias plays a complementary role to parameter W , we do
not separately restrict the bound of b, in practice. Thus, it is
acceptable that the bias of f2, i.e., b2, has a bit larger bound.

According to Lemma 3, we can conclude that a compos-
ite of two MLP layers possesses no less expressive power
than one MLP layer.

Now, let us consider the scenario of GNN. Similarly, for a
GCN layer, we still utilize k = max(kin, kw, kb) as its bound,
where kin, kw and kb are the bounds of the input, parameter
and bias, respectively. In practice, GCN layer usually utilizes
a bias vector. For example, the GTN layer in Eq. (13) can be
rewritten as

ZP = σ
(
Ã2HWP +BP

)
, (17)

where B =

b...
b

 is the broadcast of a bias vector b (stacking

multiple rows with a row vector b). The GTN layer actually
adds a bias vector to each sample. Similarly, a composite of
two RE-GCN layers in Eq. (14) can be rewritten as

ZH = σ
(
Ã

(1)
H σ

(
Ã

(0)
H XW

(0)
H +B

(0)
H

)
W

(1)
H +B

(1)
H

)
. (18)

Lemma 4.
If a vector setH is bounded by k. Denote o = p1h1 +p2h2 +

... + prhr, where
∑r
i=1 pi = 1, hi ∈ H, i = 1, 2, ..., r. Then, o

is also bounded by k, i.e., ||o||22 < k.
Then, according to Lemma 3 and 4, Corollary 5 can be

obtained.
Corollary 5.

If fGTN : G → RN×C is a 2-lengthed GTN layer, which is
bounded by ξ, there exists a composite of two RE-GCN layers,
where the first layer is bounded by ξ and the second layer is
bounded by max{1, 2ξ}, which is equivalent to fGTN .

Corollary 5 theoretically reveals that a composite of two
RE-GCN layers possesses no less expressive powers than a
2-lengthed GTN layer. Then, we can extend it to the general
case.
Theorem 6.
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TABLE 1: Statistics of the datasets.

Datasets Nodes Edges

DBLP

# author(A): 4,057
# paper(P): 14,328
# term(T): 7,723
# venue(V): 20

# A-P:19,645
# P-T:85,810
# P-V:14,328

ACM
# paper(P): 4,019
# author(A): 7,167
# subject(S): 60

# P-P:9,615
# P-A:13,407
# P-S:4,019

IMDB
# movie(M): 4,278
# director(D): 2,081
# actor(A): 5,257

# M-D:4,278
# M-A:12,828

OGBN-MAG

# paper (P): 736,389
# author (A): 1,134,649
# institutions (I): 8,740
# fields(F): 59,965

# A-I: 1,043,998
# A-P: 7,145,660
# P-P: 7,505,078
# P-F: 10,792,672

Let G ∈ G be a heterogeneous graph, where the node features
X ∈ X are normalized, i.e., ∀X ∈ X , |X| < ξ. If a non-
ensembled GTN, m : G → RN×C , maps the nodes in G to
any node embeddings Z ∈ RN×C , there exists a RE-GCN which
is equivalent to GTN.

Theorem 6 further demonstrates that RE-GCN possesses
no less expressive power than the GTN. Then, Theorem 7 is
obtained as follows.
Theorem 7.

Let G ∈ G be a heterogeneous graph, where the node features
X ∈ X are normalized, i.e., ∀X ∈ X , |X| < ξ. There exists
a RE-GCN, r : G → RN×C , which can map G to the node
embeddings Z ∈ RN×C that GTN cannot map G to.

Theorems 6 and 7 jointly prove that our RE-GCN pos-
sesses more expressive power than the GTN. According to
the above analysis, we can conclude that RE-GCN can be
interpreted as an implicit meta-path based heterogeneous
GNN, which indicates that it may be unnecessary to design
or generate the meta-path explicitly. By simply stacking
multiple RE-GNN layers, the heterogeneity may also be
efficiently handled.

6 EVALUATIONS

6.1 Datasets

Four widely utilized heterogeneous datasets, including
three heterogeneous academic networks (i.e., DBLP, ACM,
and OGBN-MAG) and one heterogeneous movie network
(i.e., IMDB), are employed to demonstrate the effectiveness
of our RE-GNNs. Their details are shown in Tab. 1.

In DBLP, four types of nodes, i.e., papers, authors,
venues, and terms, and three types of edges (relations),
i.e., A-P, P-T, and P-V, are constructed. According to the
conferences they are submitted to, authors are categorized
into four research areas, i.e., Database, Data Mining, Artifi-
cial Intelligence and Information Retrieval. Each paper is
described by a bag-of-words (BOW) representation of its
keywords, and each author is described by the BOW em-
beddings of its published papers. Each term is represented
by the Glove word vectors [40], and the attributes of venues
are formed as one-hot vectors.

In ACM, three types of nodes, i.e., papers, authors, and
subjects, and three types of directed edges (relations) are
constructed. According to the conference they published,

papers are classified into three categories, i.e., Database,
Wireless Communication, and Data Mining. Each paper
is described by a BOW representation of keywords. The
attributes of authors and subjects are formed as one-hot
vectors.

In IMDB, three types of nodes, i.e., movies, directors,
and actors, and two types of directed edges (relations) are
formed. According to their genre, the movies are classified
into three categories, i.e., Action, Comedy, and Drama.
Movies are described by the BOW embeddings of their
plots. The attributes of actors and directors are represented
by the averaged attributes of their related movies.

In OGBN-MAG, four types of nodes, i.e., papers, au-
thors, institutions, and fields of study, and four types of
directed edges (relations), i.e., A-I, A-P, P-P, P-F, are con-
structed. According to the venue (conference or journal)
they published, papers are divided into 349 categories.
Each paper is associated with a 128-dimensional word2vec
feature vector. We employ metapath2vec [41] to generate the
features in other types of nodes.

We process the relations with directions for all the
datasets and consider their reversed ones. For DBLP, ACM,
and IMDB, we adopt the same data division strategies as
[14], [42], where 400/400 nodes are randomly selected as
training/validation sets, and the remaining nodes (approx-
imately 80%) are selected as the test set. For OGBN-MAG,
we adopt its official splits [43].

6.2 Baselines
We compare our method with various kinds of popular
GNN methods, including five homogeneous GNNs (i.e.,
GCN [1] and GAT [2], GIN [24], GATv2 [39], GraphSAGE
[3], and MixHop [44]), one heterogeneous graph embedding
method (i.e., Metapath2vec [41]), four meta-path based het-
erogeneous GNNs (i.e., HAN [13], GTN [15], MAGNN [14],
and MAGNN-AC [42]), and four relation based heteroge-
neous GNNs (i.e., R-GCN [17], HGT [20], HGB [23], and
R-HGNN [21]). Note that the homogeneous GNNs, such as
GCN and GAT, are constructed on the homogeneous graph,
where the heterogeneity is directly eliminated. Here, GCN-
M and GAT-M respectively represent the GCN and GAT
models which are constructed on several meta-path based
homogeneous graphs, and the best scores are reported.

6.3 Implementation Details
For the homogeneous GNNs, four-layered GNNs with 64
hidden neurons and 4 heads (only for GAT and GATv2),
are employed as our baselines. Note that we employ GAT
and GATv2 with 128 hidden neurons and 1 heads on IMDB,
which are obtained via hyperparameter search. For the
corresponding RE-GNNs, the gradient scaling factor λ is
set to 100. In the training process, both the homogeneous
GNNs and RE-GNNs are trained for a maximum of 200
epochs with an early stopping condition at 50 epochs. The
cross-entropy loss is utilized as the loss function. Adam [38]
optimizer is employed with the learning rate of 0.001, the
weight decay rate of 0.001 for ACM and DBLP, and 0.005
for IMDB. The dropout layers are utilized for the input of
each GNN layer in the training process with a dropout rate
of 0.6.
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TABLE 2: Performances on the node classification task.

Methods DBLP ACM IMDB
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Metapath2vec 91.71 ± 0.00 92.39 ± 0.00 75.34 ± 0.00 76.79 ± 0.00 48.70 ± 0.00 50.40 ± 0.00

HAN 92.45 ± 0.87 92.96 ± 0.83 91.80 ± 0.38 91.67 ± 0.31 57.69 ± 0.91 58.15 ± 0.93
GTN 93.55 ± 0.22 94.29 ± 0.21 91.92 ± 0.67 91.81 ± 0.65 58.63 ± 1.45 60.19 ± 1.66

MAGNN 93.39 ± 0.33 93.89 ± 0.30 91.49 ± 1.18 91.46 ± 1.08 58.75 ± 2.04 59.48 ± 1.45
MAGNN-AC 93.00 ± 0.29 93.58 ± 0.21 88.34 ± 3.55 88.60 ± 2.98 56.98 ± 0.38 57.80 ± 0.44

R-GCN 92.26 ± 0.47 92.87 ± 0.42 93.36 ± 0.21 93.36 ± 0.21 58.96 ± 0.29 59.34 ± 0.27
HGT 91.43 ± 1.15 92.31 ± 0.91 92.40 ± 0.60 92.30 ± 0.54 58.16 ± 0.84 58.37 ± 0.70
HGB 93.20 ± 0.33 93.69 ± 0.29 93.15 ± 0.30 93.13 ± 0.27 58.11 ± 0.86 58.42 ± 0.71

R-HGNN 92.89 ± 0.59 93.43 ± 0.53 92.16 ± 0.71 92.10 ± 0.67 56.79 ± 1.01 57.27 ± 0.95

GAT 90.19 ± 0.89 90.94 ± 0.77 93.16 ± 0.16 93.16 ± 0.16 57.62 ± 1.20 58.92 ± 0.91
GCN 87.39 ± 0.23 88.31 ± 0.19 93.60 ± 0.29 93.58 ± 0.27 58.37 ± 1.26 59.59 ± 1.10

GAT-M 90.57 ± 0.70 91.15 ± 0.63 89.98 ± 0.52 89.94 ± 0.47 54.20 ± 0.84 54.80 ± 0.59
GCN-M 89.04 ± 0.71 89.99 ± 0.64 90.20 ± 0.24 90.15 ± 0.23 53.99 ± 0.95 54.72 ± 0.61

RE-GAT 95.06 ± 0.16 95.41 ± 0.15 94.04 ± 0.23 93.99 ± 0.22 60.01 ± 1.09 60.53 ± 0.85
RE-GCN 95.46 ± 0.29 95.80 ± 0.27 93.95 ± 0.16 93.93 ± 0.16 60.88 ± 0.95 61.51 ± 0.64

TABLE 3: Performances on the node clustering task.

Methods DBLP ACM IMDB
NMI ARI NMI ARI NMI ARI

metapath2vec 78.61 ± 0.04 83.64 ± 0.04 41.80 ± 0.01 34.71 ± 0.01 5.49 ± 0.24 5.16 ± 0.27

HAN 76.30 ± 0.68 82.12 ± 0.56 70.71 ± 0.91 75.16 ± 0.88 12.96 ± 1.09 14.34 ± 1.28
MAGNN 79.89 ± 0.85 84.94 ± 0.77 70.70 ± 1.08 74.34 ± 1.42 15.70 ± 0.77 15.73 ± 1.19
R-GCN 76.85 ± 1.70 82.73 ± 1.70 75.00 ± 0.80 77.82 ± 0.80 13.63 ± 0.16 15.59 ± 0.16

HGB 77.09 ± 1.93 82.86 ± 1.55 75.91 ± 0.84 80.56 ± 0.82 11.32 ± 2.48 11.40 ± 4.09
R-HGNN 75.16 ± 3.53 79.14 ± 6.78 63.86 ± 0.04 63.42 ± 0.08 9.67 ± 0.91 10.03 ± 1.72

GCN 60.59 ± 0.02 63.80 ± 0.03 77.28 ± 0.42 80.82 ± 0.56 14.15 ± 2.23 13.01 ± 2.43
RE-GCN 83.57 ± 1.78 88.13 ± 1.88 77.49 ± 0.58 81.67 ± 0.56 15.83 ± 1.10 15.65 ± 2.28

6.4 Node Classification

6.4.1 Comparisons

The node classification results of three heterogeneous
datasets, i.e., DBLP, ACM, and IMDB, are presented in
Tab. 2. For the employed baselines, both the meta-path
based and relation based heterogeneous GNNs can achieve
decent performances. Besides, though homogeneous GNNs,
i.e., GCN and GAT, can perform well on ACM and IMDB
datasets, they are not suitable for DBLP, compared to
other heterogeneous GNNs. On the contrary, our RE-GNNs,
which only utilize one-dimensional embeddings, can al-
low the homogeneous GNNs to process the heterogeneous
graphs effectively. For example, in DBLP, RE-GCN per-
forms much better than the original GCN, which has 8.07
and 7.49 improvements in Macro-F1 and Micro-F1 scores,
respectively. A similar trend happens on GAT and RE-
GAT. Meanwhile, for the ACM dataset, though our RE-
GCN still achieves the best performance, the performance
gain is relatively small, e.g., 0.35 in the Macro-F1 score.
The reason may be that the weights of the relations with
the current initialization are already close to the optimal
weights in some particular cases. Under such circumstances,
the performances of homogeneous GNNs may be close to or
even approximately equal to the corresponding RE-GNNs.
Generally, our RE-GCN and RE-GAT outperform the other
well-designed heterogeneous GNNs, which usually possess
complicated modules.

(a) (b)

Fig. 3: Results of our RE-GNNs with other homogeneous
GNNs as backbones.

6.4.2 Applied to other GNNs

The proposed framework can be easily applied to other
homogeneous GNNs. Besides of GCN and GAT, four other
typical homogeneous GNNs, i.e., GIN [24], GraphSAGE [3],
GATv2 [39], and MixHop [44], are employed for further
validations. As can be observed from Fig. 3, though these
homogeneous GNNs cannot perform well on DBLP, their
corresponding RE-GNNs can achieve superior yet decent
results. On the ACM dataset, these homogeneous GNNs can
achieve good results, similar to GCN and GAT. By introduc-
ing our relation embeddings, the performances of the cor-
responding RE-GNNs also possess certain improvements.
In general, these results demonstrate that our RE-GNNs
can effectively assign adequate abilities to the homogeneous
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(a) Metapath2vec (b) HAN (c) MAGNN (d) R-GCN

(e) HGB (f) RHGNN (g) GCN (h) RE-GCN

Fig. 4: Visualizations of the node representations on DBLP. Each data point represents an author, and its color represents
its category.

GNNs to handle heterogeneous graphs.

6.5 Node Representation

6.5.1 Node Clustering

The node clustering task is conducted to validate the effec-
tiveness of the learned node representations. The represen-
tations of testing nodes, which is generated by each trained
model, are fed to the K-Means algorithm. Normalized Mu-
tual Information (NMI) and Adjusted Rand Index (ARI) are
employed as the evaluation metrics, where higher scores
correspond to better models. By following [14], we repeat
K-Means 10 times for each run of the models, and each
model is tested for 10 runs. As shown in Tab. 3, our RE-
GCN achieves superior performances on all the employed
datasets, which demonstrates that our relation embeddings
can enable GCN to learn meaningful node representations
for heterogeneous graphs.

6.5.2 Visualizations

For visual comparisons, we utilize T-SNE [45] to project
the learned embeddings of the authors in DBLP into a 2-
dimensional space. As can be observed from Fig. 4g, for the
visualization of GCN, authors with the same category tend
to be decentralized, and authors with different categories
tend to be mixed. On the contrary, after introducing the
relation embeddings to model the heterogeneity, our RE-
GCN can effectively learn suitable embeddings. As shown
in Fig. 4h, the authors with identical research interests are
more compact, and authors with different research inter-
ests are more distinguishable. Besides, the heterogeneous
baseline methods either fail to gather the authors with

identical research interests or cannot provide clear bound-
aries for authors belonging to different categories. These
results further validate that our RE-GNN can learn effective
representations and thus handle the heterogeneous graphs.

6.6 Efficiency Analysis

As stated in Sec. 4, our RE-GNN only introduces one pa-
rameter for each relation type in each layer compared with
the corresponding homogeneous GNN, which is an efficient
framework to handle the heterogeneous graphs. Here, we
analyze its experimental efficiency compared to the homo-
geneous GNNs. All the experiments are conducted on the
Nvidia GeForce RTX 2080Ti GPU with 12 GB memory. Fig. 5
presents the training times and the model sizes for different
methods trained on DBLP. For fair comparisons, all of these
methods contain 64 hidden units for each hidden layer.
An exception is R-HGNN, which possesses 16 hidden units
(obtained via a hyper-parameter search).

As can be observed, our RE-GCN has an approxi-
mately equivalent model size to GCN, which is substantially
smaller than the other heterogeneous GNNs. For example,
HGB, a simple heterogeneous GNNs, possesses a 2.6x larger
model size than our RE-GCN. Besides, as can be observed
from Fig. 5b, our RE-GCN outperforms all the heteroge-
neous GNNs in terms of training speed. HGB possesses 2.9x
training times compared to our RE-GCN. In addition, two
complicated models, i.e., R-HGNN and MAGNN, require
more than 17x training times. In general, compared to these
heterogeneous GNNs, our RE-GCN provides the fastest
training speed and the fewest model size with the best
performances.
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(a)

(b)

Fig. 5: Comparisons of the model size and average training
time on DBLP. Note that all the model is trained with 64
hidden units except R-HGNN is trained with 16 hidden
units.

TABLE 4: Performances on OGBN-MAG.

Validation Acc. Test Acc. Parameters

MetaPath2vec 35.06 ± 0.17 35.44 ± 0.36 94,479,069

HGT 49.89 ± 0.47 49.27 ± 0.61 21,173,389
R-GCN 49.12 ± 0.50 47.89 ± 0.53 154,366,772
R-GSN 51.33 ± 0.35 50.10 ± 0.42 154,373,028

R-HGNN 53.61 ± 0.22 52.04 ± 0.26 5,638,053

RE-GCN 51.94 ± 0.12 50.82 ± 0.18 1,037,171
RE-GAT 53.08 ± 0.26 52.10 ± 0.17 1,039,373

6.7 Scalability for Large-scale Graph

Here, we employ the OGBN-MAG dataset to validate the
scalability of our RE-GNN for handling large-scale hetero-
geneous graphs. Note that many training techniques can
boost the performance on OGBN-MAG, such as multi-stage
training [46] and adversarial training [47], which are not
considered in our comparison, because these techniques
are orthogonal to model design. The results of employed
baselines in Tab. 4, except for R-GSN, are borrowed from
the OGB leaderboards [43]. For R-GSN, we report its official
results when removing the FALG training technique [47].
For utilizing both GCN and GAT as backbones, we construct
2-layered RE-GNNs followed by a fully connected layer as
the output layer. The hidden dimension is set to 512 for
RE-GCN and 64 for RE-GAT with 8 heads. We utilize the
Neighbor Sampling method [3] to train our RE-GNNs with
mini-batch.

As can be observed from Tab. 4, both RE-GCN and
RE-GAT can achieve outstanding performances on OGBN-

TABLE 5: Ablation study on the DBLP dataset. Note that ET
emb represents the edge type relation embeddings, and SL
emb represents the node-type-specific self-loop embeddings.

ET emb SL emb Macro-F1 Micro-F1

GAT 90.19 90.94
GCN 87.39 88.31

GAT-S X 90.63 91.29
GCN-S X 88.77 89.43

GAT-E X 94.91 95.28
GCN-E X 95.15 95.48

RE-GAT X X 95.06 95.41
RE-GCN X X 95.46 95.80

MAG. When utilizing GAT as the backbone, our RE-GAT
achieves the best performance and outperforms the com-
plicated heterogeneous GNNs, e.g., R-GSN and R-HGNN.
Besides, when utilizing GCN as the backbone, our RE-GCN
can still outperform R-GCN. Meanwhile, our RE-GCN and
RE-GAT possess much fewer number of parameters than
other heterogeneous methods. These results demonstrate
our RE-GNNs are still effective and efficient on the large-
scale heterogeneous graphs.

6.8 Case Study
Here, we analyze the learned embeddings of a 4-layered RE-
GCN on the DBLP dataset to further study the mechanism
of our RE-GNN framework. As presented in Tab. 1, DBLP
contains four types of nodes and three types of edges. The
task is designed to predict the category of authors. By con-
sidering the self-loop connections and reversing the directed
relations, our RE-GNN considers 10 types of relations.

As can be observed from Fig. 6, the importances of P-*
(i.e., P-A, P-T, P-V, and P) relations are much larger than the
others in the first layer. It indicates that RE-GCN believes
the paper attributes to be more critical and utilizes them to
initialize the features in other types of nodes. In the second
layer, nodes exchange messages according to different types
of relations. Then, in the third layer, there are two groups
of dominate messages: 1) P-A; 2) *-P (i.e., A-P, T-P, V-P,
and P). It indicates that the third RE-GCN layer utilizes
the messages from papers to update the states of authors,
as well as utilizes the messages from other types of nodes
to update the states of papers. In the last layer, the states
of authors are updated by the messages from paper nodes
and itself. In general, we can conclude that our RE-GCN
can adaptively make the paper nodes to dominate in this
case, which is consistent with the common understandings
of academic networks.

6.9 Ablation Study
Here, we verify the effectiveness of the edge relation em-
beddings and node-type-specific self-loop embeddings. Two
variants of our RE-GNN are given: 1) GNN-S: homoge-
neous GNN with node-type-specific self-loop embeddings;
2) GNN-E: homogeneous GNN with edge relation embed-
dings.

As shown in Tab. 5, the F1 scores of the GNN-E variants
are significantly higher than these of corresponding GNNs.
Meanwhile, the node-type-specific self-loop embeddings
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(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4

Fig. 6: Visualizations of the learned relation embeddings for a 4-layered RE-GCN on the DBLP dataset. Note that we remove
the relation when its weight is lower than 0.4, for a clear visualization.

(a) λ = 0.001 (Micro-F1: 87.84) (b) λ = 1 (Micro-F1: 90.27) (c) λ = 100 (Micro-F1: 95.81) (d) λ = 1000 (Micro-F1: 94.84)

Fig. 7: The learned weights of the relations for the first layer of RE-GCN on the DBLP dataset.

give relatively minor improvements. It indicates that the
relation types are more critical than the node-type-specific
self-loop types. Note that the GNN-E variants can also
implicitly exploit the general self-loop embeddings, because
the normalizations in the aggregation step of GNNs will
jointly normalize the message from different types of re-
lations and self-loops. Besides, RE-GNNs, which explicitly
learn the node-type-specific self-loop embeddings, outper-
form their GNN-E variants. Therefore, the effectiveness of
our node-type-specific self-loop embeddings has also been
verified.

6.10 Impacts of Gradient Scaling Factor

As stated in Sec. 4.3, the update of the weights of the
relations in each optimization iteration can be scaled via the
gradient scaling factor λ, theoretically. By using the Adam
optimizer, the update of the weights of the relations changes
λ times. Here, we experimentally verify the effectiveness
of the proposed gradient scaling factor. Fig. 7 presents the
results of the first layer of RE-GCN, which is learned on
the DBLP dataset. When λ is set to 0.001, the update of the
weights of the relations is negligible. Under such circum-
stance, RE-GCN becomes an approximation of GCN with
the fixed weights of the relations being ones. When λ is set
to 1.0, RE-GCN possesses the original relation embeddings
in Eqs. (6) and (7). As shown in Fig. 7b, the final weights
of the relations are similar. When we set a proper scaling
factor, e.g., λ = 100, RE-GCN can learn distinguishable
weights of the relations. However, when λ is too large, e.g.,
1000, the weights of the relations are very sensitive in the
training process and are easy to fall into polarization, i.e.,
part of the relations are dominating the others. According to
the above results, our gradient scaling factor can help RE-
GNN to learn proper relation embeddings and process the
heterogeneous graphs.

7 CONCLUSION

This paper proposes a simple yet effective framework,
named Relation Embedding based Graph Neural Network
(RE-GNN), to assign adequate ability to the homogeneous
GNNs for handling the heterogeneous graphs. Specifically,
we exploit only one parameter per relation to model the im-
portance of distinct types of relations and node-type-specific
self-loop connections. To optimize the relation embeddings
and the model parameters simultaneously, a gradient scal-
ing factor is proposed to enable the embeddings to converge
to appropriate values. Besides, we interpret the proposed
RE-GNN from two perspectives, and theoretically demon-
strate that our RE-GCN possesses more expressive power
than GTN. Extensive experiments demonstrate that our RE-
GNN can effectively and efficiently handle the heteroge-
neous graphs and can be applied to various homogeneous
GNNs.
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APPENDIX A
THEORETICAL IMPACTS OF GRADIENT SCALING
FACTOR

Here, we discuss the theoretical impacts of the proposed
gradients scaling factor, i.e., αi = λei, where the relation
embedding ei is scaled by a factor λ > 0. The gradient of
object function L to the weight of each relation αi is ∂L

∂αi
.

Then the gradient to each relation embedding ei is λ ∂L
∂αi

. In
the original case, where the relation embedding is utilized
directly as the weight of the relation (αi = ei), the gradient
to ei is denoted as gi. By employing the gradient scaling
factor, the scaled gradient to ei is denoted as g′i = λgi.

Now, we consider the updating modification for each
iteration in the optimization process. For the gradient de-
scent based optimizers, each relation embedding is updated
via enexti = ei − ∆ei, where ∆ei = κ(gi) is correlated
to the gradient gi. With the scaling factor λ, the updating
modification becomes κ(λgi).

We argue that κ(λgi) = λκ(gi), for the common gradient
optimizers such as SGD, Momentum [35], and Nesterov
Momentum [36]. For the adaptive optimizers like Adagrad
[37] and Adam [38], κ(λgi) = κ(gi). Here, we present the
detailed proofs of SGD and Adam optimizers as examples.
The proofs of other commonly utilized optimizers can be
generalized by these proofs.
Stochastic Gradient Descent (SGD). For a Stochastic Gra-
dient Descent (SGD) optimizer, a parameter θ is updated
by

θt = θt−1 − ηgt, (S1)

where η stands for the learning rate and gt = ∂L
∂θt−1

rep-
resents the gradient of a batch of the input data. Thus,
the updating modification function is κ(g) = −ηg. Then,
κ(g′) = κ(λg) = −ηλg = λ(−ηg) = λκ(g).
Adaptive Moment Estimation (Adam). Adaptive Moment
Estimation (Adam) is a typical gradient descent method
which computes an adaptive learning rate for each param-
eter. In each iteration t, it firstly computes the exponential
averages of the gradient mt and the squared gradient vt
respectively as

mt = β1mt−1 + (1− β1)gt, (S2)

vt = β2vt−1 + (1− β2)g2t . (S3)

where β1 and β2 are the two pre-defined hyperparameters.
Both mt and vt are initialized as vectors of zeros. Then, the
bias elimination is utilized to obtain

m̂t =
mt

1− βt1
, (S4)

v̂t =
vt

1− βt2
. (S5)

At last, the parameter is updated accordingly.

θt = θt−1 − η
m̂t√
v̂t + ε

, (S6)

where ε > 0 is an extremely small number which can be
neglected when vt 6= 0. Then, the updating modification
function is κ(gt) = −η m̂t√

v̂t+ε
. In the following proof, induc-

tion is employed to prove κ(λgt) = κ(gt).

Proof. Initially, we have m0 = 0 and v0 = 0. Let g′t = λgt.
Then, κ(λg) = κ(g′).

In the first iteration, since m0 = v0 = 0, it is easy to
validate m′1 = λm1, v′1 = λ2v1, m̂′1 = λm̂1 and v̂′1 = λ2v̂1.
Then, the updating function is κ(λgt) = −η λm̂1√

λ2v̂1+ε
=

κ(gt). Since ε is a very small number, which is only utilized
to prevent a zero denominator in practice, we ignore its
effect here.

Assuming that in the (t − 1)-th iteration, we have ob-
tained m̂′t−1 = λm̂t−1, v̂′t−1 = λ2v̂t−1 and κ(g′t−1) =
κ(gt−1). Then, in the t-th iteration, we can obtain

m′t = β1m
′
t−1 + (1− β1)g′t

= β1λmt−1 + (1− β1)λgt

= λ(β1mt−1 + (1− β1)gt)

= λmt.

(S7)

Similarly, we can obtain

v′t = β2v
′
t−1 + (1− β2)g′2t

= β2λ
2vt−1 + (1− β2)λ2g2t

= λ2(β2mt−1 + (1− β2)g2t )

= λ2vt.

(S8)

Then, for the bias eliminated m̂′t and v̂′t, we can compute
m̂′t = λm̂t and v̂′t = λ2v̂t respectively. At last, the updating
modification is κ(λgt) = −η m̂′1√

v̂′1+ε
= κ(gt).

Then, we consider the modification for the weight
of each relation ∆αi. Since, αi is not a parameter, its
modification is correlated to ∆ei. In the original case,
∆α = ∆ei = κ(gi). By employing the gradient scaling
factor, the modification of the weight of each relation is
∆α′ = λ∆ei = λκ(g′i). As stated above, for the com-
mon gradient optimizers, such as SGD, Momentum and
Nesterov, ∆α′ = λ2∆α. For the adaptive optimizers like
Adagrad and Adam, ∆α′ = λ∆α.

APPENDIX B
PROOF OF LEMMA 3
Proof. ∀h ∈ Hin, we can obtain

(f1 ◦ f2)(h) = σ(σ(hW1 + b1)W2 + b2), (S10)

where σ is a ReLU function, h, W1, and W2 are bounded
by k, kw1 , kw2 , respectively. By letting t = hW1, we
can obtain ti = hwTi . Since hhT =

∑
j h

2
j < k and

wiw
T
i =

∑
j w

2
ij < kw1

, we can calculate |ti| = |hwTi | =

|
∑
j hjwij | ≤

∑
j |hjwij | ≤ 1

2

∑
j(h

2
j +w2

ij) =
k+kw1

2 . Then,
there is a |bi| ≤

k+kw1

2 , when bi + ti ≥ 0, i.e., there exists
a b′1 with a bound of k+k1

2 , when hW1 + b′1 > 0. Thus, Eq.
(S10) can be rewritten as

(f1 ◦ f2)(h) = σ(hW1W2 + b′1W2 + b2). (S11)

Then, when W1W2 = W and b′1W2 +b2 = b, (f1 ◦f2) equals
to f . There exists a simple solution to the above formulas,
i.e., W1 = W,W2 = I, b2 = b− b′1.
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APPENDIX C
PROOF OF LEMMA 4

Proof. According to the definition, the bound of o is

||o||22 =
∑
j

o2j =
∑
j

(∑
i

pihij

)2

. (S12)

Since
∑r
i=1 pi = 1, and (·)2 is a convex function,

∑
j

(∑
i

pihij

)2

≤
∑
j

(∑
i

pih
2
ij

)
, (S13)

according to the Jensen’s inequality. Then,

∑
j

(∑
i

pih
2
ij

)
=
∑
i

pi

∑
j

h2ij


<
∑
i

pik

= k.

(S14)

At last, we can obtain ||o||22 < k.

APPENDIX D
PROOF OF COROLLARY 5

Proof. For Eq. (14), X is the collection of x. Each row of X ,
which is denoted as xi, is bounded by ξ. Ã = D̂−1Â is
a non-negative matrix, where the summation of each row
equals to 1, i.e.,

∑
j ãij = 1 and ãij ≥ 0. Let H = ÃX .

According to Lemma 4, the bound of each row hi is ξ.
Then, according to Lemma 3, we can conclude that there

exists a b′ with a bound of k+k12 , hW1 + b′1 > 0, i.e., HW1 +
B′1 > 0. Thus, Eq. (14) can be rewritten as

ZH = σ(Ã
(1)
H Ã

(0)
H XW

(0)
H W

(1)
H +Ã

(1)
H B

(0)′

H W
(1)
H +B

(1)
H ).

(S17)

Since Ã(1)
H is a matrix, which is normalized in each row, and

B
(0)′

H is a column equivalent matrix, we can obtain

Ã
(1)
H B

(0)′

H = B
(0)′

H . (S18)

Besides,

Ã
(1)
H Ã

(0)
H = D̂(1)Â

(1)
H D̂(0)Â

(0)
H

= D̂(1)D̂(0)Â
(1)
H Â

(0)
H

= D̂H2
ÂH2

= ÃH2.

(S19)

With Eqs. (S18) and (S19), Eq. (S17) can be reformed to

ZH = σ
(
ÃH2XW

(0)
H W

(1)
H +B

(0)′

H W
(1)
H +B

(1)
H

)
. (S20)

Similar to the proof of Lemma 3, we can easily construct a
solution that W (0)

H = WP , W (1)
H = I , B(1)

H = BP −B(0)′

H .

APPENDIX E
PROOF OF THEOREM 6
Proof. Theorem 1 can be proved in two steps.

• T1(1). For any L-lengthed one-layered GTN, there
exists an L-layered RE-GCN which is equivalent to
it.

• T1(2). For any L-lengthed K-layered GTN, there
exists an (LK)-layered RE-GCN which is equivalent
to it, where K > 1.

According to Corollary 5, for an L-lengthed GTN layer,
we can also obtain a stack of L RE-GCN layers which
is equivalent to it. This equivalency can be achieved via
removing the ReLU function and choosing a proper bias
vector b(L) in each layer (except the last layer). Note that

the bias vector b(l) is bounded by k
(l)
in+k(l)w

2 . k(l)in and k
(l)
w are

the bounds of the input features and parameters in the L-th
layer, respectively. Therefore, T1(1) is proved.

For T1(2), we can employ a composite of L RE-GCN
layers which is equivalent to each L-lengthed GTN layer.
Then, we can stack these (KL) RE-GCN layers, which is
equivalent to the L-lengthed K-layered GTN. Therefore,
T1(2) is proved.

APPENDIX F
PROOF OF THEOREM 7
Proof. Theorem 2 can be proved in two steps.

• T2(1). There exists a 2-layered RE-GCN, which can-
not be represented by any L-lengthed one-layered
GTN.

• T2(2). There exists a 2-layered RE-GCN, which can-
not be represented by any L-lengthed K-layered
GTN, where K > 1.

Consider a graph with only one node and a self-loop
connection. Then, a GCN layer is degenerated to an MLP
layer. Since the composite of two MLP layers can be a non-
linear mapping while one MLP layer can only be a linear
mapping (by ignoring the last ReLU function), there exists a
composite of two MLP layers that one MLP layer cannot be
equivalent to. Therefore, T2(1) is proved.

The adjacency matrix enables the nodes (samples) to ex-
change messages with others. Then, the effects of neighbour-
hood aggregation with A cannot be replaced by the effects
of weight projection with W . For a K-layered GTN (K > 1)
with an arbitrary learned adjacency matrix AP , it should
satisfy that Ak1P = AH1

, Ak2P = AH2
, where k1 + k2 = K .

However, this cannot be satisfied at all the time for any
possibleAH1

andAH2
. For example, ifAH1

is a non-singular
matrix, while AH2

is a singular matrix, no proper AP can be
obtained. The reason is that An is a non-singular matrix, if
and only if the matrix A is non-singular. Therefore, T2(1) is
proved.
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