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Multilevel Stochastic Optimization for Imputation
in Massive Medical Data Records
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Abstract—It has long been a recognized problem that many datasets contain significant levels of missing numerical data. A potentially
critical predicate for application of machine learning methods to datasets involves addressing this problem. However, this is a challenging
task. In this paper, we apply a recently developed multi-level stochastic optimization approach to the problem of imputation in massive
medical records. The approach is based on computational applied mathematics techniques and is highly accurate. In particular, for the
Best Linear Unbiased Predictor (BLUP) this multi-level formulation is exact, and is significantly faster and more numerically stable. This
permits practical application of Kriging methods to data imputation problems for massive datasets. We test this approach on data from the
National Inpatient Sample (NIS) data records, Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research and
Quality. Numerical results show that the multi-level method significantly outperforms current approaches and is numerically robust. It has
superior accuracy as compared with methods recommended in the recent report from HCUP. Benchmark tests show up to 75%
reductions in error. Furthermore, the results are also superior to recent state of the art methods such as discriminative deep learning.

Index Terms—Massive Datasets, Machine Learning, Best Linear Unbiased Predictor, Computational Applied Mathematics, Numerical
Stability
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1 INTRODUCTION

W ITH the growing emphasis on massive datasets in
many modern applications, the need for sophisti-

cated and precise approaches to high dimensional and
heterogeneous data analysis is increasing. As an example,
in healthcare research and personalized medicine, many
Electronic Medical Records (EMR) include data on millions
of patients, harboring large numbers of variables (e.g.,
demographics, diagnostic/procedure codes, lab/imaging
results). These massive biomedical datasets, among others,
provide opportunities to advance clinical and biomedical
research, including clinical phenotyping (i.e., learning clinical
trait-related features), but such analyses require shifting
from human-guided solutions toward machine-learning
(ML)-driven approaches. ML can increase clinical prediction
accuracy and contribute to clinical phenotyping. However,
many of these datasets are incomplete and include significant
components of missing data.

ML algorithms cannot function without complete data
matrices. Removing or imputing missing data can reduce
sample sizes or bias outcomes. A critical foundational
element for studying large datasets includes properly ad-
dressing the problem of missing and incorrect data ( [1]).

There is extensive work on statistical and ML methods
for data imputation. These are seen in two categories.
The first category involves constructing statistical and/or
deterministic models for specific types of datasets, including
single-cell RNA-sequencing data [2], [3], [4], image data
[5], time series data [6], [7], and traffic data [8], [9]. The
second category includes general methods that apply to a
large class of datasets. Popular methods include k-nearest
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neighbors [10], discriminative deep learning methods [11],
and generative deep learning methods [12], [13], [14], [15],
[16]. See, for example, [17], [18], [19], [20] for surveys of this
area.

Many ad hoc techniques have been developed to deal
with this problem, including sample deletion, mean value
or nearest neighbor imputation, etc.; in general these suffer
from information loss that leads to inaccurate predictions.

Missing data form an important problem in medical
record datasets. In particular, the HCUP Report #2015-01 by
[21], stresses the need to address missing data in the National
Inpatient Sample (NIS) and State Inpatient Databases (SID).
As an example, suppose that there are missing data for
discharges (total charge) in rural hospitals. Such missing data
can lead to erroneous estimates of total charges, potentially
biasing or otherwise misdirecting state/federal funding
policies. It is important to obtain accurate and unbiased
estimates of missing data.

In the HCUP Report #2015-01 the missing data is spread
out to the whole dataframe. For example, about 20% of the
data is missing for the important total charge variable for the
Michigan SID dataset. In this paper we impute the missing
values from a column of the dataframe by using the rest
of the information including other columns. For example,
for the total charge variable we use the data available for
total charge, length of stay, number of procedures, number
of diagnoses and age.

Current imputation algorithms recommended by the
HCUP report #2015-01 include Predicted Mean Matching
(PMM), Predicted Posterior Distribution (PPD) and lin-
ear regression ( [22], [23]). These algorithms often are
sub-optimal, in particular for noisy signals. Furthermore,
Bayesian methods such as Data Augmentation (DA) see
[24]) and Bootstrapping Expectation Maximization (BEM)
algorithms (see [25]) suffer from poor accuracy. We note
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that a recent approach by [26] improves on the accuracy of
traditional methods such as PMM, PPD, BEM, etc, by using
a so-called optimization layer. More modern state of the art
methods such as Discrimitative Deep Learning (DDL) [11]
produces excellent results. This has been quantified in the
recent benchmark paper [17].

In this paper we apply stochastic optimization ap-
proaches, such as Kriging/Best Linear Unbiased Predictor
(BLUP) [27]. We note that we refer to Kriging as both
the estimation of the coefficients of the covariance func-
tion and BLUP, although we mostly use Kriging/BLUP
for clarification purposes. The technique is based on a
principled optimal probabilistic representation of the data.
These methods can lead to optimized imputation by taking
advantage of essentially all available data. Kriging is a
popular method for imputation for Geostatistics [28] and
has been extended to other applications such as traffic flow
[29] due to its high accuracy it is popular in many fields.
However, Kriging methods in their general application are
often costly and unstable numerically on massive datasets.
A common technique is to apply a nugget to the covariance
matrix. However, this changes the covariance function model
and does not solve the original problem. This has been a
limiting factor for application of Kriging to imputation for
massive datasets outside of the spatio-temporal domain.

One of the goals of this paper is to motivate the ap-
plication of Computational Applied Mathematical (CAM)
techniques to solve large scale stochastic optimization
problems. In particular, to address the above challenges,
we propose to apply the recently developed multi-level
Kriging approach that is designed to tackle computing cost
effectiveness and numerical instability ( [30], [31], [32]).
These techniques originate from the fields of numerical
analysis and uncertainty quantification ( [32], [33], [34],
[35], [36], [37], [38]) and have been effective in solving
(stochastic) partial differential equations. Indeed, the present
Kriging optimization problem has many connections to
the solution of Partial Differential Equations (PDEs). We
introduce the above techniques in the context of statistical
methods including Kriging, and demonstrate their power to
solve hard stochastic optimization large scale problems.

By remapping an original stochastic optimization prob-
lem onto a multi-level space, we can significantly mitigate
numerical instabilities and reduce computational burdens.
In particular, the BLUP is remapped onto an equivalent
formulation with multi-level spaces. Mathematically the
multi-level prediction is exact, i.e., it precisely solves the
original BLUP problem. In practice, numerical efficiency aug-
mentations involving factors of the order of tens of thousands
can be gained for 20 dimensional problems, as compared
with traditional Conjugate Gradient (CG) approaches for
estimates with the same accuracy, as is shown in Section (4).

To demonstrate the accuracy of the multi-level Kriging
imputation method, we benchmark it on the U.S. National
Inpatient Sample (NIS) datasets (see [39], Healthcare Cost
and Utilization Project (HCUP), Agency for Healthcare Re-
search and Quality). Significant improvements over methods
including PPM, PPD, DA and EM are shown. More impor-
tantly, it is shown that the imputed values accurately reflect
the overall statistics of the population. This contrasts with
other approaches, including kNN-R, kNN, GLS, PPM, etc,

which often also suffer from poor accuracy. Furthermore our
results show improvements over the recent Discrimitative
Deep Learning state of the art method.

2 PROBLEM SETUP

Suppose that for a Gaussian random field Y we have the
model:

Y (x) = k(x)Tβ + ε(x), x ∈ Rd, (1)

where d is the number of spatial dimensions, k : Rd → Rp

is a functional vector of the spatial location x ∈ Rd, β ∈ Rp

is an unknown vector of coefficients. The noise model ε
is a stationary Gaussian random field with mean zero and
parametric covariance function ϕ(x,y;θ) ≡ cov(ε(x), ε(y)) :
Rd × Rd → R, where θ ∈ Rd is an unknown vector of
parameters. We assume ϕ(x,y;θ) is positive definite.

Suppose that we collect N ≥ p observations of the
Gaussian random field process Y at different locations in Rd,
i.e. the vector of observations Y = (Y (x1), . . . , Y (xN ))T

is obtained from locations in the set S := {x1, . . . ,xN},
where the elements in S are assumed non-collinear. Denote
C(θ) = cov(Y,YT) ∈ RN×N bas the covariance matrix of
Y. Furthermore, assume that C(θ) is positive definite for all
θ ∈ Rw. Let X =

(
k(x1) . . .k(xN )

)T ∈ RN×p and assume
that it is full column rank. Since the model (1) is a Gaussian
random field, the samples in S can be written in vector form
as

Y = Xβ + ε, (2)

where ε is a Normal random vector, more precisely ε ∼
N(0,C(θ)). The aim is to estimate the unknown vectors β
and θ and predict Y (x0) for a new spatial location x0 with a
stochastic optimization method. The unknown vectors β and
θ are estimated from the data using a log-likelihood function
(see [31])

ℓ(β,θ) =− n

2
log(2π)− 1

2
log det{C(θ)}

− 1

2
(Y −Xβ)TC(θ)−1(Y −Xβ),

(3)

which can be profiled by Generalized Least Squares (GLS)
with

β̂(θ) = (XTC(θ)−1X)−1XTC(θ)−1Y. (4)

For the prediction problem, consider the Best Linear
Unbiased Predictor (BLUP) Ŷ (x0) = λTY, where λ =
(λ1, . . . , λN )T. The BLUP is formulated as the minimiza-
tion of E

[
(Y (x0)− λTY)2

]
under the unbiased constraint

XTλ = k(x0). The solution to this problem ( [27]) is given
as

Ŷ (x0) = k(x0)
Tβ̂ + c(θ)TC(θ)−1(Y −Xβ̂), (5)

where c(θ) = cov{Y, Y (x0)} ∈ RN and β̂ is defined in
equation (4).

Solving the Kriging estimation and prediction problem
involves inverting the covariance matrix C(θ). Two main ap-
proaches exist. Direct methods, such as Gaussian elimination
and Cholesky factorizations are popular for small datasets,
but as the number of observations N increases the memory
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constraints grow as O(N2), which makes it infeasible for
large datasets. Iterative methods, such as the Conjugate
Gradient method (CG), avoid computing the covariance
matrix, thus making them a good choice for large datasets.

The key problem with direct and iterative methods is
that they are sensitive to the condition number of the covari-
ance matrix. Large condition numbers leads to numerical
instability with the consequence of inaccurate solutions. It
can be shown that the accuracy for any inversion numerical
algorithm is ≈ κ(C(θ))ϵM (see [40]), where κ(C(θ)) is the
condition number of C(θ) and ϵM is the relative machine
precision. For most computers, double precision ϵM ≈ 10−16.
Furthermore, iterative methods such as CG are slow for
matrices with large condition numbers (see [41]). For many
practical covariance functions, the condition numbers of C(θ)
are large.

Challenge: The number of observations is large and the
covariance matrix C(θ) can be highly ill-conditioned. This can
lead to inaccurate estimates of the Kriging / BLUP predictor.
In the paper written by [31], the authors propose a new
transformation of the data vector Y, leading to a decoupled
multi-level description of the Kriging model without any
loss of structure for R2 and R3 problems. As discussed in
the introduction, missing data in the NIS and SID datasets
form an important issue that is underscored in the HCUP
report #2015-01 ( [21]). The report shows as an example, the
problem of missing data for discharges (total charge) in rural
hospitals. This can potentially lead to erroneous statistics
of the total charge, leading to sub-optimal or misinformed
state and federal policy decisions. Missing data rates for total
charge are at 2.08% for the NIS 2012 dataset. However, the
Michigan SID dataset missing data rate for total charge is
significantly higher at, 19.79%, underscoring the episodic
problems of much higher impact for missing data in certain
communities. The total number of samples is 7,296,968.

In this section we contrast the accuracy performance of
the multilevel Kriging/BLUP method with the recommended
imputation algorithms in HCUP report #2015-01, which
include Predicted Mean Matching (PMM). We make further
comparison with more traditional methods such as K-Nearest
Neighbors (KNN) and KNN regression. In particular, we test
the accuracy of the various methods on the above-mentioned
total charge variable, containing the highest missing data rate.
The different methods where tested on the 2013 NIS dataset,
which was available to us for analysis. Our calculations show
the overall missing data rate is 2% for total charge. The
multi-level representation leads to significant computational
benefits when computing β and the prediction Ŷ (x0) in
equation (5).

There is a wealth of publications that attempt to address
computational costs of the above approaches. Most of these
approaches are challenged by stringent a priori assumptions
on the statistical properties of data ( [42], [43], [44], [45], [46],
[47], [48], [49]).

Recently, from the computational mathematics commu-
nity, a promising hierarchical matrix approach has been
developed by [50] to accurately compress covariance matri-
ces, leading to significant speed-ups. However, the applica-
tion is restricted to zero-mean data without a component
trend. Another promising approach is based on the pivoted
Cholesky decomposition developed in [51]. Nonetheless, if

the condition number of the covariance matrix is large, as
happens in practice often, these numerical methods will have
difficulty solving the Kriging problem with any accuracy. A
common ad hoc technique to improve the condition number
involves the use of a so-called nugget; however, it is known
that this leads to numerical inaccuracies.

Ill-conditioned matrices cannot be inverted with accuracy (see
[40]). Furthermore, a covariance matrix can in general be
large and unable to reside in computer memory. Thus the
solution of the GLS would require inverting the covariance
matrix p times using an iterative method, with p the number
of columns of the design matrix.

The multi-level approach developed in [30], [31], [32],
avoids forming the covariance matrix C, by transforming the
problem into a multi-level form with significantly smaller
condition numbers. In particular, for the BLUP problem
the transformation is one-to-one and onto. This implies that
the solution for the multi-level form exactly solves the original
BLUP problem (5). Although this appears impossible due to
the ill-conditioning and accuracy issue mentioned above,
it can be shown that the prediction is a solution to a
constrained optimization problem (e.g. unbiased constraint).
Constructing a multi-level basis that spans a complementary
constrained space leads to well-conditioned and accurate
numerical algorithms. Furthermore, a single matrix inversion
is all that is required.

3 METHODS: MULTILEVEL APPROACH

We describe the main ideas of the multilevel approach
are used to tackle the above-mentioned numerical challenges.
The details of this method developed by [32] can be involved
for the reader not well versed in advanced numerical analysis;
here We present a simplified exposition.

Let Pp(S) be the span of the columns of the design
matrix X. Suppose that there exist orthogonal projections
L : RN → Pp(S) and W : RN → Pp(S)⊥, where Pp(S)⊥ is
the orthogonal complement of Pp(S). The operators L and
W are constructed efficiently with an oct or binary kd-tree
as shown in Theorem 3.1.

Remark. The operator L and W are constructed from a
multilevel decomposition of the location of predictors. This
process is somewhat elaborate and the reader is referred to
[31] and [32] for all of the details. However, for the exposition
in this section it sufficient to know what the properties of the
operators L and W are.

Theorem 3.1. Suppose that we have a kd-tree representation, with
t levels, of all the observation locations in S. Then:

i) The linear operators L and W can be constructed in O(Nt)
computational steps and memory.

ii) The linear operators L and W have at most O(Nt) non-zero
elements.

iii) The operator
[
W L

]
is orthogonal.

Proof. See [31], [32].

Remark. For most practical datasets S, the number of levels
of the kd-tree t is ≈ log2 N .

Letting YW := WY, from equation (2) it follows that
YW = W(Xβ + ε) = Wε. Note that trend Xβ is filtered
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from the data Y. The new log-likelihood function for the
estimation of θ becomes

ℓW(θ) =− n

2
log(2π)− 1

2
log det{CW(θ)}

− 1

2
YT

WCW(θ)−1YW,
(6)

where CW(θ) = WC(θ)WT and YW ∼
NN−p(0,WC(θ)WT). One immediate consequence is
that the likelihood function is decoupled. Furthermore,
the following theorem shows that CW(θ) is more stable
numerically than C(θ).

Theorem 3.2. If κ(A) → R is the condition number of the matrix
A ∈ RN×N , then

κ(CW(θ)) ≤ κ(C(θ)).

Proof. See [31], [32].

Remark. Evaluating the likelihood function ℓW(θ) requires
the computation of log det{ CW(θ)} and solving CW(θ)−1

YW. This can be done by constructing a Cholesky factor (see
[41]) of CW. From Theorem 3.2 this is more stable numeri-
cally than evaluating ℓ(θ). Nonetheless, the computational
efficiency can be significantly increased by constructing a
sparse matrix version of CW , which we refer to as C̃W , that
is close to the full dense matrix. The sparse matrix C̃W is
built using a distance criterion approach ( [31], [32]). A sparse
Cholesky factorization can now be computed. An alternative
method for evaluating CW(θ)−1 YW is an iterative method
such as CG iteration ( [41]). This is discussed more in
detail below. Note that in practice to estimate θ accurately,
it is unnecessary to compute the Cholesky factor of the
entire sparse matrix C̃W , but just sparse sub-blocks. The
computational burden will be significantly reduced (See [31],
[32] for details).

We now show how to construct a multilevel predictor that
gives rise to well conditioned multilevel covariance matrices.
As pointed out in our problem setup, this is equivalent to
a best linear unbiased predictor but much easier to solve
numerically, making it suitable for missing data problems in
large datasets. Consider the system of equations(

C(θ) X
XT 0

)(
γ̂

β̂

)
=

(
Y
0

)
In [27] the authros show that the solution of (3) is

given by the GLS estimate of β (equation (4)) and γ̂(θ) =
C−1(θ)(Y − Xβ̂(θ)). The BLUP at the targe point x0 is
given by

Ŷ (x0) = k(x0)
Tβ̂(θ) + c(θ)Tγ̂(θ). (7)

Furthermore, the Mean Squared Error (MSE) at the target
point x0 is given by

1 + ũT(XTC(θ)−1X)−1ũ− c(θ)TC−1(θ)c(θ),

where ũT := (XC−1(θ)c(θ)− k(x0)).
From (3) the key observation is that XTγ̂(θ) = 0, which

implies that γ̂ ∈ RN\Pp(S). Thus it can be rewritten as
γ̂ = WTγW for some γW ∈ RN−p. From equation (3)
rewrite C(θ)γ̂ +Xβ̂ = Y as

C(θ)WTγW +Xβ̂ = Y. (8)

Now apply the matrix W to equation (8) and obtain
W{C(θ)WTγW +Xβ̂} = WY. Since the columns for X
are in Pp(S), it follows WX = 0 and

CW(θ)γW = YW. (9)

The advantage of this form is that CW(θ) is better condi-
tioned due to Theorem 3.2 and γW can be solved by applying
a numerical inversion algorithm. Next, γ̂ can be computed
by applying the transformation γ̂ = WTγW. Finally, the
GLS estimate β̂ can solved from (8) by applying the least
squares

β̂ = (XTX)−1XT (Y −C(θ)γ̂). (10)

In Figure 1 a workflow of the imputation method is shown.
Remark. It is remarkable that γ̂ can be solved for indepen-
dently of the GLS estimate β̂ and in turn, β̂ can be solved
as a least squares problem without the need to invert the
covariance matrix C(θ). Furthermore the multilevel solution
of the BLUP using equation (5), (9) and (10) leads to the same
exact answer as the original BLUP in equation (5). However,
from Theorem 3.2 the multievel BLUP is numerically more
stable. See Table 1 for the differences in condition numbers
for C and CW. This is of particular importance since it is
known that if matrices are ill-conditioned they cannot be
inverted (directly or indirectly) with accuracy [40]. This is
the reason that a nugget is usually added to the covariance
matrix. However, this changes the model to make it easier to
solve, but does not solve the original BLUP.

The linear system of equations (9) can be solved using a
direct or iterative approach. If N is relatively small, a direct
method such as a Cholesky factorization ( [41]) will work
well. However, for large N , due to well-conditioning of the
matrix CW (θ), a CG ( [41]) method is a better approach. Let
γn
W be the nth conjugate gradient estimate of γW, where

γ0
W is the initial guess. The main cost of the CG method is in

computing the matrix vector products CW(θ)γn
W. This can

be done in 3 steps as:

γn
W

WTγn
W−−−−−→

(1)
an

C(θ)an−−−−−→
(2)

bn
Wbn−−−→
(3)

CW(θ)γn
W.

(1) The first step transforms γn
W into a single level (original)

representation in RN .
(2) The matrix vector product C(θ)an is computed with a

summation method. For problems in R2 and R3 this
we can achieve this efficiently (O(N) computational
cost) using a Kernel Independent Fast Multipole Method
(KIFMM) ( [31], [52]) or a Hierarchical Matrix ( [50]). For
d > 3 dimensions the direct approach is used with a cost
of O(N2).

(3) For the last step, bn is transformed to a multilevel
representation and the matrix vector product CW(θ)γn

W

is obtained.
Remark. A preconditioner PW can be used to speed up
the convergence rate of the CG method, and the system of
equations

P−1
WCW(θ)γW = P−1

WYW (11)

is solved instead of (9). For the multilevel method, PW can
be constructed using the diagonal entries of CW. Note that
it is possible that CW(θ) will have small condition numbers.
If this is the case no preconditioner is used.
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Data

Training
(xT ,yT )

Missing values
predictors x0

Multilevel
L, W

Estimation
lW(θ̂)

Multilevel
L, W

BLUP (Imp.) Ŷ (x0) =

k(x0)
Tβ̂(θ̂) + c(θ̂)Tγ̂(θ̂)

Fig. 1: Multilevel Kriging/BLUP flowchart. Training: The
data is split into the predictors xT and the observation
data yT corresponding to the variable that will be imputed.
Multilevel: The multilevel operators are constructed (L,W).
Estimation: The coefficients θ̂ of the covariance coefficients
are estimated. BLUP (Imputation): Given the multilevel
operators (L,W), the covariance coefficients θ̂ and the
predictors for the missing values x0 imputing the missing
variable.

Remark. Given k CG iterations, the total computational cost
for computing Ŷ(x0) from (7) using the multilevel approach
is O(p3 + (k + 1)Nα + 2Nt). For 2 and 3 dimensional
problems, the parameter α is 1 with the use of the KIFMM
method. For higher dimensions, a direct approach is used,
and thus α = 2. The residual error for the CG method decays
exponentially with respect to k and at a rate that is a function
of the condition number. Small condition numbers lead to
fast convergence, see [41] for details.
Remark. The multilevel method is implemented in MATLAB
[53] and C/C++. More details can be found in the paper by
[32]. However, for this paper we have further optimized the
code which now runs at least twice as fast.

4 EXPERIMENTS AND RESULTS

As discussed in the introduction, missing data in the NIS
and SID datasets form an important problem underscored in
the HCUP report #2015-01 ( [21]). The report highlights,
the problem of missing data for discharge information
(total charge) in rural hospitals with potential consequences
involving erroneous statistics and consequently possibly
sub-optimal and even misinformed state and federal policy
decisions. The missing data rates for total charge are at 2.08%
for the NIS 2012 data. The Michigan SID data has a total
charge missing data rate significantly higher at 19.79%. We
test the multilevel approach on the NIS 2013 dataset. The
NIS 2013 missing data rate for total charge was 2.00 %.

In this section we contrast the accuracy performance of
the multilevel Kriging/BLUP method against recommended
imputation algorithms in HCUP report #2015-01, including
Predicted Mean Matching and Predicted Posterior Distri-
bution methods. We make further comparison with more
traditional methods such as K-Nearest Neighbors (KNN) and
KNN regression. In particular, we test the accuracy of the
various methods on the total charge variable, with its highest
missing data rate.

The computational and accuracy performance of the
multi-level Kriging method is analyzed with the following
choice of Matérn covariance function

ϕ(r, ρ, ν) :=
1

Γ(ν)2ν−1

(√
2ν

r

ρ

)ν

Kν

(√
2ν

r

ρ

)
,

with Γ the gamma function, ν > 0, ∞ > ρ > 0, and where
Kν is the modified Bessel function of the second kind. The
parameter ν controls the shape of the Matérn kernel and ρ is
the length correlation. Thus for this case θ = (ν, ρ), and the
stochastic optimization approach seeks the estimate of θ that
best explains the data.

To demonstrate the numerical efficiency of the multi-level
method, we generate a series of random observation nodes
on a n-sphere Sd−1 := {x ∈ Rd | ∥x∥2 = 1} with dimension
d. We create a series of nested sets of nodes Sd

1 ⊂ · · · ⊂ Sd
7

that vary with N = 2000, 4000 to N = 128, 000 in size. The
final set Sd

7 contains 128,000 randomly selected points on
the n-sphere Sd−1. For the covariates we choose the first
d− 1 dimensions. In other words, forming a matrix of node
coordinates (N ) by the number of dimensions d, we pick the
first d−1 columns as our covariate nodes. The last dimension
(column) is chosen to be the observations. The polynomial
basis chosen for the design matrix X is Total Degree (TD)
with maximum degree w.

The imputation performance of the multi-level Kriging
method is tested on the National Inpatient Sample (NIS)
datasets ( [39]), Healthcare Cost and Utilization Project
(HCUP), Agency for Healthcare Research and Quality with
the 2013 data set. Among all 190 variables in this dataset,
totchg (total charge), as, the most problematic, is a good
candidate to test the performance of the multi-level method.
The variables npr (number of procedures), ndx (number
of diagnoses), los (length of stay) and age are used as
predictors. Note that as an experimental comparison we also
test los as a candidate response variable, though this would
not be necessary in practice since its missing data rate is 0.004
% in the NIS 2013 dataset. We extract from the NIS 2013 data
matrix these five variables and remove any incomplete rows.
To test the imputation performance of the multi-level Kriging
method, N rows are selected at random for N = {2, 000;
5, 000; 10, 000; 50, 000; 100, 000 }.

The error performance is measured using the relative
root-mean-square error (rMSE), mean absolute percentage
error (MAPE), and the mean of the log of the accuracy Ratio
(lnQ). The relative RMSE represents the sample standard
deviation of the differences between predicted and observed
values normalized by the mean of the square of the observed
values. The MAPE corresponds to the averaging the ratio of
differences between predicted values and observed values
to observed values; here there is a bias towards small
predictions. lnQ overcomes this issue by using an accuracy
measure based on the ratio of the predicted to actual value.

The Kriging predictor is compared with other methods
such as the Generalized Least Squares (GLS), k-nearest
neighbors (KNN) and KNN regression. Comparisons are
also made with the following four well known imputation
methods: PMM (predicted mean matching), PPD (posterior
prediction distribution), BEM (bootstrapping EM), and DA
(data augmentation). Furthermore, we obtain results for the
Discrimitative Deep Learning (DDL) from the AutoML li-
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(a) θ = (ν, ρ) = (5/4, 10), d = 20, w = 3 (p = 1771)
N κ(C) κ(CW) itr(C) itr(CW) MB(s) Itr(s) Total(s) Effγ,β

16,000 5× 107 6 178 10 52 56 109 31,520
32,000 1× 108 10 237 13 125 276 403 32,290
64,000 3× 108 17 303 16 288 1405 1,695 33,540

(b) θ = (ν, ρ) = (5/4, 10), d = 25, w = 2 (p = 351)
N κ(C) κ(CW) itr(C) itr(CW) MB(s) Itr(s) Total(s) Effγ,β

16,000 3× 107 17 139 17 7 89 98 3,510
32,000 8× 107 33 183 22 16 462 480 2,920
64,000 2× 108 64 231 29 35 2,400 2,437 2,800

128,000 - - - 38 78 12,644 12,724 -

TABLE 1: Multilevel BLUP Kriging results for the n-sphere data set with d = 20 and d = 25 dimensions, TD design matrix of
degree w, and Matérn covariance function with parameters (ν, ρ). (a) Computational wall-clock times for solving the Kriging
prediction for d = 20 and θ = (5/4, 10). Due to the direct method to compute the matrix vector product, the computational
burden increases somewhat faster than quadratic. However, compared to the single level iterative approach it is ≈ 33, 540
faster for N = 64, 000 observations. (b) Kriging prediction for d = 25 and θ = (5/4, 10). For N = 64, 000 observations the
efficiency of the multilevel BLUP is about 2,796 times faster for the same accuracy.

brary autokeras software package [54]. The model is optimized
by setting the number of trials to 50 and the number of epochs
to 50 also [17].

Kriging/BLUP provides 38% reduction in error for rMSE,
75% for MAPE and 72% for mean lnQ compared to PPD
(see Table 2). Similar performance is also achieved compared
to PPM, DA and BEM for rMSE, but significantly better for
MAPE and lnQ. We will analyze this in more detail in this
section. Our error rates are significantly lower than the state
of the art methods recommended by HCUP report#2015-01,
with up to a 75% reduction. Indeed, this can have a strong
impact on funding as an example of policy decision-making.
As an example, if for half of a group of rural hospitals the
total charge is missing, mean estimates could be significantly
off under recommended methods, with poor funding and
related policies as a consequence. In particular, our numerical
results show that MAPE errors for PPD, BEM, DA and can
be more than 390% greater than the multilevel method, with
a figure of 140% for PMM.

The numerical performance of the multilevel approach
is tested on the datasets Sd

k for k = 4, . . . , 7, d = 20
and d = 25 dimensional problems. Since d > 3, a fast
summation (convolution) method such as the KIFMM is
unavailable. Each matrix-vector product of the conjugate
gradient iterations is computed with the direct approach
using a combination of the Graphics Processing Unit (GPU,
Nvidia GTX 970) and a single i7-3770 CPU @ 3.40GHz
processor.

We test the performance of BLUP only since the multi-
level estimation computational burden is almost negligible
in comparison (See [32] for more detail). In Table 1 (a) and (b)
numerical results for computing the BLUP parameters γ̂ and
β̂ for d = 20 and θ = (5/4, 10) are shown. The CG relative
residual tolerance accuracy is set to tol = 10−3, itr(A) is
the number of CG iterations needed to achieve tol residual
for any matrix A. MB(s) is the wall-clock time in seconds
needed to compute the multilevel basis. Itr(s) is similarly
time needed to solve for γ̂ using the CG method. Total(s)
is total time needed to solve for β̂ and γ̂. An efficiency
comparison between the cost of computing β̂ and γ̂ with the
original covariance matrix C and the multilevel approach is
given by Effγ,β .

We first notice that the condition number for C is large
(κ(C) ≈ 108) even for relatively small problems. This
has several numerical stability implications including a
sever downgrade for maximal accuracy using any numer-
ical inversion algorithm. A single precision computation
would lead to erroneous results. Using a double precision
computation can ameliorate the accuracy problem, but still
exhibit slow convergence. In comparison κ(CW) ≈ 20 is
significantly smaller leading to a stable and fast matrix
inversion algorithm.

Compared to the traditional iterative approach using
the covariance matrix C (single level representation), the
multilevel method is thousands to tens of thousands times faster
for the same accuracy. This can be observed in Table 1 (a) and
(b). The source of this efficiency is due to: i) The number of
iterations for convergence to the same tolerance accuracy is
significantly smaller. ii) The multilevel approach only needs
one iterative matrix inversion, in comparison to p iterative
matrix inversions needed for the traditional single level
representation approach. This is relevant for large problems
where the matrix cannot reside in memory.

We can now test the accuracy of the Kriging method. In
particular we test the performance of the multi-level Kriging
method with respect to the following regression problems: i)
los∼ totchg + npr + ndx, ii) totchg∼ los + npr + ndx
+ age and iii) log(totchg) ∼ log(los) + log(npr) + ndx +
age (normalized).

i) totchg ∼ los + npr + ndx + age. For predicting total
charge, we employ los, npr, ndx and age as predictors
for datasets of size N = 2, 000 to N = 100, 000 with
a 90% training and 10% validation split. This is a 4 di-
mensional problem, so we cannot use a fast summation
method. In Figure 2 Kriging/BLUP is compared to kNN-
R, kNN and GLS for the prediction on the validation set.
Observe that as the number of observations increases,
Kriging outperforms all the other methods. Furthermore
from Figure 3 (a) the general shape of the population,
including mean and variance, of the validation dataset
is well captured by Kriging, but significantly degrades
for kNN-R, KNN and GLS. The same phenomenon was
also observed for PMM, PPD, BEM and DA. In addition,
from the table in Figure 3 (b) we observe that Kriging
outperforms GLS, kNN and DDL consistently in all
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(a) totchg imputation

Methods rMSE MAPE lnQ
PMM 0.864 1.235 1.00
PPD 0.869 3.378 1.779
BEM 0.869 3.317 1.745
DA 0.867 3.449 1.787
Kriging 0.535 0.861 0.492

(b) totchg Imputation (with log trans.)

Methods rMSE MAPE lnQ
PMM 0.802 1.102 0.888
PPD 0.967 1.117 0.924
BEM 1.092 1.171 0.943
DA 0.968 1.192 0.935
Kriging 0.545 0.653 0.418

TABLE 2: Imputation performance comparison of Kriging/BLUP, PMM, PPD, BEM and DA for the totchg variable with
N = 100, 000 data points. (a) Imputation performance without transformation. The Kriging approach clearly outperforms
the state of the art methods. (b) Imputation performance with log transformation. The Kriging also outperforms the state of
the art methods. Furthermore, other methods such as DA degrade with the transformation.

103 104 105 103 104 105

rMSE MAPE

kNN

GLS

kNN-R

Kriging

103 104 105

lnQ

Fig. 2: Prediction error comparison (totchg) for the 2013 NIS Dataset with respect to the number of data points N , where
90% are used for training and 10% for validation.

kNN-R

kNN

GLS

Kriging

Validation

Methods rMSE MAPE lnQ
KNN(reg) 0.618 1.227 0.721
KNN 0.850 1.300 1.328
GLS 0.590 1.821 1.011
DDL 0.566 0.926 0.637
Kriging 0.535 0.861 0.492

(b) totchg imputation

Methods rMSE MAPE lnQ
KNN(reg) 0.677 1.021 0.521
KNN 0.768 0.729 0.583
GLS 0.748 1.688 1.898
Kriging 0.662 1.189 0.997

(c) los imputation(a) log(totchg) population histogram

Fig. 3: (a) Population histogram statistical comparison of kNN-R, kNN, GLS and Kriging with respect to the validation
data set for 90,000 training and 10,000 validation datasets (N = 100, 000). Notice that Kriging more faithfully reproduces
the population statistics of the validation total charge data set. This is the advantage of the unbiased constrained in the
stochastic optimization. Note that PMM, PPD, BEM and DA methods also give similar results to kNN-R. (b) Total charge
(totchg) imputation statistical errors comparisons. Kriging provides the best imputation performance for all error measures.
(c) Length of stay (los) imputation statistical errors comparisons. For los, in general Kriging performs well.
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Fig. 4: Performance comparison for imputation of the total charge variable among Kriging/BLUP, KNN-Reg, KNN, GLS and
DDL for different training/validation proportions of the data. On the horizontal axis we have the percentage proportion for
the training dataset. The vertical axis corresponds to the rMSE, MAPE and mean lnQ metrics. As observed for all the metrics
rMSE, MAPE and mean lnQ the Kriging/BLUP method produces in almost all cases the best results.

three measures of accuracy. In Table 2 (a) we observe
that Kriging outperforms the imputation packages such
as PMM, PPD, BEM and DA for N = 100, 000 data
points with the 90%-10% training/validation split.
In Figure 4, we can observe a comparison of performance
among different methods for the totchg (total charge)
variable: Kriging/BLUP, KNN-Reg, KNN, GLS, and
DDL. This comparison is conducted across varying
training/validation proportions of the dataset (from
(10%/90%) to (90%/10%) of the data. The horizontal axis
depicts the percentage of the dataset used for training,
while the vertical axis represents metrics such as rMSE,
MAPE, and mean lnQ. Notably, the Kriging/BLUP
method consistently outperforms the other methods
across all metrics (rMSE, MAPE, and mean lnQ), with
its superiority evident in nearly all scenarios.

ii) los ∼ totchg + npr + ndx. For the experiments of
predicting length of stay, totchg, npr and ndx are
used as predictors due to the high correlation with los
and run the simulations for datasets (training set plus
testing set) of size N = 100, 000. Note that since this
is a three dimensional problem, the Kriging multi-level
code is significantly faster due to the application of the
KIFMM. From Figure 3 (c) the result of the experiment
shows that the Kriging was not always the best predictor
consistently. However, it still appears to outperform
most of the other methods. Intuitively, in this case, this
could be due to the violation of the Gaussian assumption
of the linear model.

iii) log(totchg) ∼ log(los) + log(npr) + ndx + age.
(normalized)
For this experiment the same dataset as in i) is used.
However, a log transformation is and normalization
step is applied. From Table performance:table1 (b) it is
observed that the accuracy of traditional imputations
methods improves. Although the accuracy of the Kriging
method improves somewhat, it still outperforms all
others. This indicates that the proposed Kriging method
has the capacity of handling raw and rough models

when traditional methods tend to fail.

5 CONCLUSION

In this paper we introduce novel techniques from Compu-
tational Applied Mathematics to solve large scale statistical
problems. In particular, the problem of imputation is solved
with the new multi-level Kriging method. Due to the nu-
merical and stability problems associated with the stochastic
optimization Kriging method, until recently this had limited
applicability to imputation for large datasets. Due to the in-
troduction of multi-level methods from the CAM community,
many of these limitations have been resolved. Our results
show that the multi-level Kriging method is computationally
feasible, stable numerically, accurate and mathematically
principled. In particular, it is shown that the multilevel BLUP
is exact and significantly outperforms current state-of-the-art
methods. Furthermore, it is robust and applies to a large class
of missing data problems such as massive medical records.

Multiple imputation is an important strategy for quantify-
ing the uncertainty of predictions. There are many methods
such as bootstrapping used to created multiple realizations of
data. These realizations are used to quantify the variances of
predictions. Such methods can also be used to create multiple
realizations for the multilevel Kriging/BLUP approach. How-
ever, the extension is not trivial. To more faithfully reproduce
realizations of the data, the bootstrapping approach needs
to take into account the Cholesky decomposition (see [41])
of the covariance matrix C, which is very difficult since the
matrix is large and ill-conditioned. However, alternatively
we can use a Karhunen Loéve (KL) expansion (see [55])
to create multiple realizations with the Matérn covariance
function from the Gaussian process representation of the
data. This would involve computing the eigenstructure of
the covariance function, which is significantly more stable
to compute even if the matrix is ill-conditioned. Moreover,
by using a Kernel Independent Fast Multipole (KIFMM)
approach [52] the computation of the eigenstructure in
principle can be relatively fast for problems in R3. An
advantage of the KL expansion is that it does not involve
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inversion of the covariance matrix. However, for higher
dimensional problems, such as predicting the total charge
missing data involving 4 dimensions, there are no known fast
summation methods such as the KIFMM. It is still possible
to compute the eigenstructure for a relatively large dataset
on a powerful Graphics Processing Unit (GPU).

Alternatively, there exists a set of linear equations for the
BLUP that solve for the Mean Square Error (MSE) of the
prediction. This involves inverting the covariance matrix C;
thus for large datasets it can be numerically unstable and
intractable. [31] show that there exists a formulation for the
multilevel approach that is significantly faster and numeri-
cally stable. However, it can still be intractable for estimating
large numbers of missing data. We shall investigate these
approaches in more detail in a future publication.

Finally, we have not addressed the problem of imputation
for categorical data, which is part of the HCUP dataset. Our
approach can potentially deal with the categorical data by
treating it as numerical and defining a cutoff. For example
this is what is done with Support Vector Machines (SVMs).
The question that arises is what choice of cutoff do we use
? We will deal with these types of variables in a future
publication.
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