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Abstract—Federated learning has been rapidly evolving and
gaining popularity in recent years due to its privacy-preserving
features, among other advantages. Nevertheless, the exchange of
model updates and gradients in this architecture provides new
attack surfaces for malicious users of the network which may
jeopardize the model performance and user and data privacy.
For this reason, one of the main motivations for decentralized
federated learning is to eliminate server-related threats by
removing the server from the network and compensating for it
through technologies such as blockchain. However, this advantage
comes at the cost of challenging the system with new privacy
threats. Thus, performing a thorough security analysis in this new
paradigm is necessary. This survey studies possible variations
of threats and adversaries in decentralized federated learning
and overviews the potential defense mechanisms. Trustability
and verifiability of decentralized federated learning are also
considered in this study.

Index Terms—Federated learning, privacy-preserving, security,
blockchain, adversarial attacks, decentralized federated learning,
verifiable federated learning.

I. INTRODUCTION

W ITH the widespread use of machine learning over the
recent years, new concerns have been raised regarding

user and data privacy. The data-driven nature of these intelli-
gent models necessitates gathering users’ data to constantly
improve and maintain the operating statistical model. This
issue becomes more problematic in large-scale distributed
systems with millions of users such as mobile networks.

Aside from privacy issues, in large-scale systems, com-
municating user data may pose an overhead to the network.
This is while information technology and intelligent devices
are evolving at a rapid pace, and in the wake of it, there is
an explosion of data at the edge of the network. Given the
potential benefits of this data collection process for improving
their model, organizations tend to make the best use of it
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for knowledge extraction with minimal waste of data. Thus,
modern intelligent systems struggle to find the optimal trade-
off between user privacy and service quality.

Inspired by recent breakthroughs in distributed optimization
[1], Federated Learning (FL) has proposed as a potential solu-
tion to resolve the aforementioned challenges [2]. In contrast
to distributed machine learning which is shown in Fig. 1(a),
FL proposes training local models at the edges of the network
and then sharing the model parameters to a central server that
aggregates the received information and then updates all the
client models.

Aside from its use in distributed training of Deep Learning
(DL) models, FL offers additional advantages. Firstly, by
communicating the local model parameters rather than the
user’s data, the central model is trained on decentralized
data, which no longer jeopardizes data privacy. Secondly, the
communication is extensively reduced for large-scale systems,
as the volume of model parameters is often smaller than the
training data itself. The general scheme of FL workflow is
illustrated in Fig. 1(b). As shown in this figure, for client i, a
model Mi is constructed locally based on the local user data
Di. The model parameters Mi are then sent to a server that
aggregates all models in the form of

∑
(M1,M2,M3) = u,

where
∑

(·) and u are the aggregation function and the
generated update, respectively. Finally, u is sent back to the
clients to update local models.

Despite the breakthrough made by FL, the proposed ar-
chitecture was not flawless and demanded further research
endeavors on the topic. To begin with, although the user
data is not being shared in the network, communicating local
parameters is still vulnerable to sniffing attacks which will lead
to stealing model parameters for launching an inference attack
to extract sensitive information from the local training data at
the edges of the networks [3]. In addition, the trustability of
the central server is sometimes questionable in environments
such as wireless networks. Moreover, having a Single Point of
Failure (SPF) in the system is not ideal since a compromised
server can affect the whole network [4]. While various works
have been dedicated to designing defense mechanisms for FL,
it was proposed that decentralizing the FL architecture will
eliminate part of these security challenges [5].

Relying on Peer-to-Peer (P2P) communications, Decentral-
ized Federated Learning (DFL) improves both the reliability
and scalability of FL by eliminating SPF and enhancing the
communication efficiency [6], [7]. The process of local update
preparation is similar to that of FL; however, exchanging
model parameters and model aggregation is mostly undertaken
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Fig. 1. Workflow of distributed training, FL, and DFL with three nodes. Di, Mi, and u denote client data, local model parameters, and the generated update
by the server. In this example, three clients are shown in the picture (i.e., 1 ≤ i ≤ 3).

through P2P communication or blockchain technology. For in-
stance, a generic diagram of a DFL workflow is shown in Fig.
1(c), where a client is assigned with the aggregator role in each
round (i.e., shown with dotted lines) to apply the aggregating
function

∑
(M1,M2,M3) = u on the received parameters

and update all nodes with u. The protocol for selecting the
aggregating node and the

∑
(·) function varies among different

DFL architectures. Integration with blockchain brings about
additional advantages including traceability and immutability.
Despite the security and efficiency features of DFL, this archi-
tecture is not flawless. For instance, incorporating blockchain
into FL may come at the cost of making the system defenseless
against blockchain-related security adversaries. The trustabil-
ity of the DFL participants is another issue of concern that
requires further research.

Currently, the literature lacks a survey that primarily studies
the security and privacy of DFL. Available reviews on DFL
generally study trending approaches in DFL with an emphasis
on the application in the Internet of Things (IoT) [8]–[13]. On
the other hand, surveys on security and privacy of centralized
FL [14]–[19] do not discuss the applicability of their analysis
and findings to DFL. Among the limited number of surveys
on DFL, [20] studies security issues in centralized FL that
can be addressed through blockchain integration. However,
the literature still lacks a thorough security analysis of threats
in DFL and its potential defense mechanisms. Hence, it is
worthwhile to perform a comprehensive survey on the new
attack surface created on DFL, and defense mechanisms that
can be directly used or adapted for DFL. Toward this goal,
this survey makes the following contributions:

• State-of-the-art DFL methods are reviewed in terms of
security robustness and employed technologies.

• Potential threats to DFL systems are identified and ex-
plained.

• Defense mechanisms that can safeguard DFL systems
against attacks are studied and analyzed.

• The effect of blockchain integration on the security and
privacy of DFL is studied.

TABLE I
ABBREVIATIONS USED IN THIS ARTICLE. THE LIST IS SORTED

ALPHABETICALLY.

Abbreviation Definition

BAFFLE Blockchain-based aggregator free FL
BEAS Blockchain enabled asynchronous and secure FL
BFLC Blockchain-based FL with committee consensus
BindaaS Blockchain-based deep learning as-a-service
DDoS Distributed denial of service
DFL Decentralized federated learning
DL Deep learning
DoS Denial of service
DP Differential privacy
f -DP Functional differential privacy
FL Federated learning
FTL Federated transfer learning
GAN Generative adversarial network
HE Homomorphic encryption
HFL Horizontal federated learning
IoT Internet of things
P2P Peer-to-peer
PoS Proof of state
PoW Proof of work
TEE Trusted Executive Environment
TL Transfer learning
VFL Vertical federated learning
SC Smart contract
SGD Stochastic gradient decent
SL Swarm learning
SMC Secure multiparty computation
SPF Single point of failure

• The connection between verifiable FL and DFL is studied
from a security standpoint.

• Undiscovered domains and demanding research direc-
tions in enhancing DFL security and privacy are identified
and introduced.

Reviewed works in this survey are collected from Scopus
and Google Scholar searches. The keywords used for the
search are FL, DFL, security, privacy, attack, defense, and
blockchain. After the initial search, irrelevant papers to the
topic of this survey were excluded. Furthermore, the search
was limited to works after 2015, and we consider published
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or in-press research works, as well as arXiv preprints.
Towards this, we outline the background for this survey in

Section 2. Preliminaries of DFL are reviewed in Section 3.
Section 4 studies possible threats to DFL. Section 5 discusses
the potential defense mechanisms in DFL. Section 6 elaborates
on the verifiability of DFL. Future research directions are
discussed in Section 7. Finally, the survey is concluded in
Section 8. This survey contains several abbreviations to make
discussions more concise, which are listed in Table I.

II. BACKGROUND

DFL is a paradigm that often encompasses both FL and
blockchain technologies, although it is important to note
that DFL can exist independently of blockchain. To better
comprehend the concept of DFL, it is crucial to have a clear
understanding of the fundamentals of FL and blockchain.
Thus, the following section provides a concise overview of
these concepts.

A. Federated Learning

FL was proposed to reduce the risks of data ownership in
collaborative training of DL models. Prior to the introduc-
tion of FL, collaborative training required immense loads of
data exchange between participants of a distributed machine
learning framework in which the clients constantly send local
training data to a central server. The distributed model is
then trained on the accumulated training data gathered from
across the network. Nevertheless, communicating user data
and overburdening the network with excessive communication
load raised new concerns that motivated the invention of FL
[2]. In simple words, rather than sharing the training of the
local data with the server, the client in FL locally trains a
model of the same structure on the user data and sends the
obtained model parameters to the server once convergence is
achieved. The server aggregates these parameters (e.g., neural
network weights) and updates all the client models with the
aggregated parameters. As this cycle continues, in each round,
clients initialize their local model parameters with the received
update from the server before starting the local training and
issuing an update to the server. It is worth mentioning that
the collaboration schemes between clients at the edge of
the network have been a topic of interest in the domain of
multi-agent systems even before the birth of FL [21]. For
instance, client-server collaboration in FL somehow resembles
the umbrella system in which all agents communicate with a
server [22].

The aforementioned process in FL, however, assumes the
homogeneity of data among all clients, which may not al-
ways be the case. This leads to the evolution of FL into
a more advanced structure for dealing with heterogeneous
data and comes with additional security perks. Specifically,
[23] categorizes techniques in this field into three groups: 1)
Horizontal FL (HFL) [24], 2) Vertical FL (VFL) [23], [25],
and 3) Federated Transfer Learning (FTL) [23], [26]. The
difference between these groups is in the nature of the training
data in the FL systems. HFL which is basically defined based
on the initial FL model in [24], assumes a diverse range

of samples across all local training sets that all fall under
a similar feature space. VFL on the other hand, considers a
common sample space among participants who differ in the
feature space. FTL addresses the minimal overlap between
both sample and feature space by resorting to transfer learning
for transferring knowledge between participants.

It is worth mentioning that this categorization has primarily
focused on centralized FL. Therefore, the focus of this survey
is primarily on DFL which differs from the centralized FL.
The central server in the FL systems is in charge of verifying
the network clients, aggregating the local parameters, and
broadcasting an update. With the absence of servers in the
DFL structure, these tasks must be performed using the client
networks. The current literature usually devises the concept of
blockchain to carry out the mentioned tasks.

Even though the initial FL model was proposed on the basis
of DL, decision tree models can also be employed and adapted
to FL frameworks [27]–[29]. Threats and defense mechanisms
that will be later reviewed in this work generally apply to both
DL and tree-based models.

B. Blockchain
Blockchain is designed primarily with the objective of

making the data exchange immutable and traceable over a
P2P network [30]. Similar to FL, in a blockchain network
data is decentralized, and each user will transfer data using
a block. This consists of the data, a hash acting as a unique
identifier for the block, and a previous hash pointing to the
previous block in the chain. While these hashes make the data
traceable in the chain, they also complicate tampering with
data, as changing the data in an existing block will also alter
the associated hash which creates a discrepancy in the chain.

A key idea behind the blockchain is to prevent a certain
participant from controlling the network and provide all net-
work members with an equal chance to verify and control
the transactions [8], [31]. Nonetheless, finding the optimal
solution to ensure fairness in assigning the evaluators is still
an open problem and as a result, many consensus mechanisms
have been proposed over time. Perhaps, the most common
consensus mechanisms are Proof of Work (PoW) and Proof
of State (PoS), albeit they are not necessarily the best. In
PoW, the participants (also called miners) need to solve a
time-consuming problem and anyone who achieves the answer
quicker will get a chance to contribute to the chain. As an
alternative to PoW, PoS randomly selects the evaluators with
the aim of improving the scalability.

Based on the current literature, Blockchain approaches can
fall into four major categories, namely 1) public, 2) private,
3) consortium, and 4) hybrid blockchain (i.e., we refer to this
as DFL) [8], [32], [33]. These variations are briefly explained
in the following.

1) Public: Blockchain is built in a permissionless network
that allows anyone to join the network and participate
in the consensus process [30].

2) Private: Participants can join the network through a
received authorization [34], [35]. While permissions are
granted in a centralized manner, the consensus mecha-
nisms are decentralized [36], [37].
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Fig. 2. Generic process of blockchain-based DFL. SC can use any choice of aggregation mechanism such as selecting the update with the highest score or
averaging all received model parameters. Si indicates the calculated score for the estimated model parameters for client i.

3) Consortium: Blockchain is semi-decentralized and the
network access is managed by more than one entity [38],
[39].

4) Hybrid: Block construction is carried out within a
private network and the storage is done through a public
network [40], [41].

III. DECENTRALIZED FEDERATED LEARNING

As mentioned, the main flaw with the centralized FL is
the dependency of the entire federation on a central server
whose privacy and performance directly affect all the clients
in the system [42]–[44]. In other words, a compromised server
will jeopardize the whole federated learning system [45]. To
eliminate the dependency of the whole network on a single
node and also enhance the communication efficiency [46],
DFL resorts to P2P communications to bypass the need for
a central server. To do so, model aggregation and participant
verification should be carried out in a serverless fashion.

As explained in Section II, DFL often uses blockchain to
facilitate inter-node communications. While this combination
is non-absolute, blockchain can effectively facilitate commu-
nication by treating model updates as data within a block and
sharing the block with respect to a consensus mechanism.
In this process, local model construction is similar to that
of FL, and prepared updates will be in the form of a data
block. The prepared block will be then shared with the rest
of the nodes for consensus and addition to the blockchain.
The aggregation mechanisms of DFL work on the basis of
decentralized Stochastic Gradient Decent (SGD), which makes
use of gossip averaging [47].

DFL models that use blockchain have distinct architectures.
For instance, the block structure, information included in the
headers, aggregation, and consensus mechanisms can all be

different in each architecture. However, a generic scheme is
shown in Fig. 2 that resembles the most common practices
in designing a blockchain-based DFL. In this example, the
blockchain is initialized using a single block containing the
starting global model. Each update is added as a new block that
is linked to the previous block in the chain using a header. On
the client’s side, the local model is initialized using the global
model ut and trained on the i-th client data Di. Once the
trained model Mi is obtained, a score Si is estimated w.r.t. the
difference between the global model and the estimated local
model. Nevertheless, not all blockchain-based DFL models
necessarily use a scoring system. The client then uploads data
to the blockchain by creating a block containing a header,
trained model, estimated score, and the uploader identifier
(ID). In some architectures, clients are directly communicating
with a set of miners to obtain the Merkle root of the data before
uploading the block. It is also worthwhile to mention that the
block size is often limited to a fixed size. If the model size
is larger than the block size, the uploader has to upload a set
of serialized blocks to the blockchain [48]. The SC on this
blockchain uses a set of rules to determine when the global
model should be updated. For instance, a minimum number
of unique clients k are required to participate in updating
ut. Furthermore, considering that each client is allowed to
serialize its updates into multiple blocks, a limit is set to
define the maximum number of contributions by each client
in each round. The aggregation mechanism varies in different
DFL architectures. While the majority of DFL models use an
averaging function

∑
(·) similar to that of federated averaging

(FedAVG) [2], other frameworks use different approaches such
as selecting the update with the highest score [48].

While the initial DFL model [49], [50] was proposed with
the aim of security enhancement and failure robustness of FL
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Fig. 3. Advances in decentralized federated learning in time. The order of the methods is set based on the first version that became available online (e.g.,
pre-prints).

using Bayesian beliefs of one-hop neighbors, several research
studies extend their work by improving the overall efficiency
and security. Fig. 3 illustrates the historical evolution of DFL
since it was first proposed in 2018. BAFFLE [48] makes
use of Smart Contracts (SC) to facilitate storing the FL
model and clients’ states. Model updates and aggregation
is also carried out by resorting to SC. BAFFLE takes the
computational states into account in order to preserve fairness
among clients. Another approach, Blade-FL [51], uses clients
for both mining and training via gossip learning. A novel
consensus mechanism was proposed in [52] to enhance the
efficiency and privacy of the system. The DFL framework
proposed based on this committee consensus mechanism is
called BFLC. The Biscotti technique [5] integrates DFL with
Differential Privacy (DP) to safeguard DFL against a range of
attacks. Focused on healthcare applications, [53] introduces
the BindaaS method, which integrates DL as a service and
lattices-based cryptography. This enables BinDaaS to employ
an authentication phase that enhances DFL attack resilience.
Another DP-based DFL approach called LearningChain is
proposed with the aim of combating Byzantine attacks [54]. To
do this, LearningChain utilizes a new aggregation mechanism
for decentralized SGD. Reference [55] designs the PIRATE
framework based on the sharding approach in blockchain
which helps in securing the aggregation process. BEAS [56]
employs DP, gradient pruning, and anomaly detection to
protect DFL against poisoning attacks. BEAS is also adapted
for heterogeneous data to ensure proper convergence of the
global model. BrainTorrent [57] is a DFL method that employs

version control and arbitrarily assigns a participant to act
as the server. A reputation management scheme is used in
[58] to select updates from reliable workers in the blockchain
which reduces the probability of successful poisoning attacks
in the DFL system. BlockFLA [59], uses smart contracts to
detect and penalize malicious nodes by means of monetary
penalty. BlockFLA requires uploading hashed updates into
separate private and public blockchains. Smart contracts is
used for aggregating gradients whereas hashed updates are
used for evaluating the updates through recovering the pa-
rameters to detect any mismatch. DFedForest is a tree-based
DFL framework that uses bagging for tree construction [60].
This method devises a private test dataset for evaluating the
uploaded parameters as malicious updates are expected to
result in anomalous outputs on this data. Bift, [61], designs
a Proof of FL by combining PoW with FederatedAVG [2]
and FederatedSGD [62] aggregation schemes to reach secure
DFL with low communication overhead. A verifiable version
of DFL [63] incorporates private key sharing and gradient
masking into the consensus mechanism to defend against
malicious miners and dropouts. Swarm Learning (SL) also
integrates FL and blockchain to distributively train a model
for diagnosing a number of diseases while safeguarding the
patient’s data privacy and security [64]. Security and privacy
features of SL are limited to those of blockchain and the
P2P DFL design. However, there is an extension of SL that
couples it with HE is also presented in [65] to secure SL
communications against privacy attacks. Various aspects of
SL such as fault tolerance, scalability, and fairness are studied



6 IEEE TRANSACTIONS ON BIG DATA, JANUARY 2024

TABLE II
IDENTIFICATION OF SOURCES OF ATTACKS IN FL SYSTEMS.

Attacks Source of Attack

Data poisoning Malicious client
Gradient manipulation Malicious client
Backdoor attack Malicious client and malicious server
Evasion attack Malicious client and model deployment
Non-robust aggregation Aggregation algorithm
Training rule manipulation Malicious client
Inference attacks Malicious server and communication
GAN reconstruction Malicious server and communication
Free-riding attack Malicious client
Man-in-the-middle attack Communication

in [66], and the results indicate an overall improvement over
centralized FL.

Despite the security advantages of blockchain integration
with DFL, communication delay and resource consumption
issues often become problematic in this domain [31]. As
mentioned in Section II, the process of model aggregation and
achieving a consensus often requires sufficient computational
power at the edge of the network which may not always be
practical (e.g., mobile networks). This becomes more critical
for consensus mechanisms such as PoW. As a result, the
model aggregation process may be usually delayed due to the
potential computational constraints.

IV. THREATS TO DECENTRALIZED FEDERATED LEARNING

As shown in Fig. 4, the security and performance of DFL
are directly related to those of FL and blockchain. Generally,
threats to DFL target privacy or the performance of the global
model. In centralized FL, all the possible threats involve the
server at some point as the server is the core of the system
for aggregation, communication, and validation. As a result,
the trustworthiness of the server is of great importance in
FL as a malicious server can easily attack all clients. On the
other hand, attacking the server and causing a malfunction can
also disable the entire system. Table II lists sources of threats
for common attacks on FL. However, in DFL, all possible
threats will be traced back to the clients or miners. Table V
indicates attack models that are considered in the design of
the aforementioned DFL techniques.

Malicious clients can follow different attack models to
jeopardize the performance or privacy of the system [16]. For
instance, an adversary can be either semi-honest or aggressive.
In the semi-honest model, the objective is to infer confidential
information while complying with the DFL protocol. This
phase can be also used as a reconnaissance step prior to
launching an aggressive attack where the aim is to degrade
the system’s performance. Using this combination, one can
first learn the global model parameters using a semi-honest
approach and then actively forge malicious updates in order to
insert a backdoor in the global model. Due to the immutability
of blockchain, hackers cannot directly manipulate the training
data in a block. Nevertheless, they can reach their objective
by sending the gradients that lead to incorrect predictions. To
do so, gradients can be forged targeted or untargeted. As the
name implies, the latter aims at degrading the performance of

all classes in general whereas the targeted scheme only attacks
a certain class without tampering with the rest of the model
[16].

A. Attacks on Performance

The performance of the DFL model is mostly targeted by
means of poisoning attacks. In addition, there are certain
blockchain-based attacks that also apply to DFL. An overview
of these attacks for DFL is given in the following.

1) Data Poisoning: Data poisoning techniques in FL and
DFL could be somewhat different. In centralized FL, data
poisoning is referred to as the process of corrupting the local
training data via backdoor injection or introducing label noise
which in turn produces deviating gradients and misleads the
FL model [67]. In this setting, usually, the intruder disguises
as a member of the federation and uses its artificially made
data. As an example, reference [68] studies different variations
of label poisoning in federated learning systems and mitigates
these attacks by reformulating the problem as a label noise
classification task.

Aside from the aforementioned mechanisms for data poison-
ing, the following attacks can be planned to take advantage of
the blockchain backbone that most DFL methods rely on:

Disrupting Communications: Blockchain is robust by
nature against Denial of Service (DoS) attacks as there is no
possible SPF that can be targeted. Nevertheless, Distributed
DoS (DDoS) attacks can still slow down inter-node communi-
cations in the DFL system. DDoS agents continuously generate
fake transactions and send them to the chain to fill up the
blockchain buffer with spam data once the blockchain capacity
is reached. This significantly postpones the inclusion of valid
data into the upcoming blocks which puts the functionality of
the blockchain under question. This is besides the permanent
effect DDoS leaves on the DFL due to the data immutability
of the blockchain.

Degrading Detection Performance: Using a targeted attack
model, an intruder can inject certain triggers into the local
model and obtain gradients in a way that the rest of the model
remains intact [7]. This backdoor attack results in sharing the
poisoned parameters with the rest of the DFL participants
and introducing the backdoor into their model as well. For
instance, backdoors are injected into the DFL network in [56]
with two different mechanisms, namely label flipping [69] and
pixel patch backdoor [70]. The number of malicious nodes is
restricted to prevent intruders from controlling the consensus
(i.e., 2Ncorrupted + 2 < N , where N and Ncorrupted indicate
the number of all nodes and corrupted ones, respectively). A
pixel pattern backdoor is also simulated in [59] for DFL with
smart contract. The untargeted scheme of this attack which
is also known as the Crashing DoS attack, follows the same
process with the exception of degrading the performance of
the entire model rather than for a specific class. While the
untargeted version is easier to implement, it is also easier
to detect. Note that the literature usually defines DoS differ-
ently for blockchain and FL. DoS in blockchain renders the
global model inaccessible, whereas in FL, it makes the global
model unusable. Reference [5] presents an example of a data
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Fig. 4. Overview of security and privacy threats on decentralized federated learning. Threats are generally related to privacy, model robustness, or blockchain
bottleneck of DFL.

poisoning attack in DFL which is simulated with the aim of
corrupting the global model performance. In this scenario, 30
percent of nodes are considered malicious, with the assumption
that the number of malicious nodes does not change in time.
Another case is tested in [54] by generating forged gradients
drawn from a Gaussian distribution by several Byzantine data
holders (i.e., trusted nodes went rouge in the DFL network).
Reference [58] simulates this attack by filliping the class
labels randomly on the training data. In contrast to poisoning
attacks that primarily corrupt the training process, evasion or
exploratory attacks occur during the inference phase after the
model has been trained. Their goal is typically not to change
the trained model, but rather to generate incorrect predictions
or gather information about the model’s characteristics.

Causing Legal Problems: By law, the inclusion of personal
data is prohibited in some regions of the world. European
general data protection regulation can be mentioned as a good
example of this legal constraint. A malicious user, however,
can poison the blockchain by inserting personal data into a data
block and adding it to the chain which makes the DFL system
non-compliant with the existing legal bounds. We call these
adversaries privacy poisoning attacks. Despite its importance,
not many research studies considering this type of attack in a
DFL paradigm have been reported.

2) Model Poisoning: Model poisoning is the process of
maliciously controlling global model training. While data
poisoning can be also used as a tool to cause model poisoning
[56], model poisoning without data manipulation is also pos-
sible. As an example, one can simply change the objective of
the local model to obtain poisoned gradients using valid data
on the same model structure as the rest of the network [7]. For
instance, an additional term can be added to the objective to
penalize sensitivity to malicious data [71]. The same approach
can be followed to deteriorate the overall performance in an

untargeted manner (e.g., gradient manipulation). This case
is also studied in [55] where a set of Byzantine nodes are
considered to generate and inject deviating gradients into the
blockchain in order to degrade the shared DFL model via an
outsider attack. A similar approach is used in [52] to corrupt
gradients using pointwise Gaussian noise.

3) Routing Attacks: Reliable network infrastructure is of
paramount importance for DFL due to its integration with
blockchain [72], [73]. This is while some of the utilized
network protocols used by current internet service providers,
such as the border gateway protocol, come with security flaws.
Blockchain has no control over the network layer as it mostly
works in the application layer. Thus, if the service provider
network is breached, the routing of packets can be tampered
with to either discard the transferring data blocks or change
the blockchain structure. An example of a routing attack is
a hack that took place in 2014 in which the intruder used
the hijacked blocks to provide PoW and steal the associated
rewards.

4) Consensus Attacks: The objective of these attacks is
to obtain the majority of approvals in order to control the
consensus mechanism in the DFL system. Depending on the
number of agents or nodes involved in these attacks, they
will be called 51% or Sybil attacks. Sybil attacks indicate
the scenario in which an intruder creates multiple fake nodes
and claims to be more than one entity to impose a greater
influence on the consensus. If intruders manage to take control
of 51 percent of the nodes, the consensus mechanism is fully
controllable. At this scale, the attack is known as 51% attack
in the literature [52]. It is worth mentioning that consensus
attacks are most effective when the blockchain associated with
the DFL is at its early stage when the number of participants
is still limited. PoW and PoS can drastically complicate
consensus attacks for hackers.
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TABLE III
CHARACTERISTICS AND DESCRIPTION OF ATTACKS IN DFL. THE EASE OF IMPLEMENTATION, EFFECTIVENESS, AND DEFENSE FEASIBILITY FOR EACH

ATTACK IS EVALUATED.

Attacks Target Implementation Effectiveness Defensibility

Backdoor Performance Challenging High Challenging
DoS/DDoS Performance Simple Moderate Simple
Gradient manipulation Performance Challenging High Challenging
Training objective manipulation Performance Challenging High Challenging
Evasion attacks Performance Simple Moderate Moderate
Model inversion Privacy Simple Low Moderate
Feature inference Privacy Simple Moderate Moderate
Membership inference Privacy Challenging High Challenging
Hijacking private key Blockchain Challenging High Challenging
51% attack Blockchain Challenging High Challenging
Sybil attacks Blockchain Simple High Challenging
Double spending Blockchain Challenging High Challenging
Routing attacks Blockchain Simple Moderate Challenging
Privacy poisoning Blockchain/Privacy Moderate Moderate Moderate
Attacks on SC Blockchain Challenging High Moderate

B. Attacks on Privacy

Despite the decentralization of data in DFL, gradient and
parameter information can be visible to system clients. Pre-
viously, we studied the effect of such information leakage on
the performance of the DFL model. Here, we elaborate on the
privacy risks associated with DFL networks.

1) Model Inversion Attacks: Model inversion can be used to
approximate and reconstruct the private data of clients merely
based on the classification model [7]. An example of this attack
is reported in [56] where gradient leakage [74] of a global
DFL model is used for reconstructing the user’s local data.
This process is often carried out using a DL-based generator.
For instance, Generative Adversarial Networks (GAN) can
be employed to perform model inversion by using the target
model as the discriminator and training a generator network to
minimize a cost that eventually converges and produces data
samples similar to that of the targeted client.

2) Membership Inference Attacks: Membership inference
attacks are focused on revealing sensitive information associ-
ated with certain samples. Membership inference can disclose
the membership of a sample to a certain class, or elicit attribute
information [75], [76]. An example of this attack can be found
in [5], where an inference attack by observing the clients’
updates in a DFL network and using the leaked gradients to
infer record-level information of local datasets.

3) Hijacking Private Key: Securing private keys and public
key using cryptography is one of the most critical aspects of
blockchain which is the backbone of DFL. If there is any
imperfection in the key signing mechanism, hackers can hijack
a client’s private key using their public key. Taking over a
client’s private key enables the hacker to gain full access to
the corresponding data in the blockchain.

4) Vulnerability of Smart Contracts: Smart contracts, which
are coded agreements utilizing blockchain technology for
record-keeping, can be susceptible to security flaws. While
they eliminate the need for intermediaries and provide im-
mutable contracts, there is a risk associated with poorly
coded smart contracts. These coding vulnerabilities create
opportunities for attackers to identify flaws in the code and
exploit them. By exploiting these weaknesses, attackers can

potentially manipulate or extract unauthorized access to the
contract’s contents or associated assets. It is crucial to ensure
thorough code review and rigorous testing to identify and
address these security flaws to safeguard the integrity and
trustworthiness of smart contracts.

C. Analyzing the Viability of Attacks

Table III provides an overview of the analyzed attacks,
highlighting their key characteristics. When evaluating these
attacks, it is crucial to assess their feasibility and effectiveness
to design effective defense mechanisms and allocate appropri-
ate resources to secure DFL systems.

1) Ease of implementation: Implementing a backdoor at-
tack is considered to be difficult because it requires extensive
knowledge of the target DFL system, access to training data,
and the ability to modify model parameters [77]. Backdoor
attacks often involve sophisticated techniques and may require
compromising multiple clients or insiders with privileged
access [70], [78]. Conversely, carrying out a DoS or DDoS
attack is relatively less complicated. These attacks overwhelm
the system with a high volume of requests or malicious traffic,
and readily available tools and techniques can be used to
execute them [79].

Gradient manipulation necessitates a deep understanding of
the DFL system’s architecture, algorithms, and access to the
communication channels. Tampering with gradients exchanged
between clients and the server is a challenging task that
requires careful execution to avoid detection [80]. Similarly,
manipulating the training objective, such as modifying the loss
function or optimization process, is also categorized as hard. It
demands an in-depth understanding of the system’s algorithms,
access to the training process, and the ability to modify the
objective without disrupting the overall learning process.

On the other hand, attacks such as evasion attacks and
model inversion are easier to implement. These attacks can
be implemented using existing knowledge and techniques
[81]. Other attacks, including feature inference and Sybil
attacks, are also categorized as easy to implement. In contrast,
attacks such as membership inference, hijacking private keys,
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51% attacks, consensus attacks, and double spending are
challenging attacks [9], [82]. These attacks require advanced
knowledge, sophisticated attacks, and access to specific com-
ponents or mechanisms of the DFL system. Implementing
them successfully is a complex and resource-intensive task.
Furthermore, privacy poisoning attacks are not overly complex
or technically challenging, leading to a medium level of ease of
implementation. The process may involve tampering with the
data blocks and ensuring the inclusion of personal information,
but it does not require advanced technical skills or extensive
resources. Moreover, finding security holes in SC is a complex
task as these protocols are usually well-tested before release,
and sophisticated technical skills are required to hack SC under
this condition [83].

2) Effectiveness of Attacks: In terms of attack effectiveness,
the backdoor attack is classified as high. This attack has
the potential to significantly impact the model’s predictions,
compromising the integrity and reliability of the DFL system
[70], [77], [78]. On the other hand, DoS/DDoS attacks are
considered to have a moderate level of effectiveness. While
they can disrupt the normal functioning of the system and
cause temporary delays, their impact on the actual model
parameters or the accuracy of the aggregated model may vary
[79].

Gradient manipulation and training objective manipulation
attacks are both considered to have a moderate level of effec-
tiveness. Tampering with gradients or modifying the training
objective can potentially influence the learning process and
impact the accuracy of the aggregated model. However, their
success depends on the robustness of the DFL system and the
defense mechanisms in place [80].

Evasion attacks and model inversion attacks are also con-
sidered to have a moderate level of effectiveness [81]. Their
impact on the overall model performance may be limited
depending on the effectiveness of the defense mechanisms.
Membership inference attacks, on the other hand, are classified
as having a high level of effectiveness. Successfully inferring
membership information about specific individuals participat-
ing in the DFL system can have severe privacy implications.

Attacks targeting the blockchain aspect of DFL, such as
hijacking private keys, 51% attacks, consensus attacks, Sybil
attacks, double spending, and routing attacks, are generally
considered to have a high level of effectiveness [82]. These
attacks have the potential to compromise the security, integrity,
and trust of the DFL system, depending on the specific
vulnerabilities and defense mechanisms in place. Moreover,
privacy poisoning attacks can have a moderate impact on
compromising the privacy of participants in the DFL system.
While the effectiveness of privacy poisoning attacks is not as
high as some other attacks, it still poses a significant risk to the
privacy of participants and the overall integrity of the system.
In addition, exploiting the vulnerabilities of SC can lead to
losing digital trust and massive financial loss. For instance,
reports indicate that crypto investors nearly lost four billion
dollars to hackers in 2022.

3) Defensibility: Backdoor attacks involve inserting ma-
licious behavior into the training data or model, making
it challenging to detect and defend against. Detecting and

mitigating backdoor attacks often require advanced techniques
and rigorous model verification [84], [85].

DoS/DDoS attacks are classified as moderately defensible.
While it may be challenging to completely prevent DoS/DDoS
attacks, there are various mitigation strategies available, in-
cluding anomaly detection. Such methods can reduce the
impact of DoS/DDoS attacks and keep the system operational
[86]–[88].

Defending against gradient manipulation and training ob-
jective manipulation attacks is also categorized as moderately
defensible. Implementing techniques like DP, robust aggre-
gation algorithms, and secure communication protocols can
enhance the system’s resilience against these attacks [80], [89].
However, the effectiveness of the defense mechanisms may
vary based on the sophistication of the attack and the quality
of the defense techniques.

Evasion attacks and model inversion attacks are considered
moderately defensible. Privacy-preserving techniques, such as
DP or SMC, can help protect against these attacks [89], [90].
However, achieving strong defenses requires careful design
and implementation, considering factors like attack vectors and
data sensitivity.

Defending against membership inference attacks is classi-
fied as challenging due to the difficulty of protecting indi-
vidual privacy in the FL setting. Advanced privacy protection
techniques, such as privacy amplification and enhanced model
aggregation protocols, are needed to effectively mitigate the
risk of membership inference attacks [91], [92].

Regarding attacks on the blockchain aspect of DFL, the
defensibility levels vary depending on the specific attack [82].
Hijacking private keys, 51% attacks, and double spending
attacks are challenging to defend against due to the vulnerabili-
ties they exploit in the blockchain infrastructure. Implementing
robust consensus mechanisms, multi-factor authentication, and
encryption can enhance the defensibility against these attacks.
Defending against consensus attacks, Sybil attacks, and rout-
ing attacks requires strong identity management systems, net-
work monitoring, and reputation-based mechanisms. Defend-
ing against privacy poisoning attacks requires a combination of
technical, legal, and regulatory measures, making it of medium
difficulty in terms of defensibility. In addition, ensuring the
security and integrity of SC has a moderate level of difficulty
since it requires sophisticated code review and rigorous testing
to identify and eliminate potential security holes and flaws.

V. DEFENSE MECHANISMS

Various defense mechanisms are proposed to fortify DFL
against privacy and performance-related threats. While this
section reviews the literature on DFL defense mechanisms,
their characteristics are summarized in Table IV. In addition,
Table V specifies mechanisms that each reviewed DFL method
employs.

A. Privacy Preserving

Despite the wide diversity of previous efforts on safeguard-
ing FL and blockchain privacy, suggested methods typically
fall into one of these three categories: 1) Homomorphic
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TABLE IV
CHARACTERISTICS AND APPLICABILITY OF DEFENSE MECHANISMS. THE FINAL COLUMN DENOTES THE SPECIFIC TYPES OF ATTACKS FOR WHICH EACH

DEFENSE MECHANISM IS SUITABLE.

Defense mechanism Description Weakness Used against

Homomorphic Encryption Encrypts parameters Computational overhead Attacks on privacy

SMC Protects data with multiparty computation Communication overhead Attacks on privacy

Differential Privacy Perturbs parameters with noise Accuracy loss Attacks on privacy

Anomaly Detection Monitors updates to detect abnormalities Backdoors can bypass it Untargeted poisoning

Robust Aggregation Safeguards global aggregation against adversaries Limiting assumptions Poisoning attacks

Pruning Randomly drops neurons from global model Computational overhead Backdoor attacksPerformance loss

TEE A secure ecosystem for maintaining digital trust Limited memory size White box attacks

Zero-Knowledge Proofs Uses unconnected bits of information to hide data
Computational overhead Privacy attacksCommunication overhead Poisoning attacksComplex implementation

Knowledge Distillation Performs TL to indirectly train a smaller model Computational overhead Privacy attacks
Not a stand-alone defense Poisoning attacks

Regularization Prevents global model from overfitting Sensitivity to hyperparameters Privacy attacks
Computational overhead Poisoning attacks

Blockchain Secures DFL communications Computational overhead Poisoning attacksBlockchain security issues

Encryption (HE), 2) Secure Multiparty Computation (SMC),
and 3) DP. The following discussion goes through each of
these groups.

1) Homomorphic Encryption: By processing on cyphertext,
HE is commonly used to secure the learning process. Clients
can use HE to perform arithmetic operations on encrypted
data (i.e., ciphertext) without having to decode it. HE has
three major variations that differ in arithmetic complexity and
flexibility, namely full, partial, and substantial HE [96].

Fully HE is capable of doing arbitrary calculations on the
encrypted data [97]. This is while partially HE can only
execute one operation (e.g., addition or multiplication), and
substantially HE can do several operations [98]–[100]. The
latter, on the other hand, has a restricted amount of additions
and multiplications. While full HE offers greater flexibility,
it is inefficient when compared to other forms of HE [97].
As an example, [65] shows that swarm learning updates are
encrypted using partial HE to defend DFL against inference
attacks.

Despite the benefits of HE, executing arithmetic on the
encrypted integers increases the memory and processing time
costs. Moreover, non-linear estimations in statistical models
demand approximating polynomials which make it important
to find a balance between utility and privacy [101], [102]. In
[103], for instance, additively HE is used to secure distributed
learning by securing model changes and maintaining gradient
privacy. Another example is [25], which uses an additively
homomorphic architecture to defeat honest-but-curious adver-
saries using federated logistic regression on the encrypted
vertical FL data. However, the overburdening of the system
with additional computational costs is a typical downside of
such systems.

2) Secure Multiparty Computation: Secure Multiparty
Computation (SMC) [104], is a distributed cryptography tech-

nique in which several entities participate in the estimation
of a function. The distinct feature of SMC is securing each
participant’s data by creating a set of random values that are
not equal to the participant’s data, and sending them to the rest
of the parties for local calculation of the function. The outputs
of these functions then will be averaged to obtain the desired
estimation. In this scheme, the data on the participant’s side
is meaningless, and the function estimations are only usable
once they are averaged. For instance, SMC was used in [105]
for private model training. It is worth mentioning that SMC is
followed by excessive communication and computational cost.
It has been also mentioned that SMC is best to be coupled with
DP to secure the communications [89], [90].

In conclusion, SMC usage in large-scale DFL could be
inefficient due to the dramatic rise in communication and
processing costs. Secondly, encryption-based solutions cor-
responding to these functions must be properly defined and
implemented [106], [107]. Finally, all cryptography-based
protocols preclude an audition phase of the received updates
by the shared model, hence, leaving holes for rogue users to
exploit.

3) Differential Privacy: The idea of DP is to inject random
noise into the generating updates so that the data interpretation
becomes infeasible for malicious entities. DP is primarily
used to safeguard DFL communications against privacy attacks
(e.g., inference attacks); however, the literature also shows that
DP can be also beneficial against data poisoning attacks as
these attacks are usually designed based on the communicated
gradients [108]–[110]. Biscotti [5] couples DP with a secure
aggregation technique [111] to safeguard DFL systems against
poisoning and inference attacks. Another report shows the
effectiveness of pruning-based DP in safeguarding horizon-
tal DFL systems [56]. DP in [54] is implemented through
perturbing local gradients using the exponential mechanism
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TABLE V
SECURITY ANALYSIS OF STATE-OF-THE-ART DFL METHODS. ALL MODELS ARE ROBUST AGAINST SPF. #, G#, AND  DENOTE NOT ROBUST, PARTIALLY
ROBUST, AND ROBUST, RESPECTIVELY. ✓AND × INDICATE WHETHER THE SPECIFIED TECHNOLOGY IS USED OR NOT. ATTACKS OR TECHNOLOGIES THAT

ARE NOT INCLUDED IN THIS TABLE ARE NOT STUDIED IN THE LISTED METHODS.

Methods References Blockchain Encryption Clients Data poisoning Model poisoning Inference

BindaaS [53] ✓ × Honest # # #

PIRATE [55] ✓ × Semi-honest  # G#

BAFFLE [48] ✓ × Dishonest  #  

BFLC [52] ✓ × Semi-honest  # #

LearningChain [54] ✓ DP Dishonest G# G#  

Biscotti [5] ✓ DP Dishonest  G#  

Blade-FL [51] ✓ DP Honest # # G#

BEAS [56] ✓ DP Dishonest    

Swarm Learning [64] ✓ × Dishonest # # #

SL+HE [65] ✓ HE Dishonest # #  

BrainTorrent [57] × × Honest # # #

P2P-FL [50] × × Honest # # #

ReputationDFL [58] ✓ × Dishonest G# G# #

BlockFLA [59] ✓ × Dishonest G# G# #

DFedForest [60] ✓ × Dishonest G# G# #

Bift [61] ✓ × Dishonest G# G# #

Verifiable DFL [63] ✓ × Semi-honest # #  

DFL for Healthcare [93] ✓ DP, SMC Semi-honest # #  

FLChain [94] ✓ × Honest # # #

VFChain [95] ✓ × Semi-honest # # G#

[112] and a predefined probability density function before
uploading them into the blockchain and broadcasting them
across the DFL network. Similarly, Blade-FL [51] adds noise
to the gradients prior to the encapsulation phase, albeit using
a Gaussian distribution.

In contrast to HE and SMC whose main disadvantage was
communication overhead, DP has a lower computational cost
and does not overburden the system in this sense. Instead, DP
comes at the cost of deteriorating the model quality. This is
mainly because the injected noise can potentially add up to the
noise within the constructed model. Another issue of concern
in conventional DP is the cumulative privacy loss resulting
from iterative training processes that utilize local data from
multiple individuals or sources. These iterations are crucial
for enhancing the accuracy and performance of trained models.
However, with each iteration, a certain degree of privacy loss
is introduced, and this loss accumulates over time, potentially
reaching a significant level. Researchers have dedicated efforts
to address this problem by exploring various approaches,
including subsampling [91] and privacy amplification by it-
eration [92]. These techniques aim to mitigate cumulative
privacy loss and improve the overall privacy guarantees of DP
schemes. Since these methods derive a tight upper bound of
cumulative privacy loss, they can also be applied to preserve
model utility even in cases where the gradients are perturbed
by noise. Moreover, DP provides resistance to poisoning at-
tempts due to its group privacy trait. As a result, as the number

of attackers increases, this defense will reduce significantly.
As mentioned before, all privacy-preserving methods have
a set of advantages and disadvantages, and thus, there is
no perfect alternative for DP. In other words, DP, HE, and
SMC each result in a different privacy-utility trade-off. As
a solution, hybrid approaches can be implemented to build
privacy protocols that are more robust than using only one of
these methods [113], [114]. As an example, SMC is combined
with DP to balance the trade-off between them [114]. This
combination offsets excessive noise injection when the number
of clients is growing while preserving the desired rate of trust.

Gaussian DP is a specific case within the functional DP
(f -DP) framework, which characterizes privacy through hy-
pothesis testing [115]. In f -DP, a randomized algorithm is
considered to satisfy privacy if the difficulty of distinguishing
between two neighboring datasets (quantified by a trade-
off function) is element-wise larger than a convex and non-
increasing function f . When this function f is constructed
using two Gaussian distributions, the resulting form of f -
DP is termed Gaussian Differential Privacy. In other words,
Gaussian DP defines privacy guarantees by examining the
distinguishability of neighboring datasets through a hypoth-
esis testing approach, with the specific choice of a trade-off
function derived from Gaussian distributions. This provides a
mathematical and analytical framework for evaluating privacy
in the context of private data analysis. For instance, [116]
applies Gaussian DP in an FL system to provide record-level
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privacy guarantees for each client. Building upon the ability of
this approach to handle composition and subsampling, [117]
extends the work to apply DP to SGD and Adam [118]
optimizers.

In the context of applying DP to FL, two privacy notations,
namely user level and instance level privacy, can be found in
the literature. User-level privacy in DP ensures that clients’
data remains private and the privacy of the global model
remains intact, even if an adversary removes a client or its data
from the aggregation process [119]. Additionally, adversaries
are unable to determine whether a client has participated in the
training. On the other hand, employing DP at the record level
offers privacy guarantees for each individual record within
a client’s data, protecting them against potential adversaries
[116]. Instance-level DP is often perceived as offering a rela-
tively weaker privacy guarantee, as adversaries may potentially
determine whether a user participated in the training or not.
However, there are cases where discerning user participation
is not crucial, and the primary concern is maintaining data
privacy. Considering the trade-off between privacy and utility
in differential privacy, it is prudent to adopt instance-level
privacy in such scenarios to achieve improved performance
while avoiding overly stringent privacy constraints.

DP can be centralized, local, or distributed. In centralized
DP, the noise addition is performed via a server, which makes
it impractical in DFL. On the other hand, local [120] and
distributed DP [121], [122] both assume that the aggregator is
not trusted which perfectly complies with the DFL paradigm.
In the local variant, participants inject noise in their estimated
gradients before sharing them over the blockchain. However,
research on local DP indicates its inability to provide a
privacy guarantee on large-scale and heterogeneous models
with numerous parameters [123], [124]. In DFL, the injected
noise should be calibrated to ensure successful DP. Despite
the appealing security qualities of local DP, its practicality
becomes questionable when dealing with an immense number
of users.

Distributed DP combines cryptographic techniques to pro-
vide the benefits of both local and centralized DP without
compromising the clients’ privacy [121], [125]. As a result,
it avoids putting faith in any server and is more effective in
that sense. Decentralized DP, in theory, has the same benefit
as the centralized variant because the overall quantity of noise
is similar for them. The concept of distributed DP alludes to
the notion that the required amount of noise is derived from
several individuals [122].

B. Model Robustness
Defenses are classified into two types: proactive and reac-

tive. Proactive defense is a low-cost method of anticipating
attacks and associated consequences. The reactive defense
operates by detecting an invasion and taking preventative
steps. In the production environment, reactive defense is often
deployed as a patch-up. DFL presents multiple additional
attack surfaces throughout training, resulting in complicated
and unique countermeasures. In this part, we will look at
some of the most common types of DFL defensive tactics
and investigate their usefulness and limits.

1) Anomaly Detection: Anomaly detection methods have
a long history in real-time identification of data attacks in
intelligent systems [126]. In centralized FL, anomaly detection
is often performed on the server to identify malicious updates
that can lead to model or data poisoning [87], [88]. It is
worthwhile to mention that this approach usually works best
against untargeted attacks. In the DFL paradigm, however,
anomalies can take place either due to fraudulent transactions
or changes in blockchain networks such as network division
and blockchain fork. Each of these issues is separately studied
in the literature and there is no anomaly detection framework
designed to handle both. For instance, [127] proposes a fast-
paced detection scheme for monitoring transactions using a
subgraph-based approach. The designed detection method is
optimized for parallel processing GPU acceleration. On the
other hand, another work, [128], designs a distributed anomaly
detection scheme, called BAD, to combat eclipse attacks in
blockchain networks by re-connecting unauthorized forks to
the P2P network.

The majority of the anomaly detection methods for FL se-
curity are proposed with respect to the centralized architecture
of the FL [88], [129]–[131], and anomaly detection in DFL
is only studied in a limited number of works. As an example,
BEAS [56] employs two anomaly detection protocols, namely
Multi-KRUM [87] and FoolsGold [132] to detect poisoning
attacks and identifying Sybil groups (i.e., group of malicious
nodes coordinating a cyber-attack), respectively. The former
monitors change in variance or performance of generated
gradients with respect to the majority of updates. The latter, on
the other hand, detects Sybil groups based on the correlation
between the generated updates, as it is expected for malicious
nodes to generate highly similar gradients. Anomaly detection
in high-dimensional space poses challenges, leading some
detectors to suggest using dimensionality reduction to make
monitoring easier. However, reducing the dimensionality size
may result in information loss [133], even with advanced
techniques preserving data characteristics.

2) Robust Aggregation: The aggregation algorithm used in
an FL system should tolerate communications disturbances,
client dropout, and incorrect model updates on top of hostile
participants [134]. Extensive research has been dedicated to
advancing robust aggregation in centralized FL [135], [136].
Similarly, in DFL networks, the security of the aggregation
phase is of paramount importance. Under a DFL paradigm,
the aggregation phase is mainly secured by employing the
same techniques used in FL in combination with the consensus
mechanism of the utilized blockchain scheme [61]. These
protocols (e.g., PoW, PoS, SC) control which nodes can
participate in the model aggregation phase for both gener-
ating updates and aggregating parameters. On the downside,
many of the advanced Byzantine-robust aggregations rely on
assumptions that are either unrealistic or incompatible within
the context of FL [7].

3) Pruning: Even though pruning is not specific to DFL
and can be applied to any neural network structure, it can
help in eliminating backdoors. The idea of pruning is to
drop some neurons in order to enhance the efficiency and
accuracy of the network. However, this feature makes the



HALLAJI et al.: DECENTRALIZED FEDERATED LEARNING: A SURVEY ON SECURITY AND PRIVACY 13

parameter usage somewhat unpredictable for attackers which
complicates injecting backdoors into a neural network since
inactive neurons will be removed eventually in the network.
While pruning has been mainly studied for FL [137], [138],
current literature on pruning under a DFL paradigm is very
limited [56]. In particular, BEAS [56] makes use of gradient
pruning [74] in DFL to facilitate DP and complicating model
poisoning for attackers in the system. Nevertheless, since these
techniques are mainly used at the edge of the network, most
pruning approaches should be adaptable to DFL as well.

Pruning comes with a set of drawbacks. One drawback is the
potential loss of model capacity, resulting from the removal of
connections or components. Another concern is the sensitivity
of pruning to initialization and training, necessitating careful
fine-tuning and experimentation for optimal outcomes. More-
over, the pruned model may struggle to generalize effectively
to new data, limiting its real-world applicability. Lastly, the
computational overhead increases due to the additional re-
sources and time required during the pruning and retraining
stages. Considering these factors is vital when assessing the
viability of pruning as a defense mechanism against backdoors.

4) Trusted Execution Environment: The blockchain back-
bone of DFL requires the data to be replicated on each
node which makes it challenging to keep smart contracts
confidential. TEE (Trusted Execution Environment), on the
other hand, is a tamper-resistant ecosystem that can be used to
maintain digital trust between nodes of a distributed network
[17]. TEE is often referred to as a secure and isolated part of
the processor that requires all codes and data signatures to be
verified with respect to the designer’s expectations. The valid-
ity of a participating device in a TEE Authentication should be
checked by the connected service with which it is attempting
to enroll. Until the matching party provides a message, the
status of code execution stays hidden. The execution route
of the code cannot be changed until it takes explicit input
or a validated interruption. Data stored on and processed by
participants is safe, and interactions between various parties
are carried out in a secure manner. The TEE is in charge
of all data access privileges. Cryptographic technologies are
used to secure TEE communications. Only the TEE secure
environment stores, maintains, and uses private and public
encryption keys. The TEE can show a remote client what code
is presently being executed as well as the starting state. TEE
can aid in resolving a key challenge for FL security since it
is becoming progressively important in securing the central
server and clients against hackers and preventing data theft.

TEE is coupled with FL to safeguard against algorithmic
attacks [139], [140]. TEE can hide model parameters on local
devices so that the model is not accessible to the attacker.
Under this condition, the attacker is only able to launch black
box attacks on the system. Nevertheless, TEE often suffers
from a limited memory size, that is only a limited part of the
model can be secured with this approach [140]. It has been
also suggested that TEE can secure smart contract data in a
blockchain which is the main vulnerability of this architecture
[141]. Theoretically, the same concept can be applied to DFL.
However, current literature lacks an experimental study on the
integration of DFL and TEE.

5) Zero-Knowledge Proofs: The origin of zero-knowledge
proofs goes back to the mid-1980s [142]. This cryptographic
approach allows a verification process that does not involve
data exchange between parties [143]. This process often in-
volves using unconnected bits of information to keep data
private during the verification.

As an example, zero-knowledge proofs have the potential
to be utilized in DFL to verify the authenticity of the features
used by clients for training and generating updates. While
zero-knowledge proofs offer a promising avenue for enhancing
secure update monitoring, additional research is necessary to
identify challenges in constructing and implementing their
modules. Notably, zero-knowledge proof protocols generally
maintain their performance regardless of the data volume.

Zero-knowledge proofs offer advantages for enhancing se-
cure update monitoring in DFL. However, their adoption
also entails certain drawbacks. These include computational
overhead due to resource-intensive operations, the complexity
of implementation requiring meticulous attention to crypto-
graphic techniques, potential scalability issues in large-scale
DFL systems due to communication complexity, and the trust
assumption associated with the setup phase [144].

6) Knowledge Distillation: Knowledge distillation is a fun-
damental algorithm in federated distillation [145]. The goal of
knowledge distillation is to perform TL from a large teacher
model (T ) to a compact student model (S) without sacri-
ficing performance significantly. Smaller models have fewer
parameters and are less susceptible to overfitting, making
them more resilient against attacks. This increased resistance
makes it more challenging for attackers to reverse-engineer
or manipulate the model. Nonetheless, for certain threats
such as backdoor attacks, knowledge distillation alone may
not be directly effective, as these attacks typically involve
modifying the training data or model parameters to embed
a hidden trigger. However, knowledge distillation can be used
as part of a broader defense strategy to mitigate the impact
of backdoor attacks. For instance, reference [85] mitigates
backdoor attacks by utilizing knowledge distillation in deep
neural networks. This approach independently fine-tunes T
on a clean subset and uses it to clean backdoored S. To do so,
this method tries to align intermediate-layer attention in S with
that of T . Another example trains a T ensemble on disjoint
training subsets and trains S based on aggregated noisy voting
among T models [124]. The goal of this approach is to
provide a privacy guarantee for training data. In DFL, this idea
translates into sharing the knowledge of a model rather than
the parameters which improves FL’s robustness against both
poisoning and privacy attacks. In addition to the mentioned
security advantages, knowledge distillation also results in com-
munication and computation efficiency in DFL. Exchanging
model parameters becomes burdensome when communication
resources are limited, especially for contemporary big deep
neural networks. In this sense, federated distillation [123] is
an appealing FL option since it only transmits model outputs
which are often considerably less in size than the model sizes.

7) Regularization: In DFL, the computational model that
is being distributively updated is most likely a DL structure.
One approach to mislead this model is to make it overfit
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by introducing malicious samples which may in turn lead
to membership inference. Regularization techniques such as
L2 regularizer [146] and dropout [147] can eliminate the
effect of such malicious samples to a great extent. Reference
[148] designs a semidefinite relaxation method that generates
a differentiable certificate for network robustness and opti-
mizes it alongside network parameters to encourage robustness
against all attacks. Furthermore, determining suitable hyper-
parameters, such as regularization strength, for regularization
techniques can be a difficult task, and incorrect choices may
yield undesirable results. Moreover, the use of certain regular-
ization methods with intricate terms or penalties can introduce
considerable computational complexity, especially in scenarios
involving extensive datasets or intricate models, resulting in
prolonged training durations.

VI. VERIFIABLE DFL

Defense mechanisms reviewed in the previous section
mainly combat an adversary after a malicious attack is
launched by an intruder. Nevertheless, another approach to
combat these threats is to prevent malicious parties to take
part in the training process. A DFL system that can verify the
trustworthiness of its clients is called verifiable.

A DFL system is considered verifiable if clients of a
network can prove to each other that the given task has been
carried out without compromising privacy [149]. Security,
transparency, and automation of blockchain can enhance the
verifiability of DFL [93] which in turn prevent malicious activ-
ities. In this structure, some nodes are in charge of generating
updates and training the model (i.e., trainers) and groups of
participants verify the generated updates (i.e., workers) with
respect to consensus protocol. If the update is verified, the
worker who completes this task first will create a new block.
Then, if the majority of the workers approve the content of the
created block, it will be appended to the chain. At this point,
DFL clients can update their models using this new block of
information. This process is repeated periodically to keep the
DFL model up to date.

A. Trustable DFL Trainers

A vulnerability of DFL systems is that dishonest trainers
can upload maliciously crafted updates to the blockchain. For
instance, BlockFL [150] verifies the submitted updates through
a random selection of workers before letting the update take
effect. In BlockFL, each client is associated with a random
worker who is rewarded when evaluating the updates prior to
the aggregation. The evaluation criteria are designed based on
the relationship between the data size and the elapsed time for
generating the update.

Another approach for verifying trainers is to use proof of
correctness. Examples of this are presented in [94], [151],
where produced parameters are paired with their proof of
correctness which is used by registered workers for deter-
mining the approved updates. This approach uses verifiable
random functions [151] or reliability ranking [94] to select
a worker whose aggregation results will be appended to the
blockchain. The trainer’s reliability, which is an indicator of its

performance, will affect its chance to take part in the training
process thereafter.

B. Trustable DFL Workers

Assuming that all trainers are trustworthy, the aggregated
model could still be compromised if the responsible worker
for the model aggregation is unreliable, that is, it does not
follow the defined protocol. VFChain [95] addresses this issue
by using trainer signatures that are appended to the uploaded
block by the trainer. To verify the aggregated model by the
responsible worker, a committee is randomly selected among
other workers to evaluate the aggregated model with respect
to the verifying contract. The members of this committee are
continuously updated in each training round. The blockchain
preserves signatures and their corresponding aggregated mod-
els of each training round which makes all records tamper-
resistant and transparent to all network members. It is worth
mentioning that this structure is only compatible with semi-
honest trainers.

VII. FUTURE RESEARCH DIRECTIONS

Despite the advancements of DFL in the past five years,
this paradigm is fairly new and still has a lot of potential to
be improved. From a security standpoint, many of the available
countermeasures in the literature are either studied for FL or
blockchain, and their effectiveness in DFL remains unclear.
Here, we outline future development requirements that we
believe will be promising for DFL in this sense.

A. Weakness of Privacy-Preserving Techniques

As mentioned before, privacy-preserving techniques often
trade excessive computational burden for enhancing privacy
(e.g., HE, SMC). Furthermore, the implementation of crypto-
graphic techniques such as SMC is sensitive and can imperil
privacy if not defined properly. DP, on the other hand, can
affect the accuracy of the aggregated model since the utilized
noise can leak into the model. These issues are beside the
fact that the audition phase in these techniques can lead to
security holes. Hence, despite the history of privacy-preserving
techniques, they all have imperfections that require further
research and adaptation to the DFL paradigm.

Addressing these challenges requires ongoing research and
adaptation of privacy-preserving techniques to suit the specific
requirements of DFL. Developing optimized implementations
of cryptographic methods, such as SMC, can help alleviate
the computational overhead and address sensitivity concerns.
Paying attention to secure parameter configurations and robust
cryptographic protocols is essential to minimize privacy risks.
Exploring advanced noise reduction techniques within DP can
strike a balance between preserving privacy and maintaining
the accuracy of the model [116], [123]. Robust auditing
mechanisms need to be established to ensure the security of
privacy-preserving techniques and safeguard against potential
vulnerabilities [94], [95]. Moreover, investigating hybrid ap-
proaches that integrate multiple privacy-preserving techniques
can offer a compromise between privacy and computational
efficiency [93].
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Continued exploration and refinement of privacy-preserving
techniques in the DFL domain will enhance privacy and
security while minimizing the impact on computational per-
formance. This ongoing research and innovation will pave the
way for more effective and privacy-aware DFL systems.

B. Optimizing Defense Mechanism Deployment

Devising defense mechanisms in DFL presents specific
challenges that need to be addressed. One key challenge is the
requirement for additional computational power, which may
not always be feasible, particularly in resource-constrained
environments like mobile networks [152]. The limited com-
putational resources available can pose limitations on the
implementation of defense mechanisms.

Another challenge is the diverse nature of threats in DFL.
Different threats often require different countermeasures. De-
signing a comprehensive defense mechanism that addresses
a wide range of threats can be complex and challenging.
It requires analyzing various threat models, understanding
their unique characteristics, and developing tailored defense
strategies accordingly.

When considering DFL deployed on blockchain, resource
and computational constraints specific to blockchain systems
must also be taken into account [153], [154]. The scalability
of defense mechanisms becomes a critical aspect to consider.
Strategies that optimize smart contract execution or leverage
off-chain computations can help ensure efficient operation
within the resource constraints of blockchain platforms.

Continuous evaluation, benchmarking, and improvement of
existing defense mechanisms are vital. The field of defense
mechanisms in DFL is dynamic, with emerging threats and
advancements in technology. Regular evaluation and improve-
ment are necessary to keep up with evolving challenges and
maintain effective protection.

Overall, addressing the challenges of additional com-
putational power, diverse threats, resource constraints in
blockchain, and the optimal deployment of defense mecha-
nisms are critical areas for further research and development
in the field of DFL. By tackling these challenges and exploring
the proposed solutions, researchers can advance the field and
enhance the security and resilience of DFL systems.

C. Blockchain-Related Security Issues

The decentralization and traceability offered by DFL
introduce unique challenges related to blockchain-related
threats. These threats specifically exploit the structure of
the blockchain, posing risks to the overall security of DFL
systems. Consequently, there is a need for research and devel-
opment aiming at creating more secure blockchain structures
that can enhance the resilience of DFL ecosystems against
these attacks.

One key challenge is the susceptibility of DFL to cyber-
attacks that target the underlying blockchain infrastructure.
Adversaries may attempt to manipulate or tamper with the
blockchain, compromising the integrity and reliability of the
system. This poses a significant risk to the confidentiality
and privacy of participants’ data in DFL. To address these

challenges, research efforts should focus on the development
of more secure blockchain structures tailored to the specific
requirements of DFL. This involves exploring techniques such
as improved consensus mechanisms, advanced cryptographic
protocols, and enhanced smart contract design [155]. These so-
lutions aim to bolster the security of the blockchain layer, mit-
igating the vulnerabilities that can be exploited by malicious
actors. Additionally, advancements in blockchain technology,
such as the integration of privacy-preserving techniques and
zero-knowledge proofs, can contribute to building a more
attack-resilient DFL ecosystem. By leveraging techniques that
enhance data privacy and confidentiality, DFL systems can
better withstand attacks and protect sensitive information [5],
[56], [93]. Furthermore, the development of robust monitoring
and auditing mechanisms is crucial for detecting and mitigat-
ing blockchain-related threats in DFL. Implementing effective
monitoring systems can help identify suspicious activities
and ensure the integrity of the blockchain [94]. Auditing
mechanisms can verify the correctness and security of the
system, providing transparency and accountability in DFL
deployments.

D. Heterogeneity of Decentralized Federated Learning

DFL convergence in a distributed ecosystem (e.g.,
blockchain) is not guaranteed when various clients have di-
verse computation power (i.e., heterogeneous users). Limited
processing power and poor connectivity can delay the training
and communication of some nodes, delaying the global aggre-
gation. Disregarding this heterogeneity results deteriorates the
overall efficiency of DFL training.

The heterogeneity of clients in DFL not only poses chal-
lenges to convergence and efficiency but also gives rise to
security issues [156]. In an asynchronous DFL setting, where
clients operate with different computation power and con-
nectivity, ensuring secure aggregation becomes challenging.
Asynchronous DFL is not compatible with secure aggregation
protocols because all clients need to be incorporated in the
aggregation step when using secure aggregation. This also
limits the ability to perform centralized or distributed DP.
Consequently, the use of local DP techniques becomes the
viable option in asynchronous DFL scenarios, potentially
compromising the level of privacy protection and increasing
the risk of information leakage during the aggregation process.
These security concerns highlight the need for innovative
approaches that strike a balance between achieving privacy-
preserving aggregation and accommodating the heterogeneity
of clients in DFL [157]. By exploring novel cryptographic
techniques, adaptive privacy mechanisms, and secure com-
munication protocols, it is possible to address the security
challenges that arise from the heterogeneity of DFL and ensure
the confidentiality, integrity, and privacy of the FL process
[158], [159].

E. Challenges in Verifiable Decentralized Federated Learning

Joining a DFL network requires a set of verifiers to evaluate
the trustworthiness of the joining party. Since the joining party
will not disclose their information for privacy reasons, the
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evaluation process often involves monitoring the performance
of the joining party in the training process. Nevertheless, this
evaluation scheme is not efficient as it exhausts computational
and communication resources. Another challenge in this do-
main is to gain insight into the misbehavior of clients based
on the history of their behavior. It is important to discover
how the verification results can be employed to facilitate this
task.

One possible solution is to employ privacy-preserving tech-
niques during the trust evaluation process [63], [64]. Tech-
niques such as SMC or HE can enable verifiers to evaluate the
performance and trustworthiness of the joining party without
directly accessing their sensitive information. This way, pri-
vacy is maintained while still obtaining the necessary insights
for trust evaluation. Furthermore, optimizing the evaluation
process can enhance its efficiency [95]. Implementing tech-
niques that reduce the computational and communication over-
head, such as lightweight monitoring mechanisms or selective
data aggregation, can help alleviate the resource exhaustion
issues associated with the evaluation scheme. By carefully
designing evaluation protocols and employing efficient algo-
rithms, the overall efficiency of the process can be improved
without compromising the evaluation’s effectiveness.

In terms of addressing misbehavior based on historical
behavior, leveraging machine learning techniques and anomaly
detection algorithms can be beneficial. By analyzing the be-
havior patterns and performance metrics of clients over time,
it is possible to identify potential anomalies or deviations
that may indicate misbehavior. Establishing a comprehensive
system for tracking and monitoring client behavior, coupled
with intelligent analysis and detection mechanisms, can aid
in detecting and addressing misbehavior in a timely manner.
Moreover, incorporating reputation systems within the DFL
network can provide additional insights into the trustworthi-
ness of participating clients [58], [160]. Verifiers can leverage
the verification results and feedback from previous collabora-
tions to build reputation scores for each client. These scores
can serve as indicators of past behavior and can be used as a
basis for decision-making during the trust evaluation process.

VIII. CONCLUSION

The integration of FL and blockchain technologies has alle-
viated the need for a server in the network. This is followed by
a number of advantages such as efficient communication and
the elimination of a single point of failure in the federation.
While there are a limited number of surveys on the security
analysis of FL, since the previous studies were all based on
centralized architectures, further analysis is required to study
the new paradigm of DFL from a security perspective. This
work first reviewed common trends and preliminaries of FL
and blockchain. It then performed a security analysis on DFL
by identifying possible threats and defense mechanisms in
such systems.
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[137] S. Caldas, J. Konečný, H. B. McMahan, and A. Talwalkar, “Expanding
the reach of federated learning by reducing client resource require-
ments,” 2018, arXiv:1812.07210.

[138] Y. Jiang, S. Wang, B. Ko, W. Lee, and L. Tassiulas, “Model
pruning enables efficient federated learning on edge devices,” 2019,
arXiv:1909.12326.

[139] Y. Chen, F. Luo, T. Li, T. Xiang, Z. Liu, and J. Li, “A training-integrity
privacy-preserving federated learning scheme with trusted execution
environment,” Information Sciences, vol. 522, pp. 69–79, 2020.

[140] F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and N. Kourtellis,
“PPFL: Privacy-preserving federated learning with trusted execution
environments,” in Proceedings of the 19th Annual International Con-
ference on Mobile Systems, Applications, and Services, 2021, pp. 94–
108.

[141] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti,
“Blockchain and trusted computing: Problems, pitfalls, and a solution
for hyperledger fabric,” 2018.

[142] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on Computing, vol. 18,
no. 1, pp. 186–208, 1989.

[143] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in EEE Symposium on Security and
Privacy, 2013, pp. 238–252.

[144] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang, “Mystique: Efficient
conversions for zero-knowledge proofs with applications to machine
learning,” in USENIX Security, 2021, pp. 501–518.

[145] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model
distillation,” 2019, arXiv:1910.03581.

[146] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership in-
ference attacks against machine learning models,” in IEEE Symposium
on Security and Privacy, 2017, pp. 3–18.

[147] A. Salem, Y. Zhang, M. Humbert, M. Fritz, and M. Backes, “ML-
Leaks: Model and data independent membership inference attacks and
defenses on machine learning models,” 2018, arXiv:1806.01246.

[148] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses
against adversarial examples,” in International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.net/
forum?id=Bys4ob-Rb

[149] Y. Zhang and H. Yu, “Towards verifiable federated learning,” in Pro-
ceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, 2022, pp. 5686–5693, survey Track.

[150] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device
federated learning,” IEEE Communications Letters, vol. 24, no. 6, pp.
1279–1283, 2020.

[151] Y. Zhao, J. Zhao, L. Jiang, R. Tan, and D. Niyato, “Mobile edge com-
puting, blockchain and reputation-based crowdsourcing iot federated
learning: A secure, decentralized and privacy-preserving system,” 2019,
arXiv:1906.10893.

[152] S. Baghersalimi, T. Teijeiro, A. Aminifar, and D. Atienza, “Decentral-
ized federated learning for epileptic seizures detection in low-power
wearable systems,” IEEE Transactions on Mobile Computing, pp. 1–
16, 2023.

[153] M. Aloqaily, I. A. Ridhawi, and M. Guizani, “Energy-aware blockchain
and federated learning-supported vehicular networks,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 22 641–
22 652, 2022.

[154] S. H. Alsamhi, F. A. Almalki, F. Afghah, A. Hawbani, A. V. Shvetsov,
B. Lee, and H. Song, “Drones’ edge intelligence over smart envi-
ronments in b5g: Blockchain and federated learning synergy,” IEEE
Transactions on Green Communications and Networking, vol. 6, no. 1,
pp. 295–312, 2022.

[155] X. Qu, S. Wang, Q. Hu, and X. Cheng, “Proof of federated learning:
A novel energy-recycling consensus algorithm,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 08, pp. 2074–2085, 2021.

[156] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” 2020.

[157] D. Gao, Y. Liu, A. Huang, C. Ju, H. Yu, and Q. Yang, “Privacy-
preserving heterogeneous federated transfer learning,” in IEEE Inter-
national Conference on Big Data, 2019, pp. 2552–2559.

[158] Q. Wang, Y. Guo, X. Wang, T. Ji, L. Yu, and P. Li, “Ai at the edge:
Blockchain-empowered secure multiparty learning with heterogeneous
models,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9600–
9610, 2020.

[159] X.-Z. Wu, S. Liu, and Z.-H. Zhou, “Heterogeneous model reuse via
optimizing multiparty multiclass margin,” in Proceedings of the 36th
International Conference on Machine Learning, vol. 97, 2019, pp.
6840–6849.

[160] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mech-
anism for reliable federated learning: A joint optimization approach
to combining reputation and contract theory,” IEEE Internet of Things
Journal, vol. 6, no. 6, pp. 10 700–10 714, 2019.

https://hdsr.mitpress.mit.edu/pub/u24wj42y
https://openreview.net/forum?id=BJ0hF1Z0b
https://openreview.net/forum?id=Bys4ob-Rb
https://openreview.net/forum?id=Bys4ob-Rb


20 IEEE TRANSACTIONS ON BIG DATA, JANUARY 2024

Ehsan Hallaji (Graduate Student Member, IEEE)
received the B.Sc. degree in software engineering
from Shahid Rajaee University, Tehran, Iran,
in 2015, and the M.A.Sc. degree in electrical
and computer engineering from the University
of Windsor, Windsor, ON, Canada, in 2018,
where he is currently pursuing a Ph.D. degree
with the Department of Electrical and Computer
Engineering. His current research interests include
machine learning, data mining, federated learning,
and cybersecurity. He is a reviewer for several

journals and conferences in his area of research. He also served as the
Vice-Chair of the IEEE SMC Society, Windsor Section, from 2019 to 2022.

Roozbeh Razavi-Far (Senior Member, IEEE) is
an Assistant Professor at the Faculty of Computer
Science and Canadian Institute for Cybersecurity,
at the University of New Brunswick. His research
focuses on machine learning, big data analytics,
computational intelligence, and cybersecurity
of cyber-physical systems. He has authored or
co-authored more than 150 papers in scholarly
journals and international conferences. Stanford
lists his name among the top two percent most cited
researchers for 2022. He is the recipient of several

awards and grants including NSERC-DG, NSERC-ECR, NBIF, USRG
and NSERC-PDF. He is an Associate Editor at several journals, including
Neurocomputing, Machine Learning with Applications, Discover Artificial
Intelligence, and IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL
SYSTEMS. He served as a Guest Editor and Chair for several journals and
peer-reviewed conferences, and the Chapter Chair of IEEE Computational
Intelligence, and Systems, Man and Cybernetics Societies at Windsor Section.

Mehrdad Saif (Fellow, IEEE) is a distinguished
figure in the field of systems and control, with a
career spanning nearly four decades. He received the
B.S., M.S., and D.Eng. degrees in electrical engi-
neering from Cleveland State University, OH, USA,
in 1982, 1984, and 1987, respectively. Throughout
his graduate studies, he was involved in research
sponsored by NASA Lewis (now Glenn) Research
Center and the Cleveland Advanced Manufacturing
Program (CAMP). In 1987, Dr. Saif joined Simon
Fraser University’s School of Engineering Science as

an Assistant Professor. He rose through the ranks, becoming a Full Professor
in 1997. From 2002 to 2011, he took on the role of Director of the School,
spearheading its significant expansion during his tenure. Subsequently, he
served as the Dean of the Faculty of Engineering at the University of
Windsor from July 2011 until September 2021. There, he initiated major
developments, including substantial enrollment growth and the addition of
new programs in aerospace engineering, engineering management, B.Eng.
technology, mechatronics, among others. Under his leadership, the Faculty of
Engineering at University of Windsor also saw an increase in both faculty/staff
numbers and research output. Dr. Saif’s research contributions are both vast
and impactful, specializing in systems and control, estimation, observer theory,
and AI/ML-based approaches to fault diagnostics and condition monitoring.
His work has applications in a range of sectors, including automotive, power,
and autonomous systems. To date, he has published over 400 refereed journal
and conference papers and edited a book in these subject areas. He has
garnered over 10,000 citations and holds a Google h-index of 50. Moreover,
Dr. Saif is listed in Stanford University’s database of the top 100,000 career
scientists from 1965 to the present. In his own area of expertise, the same
database ranks him in the top 0.7%. Research.com also places him at
2681 worldwide and 139Th nationally among all electrical and electronics
engineers. Dr. Saif expertise has been sought after by notable organizations
such as GM, NASA, B.C. Hydro, and Canadian Space Agency (CSA). He
has also significantly contributed to the IEEE Control Systems Society as
the Chair of its Vancouver Section and serves on the Editorial Board of
several esteemed IEEE journals such as the IEEE ACCESS, IEEE SMC
MAGAZINE, IEEE INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS ON
INDUSTRIAL AND CYBER-PHYSICAL SYSTEMS, among others. Dr. Saif
is a Registered Professional Engineer in Ontario, Canada, and has been
honored with Fellowships in several prestigious organizations, including IEEE,
the Canadian Academy of Engineering (CAE), the Engineering Institute of
Canada (EIC), the Institution of Engineering and Technology (IET), and Asia-
Pacific Artificial Intelligence Association (AAIA). His IEEE fellowship is
particularly noteworthy, earned “for contributions to monitoring, diagnosis
and prognosis in cyber-physical health systems”.

Boyu Wang (Member, IEEE) received his B.Eng.
degree in Electronic Information Engineering from
Tianjin University, Tianjin, China, M.Sc. degree
in Electrical and Computer Engineering from
University of Macau, Macau, China, and Ph.D.
in Computer Science from McGill University,
Montreal, QC, Canada. He is currently an Assistant
Professor with the Department of Computer
Science, University of Western Ontario, London,
ON, Canada. He is also affiliated with the Brain
and Mind Institute and the Vector Institute. He

was a Post-Doctoral Research Fellow at the University of Pennsylvania and
Princeton University. His research interests include machine learning theory,
algorithms, and applications.

Qiang Yang (Fellow, IEEE) received the B.Sc.
degree in astrophysics from Peking University,
Beijing, China, in 1982, and the M.Sc. degree in
astrophysics and the Ph.D. degree in computer
science from the University of Maryland, College
Park, MD, USA, in 1985 and 1989, respectively.
He was a Faculty Member with the University of
Waterloo, Waterloo, ON, Canada, from 1989 to
1995, and Simon Fraser University, Burnaby, BC,
Canada, from 1995 to 2001. He was the Founding
Director of Huawei’s Noah’s Ark Lab, Hong Kong,

from 2012 to 2014 and a Co-Founder of 4Paradigm Corporation, Beijing,
an artificial intelligence (AI) platform company. He is currently the Head of
the AI Department and the Chief AI Officer of WeBank, Shenzhen, China.
Dr. Yang has been a Professor Emeritus with the Computer Science and
Engineering Department, Hong Kong University of Science and Technology
(HKUST), Hong Kong, since 2023, where he was previously a Chair
Professor, and a former Head of the CSE Department and the Founding
Director of the Big Data Institute from 2015 to 2018. He is the author
of several books, including Intelligent Planning (Springer), Crafting Your
Research Future (Morgan & Claypool), and Constraint-Based Design
Recovery for Software Engineering (Springer). His research interests include
AI, machine learning, and data mining, especially in transfer learning,
automated planning, federated learning, and case-based reasoning. Dr.
Yang has served as an Executive Council Member of the Advancement
of AI (AAAI) from 2016 to 2020. He is a fellow of several international
societies, including ACM, AAAI, IEEE, IAPR, and AAAS. He was a
recipient of several awards, including the 2004/2005 ACM KDDCUP
Championship, the ACM SIGKDD Distinguished Service Award in 2017,
and the AAAI Innovative AI Applications Awards in 2018 and 2020. He was
the Founding Editorin-Chief of the ACM Transactions on Intelligent Systems
and Technology and IEEE TRANSACTIONS ON BIG DATA. He has served as
the President of the International Joint Conference on AI (IJCAI) from 2017
to 2019.


	Introduction
	Background
	Federated Learning
	Blockchain

	Decentralized Federated Learning
	Threats to Decentralized Federated Learning
	Attacks on Performance
	Data Poisoning
	Model Poisoning
	Routing Attacks
	Consensus Attacks

	Attacks on Privacy
	Model Inversion Attacks
	Membership Inference Attacks
	Hijacking Private Key
	Vulnerability of Smart Contracts

	Analyzing the Viability of Attacks
	Ease of implementation
	Effectiveness of Attacks
	Defensibility


	Defense Mechanisms
	Privacy Preserving
	Homomorphic Encryption
	Secure Multiparty Computation
	Differential Privacy

	Model Robustness
	Anomaly Detection
	Robust Aggregation
	Pruning
	Trusted Execution Environment
	Zero-Knowledge Proofs
	Knowledge Distillation
	Regularization


	Verifiable DFL
	Trustable DFL Trainers
	Trustable DFL Workers

	Future Research Directions
	Weakness of Privacy-Preserving Techniques
	Optimizing Defense Mechanism Deployment
	Blockchain-Related Security Issues
	Heterogeneity of Decentralized Federated Learning
	Challenges in Verifiable Decentralized Federated Learning

	Conclusion
	References
	Biographies
	Ehsan Hallaji
	Roozbeh Razavi-Far
	Mehrdad Saif
	Boyu Wang
	Qiang Yang


