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Longitudinal Finger Rotation—Deformation
Detection and Correction

Bernhard Prommegger , Christof Kauba, Michael Linortner, and Andreas Uhl

Abstract—Finger vein biometrics is becoming more and more
popular. However, longitudinal finger rotation, which can easily
occur in practical applications, causes severe problems as the
resulting vein structure is deformed in a non-linear way. These
problems will become even more important in the future, as fin-
ger vein scanners are evolving toward contact-less acquisition.
This paper provides a systematic evaluation regarding the influ-
ence of longitudinal rotation on the performance of finger vein
recognition systems and the degree to which the deformations
can be corrected. It presents two novel approaches to correct the
longitudinal rotation, one based on the known rotation angle. The
second one compensates the rotational deformation by applying
a rotation correction in both directions using a pre-defined angle
combined with score level fusion and works without any knowl-
edge of the actual rotation angle. During the experiments, the
aforementioned approaches and two additional are applied: one
correcting the deformations based on an analysis of the geomet-
ric shape of the finger and the second one applying an elliptic
pattern normalization of the region of interest. The experimental
results confirm the negative impact of longitudinal rotation on the
recognition performance and prove that its correction noticeably
improves the performance again.

Index Terms—Finger vein recognition, longitudinal finger
rotation, finger rotation detection, finger rotation correction,
biometric fusion.

I. INTRODUCTION

VASCULAR pattern based biometric systems, commonly
denoted as vein biometrics, offer several advantages over

other well-established biometric recognition systems. In par-
ticular, hand and finger vein systems have become a serious
alternative to fingerprint based ones for several applications.
Vein based systems use the structure of the blood vessels inside
the human body, which becomes visible under near-infrared
(NIR) light. As the vein structure is located inside the human
body, it is resistant to abrasion and external influences on the
skin. Furthermore, a lifeness detection to detect presentation
attacks can be performed easily [1].
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The performance of finger vein recognition systems suffers
from different internal and external factors. Internal factors
include the design and configuration of the sensor itself, espe-
cially the NIR light source and the camera module. External
factors include environmental conditions (e.g., temperature and
humidity) and deformations due to misplacement of the fin-
ger, typically including shifts, tilt, bending and longitudinal
rotation which will be further examined in this work.

Performance degradations caused by various types of fin-
ger misplacement are not new and have been addressed in
several publications. The need for a robust finger vein image
normalisation including rotational alignment has already been
mentioned by Kumar and Zhou in 2012 [1]. Chen et al. [2]
state that deformation correction can be done either during
pre-processing, feature extraction or comparison. Moreover,
the physical design of the sensor can help to avoid mis-
placements of the finger. Prommegger et al. [3] showed,
that longitudinal finger rotation has a severe influence on the
recognition performance of a finger vein recognition system.
There are several approaches that try to reduce the influence
of these issues during the processing of the vein patterns.
Kumar and Zhou [1] introduced a finger alignment based
on the finger boundary to overcome finger translation and
rotation. Lee et al. [4] proposed a system utilizing a minu-
tia based alignment together with local binary patterns as
feature extraction method. Huang et al. [5] improved the
resistance against longitudinal rotation by applying an elliptic
pattern normalization to the input images. Matsuda et al. [6]
proposed a feature-point based recognition system introducing
a finger-shape model and a non-rigid registration method. They
achieved robustness against longitudinal rotation up to ±30◦.
Yang et al. [7] introduced a finger vein recognition framework
including an anatomy structure analysis based vein extraction
algorithm and integration matching strategy. Chen et al. [2]
introduced an approach that detects different types of fin-
ger deformation by analysing the shape of the finger, e.g.,
around the longitudinal axis, and corrects them using linear
and non-linear transformations. Besides these software based
solutions, there are some hardware-based ones which aim to
prevent finger misplacements in the first place, during acqui-
sition, rather than correcting them afterwards. Kauba et al. [8]
presented a finger vein scanner that captures three fingers
at once and requires the subject to place the fingers in a
flat, aligned position on a finger shaped guiding surface. This
reduces longitudinal finger rotation, planar finger rotation as
well as finger shifts to a minimum. To the best of our knowl-
edge, there is no method that satisfactory solves the problem
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of longitudinal finger rotation. Problems resulting from finger
misplacements, e.g., longitudinal rotation, will receive more
attention in the future as finger vein systems evolve towards
contact-less operation.

The main contribution of our work is the systematic anal-
ysis to which extent a longitudinal finger rotation can be
compensated and which impact such a correction has on the
recognition accuracy of the finger vein recognition system.
This analysis extends the authors previous work [3], [9].
Therefore, we evaluate four different methods to correct the
longitudinal rotaion, where the first and the last on are
proposed in this work:

1) A correction using the actual rotation angle provided
by the data set and a circular projective correction. This
approach has not been applied in finger vein recognition
and serves as a reference for the effectiveness of the
other rotation compensation methods.

2) A method proposed by Chen et al. [2] that analy-
ses the geometric shape of the finger and corrects the
deformations based on the results.

3) Elliptic pattern normalization of the region of interest as
proposed by Huang et al. [5].

4) A new method proposed in this article that compensates
the rotational deformations without the knowledge of the
actual rotation angle by applying a rotation correction in
both directions using a pre-defined angle combined with
score level fusion.

To verify the effectiveness of the proposed approach (4), it
is also applied on two commonly used finger vein data sets,
namely UTFVP [10] and SDUMLA-HMT [11].

The rest of this paper is organized as follows: Longitudinal
finger rotation and its problems caused for finger vein recog-
nition systems are described in more detail in Section II.
Section III explains all details of the used rotation compen-
sation methods. Section IV explains the processing tool-chain
and the used data set together with the experimental set-up.
Furthermore it includes the experimental results together with
a discussion. Section V concludes the paper along with an
outlook on future work.

II. LONGITUDINAL FINGER ROTATION

While capturing finger vein images, the finger’s placement
on the scanner is not necessarily done in an optimal way. Such
misplacements result in deformations of the vein structure,
affecting the performance of a finger vein recognition system.
Fig. 1 shows the orientations of the x, y and z axis with respect
to the finger. The different types of misplacements include:

• shifts of the finger in x- and y-direction (planar shifts)
• shifts of the finger in z-direction (distance to the camera,

scaling)
• planar rotation of the finger (in the xy-plane)
• tilts of the finger (finger tip and finger root are not in the

same xy-plane)
• finger bending and
• rotation around the longitudinal axis of the finger (y-axis).

As described in the authors’ previous work [3], some of the
problematic misplacements can be reduced or even completely

Fig. 1. Definition of the axes of a finger in a three-dimensional space.

Fig. 2. Finger rotation example using a commercial off-the-shelf scanner
(rotation counter-clockwise, originally published in [3]).

prevented during acquisition by adding simple support struc-
tures on the scanner, e.g., guiding walls to prevent planar
shifts. Moreover, they can be corrected by the biometric pro-
cessing chain during pre-processing (finger alignment during
ROI extraction) or feature extraction and comparison (using x-
and y-direction shifted and rotated versions of the extracted
templates). Almost all currently available commercial off-
the-shelf (COTS) sensors are equipped with such support
structures, but most of them are still not able to prevent
a rotation around the y-axis (longitudinal finger rotation).
Thus, longitudinal finger rotation cannot be ruled out and
poses a severe problem to finger vein recognition systems.
Fig. 2 shows an example of the longitudinal finger rotation
while using a COTS scanner. In a supervised acquisition sce-
nario, the user can be guided to place the finger correctly.
However, in unsupervised operation of the scanner, such lon-
gitudinal rotations are highly likely to occur. As finger vein
scanner development tends towards contact-less operation, the
problem of finger misplacement is getting more serious due the
increased degrees of freedom and the inability to use guiding
structures.

The captured vein structure is a projection of the vessel
structure in the 3D space onto a 2D plane. If the finger is
rotated along its longitudinal axis, the vein pattern is deformed
according to a non-linear transformation. Fig. 3. shows the
effect of longitudinal finger rotation on the vein pattern. The
finger cross section (top row) is rotated from −30◦ to +30◦. As
a result of this rotation, the projected pattern of the veins (bot-
tom row) changes as well. Depending on the relative position
of the veins to each other and the rotation angle, some of the
captured veins might merge into a single one. The vein struc-
tures of −30◦ (left), 0◦ (middle) and 30◦ (right) are completely
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Fig. 3. Longtitudinal finger rotation principle: A schematic finger cross section showing five veins (blue dots) rotated from −30◦ (left) to +30◦ (right) in 10◦
steps. The projection (bottom row) of the vein pattern is different according to the rotation angle following a non-linear transformation (originally published
in [3]).

different. Widely used vein recognition schemes can handle
such deformations only to a certain extent [3]. If the defor-
mations caused by the longitudinal rotation are corrected, the
negative impact can be reduced, but not completely mitigated.

III. FINGER ROTATION COMPENSATION

As longitudinal finger rotation decreases the performance
of a finger vein recognition system, it is beneficial to compen-
sate the deformations caused by this rotation. In this study,
four different approaches to tackle this problem are discussed
and analysed. The first approach which has not been applied
in finger vein recognition sp far assumes that the longitudi-
nal rotation angle is known and compensates the deformation
by applying a non-linear transformation in the opposite direc-
tion. This kind of analysis was only possible because the
PLUSVein Finger Rotation data set (PLUSVein-FR) provides
the actual angle of the longitudinal finger rotation. The results
of this method can be used as a reference for the evaluation
of the effectiveness of the other rotation correction methods
as the results of this method will be close to the possible
best achievable results. The second approach, proposed by
Chen et al. [2], tries to detect the finger rotation by analysing
the finger shape and again correcting it using a non-linear
transformation. The third method applies an elliptic pattern
normalization (EPN) [5] of the acquired image to reduce the
deformations. The last approach is a novel approach proposed
by the authors. It applies a rotation compensation in both direc-
tions using a fixed angle together with a maximum rule score
level fusion. Its main advantage is that no prior knowledge of
the actual rotation angle is required.

A. Rotation Compensation for Known Rotation Angle

For an accurate correction of the vein pattern the position
of the veins in the 2D image as well as the shape of the finger
and the depth of the veins within the finger has to be known.
As this information is not available in general, both need to be
estimated. We approximate the shape of the finger as a circle
like Matsuda et al. did in [6]. We further assume, that the
veins are located on the skin surface instead of underneath the
skin. Therefore, the vein pattern is projected back on the outer
circle of the finger. Fig. 4 depicts this principle. The left image
shows a schematic cross section of a finger acquired with a
longitudinal rotation ϕrotate = 25◦. The blue dots represent
the veins in their proper position, the red ones those that are
projected onto the skin. The bar below is a visualization of the

Fig. 4. Principle of rotation correction with known rotation angle. Left: fin-
ger rotated with 25◦. The blue points depict the veins inside the finger, the
red points the veins projected on the finger shape. The bar below is the pro-
jected vein pattern. Middle: the finger rotated into the palmar view. The bar
below is the rotation corrected vein pattern, which corresponds to the veins
estimated on the finger surface. On the right side the vein patterns are visu-
alized below each other. From top to bottom: rotated vein pattern, corrected
vein pattern, corrected pattern shifted for the highest correlation to the palmar
pattern (bottom row).

vein pattern, where the black areas correspond to the veins.
In the middle image, the finger is rotated back into the ideal
palmar position (ϕrotate = 0◦). It is clearly visible that the blue
and red dots are not perfectly aligned with each other. From
top to bottom, the right side shows the vein patterns of the
acquired image (same as on the left side), the rotated pattern
(same as in the middle), a shifted version of the rotated pattern
and the original pattern that would have been acquired without
the presence of longitudinal rotation. The rotation corrected
pattern is clearly more similar to the original pattern than the
acquired one. The additional shift is applied to achieve a higher
correlation between the corrected patterns and the original one.

The position of a pixel within the vein pattern is defined
by its x-coordinate xr and the corresponding y-coordinate yr,
which is calculated by (1)

yr =
√

r2 − x2
r (1)

where r is the approximated radius of the finger. r is half the
finger width, which corresponds to half of the height of the
extracted finger ROI. The rotation back into the palmar view
is calculated by applying the rotation matrix given in (2).

[
xp

yp

]
=

[
cos(−ϕrotate) −sin(−ϕrotate)

sin(−ϕrotate) cos(−ϕrotate)

]
∗

[
xr

yr

]
(2)

xp and yp are the corrected coordinates of the vein pixel in
the palmar view and ϕrotate is the rotation angle. If the veins
are located on the skin surface and the finger radius is known
exactly, this method is accurate. In practice, the blood vessels
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are inside the finger and the finger outline detection my not
be completely accurate, thus there remains a small deviation.

B. Geometric Shape Analysis Based Finger Rotation
Deformation Detection and Correction

Chen et al. [2] proposed a method to detect and cor-
rect finger deformations based on a geometric shape analysis
(GADC). They distinguished three types of finger defor-
mations: finger tilt, finger bending and longitudinal finger
rotation. In this work only longitudinal finger rotation, which
Chen et al. called a type 3 deformation, is discussed. For the
shape analysis they defined several parameters, on the basis of
which they calculated statistical measures of the finger. These
parameters are described in Section II of the original paper.
The detection of a type 3 deformation is based on the bending
at the proximal inter-phalangeal joint. If the absolute differ-
ence of the upper and lower angle of the finger outline at
the joint, αupp_joint1 and αdown_joint1, is larger than a defined
threshold t3rotate, a deformation of type 3 is present and the
image has to be corrected. The rotation correction is applied
either in the one or the other direction using a fixed sampling
scheme. Thus, the same fixed correction is applied indepen-
dent of the actual rotation angle. A detailed description of the
rotation detection and correction scheme can be found in [2].

C. Elliptic Pattern Normalization

Huang et al. [5] proposed a normalization of the vein pattern
in the feature space. The method is based on the hypothesis,
that the cross section of a finger approximately resembles an
ellipsis and that the veins which are captured by the finger
vein scanner are located close to the finger surface. Their nor-
malization essentially corresponds to a rolling of the finger,
which reduces the non-linear deformation of the vein struc-
ture across the entire width of the finger. After this correction
is applied, a horizontal shift of the images during compari-
son corresponds to a rotation of the finger. They applied the
elliptic normalization in the feature space using a vein pattern
based feature extraction. As this paper also investigates algo-
rithms that are not vein pattern based, an elliptic correction in
the feature space is not feasible for all of them. Therefore, the
correction is applied in the image space. This way the normal-
ization can be used for all algorithms under investigation. For
more details on this method, the interested reader is referred
to the original work [5].

D. Rotation Compensation Using a Fixed Angle

In real world scenarios, the longitudinal rotation angle is
unknown and its estimation is a difficult task. Hence, a method
that does not require the rotation angle to correct the images
would be beneficial. As shown in [3], commonly used recog-
nition schemes tolerate rotations of at least ±10◦. Thus, a
system that is able to keep the deformations caused by the
longitudinal rotation within this range is desirable.

The proposed method for correcting longitudinal finger rota-
tion is based on rotations of the image in both directions using
a fixed compensation angle. The final score is calculated using

Fig. 5. Deviation of the rotated finger to the palmar view with an correction
angle ϕcorr = 20◦.

a maximum rule score level fusion of the three comparisons
(original, non-rotated image and the two rotated versions).

It is assumed that the enrolment data is acquired in a
constrained environment. Thus, the longitudinal rotation of
the enrolment data should be close to 0◦. During the image
acquisition, the finger can be positioned either correctly (no
rotation) or rotated to the left or to right side. In order to reduce
the rotational deviation between the two samples, comparisons
using the captured sample itself with respect to the unmodi-
fied enrolled sample and its rotated versions in both directions
are applied. The angle of the applied rotation ϕcorr is defined
in advance. The applied rotation compensation is the same as
explained in Section III-A: the finger is approximated as a cir-
cle and the image is projected on this circle prior to applying
the rotation correction.

Fig. 5 illustrates how this approach reduces the rotational
deviation with ϕcorr = 20◦. The dashed cyan line shows the
deviation of the rotation for the original data. The dotted
grey lines represent the deviation of the data corrected with
±ϕcorr. The red line corresponds to the minimum deviation
of all images to the enrolled one. It can be seen that the
rotational angle of the sample compared to the original devi-
ation is reduced. For example, if the probe sample is rotated
ϕ = 30◦ from the enrolled sample, the following comparisons
are done:

1) The probe sample against the unmodified enrolled sam-
ple: rotation angle between the compared images: 30◦.

2) The probe sample against the enrolled image rotated
with ϕcorr: rotation angle of −ϕ+ϕcorr = −30◦+20◦ =
10◦.

3) The probe sample against the enrolled image rotated
with −ϕcorr: rotation angle of −ϕ − ϕcorr = −30◦ −
20◦ = 50◦.

If ϕcorr = 20◦, the deviation does not exceed 10◦ if the rotation
angle stays within a range of ±30◦. This deviation can be
handled by commonly used recognition schemes and thus, the
performance degradation can be kept at an acceptable level.
The best choice for ϕcorr depends on the actual application
and the scanner device. The useful range of ϕcorr is in the
range of 5◦ to 25◦ for most applications.
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Fig. 6. Basic principle of the multi-perspective finger vein scanner used to
acquire the PLUSVein-FR data set (originally published in [9], c© 2018 IEEE).

IV. EXPERIMENTS

During the experiments, the four rotation compensation
approaches described in Section III are applied on the
PLUSVein finger rotation data set, which is described in
the following subsection. Furthermore, to verify effective-
ness of the proposed fixed angle method, it is applied on
the publicly available finger vein data sets UTFVP [10] und
SDUMLA-HMT [11].

A. PLUSVein Finger Rotation Data Set

The PLUSVein Finger rotation data set (PLUSVein-FR) has
been acquired using a custom designed multi-perspective fin-
ger vein scanner as depicted in Fig. 6. It provides finger vein
images all around the finger (360◦) with a resolution of 1◦. The
finger is placed in the center of the scanner (axis of rotation),
whereas the NIR camera (right side) and the NIR illumina-
tion unit (left side) are placed on opposite sides of the finger
(light transmission). The different projections of the finger are
acquired by rotating the camera and the illumination module
around the finger.

The data set contains finger images captured from 63 dif-
ferent subjects, 4 fingers per subject, which sums up to a
total of 252 unique fingers. Each finger is acquired 5 times.
This results in 1.260 images per perspective. In this work,
we use the perspectives in the range of ±45◦ around the pal-
mar view in steps of 1◦. For more details on the data set
and the multi-perspective finger vein scanner, the interested
reader is referred to the authors previous publications [3], [9].
The data set is publicly available for research purposes at
http://wavelab.at/sources/PLUSVein-FingerRotationDataSet.

B. Recognition Tool-Chain

The components of the recognition tool-chain are visual-
ized in Fig. 7, which are the same as in the authors previous
work [9]: First, the biometric trait is acquired by the multi-
perspective finger vein scanner as a video sequence. The
subsequent tool-chain consists of pre-processing (ROI (region

Fig. 7. Basic components of a biometric recognition system (originally
published in [3]).

of interest) extraction and image enhancement), feature extrac-
tion and comparison. At first the frames corresponding to 1◦
steps are extracted from the video sequences. Afterwards each
image is processed individually: the ROI is extracted and
the finger outline is detected using an edge detection algo-
rithm. Then a straight line is fitted to the center of the finger.
Based on this line, the finger is aligned (rotated and verti-
cally shifted) such that it is in horizontal position and the
center line of the finger is in the middle of the image. The
area outside of the finger lines is masked out (pixels set to
black). Afterwards, the image is cut to a pre-defined length
of 1100 pixels. The height of the finger is normalized to
a height of 300 pixels throughout the whole length of the
finger image. To avoid artifacts at the image borders, 10 pix-
els are cut off on each side. The resulting ROI has a size
of 280×1080 pixels. Fig. 8 visualizes this process. The top
image shows the finger with the center and finger lines, the
bottom image shows the final ROI. Furthermore, to improve
the visibility of the vein patterns High Frequency Emphasis
Filtering (HFE) [12], Circular Gabor Filter (CGF) [13] and
simple CLAHE (local histogram equalisation) [14] are used
as pre-processing techniques. For more details on the pre-
processing methods refer to [15]. This study compares four
simple and one advanced vein pattern based feature extraction
methods which is based on the analysis of the anatomy struc-
ture of the veins. Maximum Curvature (MC) [16], Principal
Curvature (PC) [17], Wide Line Detector (WLD) [5] and
Gabor Filter (GF) [1] aim to extract the vein pattern from
the background resulting in a binary image, followed by a
comparison of these binary images. Comparing the binary fea-
ture images is done using a correlation measure, calculated
between the input images and in x- and y-direction shifted
and rotated versions of the reference image. The more sophis-
ticated vein pattern based method, Finger Vein Recognition
With Anatomy Structure Analysis (ASAVE), proposed by
Yang et al. [7], is a finger vein recognition framework which
includes an anatomy structure analysis based vein extraction
algorithm and an integration matching strategy. In addition,
two keypoint based recognition schemes, a SIFT [15] based
technique with additional keypoint filtering and Deformation-
Tolerant Feature-Point Matching (DTFPM) proposed by
Matsuda et al. [6] are evaluated.
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Fig. 8. ROI extraction - top: finger line detection. The straight line in the
middle represents the center of the finger at which it is horizontally aligned.
The top and bottom lines are the detected finger outlines which separate the
finger from the background. The region between the lines is regarded as finger
region. Bottom: the finger region is transformed to a fixed height. Afterwards
the ROI, visualized as white square, of a fixed size is cut out.

TABLE I
NUMBER OF COMPARISONS FOR EACH SUBSETS

C. Evaluation Protocol

To quantify the performance, the EER, the FMR100 (the
lowest FNMR for FMR ≤ 1%), the FMR1000 (the lowest
FNMR for FMR ≤ 0,1%) as well as the ZeroFMR (the low-
est FNMR for FMR = 0%) are used. The data set is divided
into two roughly equal sized subsets. The division is based on
the contained subjects, i.e., all fingers of the same person are
in one subset. Each subset is used to determine the parame-
ters which are then applied to the other subset. This ensures a
100% separation of the data used for determining the optimal
parameters and the actual test set. The evaluation within the
subsets follows the test protocol of the FVC2004 [18]: for cal-
culating the genuine scores, all possible genuine comparisons
are performed. For calculating the impostor scores, only the
first image of each finger is compared to the first image of all
other fingers. The resulting number of comparisons for both
subsets are listed in Table I. The final results are evaluated
based on the combined scores (genuine and impostor) of both
test runs. The parameter optimization is executed only for the
original, unmodified data set. The same parameter settings are
applied for all experiments on the modified versions of the
data sets too.

To quantify the decrease in performance for the rotated fin-
ger vein images, the relative performance degradation (RPD),
which is calculated as stated in equation (3), is used:

RPD = EERx − EERref

EERref
. (3)

EERref is the EER of the reference data set and EERx the
EER of the evaluated data set. A RPD of 0 means no change
in performance, a RPD of 1 corresponds to an EER increase

TABLE II
BASELINE PERFORMANCE RESULTS AT THE PALMAR VIEW FOR THE

DIFFERENT RECOGNITION SCHEMES ORDERED BY

RECOGNITION PERFORMANCE

to its doubled value. For a negative RPD, the performance
increased. For the evaluation of the performance increase due
to rotation correction, the relative performance increase (RPI)
as in equation (4) is calculated:

RPI = EERref − EERx

EERx
. (4)

Again, EERref is the EER of the reference data set and EERx

the EER of the evaluated data set. A RPI of 0 means no change
in the performance, a RPI of 1 corresponds to a drop in the
EER to half of its value. For a negative RPI, the performance
decreased. All values are given in percentage terms, e.g., 2.35
means 2.35%.

An implementation of the complete tool-chain as well
as the used configuration files and results (EER, FMR100,
FMR1000 and ZeroFMR) are available for download at:
http://www.wavelab.at/sources/Prommegger19a.

D. Baseline Results

In order to quantify the change of the recognition
performance due to rotation correction, the results of the
unmodified PLUSVein-FR are calculated. In finger vein recog-
nition usually the palmar perspective is used [10], [11],
[19]–[22]. The performance of the data set achieved at this
view is stated in Table II. The results are comparable to other
publicly available finger vein data sets: MC achieves the best
recognition rate with an EER of 0.37%, followed by PC,
DTFPM, WLD, GF and SIFT while ASAVE, with an EER
of 2.96%, performs worst.

The images captured at the different rotation angles from
−45◦ to 45◦ are compared to the palmar view (no rotation, 0◦).
The trend of the absolute EER is shown in Fig. 9. MC, PC
and WLD follow the same trend: They start at an EER < 1%
and keep quite a stable performance up to ±15◦, where their
EER is still < 1.5%. Higher rotations lead to a fast drop
of the performance. At a rotation of ±45◦, their EER is
> 40%. The trend of GF, the fourth of the simple vein pattern
based methods, is similar, but its performance degradation is
more prominent. Both keypoint based methods are more robust
against longitudinal rotation. DTFPM shows the overall best
performance and outperforms all vein pattern based methods
for rotation angles higher than ±30◦. At ±45◦ its EER is still
< 20%. SIFT outperforms the other methods starting at ±35◦
and achieves an EER of < 30% at ±45◦. The more sophisti-
cated ASAVE framework shows no advantage over the simple
vein pattern based methods: It starts at a higher baseline EER
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Fig. 9. Trend of the EER across the different rotation angles (0◦ corresponds
to the palmar view) for the original, unmodified data set from −45◦ to 45◦.

Fig. 10. ROI (left) and extracted MC features (right) of sample images of
the PLUSVein-FR. First row: palmar view (0◦), second row: 25◦ rotated view,
bottom row: rotation corrected version of the 25◦ rotated image.

of 3% and its performance degrades towards higher rotation
angles too, arriving at an EER of about 40% at ±45◦ as well.

As already shown in [3], all recognition schemes are able to
tolerate a longitudinal finger rotation up to ±10◦, while still
achieving an acceptable performance. The EER values as well
as the RPD for selected perspectives are stated in Table III.
This table lists the performance indicators for all applied rota-
tion correction methods and recognition schemes. The RPD
is always calculated with respect to the palmar view (0◦) of
the same recognition scheme and rotation correction method.
This allows a direct comparison of the different methods.
Since the recognition results for rotations in both directions are
almost symmetrical, the table only contains values for positive
rotation angles.

E. Rotation Compensation for Known Rotation Angle

As mentioned in Section IV-A, for the PLUSVein-FR the
exact angle of the longitudinal finger rotation is known. This
fact can be exploited to apply an actual correction of the lon-
gitudinal finger rotation as described in Section III-A. Fig. 10

Fig. 11. Trend of the EER across the different rotation angles applying
an exact longitudinal finger rotation compensation (0◦ corresponds to the
reference, palmar view) from −45◦ to 45◦.

depicts the ROI (left side) and the extracted MC features (right
side) for different views. The images in the top row are from
the palmar view, the middle shows the ones from a 25◦ rotated
finger and the bottom row its corrected version. It is clearly
visible that the vein structure of the rotated image (middle row)
is a deformed version of the palmar one (top row). The vein
structures of the rotation corrected images in the bottom row
are more similar to the palmar images than the uncorrected
ones. The part of the corrected ROI image that contains no
information (due to the transform) is filled with the average
grey level of the image.

Fig. 11 depicts the trend of the EER for the cor-
rected images. For all methods, the drop in the recognition
performance is less pronounced than without rotation com-
pensation. Again, MC, PC and WLD show a similar trend:
Up to a rotation angle of ±30◦ the EER stays below 3%.
Even for a rotation of ±45◦ their EER is still below 9%. The
performance of keypoint based algorithms increases as well,
but not to the same extent as for MC, PC and WLD. These
algorithms are already tolerant against longitudinal rotation,
and thus, the potential for improvement due to rotation cor-
rection is smaller. Neither DTFPM, nor SIFT outperform the
three simple vein pattern based methods. ASAVE benefits most
from this correction: With a maximum RPD of < 300% over
the whole range of ±45◦, it exhibits the lowest performance
degradation. Although, due to its low baseline performance, all
methods except SIFT and GF still outperform ASAVE in terms
of absolute EER. Again, GF shows the fastest performance
degradation among all algorithms. These results indicate, that
especially simple vein pattern based methods get the most
out of the longitudinal rotation compensation. They are even
able to outperform more sophisticated methods like DTFPM.
Keypoint based methods, which are robust against rotation to
some level, do only benefit from the correction to a small
extent.
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TABLE III
PERFORMANCE RESULTS IN TERMS OF EER AND RPD OF ALL CORRECTION METHODS AND RECOGNITION SCHEMES. THE RPD IS ALWAYS

CALCULATED WITH RESPECT TO THE PALMAR VIEW (0◦) OF THE SAME RECOGNITION SCHEME AND ROTATION CORRECTION METHOD. THE

HIGHLIGHTED RESULTS (BOLD FACE) REPRESENT THE BEST RECOGNITION RATES FOR A RECOGNITION SCHEME AT THE SPECIFIED ROTATION ANGLE

F. Rotation Compensation Using Geometric Shape Analysis
In this experiment, the performance of the method proposed

in [2] is analysed as described in Section III-B. As neither an

implementation nor the data set on which the shape analysis is
based are available, the results on the original data cannot be
reproduced. The main task of this approach is the detection of
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TABLE IV
ACCURACY OF JOINT DETECTION USING A SLIDING WINDOW APPROACH

AS PROPOSED IN [23]. THE PERCENTAGE IS THE DEVIATION OF THE

DETECTED JOINT RELATIVE TO THE GROUND TRUTH WITH

RESPECT TO THE LENGTH OF THE FINGER

TABLE V
STATISTICAL DATA OF THE FINGER GEOMETRY ON THE PLUSVEIN-FR

DATA SET AS DEFINED IN TABLE 2 OF [2]

the finger lines and joints. For the joint detection, Chen et al.
used a sliding window approach presented in [23]. As this
algorithm did not provide satisfactory results for our data set,
the joints as well as the roots and tips of the finger were
marked manually. When comparing the manually determined
values with those of the sliding window approach, large devi-
ations are noticeable. Table IV states the results in detail. For
joint 1 (proximal inter-phalangeal joint), 75% of the detected
joints are within a range of 5% of the length of the finger
(distance between finger root and -tip), for joint 2 (distal inter-
phalangeal joint) only 52% are within this range. For joint 1
and joint 2, around 9% and nearly 8% of the detected joint
positions are more than 20% off from the manually selected
position, respectively.

The statistical measures obtained for the PLUSVein-FR are
depicted in Table V. The values differ from the ones by
Chen et al., especially the angle α at the proximal inter-
phalangeal joint is larger. The standard deviations differ as
well: For the distance and diameter ratio values (rroot−tip,
rjoints, rjoint1−tip and rroot−joint1), the obtained one is 10 times
higher, for α it is more than 10 times lower. These differences
might result from the difference in the number of subjects and
the subjects’ ethnicity. Their data set consists of 12 Asian sub-
jects (6 female and 6 male) only, whereas the PLUSVein-FR
consists of 63 (27 female, 36 men) mainly European people.

Based on this statistical data, the geometric finger analysis
to detect the finger rotation is executed for all rotation angles.

Fig. 12. Number of images with a detected longitudinal finger rotation (type 3
deformation) using the method presented in [2]. Left y-axis: absolute number
of deformed images detected, right y-axis: value in percent (the total number
of images is 1260).

Fig. 12 illustrates the number of detected images exhibiting
longitudinal finger rotation. At a rotation angle of ±30◦, less
than 6% of the input images are detected as rotated, whereas
for more than 2% a wrong (opposite direction) rotation is
detected. Even at ±45◦ only 12% of the images are classi-
fied to contain a type 3 deformation. Thus, this method is
clearly not applicable to the PLUSVein-FR. One reason there-
fore might be due to the placement of the finger. Chen et al.
used a device where the finger is placed over its entire length
on the scanner, while the PLUSVein-FR was captured with
a device where only the fingertip and the finger trunk rests.
The rest of the finger does not touch any part of the scanner.
When placing a finger onto a surface, the finger is slightly
deformed. This deformation influences the geometric proper-
ties on which Chen et al.’s algorithm is based. Due to the
improper rotation detection, the recognition performance is
not significantly improved compared to the unmodified data
set. On the contrary, the performance even slightly decreases.
This result seems to be valid as, e.g., for the SDUMLA-HMT
Chen et al. only achieved an average RPI of 22% over all 7
investigated algorithms when applying corrections for all three
analysed finger deformations. For MC, the RPI was 7% only
(the EER decreased from 2.44% to 2.38%). These results indi-
cate, that the performance gain will be even smaller if only a
single correction is applied. The trend for GADC is basically
the same as for the baseline results in Fig. 9, hence there is no
separate visualization for GADC. However, the performance
trend for GADC is depicted in the plots of Fig. 17, where all
recognition schemes are compared.

G. Rotation Compensation Using Elliptic Pattern
Normalization

In this part of the experiment, the EPN as proposed by
Huang et al. [5] and described in Section III-C is applied.
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Fig. 13. Trend of the EER across the different rotation angles after applying
EPN in the range of −45◦ to 45◦.

Fig. 13 depicts the trend of the EER for elliptic input image
normalization. The area in which the performance remains
almost stable becomes larger for all recognition schemes.
All algorithms, but especially MC, PC and WLD, show an
increased robustness against longitudinal rotation. For MC,
PC and WLD, the point at which the performance begins
to degrade sharply, shifts to > ±30◦ and to > ±25◦ for
GF. For DTFPM and SIFT, the performance curve flattens
out compared to the unmodified data set. The same holds
for ASAVE, which achieves the worst performance in terms
of EER.

H. Rotation Compensation Using a Fixed Rotation Angle

The last part of the experiments is devoted to the analy-
sis of the proposed rotation compensation method based on
a fixed rotation angle as described in Section III-D. The top
plot of Fig. 14 shows the functional principle using MC fea-
tures for ϕcorr = 20. It shows five different lines: one line
for the trend of the EER of the unmodified data set, two
lines for the ±ϕcorr rotated images, the result of the maxi-
mum rule score level fusion from the original and the two
fixed angle corrected scores and as a reference and a line for
the performance using the known rotation angle for correction.
Within the region of ±ϕcorr, the fused results are equal to the
exact correction. Outside this region they stick to the angle
corrected lines. That the performance of the proposed method
is close to the performance of the known angle approach con-
firms the effectiveness of the approach. To show the influence
of the pre-defined rotation angle ϕcorr on the results, it is var-
ied between 5◦, 10◦, 15◦, 20◦ and 25◦ and applied on the
PLUSVein-FR. The results are visualized in the bottom plot
of Fig. 14: in essence, all curves follow the same trend, but
the rotation angle at which the performance starts to decrease
rapidly rises with an increasing ϕcorr.

Fig. 14. Trend of the EER across the different perspectives applying a
rotation compensation using a fixed rotation angle using MC features. Top:
details for ϕ = 20◦, bottom: the influence of varying ϕ from 5◦ to 25◦ in
steps of 5◦.

In the next experiment, the proposed fixed angle approach
is applied on two different data sets with a correction angle
of ϕcorr = 20◦: first to the original PLUSVein-FR and second
to the PLUSVein-FR after elliptical pattern normalization has
been performed. As all analysed recognition schemes are able
to tolerate rotations to at least ±10◦ a ϕcorr of 20◦ is chosen,
which keeps the effective rotation angle below 10◦ within a
range of ±30◦. Fig. 15 shows the results for both data sets.
The top plot visualizes the EER values for the original data
set. By applying the proposed approach, all evaluated recogni-
tion schemes achieve superior results compared to the original
data set. The performance degradation is slower which, leading
to flatter EER curves. Especially vein pattern based methods,



PROMMEGGER et al.: LONGITUDINAL FINGER ROTATION—DEFORMATION DETECTION AND CORRECTION 133

Fig. 15. Trend of the EER across the different perspectives applying a rota-
tion compensation using a fixed rotation angle using MC features. Top: fixed
angle compensation ϕ = 20◦, bottom: fixed angle compensation combined
with EPN.

namely MC, PC and WLD, benefit from this approach: there is
no sharp drop in their performance any more: PC’s EER stays
below 10% over the whole range, MC’s and WLD’s below
14%. DTFPM achieves an EER just above 15% at ±45◦,
which is worse than the vein pattern based methods. SIFT
and ASAVE arrive at EERs around 25%, GF at less than 35%
for this rotation angle. The results for applying the proposed
method together with EPN, which are depicted at the bottom
of Fig. 15, are even superior. The curves are flatter compared
to the original data set. The EER for PC stays below 5% over
the whole range of ±45◦, for MC and WLD below 10%, for
DTFPM below 15% and for GF and SIFT below 20%. For the
worst-performing algorithm, ASAVE, the EER only slightly
exceeds 20%.

TABLE VI
EVALUATION RESULTS FOR THE METHOD PROPOSED IN SECTION III-D

ON THE UTFVP DATA SET

I. Verification of the Fixed Rotation Angle Approach

To verify the effectiveness of the proposed fixed angle
approach, it is applied on the publicly available UTFVP [10]
and SDUMLA-HMT [11] data sets. Both data sets consist
of finger vein images acquired from the palmar perspective.
Again, we use the original data set and its elliptic normalized
version during the experiments. ϕcorr is varied from 5◦ to 45◦
in steps of 5◦. This part of the experiment is only performed
for MC features.

By visual inspection, the UTFVP data set seems to exhibit
little to no longitudinal rotation, whereas the extent of longi-
tudinal finger rotation within SDUMLA-HMT seems to be
higher. Table VI lists the results for the UTFVP data set.
The baseline EER without any rotation correction is 0.38%.
Using the fixed angle correction approach, the EER reaches
its minimum of 0.14% for ϕcorr = 10◦ and keeps below
0.34% until ϕcorr ≤ 30◦. With a further increase of ϕcorr,
the performance drops faster and hits an EER of 7.39%.
FMR100, FMR1000 and ZeroFMR follow approximately the
same trend. The last column shows the RPI with respect to
the baseline EER. At its maximum, the relative performance
increase is 175%. By applying EPN on the data set the EER
without fixed angle correction arrives at 0.35%, correspond-
ing to an RPI of 20% compared to the baseline performance
on the unchanged data set. When combining both meth-
ods, the best result with an EER of 0.17% is achieved for
ϕcorr = 5◦. This corresponds to an RPI of 100% and 145%
compared to the elliptic normalized data set without fixed
angle correction and to the original unmodified data set,
respectively.

The results for the SDUMLA-HMT data set are listed in
Table VII. The baseline EER is 4.19% for the unmodified data
set. By applying the proposed approach with increasing ϕcorr,
the EER steadily drops until ϕcorr = 25◦ where it reaches
its minimum of 1.62%. If ϕ is further increased, the EER
increases rapidly to an EER around 9.5%. Again, FMR100,
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TABLE VII
EVALUATION RESULTS FOR THE METHOD PROPOSED IN SECTION III-D

ON THE SDUMLA-HMT DATA SET

FMR1000 and ZeroFMR show approximately the same trend.
The maximum RPI is 158% for ϕcorr = 25◦. By applying EPN
on the data set, the EER arrives at 2.18%, which corresponds
to an RPI of 92% compared to the baseline performance.
Combining both methods further improves the results, hitting
the best performance at ϕcorr = 25◦ with an EER of 1.05%.
The resulting RPI is 109% and 300% with respect to the ellip-
tic normalized data set and to the original unmodified data set,
respectively.

As the rotation angle of 25◦, where the best result is
achieved, seems to be relatively high, we checked the result
for plausibility by visually inspecting the images manually. It
turned out that there are quite a view samples exhibiting a
high degree of longitudinal rotation. Fig. 16 shows such an
example (sample number 2 and 3 of the left ring finger from
subject #6). The top row shows the original images from the
data set. It is clearly visible that the two finger images are
rotated versions of each other. The second and third row show
the ROI of the left and right sample, respectively. The bottom
row is the rotation corrected right image using a rotation angle
of 25◦. The vein pattern of the rotated version of the right
image is clearly more similar to sample #2 than the original
features of sample #3.

J. Comparison of Rotation Compensation Methods

To enable a better comparison of the different rotation cor-
rection approaches’ performance gain for each recognition
scheme, Fig. 17 depicts their trends grouped per scheme. As
all simple vein pattern based methods (MC, PC, WLD, GF)
follow the same general behaviour, only MC is visualized.
Table VIII lists the EER and the RPI with respect to the base-
line performance of the unmodified data set at the palmar view
for all correction / recognition scheme combinations for some
selected perspectives.

The top-left figure gives the performance for MC. Like
all vein pattern based methods, MC highly benefits from the

Fig. 16. Example of two samples from the same finger of the SDUMLA-
HMT data set. Top row: original images, row 2: ROI and extracted features
from the left sample, row 3: right sample, bottom row: rotated version of the
right sample using a rotation angle of 25◦.

rotation compensation. Without rotation correction, MC is able
to achieve a relatively stable recognition rates up to a rotation
angle of ±15◦. For higher rotation angles, the performance
drops faster, and starts to drop rapidly at ±25◦. At ±45◦, the
EER is close to 45%. The recognition rate can be improved
noticeably by applying a correction based on the actual known
rotation angle. Hereby, the range, in which the performance
is stable can be increased to ±30◦. Even at ±45◦ the EER
is still around 10%, which corresponds to an RPI of 600%.
An application of GADC type 3 correction has no positive
effect at all. On the contrary, the performance even slightly
degrades. Similar to applying a correction using the known
rotation angle, also EPN extends the stable region. However,
starting at a rotation angle of ±30◦, the recognition rate starts
to decrease rapidly. Applying the proposed fixed angle method
with a pre-defined rotation correction angle of ϕcorr = 20◦
achieves similar results to the known angle method. The
best results are accomplished by combining the fixed angle
method with EPN. This combination even outperforms the
known angle correction method. The worst EER at −45◦
is still 8%.

The DTFPM results are visualized in the top-right subplot.
DTFPM is designed to be robust against longitudinal finger
rotation. As a result, all curves are shallowed compared to MC.
Even using the original, non-corrected data set yields EERs
of < 20% over the whole tested range. Applying a correc-
tion using the known rotation angle doubles the performance,
resulting in a maximum EER of about 10% at ±45◦. Again,
the application of GADC yields a slight deterioration of the
performance. Elliptic normalization, the fixed angle method
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Fig. 17. Trend of the EER across the different perspectives applying different rotation compensation approaches for the same recognition scheme. Top left:
MC, top right: DTFPM, bottom left: SIFT, bottom right: ASAVE.

and the combination of both are superior to no correction
but inferior to the known angle method. The proposed fixed
angle method achieves the best results among these methods
for DTFPM.

Similar to DTFPM, SIFT is more robust against longitu-
dinal finger rotation than vein pattern based methods. This
leads to a similar behaviour for the different correction meth-
ods, although with raised EER rates: A correction using
the known rotation angle flattens the EER curve, achiev-
ing an EER of just above 15% at ±45◦ (instead of 30%
without correction). GADC does not improve the results at
all. The proposed method also reduces the resulting EERs,
but not to the same extent as the known angle method.
EPN achieves roughly the same recognition rates as the

correction using the known angle. The combination of elliptic
normalization and the fixed angle method achieves the over-
all best results. The results are depicted in the bottom-left
plot.

The bottom-right chart shows the results for ASAVE. The
known angle correction achieves pretty stable results within
the range of ±40◦ with an EER below 8%. For higher rota-
tion angles the performance drops sharply until it reaches its
maximum EER of 15% at −45◦. Again, GADC does not
gain any performance increase compared to the performance
of the original data set. Elliptic normalization shallows the
EER curve and achieves EERs below 10% up to ±30◦. For
higher rotation angles its performance decreases rapidly and
arrives at an EER of 23% at ±45◦. The proposed method is
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TABLE VIII
PERFORMANCE RESULTS IN TERMS OF EER AND RPD OF ALL CORRECTION METHODS AND RECOGNITION SCHEMES. THE RPI IS ALWAYS

CALCULATED WITH RESPECT TO THE BASELINE PERFORMANCE OF THE UNMODIFIED DATA SET AT THE PALMAR VIEW FOR ALL CORRECTION /
RECOGNITION SCHEME COMBINATIONS. THE HIGHLIGHTED RESULTS (BOLD FACE) REPRESENT THE BEST RECOGNITION RATES

FOR A RECOGNITION SCHEME AT THE SPECIFIED ROTATION ANGLE

able to keep the recognition rates stable between ±20◦. For
higher rotation angles the performance degrades sharply. Once
more, the best results are achieved by using a combination

of EPN and the proposed method. Although, for ASAVE the
performance results in this case are noticeable worse compared
to the correction using the known angle.
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TABLE IX
RANKING OF THE ROTATION CORRECTION METHODS UNDER

INVESTIGATION BASED ON THE EXPERIMENTAL RESULTS

PER RECOGNITION SCHEME

K. Ranking of Rotation Correction Methods

Table IX gives the ranking of the applied rotation correc-
tion methods per recognition scheme. Regarding the single
approaches, the correction using the known rotation angle
achieves the best results. Although, in practical applications
the known angle method cannot be applied as the rota-
tion angle is usually not known. Thus, the most appropriate
approach is the proposed fixed angle method on its own.
However, a combination of the proposed approach and the
EPN further improves the results. Especially for vein pattern
based schemes, the results achieved by the proposed method
are only slightly worse than the known angle approach. Except
for SIFT, EPN on its own leads to inferior results compared
to the proposed method. GADC even degrades the recognition
rates compared to applying no correction.

The results of the different rotation correction approaches
indicate that simple vein pattern based methods get the most
out of rotation correction. MC, PC as well as WLD outper-
form all other recognition schemes after applying a rotation
compensation using the exact rotation angle, elliptic normal-
ization, the fixed angle method or a combination of the latter
two.

L. Runtime Evaluation for Fixed Angle Approach

The rotation correction introduces additional processing
steps. Thus, the runtime costs are relevant in a practical
application. As the rotation compensation is applied during
biometric enrolment, the additional cost are two comparisons
and the maximum rule score level fusion at the biometric
recognition. If the approach is combined with EPN, this step
needs to be considered too. Note, that the implementations
of the recognition algorithms used in these experiments are
not optimized for runtime performance. Hence, the deter-
mined durations are only indicators for the additional costs
imposed due to the proposed approach. Table X lists the aver-
age processing times for the different steps in the recognition
tool-chain. It can be seen that the additional runtime of the
steps added by this approach (two comparisons and the max-
imum score level fusion) is negligible compared to the other
steps. Therefore, the total duration, as shown in Table XI, is
only slightly higher. As the processing of the elliptical cor-
rection takes noticeably longer, its application increases the
overall duration perceptibly. The runtime analysis shows, that
the fixed angle correction approach on its own is suitable for
real-time applications.

TABLE X
THE AVERAGE TIME OF COST FOR EVERY RELEVANT STEP IN THE

RECOGNITION TOOL-CHAIN

TABLE XI
THE AVERAGE TIME OF COST FOR A SINGLE COMPARISON USING NO

ROTATION CORRECTION, THE FIXED ANGLE APPROACH AND THE

FIXED ANGLE APPROACH AFTER APPLYING EPN

V. CONCLUSION

We systematically investigated the extent to which longitu-
dinal finger rotation can be compensated and the impact of
the correction on the recognition accuracy of a finger vein
recognition system. Therefore, we evaluated two novel correc-
tion approaches and two other ones from the literature. The
first approach has not been applied to finger vein recogni-
tion before and exploits the fact that for the PLUSVein-FR
data set the angle of the longitudinal rotation is known. It
applies a rotation compensation using a circular projection
based on this known angle. As second approach we evalu-
ated a method proposed by Chen et al. [2] that analyses the
geometric shape of the finger and based on this results, detects
deformations and corrects them. The third approach applies an
elliptic pattern normalization as proposed in [5].

In real world scenarios the longitudinal rotation angle is
unknown and its estimation is a difficult task. The fourth
approach, is a novel method that is able to correct longitu-
dinal finger rotation deformation without any knowledge or
estimation of the actual angle of rotation, which is its main
advantage.

The results of the known angle approach showed that a
correction of the rotation is possible up to ±30◦, achieving
reasonable recognition results. It turned out that especially
vein pattern based algorithms, e.g., MC and PC, benefit from
this rotation correction. The approach based on the geometric
shape analysis, did not achieve satisfactory results on our data
set at all. By applying EPN, all recognition schemes under
investigation achieved superior results compared to applying
no correction. By successfully applying the newly proposed
fixed angle method on three different data sets (PLUSVein-FR,
UTFVP and SDUMLA-HMT), we confirmed its effectiveness.
The analysis of the computational cost showed, that the fixed
angle correction approach is also suitable for real-time appli-
cations. A combination with EPN further improved the results
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and achieved the best robustness against longitudinal finger
rotation for all recognition schemes. However, EPN is more
computational expensive than the proposed approach.

We further confirmed that simple, vein pattern based recog-
nition schemes in combination with our proposed correction
method outperform more sophisticated and complex recogni-
tion algorithms and rotation detection frameworks. For exam-
ple, PC with elliptic normalization and our proposed fixed
angle compensation approach reduces the impact of longitudi-
nal finger rotation noticeably. In biometrics there is a general
trend towards contact-less as well as on-the-move acquisition.
Hence, recognition tool-chains that are robust against differ-
ent finger misplacements and the resulting deformations will
become essential.

Our future work will include further analysis of deforma-
tions caused by different finger misplacements and the devel-
opment of methodologies improving the robustness against
them. Furthermore, we will analyse the presence of finger
rotation in commonly used publicly available finger vein
data sets.
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