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Abstract—The availability of large annotated datasets and affordable computation power have led to impressive improvements in the
performance of CNNs on various object detection and recognition benchmarks. These, along with a better understanding of deep
learning methods, have also led to improved capabilities of machine understanding of faces. CNNs are able to detect faces, locate
facial landmarks, estimate pose, and recognize faces in unconstrained images and videos. In this paper, we describe the details of a
deep learning pipeline for unconstrained face identification and verification which achieves state-of-the-art performance on several
benchmark datasets. We propose a novel face detector, Deep Pyramid Single Shot Face Detector (DPSSD), which is fast and capable
of detecting faces with large scale variations (especially tiny faces). We give design details of the various modules involved in automatic
face recognition: face detection, landmark localization and alignment, and face identification/verification. We provide evaluation results
of the proposed face detector on challenging unconstrained face detection datasets. Then, we present experimental results for IARPA

Janus Benchmarks A, B and C (IJB-A, IJB-B, IJB-C), and the Janus Challenge Set 5 (CS5).

Index Terms—Face recognition, Face identification/verification, Face detection, Deep Learning

1 INTRODUCTION

Facial analytics is an active area of research. It involves extracting
information such as landmarks, pose, expression, gender, age,
identity etc. It has several application including law enforcement,
active authentication on devices, face biometrics for payments,
self-driving vehicles etc.

Face identification and verification systems typically have
three modules. First, a face detector for localizing faces in an
image is needed. Desirable properties of a face detector are
robustness to variations in pose, illumination, and scale. Also,
a good face detector should be able to output consistent and
well localized bounding boxes. The second module localizes the
facial landmarks such as eye centers, tip of the nose, corners of
the mouth, tips of ear lobes, etc. These landmarks are used to
align faces which mitigates the effects of in-plane rotation and
scaling. Third, a feature extractor encodes the identity information
in a high-dimension descriptor. These descriptors are then used to
compute a similarity score between two faces. An effective feature
extractor needs to be robust to errors introduced by previous steps
in the pipeline: face detection, landmark localization, and face
alignment.

CNNs have been shown to be very effective for several
computer vision tasks like image classification [ 1[]-[3]], and object
detection [4]-[6]. Deep CNNs (DCNNSs) are highly non-linear
regressors because of the presence of hierarchical convolutional
layers with non-linear activations. DCNNs have been used as
building blocks for all three modules of automatic face recogni-
tion: face detection [[7]]-[[10]], facial keypoint localization [8], [[10],
[[11]], and face verification/identification [|12], [[13]] Ever-increasing
computation power and availability of large datasets like CASIA-
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WebFace [14]], UMDFaces [15], [[16]], MegaFace [17], [18]], MS-
Celeb-1M [19], VGGFace [20], [21]], and WIDER Face [22] has
led to significant performance gains from DCNNs. This is because
of the large variations in pose, illumination, and scale of faces
present in these datasets.

This paper makes two primary contributions: 1) We propose
a novel face detector that is fast and can detect faces over a
large variation of scale. 2) Present a DCNN-based automatic
face recognition pipeline which achieves impressive results on
several recent benchmarks. We require our face detector to be
both fast and accurate in order to build an efficient end-to-end
face recognition pipeline. Hence, we design a face detector that
provides the output in a single pass of the network. In order
to detect faces at different scales, we make use of the inbuilt
pyramidal hierarchy present in a DCNN, instead of creating an
image pyramid. This further reduces the processing time. We
develop specific anchor filters for detecting tiny faces. We apply
the bottom-up approach to incorporate contextual information, by
adding features from deeper layers to the features from shallower
layers. The proposed face detector is called Deep Pyramid Single
Shot Face Detector (DPSSD).

Once we get the face detections from DPSSD, we follow the
pipeline to localize landmarks and extract deep identity features
for face recognition and verification. Each module of the presented
recognition pipeline (face detection, landmark localization, and
feature extraction) is based on DCNN models. We use an ensemble
of CNNs as feature extractors and combine the features from the
DCNNs s into the final feature representation for a face. In order to
localize facial landmarks for face alignment, we use the DCNN
architecture proposed in [§]]. We describe each of the modules
in detail and discuss their performance on the challenging IJB-
A, IJB-B, IJB-C (see figure E] for a sample of faces), and ITARPA
Janus Challenge Set 5 (CS5) datasets. We also present an overview
of recent approaches in this area, and discuss their advantages and
disadvantages.
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The automatic face verification pipeline presented in this
paper is significantly improved from its predecessors [12], [23]]
in the following ways: (1) It uses a much more effective Crystal
Loss function described in [24] to train the networks. Crystal
Loss creates more concentrated clusters of classes and increases
inter-class distances. (2) It employs an efficient metric learning
method (Triplet Probabilistic Embedding) [25]]. TPE uses inner-
product based constraints instead of the commonly used norm-
based constraints while optimizing the embedding matrix.

The paper is organized as follows. First we discuss recent
developments in face detection (section [2.I), keypoint detection
(section[2.2)), face recognition (section[2.3)) and multi-task learning
(MTL) [2:4] Then, in section [3] we describe our pipeline for face
detection, identification, verification, and recognition and present
results in section ] We discuss some open issues and conclude in
section

2 A BRIEF SURVEY OF EXISTING LITERATURE

We give a brief overview of recent works on different modules of
a face identification/verification pipeline. We first discuss recent
face detection methods. Then we consider the second module:
facial keypoint detection. Finally, we discuss several recent works
on feature learning and summarize much of the state-of-the-art
work on face verification and identification.

2.1 Face Detection

Face detection is the first step in any face recognition/verification
pipeline. A face detection algorithm outputs the locations of all
faces in a given input image, usually in the form of bounding
boxes. A face detector needs to be robust to variations in pose,
illumination, view-point, expression, scale, skin-color, some oc-
clusions, disguises, make-up, etc. Most recent DCNN-based face
detectors are inspired by general object detection approaches.
CNN detectors can be divided into two sub-categories: 1) region-
based, and 2) sliding window-based.

Region-based approaches first generate a set object-proposals
and use a CNN classifier to classify each proposal as a face or not
face. The first step is usually an off-the-shelf proposal generator
like selective search [26]. Some recent detectors which use this
approach are HyperFace [[10], and All-in-One Face [§]. Instead
of generating object proposals by a generic method, Faster R-
CNN [5] used a Region Proposal Network (RPN). Jiang and
Learned-Miller used a Faster R-CNN network to detect faces in
[27]]. Similarly, [28]] proposed a multi-task face detector based on
the Faster-RCNN framework. Chen et al. [29|] trained a multi-
task RPN for face detection and facial keypoint localization. This
allowed them to reduce redundant face proposals and improve the
quality of face proposals. The Single Stage Headless face detector
[[7] is also based on an RPN.

Sliding window-based methods output face detections at
every location in a feature map at a given scale. These detections
are composed of a face detection score and a bounding box.
This approach does not rely on a separate proposal generation
step and is, thus, much faster than region-based approaches. In
some methods [9], [30], multi-scale detection is accomplished
by creating an image pyramid at multiple scales. Similarly, Li
et al. [31] used a cascade architecture for multiple resolutions.
The Single Shot Detector (SSD) [6] is also a multi-scale sliding-
window based object detector. However, instead of using an object
pyramid for multi-scale processing, it utilizes the hierarchal nature
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of deep CNNs. Methods like ScaleFace [32]], and S3FD [33] use
similar techniques for face detection.

In addition to the development of improved detection algo-
rithms, rapid progress in face detection performance has been
spurred by the availability of large annotated datasets. FDDB
[34] consists of 2,845 images containing a total of 5, 171 faces.
Similar in scale is the MALF [35] dataset which contains 5, 250
images with 11, 931 faces. A much larger dataset is WIDER Face
[22]. It contains over 32, 000 images containing faces with large
variations in expression, scale, pose, illumination, etc. Most state-
of-the-art face detectors have been trained on the WIDER Face
dataset. This dataset contains many tiny faces. Several of the above
mentioned face detectors still struggle with finding these small
faces in images. Hu el al. [36] showed that context is important
for detecting such faces.

An extensive survey of face detection methods developed
before 2014 can be found in [37]. Chen et al. [[12] discuss the
importance of face association for face recognition in videos.
Association is the process of finding the correspondences between
different faces in different video frames.

2.2 Facial Keypoints Detection and Head Orientation

Facial keypoints include corners of the eyes, nose tip, ear lobes,
mouth corners etc. These are needed for face alignment which
is important for face identification/verification [15]]. Head pose is
another important information of interest. A comprehensive survey
of keypoint localization methods can be found in [38]] and [39].

Facial keypoint detection methods can be divided into two
types: model-based and regression-based. The model-based ap-
proaches create a representation of shape during training and
use this to fit faces during testing. Model-based methods include
PIFA [40], and 3DDFA [41]. Jourabloo et al. [42] considered
face alignment as a dense 3D model fitting problem and used
a cascade of DCNN-based regressors to estimate the camera
projection matrix and 3D shape parameters. Antonakos et al. [43]
modeled appearances using multiple graph-based pairwise normal
distributions between patches.

Cascade regression-based methods directly map image appear-
ance to the target output. Zhang et al. [44] used a cascade of
several successive stacked auto-encoder networks. This approach
refines the coarse locations obtained from the first few stacked
auto-encoder networks using subsequent networks. Bulat er al.
also first roughly localized each facial landmark and then refined
the detection results. Similarly, the approach proposed by Sun et
al. [45] fused outputs from multiple networks at each level of a
cascade. Another method which combined outputs from multiple
regressors is cascade compositional learning (CCL) [46]. Kumar
et al. [47] proposed an iterative method for keypoint estimation
and pose predication. The method proposed by Trigeorgis et
al [48] jointly trained a convolutional recurrent neural network
architecture. In another work, Kumar et al. [11] developed a single
CNN for keypoint localization.

The 300 Faces In-the-Wild database (300W) [49] is a bench-
mark for a fair comparison of different facial detection methods.
It combines and extends several previously available datasets like
LFPW, Helen, AFW, Ibug [38]] and 600 test images.

Some works have also used generic 3D face models for face
alignment/frontalization [50]. However, the advantages of such
methods are limited and their performance can easily be improved
upon by multi-task learning (MTL) approaches.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

2.3 Face Identification and Verification

In this section, we provide a brief introduction to recent works on
CNN-based face identification and verification. Interested readers
are referred to [51] for a summary of methods developed before
the wide adoption of CNNss.

A face identification/verification system has two main parts:
1) robust face representation; and 2) a classifier (in case of
identification) or similarity measure (for verification).

2.3.1 Robust Face Representations

Deep networks are able to learn discriminative features when
trained with large datasets. Huang er al. [52] used convolutional
deep belief networks based on local restricted Boltzmann ma-
chines to learn face representations. Their models achieved good
performance on the LFW dataset without requiring large annotated
face datasets.

On the other hand, Taigman et al. used a proprietary face
dataset consisting of four million faces of over 4,000 identities to
train a nine-layer deep network (DeepFace) [53]. Instead of using
standard convolutional layers, they used several locally connected
layers without weight sharing. Similarly, FaceNet [54]] was trained
on a dataset of about 200 million images of about 8 million
identities. It directly optimized the embedding itself using triplets
of roughly aligned matching/non-matching face patches.

The DeepID frameworks [55]-[57] utilized an ensemble of
smaller deep convolutional networks than DeepFace or FaceNet.
Each DCNN consisted of four convolutional layers and was
trained with about 200,000 images of about 10,000 identities. Us-
ing an ensemble of models and a large number of distinct identities
helped DeeplD learn discriminative face representations which
allowed it to achieve super-human face verification performance
on the LFW dataset.

The CASIA-WebFace dataset [[14] which consists of about
0.5 million face images from 10,575 subjects was used to train a
DCNN with 5 million parameters. The model achieved satisfactory
performance and the dataset is widely used for training CNNs.
Other large-scale datasets have followed, e.g. VGGFace [20],
VGGFace2 [21]], UMDFaces [[15]], [16] etc.

Parkhi et al. [20] trained a CNN based on VGGNet [58] for
face verification using the VGGFace dataset. This model achieved
competitive results on both LFW [59] and YTF [60] datasets.

Larger datasets and more difficult evaluation metrics require
representations invariant to pose, age, illumination etc. AbdAl-
mageed et al. [[61] trained separate DCNN models for frontal,
half-profile, and fill-profile faces as a way to handle pose varia-
tion. Adding more images of faces in profile to the training set
is another way of thinking about robustness. Masi et al. used
3D morphable models to augment the CASIA-WebFace dataset.
This has the added advantage of not requiring large-scale human
annotation efforts.

The most widely used softmax-loss usually does not lead to
concentrated clustering of face representations. Several modifica-
tions and replacements have been proposed to achieve enhanced
representations of faces. Ding et al. [|62] proposed a new triplet
loss function which achieved state-of-the-art performance for
video-based face recognition. Wen et al. [|63]] added a regulariza-
tion constraint to the softmax loss based on the centroid for each
class. Liu et al. [64] proposed angular loss based on modified
softmax. This led to a discriminative face representation which
is optimized for the most commonly used similarity metric, viz.,
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cosine similarity. Ranjan et al. [65] regularized the softmax loss
with a scaled Lo-norm constraint. This achieved state-of-the-art
results on IJB-A [|66].

Video-face recognition and template-based face processing re-
quires using feature aggregation methods which combine features
from several face images into one. Yang et al. [67] proposed a
dynamically weighted aggregation approach (Neural Aggregation
Network). Similarly, Bodla et al. [|68]] used a neural network to
fuse facial features from two different DCNN models. However,
as we show later, a simple average aggregation strategy appears to
be sufficient to equal the performances of these methods.

2.3.2 Discriminative Metric Learning

Learning a classifier or a similarity metric is the next step in
obtaining robust facial features. For face verification, features
for two faces belonging to the same person should be similar
while features for face belonging to different persons should be
dissimilar. Several recent works have come up with ways of
encoding this requirement in the training loss functions or network
designs.

The first approach uses pairs of images to train a feature
embedding where positive pairs are closer and negative pairs are
farther apart. Hu et al. [|69] used deep neural networks to learn a
discriminative metric. Schroff et al. [54]], Parkhi et al. [20], and
Swami et al. [25]] used a triplet loss to embed DCNN features into
a discriminative subspace. This led to performance improvements
on face verification.

Another approach is to modify the commonly used cross-
entropy loss to incorporate the discriminative constraint. Wen
et al. [63] introduced the center loss for learning discriminative
face embeddings. Ranjan et al. presented crystal loss [24] which
uses a feature normalization and scaling before the softmax loss.
Similarly DeepVisage [70] normalized the features using a special
case of batch normalization. SphereFace [64] proposed angular
softmax which yields angularly discriminative features. CosFace
[71] Lo normalizes both features and weights to remove radial
variations and introduces a cosine margin term to maximize the
decision margin in angular space.

2.3.3 Implementation

Obtaining discriminative and robust features is important for both
face verification and identification. For face verification, given
a pair of faces, the two face features are compared using a
similarity metric. Lo distance and cosine similarity are the two
most commonly used metrics for comparing two face feature
representations. For identification, the feature of a given probe
face is compared against a large gallery and the most similar
gallery faces give the identity of the probe face. To obtain robust
features, ensemble of DCNNSs can be used to extract different
face representations which can be later fused into a single robust
representation [55]-[57]], [|68].

Deep networks are extremely data hungry. There are several
publicly available face datasets which can be used to train deep
networks for face identification and verification. Table [T] presents
the details of some of these datasets.
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Face Recognition
Name #faces #subjects

MS-Celeb-1M [19] 10M 100K
CelebA [72] 202,599 10,177
CASIA-WebFace [14] 494,414 10,575
VGGFace [20] 2.6M 2,622
Megaface [17], [18] 4.7M 672K
LFW [59] 13,233 5749

1JB-A [66] 5,712 images, 2,085 videos 500
1JB-B [73]] 11,754 images, 7,011 videos 1,845
1JB-C [74] 31,334 images, 11,779 videos 3,531

YTF [60] 3,425 videos 1,595

PaSC [75]] 2,802 videos 293

CFP [[76] 7,000 500
UMDFaces [16] 367,888 8,277
UMDFace Video [15] 22,075 videos 3,107
VGGFaces2 [21]] 3.31IM 9,131

TABLE 1

Recent datasets for face recognition.

Pre-processing and model/dataset selection are extremely im-
portant decisions that need to be made before training face
recognition systems. Recently, Bansal et al. [15] studied the good
and bad practices for such decisions. They tried to answer the
following questions: (1) Can we train on still images and expect
the systems to work on videos? (2) Are deeper datasets better
than wider datasets where given a set of images deeper datasets
mean more images per subject, and wider datasets mean more
subjects? (3) Does adding label noise always leads to improvement
in performance of deep networks? (4) Is alignment needed for face
recognition? They [15] essentially demonstrated the importance of
using clean training data, good face alignment, and training deep
networks with a combination of still images and video frames.

2.4 Multi-Task Learning for Facial Analysis

Multi-Task Leaning is the setting where multiple parts of a prob-
lem are tackled simultaneously, usually using the same features.
The idea behind MTL learning is that different tasks can benefit
from each other. The MTL framework was first used and analyzed
by Caruana [77). Zhu et al. [78]] proposed a multi-task approach
for simultaneous face detection, landmark localization, and head-
pose estimation. MTL has been shown to improve the performance
for the tasks involved by leveraging information from different
supervision sources. For example, JointCascade [[79]] achieved
improvement in face detection performance by adding landmark
localization to face detection during training.

However, because the above mentioned methods used hand-
crafted features, extending these to new tasks is difficult. Dif-
ferent tasks required different types of specialized hand-crafted
features. For example, face detection usually used Histograms
of Oriented Gradients (HOG), whereas face recognition typically
used Local Binary Patterns (LBP). Combining these to achieve
concurrent face detection and recognition is difficult. However,
features obtained from DCNNs can encode various properties of
the visual data. Contrary to hand-designed features, it is possible
to train a single DCNN which can accomplish multiple tasks such
as face detection, landmark localization, attribute prediction, age
estimation, face recognition etc. at the same time. Shared deep
features help in exploiting the relationship between different tasks.
Using MTL can be considered an additional regularization for the
CNN [80].

HyperFace [10] is among the first few multi-task methods for
face analysis. It was designed for simultaneous face detection, key-
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point localization, head-pose estimation, and gender classification.
It exploited the synergy among various tasks by sharing location-
specific features from lower layers of a CNN and semantically
rich features from higher layers. This helped in improving the
performance for each task. Similarly, TCDCN [_81]] added head
yaw estimation, gender recognition, smile and glass detection to
the task of landmark localization. These auxiliary tasks improved
the performance of landmark localization. The All-in-One Face [J8]]
network extended HyperFace by adding more tasks and training
data. Our approach uses All-in-One Face for facial keypoint
detection and face alignment. We give a brief overview in section
[3:2] Table 2] summarizes the tasks performed by some recent MTL
face analysis methods.

3 A STATE-OF-THE-ART FACE VERIFICATION AND
RECOGNITION PIPELINE

In this section, we discuss a state-of-the-art pipeline for face iden-
tification and verification, built by authors over the last eighteen
months. An overview of the pipeline is given in figure 2| We first
introduce the proposed DPSSD face detector in subsection[3.1} We
then briefly summarize our face alignment method using the MTL
approach. Lastly, we describe our approach for extracting identity
features and using them for face identification and verification.

3.1

We propose a novel DCNN-based face detector, called Deep
Pyramid Single Shot Face Detector (DPSSD), that is fast and
capable of detecting faces at a large variety of scales. It is
especially good at detecting tiny faces. Since face detection is
a special case of generic object detection, many researchers have
used an off-the-shelf object detector and fine-tuned it for the task
of face detection [27]. However, in order to design an efficient
face detector, it is crucial to address the following differences
between the tasks of face and object detection. First, the faces
can occur at a much lower scale/size in an image compared to
a general object. Typically, object detectors are not designed to
detect at such a low resolution which is required for the task of
face detection. Second, variations in the aspect ratio of faces are
much less compared to those in a typical object. As faces incur less
structural deformations compared to objects, they do not need any
additional processing incorporated in object detection algorithms
to handle multiple aspect ratios. We design our face detector to
addresses these points.

We start with the Single Shot Detector (SSD) [6] trained
on the truncated VGG-16 [58] network for the task of object
detection. SSD [[6] has a speed advantage over other object
detectors like Faster R-CNN [5] since it is single stage and does
not use proposals. The SSD approach is fully convolutional and
generates a fixed number of bounding boxes and scores for the
presence of faces. Additional convolutional layers are added to
the end of the truncated VGG-16 [58] to detect objects at multiple
scales. The objects are detected from multiple feature layers
using different convolutional models for each layer. We modify
the SSD [6] architecture and the approach in such a way that it
is able to detect tiny faces efficiently. Fig. [3] shows the overall
architecture of the proposed DPSSD face detector.

Deep Pyramid Single Shot Face Detector

Anchor pyramid with fixed aspect-ratio: In order to detect
faces at multiple scales, we leverage the feature pyramid structure
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Fig. 1. Some samples from the I1JB-C dataset. This shows the wide range of image quality, pose, illumination, and expression variation in images.

[ Method | Face Detection | Fiducials | Head-Pose | Gender | Age [ Expression | Other Attributes [ Face Recognition |
Zhu et al. [[78] v v v
JointCascade [79] v v
Zhang et al. [82] v v
TCDCN [81] v v v v v
HyperFace [|10] v v v v
He et al. [83] v N v N v
DAGER [|84] v v v
All-In-One Face [8] | v v v v v v v
TABLE 2

List of various MTL-based facial analysis algorithms along with the types of face tasks they can perform

—> DPSSD

Input Image

/ Face DCNNs <+—— ‘\ﬁ

Matching

Face Detection

\ Face DCNNs

All-In-One
Face

->

Detected Fiducial Points

Aligned
Faces

Feature Extraction

Fig. 2. Our face recognition pipeline. We detect faces using our proposed DPSSD face detector (section @ These detections are passed to the
All-in-One Face network (section which outputs facial keypoints for each face. These are used to align faces to canonical views. We pass these
aligned faces through our face representation networks (section@ and obtain the similarity between two faces using cosine similarity.

inbuilt in the DCNN. We resize the input image such that the
side with minimum length has a dimension of 512. After every
convolutional block, max pooling is performed which reduces
the dimension of feature maps by half and doubles the stride.
For instance, the feature maps at conv3_3 layer have a minimum
spatial dimension of 128. Additionally, a unit stride in this layer
corresponds to 4 pixels stride in the original image. As shown
in table EL initial layers of a DCNN have low stride in feature
maps, which is beneficial for detecting tiny faces since small size
anchors can be matched with high Jaccard overlap of 0.5. How-
ever, features from these layers have less discriminative ability.

On the other hand, features from deeper layers are semantically
stronger, but do not provide good spatial localization because
of the large stride value. Hence, we choose the anchor sizes
and the corresponding feature maps for generating detections
with an optimal combination of low spatial stride and highly
discriminative features.
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Fig. 3. The network architecture for the proposed Deep Pyramid Single Shot Face Detector (DPSSD). Starting from the base SSD [6] network, we
add upsampling layers in an hourglass manner [85] to generate rich contextual features for face detection. The faces are pooled from six different
layers of the network, with 2 scales at each layer. The numbers on the red arrows denote the anchor sizes for a given layer. The classifier network
generates the face detection probability scores as well as the normalized bounding box offsets for every anchor (shown on right).

Layer Stride (pixels) | Anchor-Sizes (pixels) | #boxes
conv3_3 4 16/1/2, 16 32768
conv4_3 8 32/v/2, 32 8192

fc7 16 64//2, 64 2048
conv6_2 32 128/1/2, 128 512
conv7_2 64 256/1/2, 256 128
conv8_2 128 512/v/2, 512 32

TABLE 3

Statistics for different layers of DPSSD. The sizes of the two anchors
and the stride are measured in pixels.

We choose 12 anchor boxes, each at a different scale. The
largest anchor box has a size of 512. Each anchor box maintains
a scale factor of \/i with its next lower level in the hierarchy. We
apply these anchor boxes to generate detections from 6 different
feature maps (see Table [3). Small-sized anchor boxes are applied
to shallower feature maps while large-sized anchor boxes are
applied to deeper feature maps. Unlike SSD [6], we make use
of the conv3_3 layer for generating the detections since it has a
high spatial resolution of 128. This helps us in detecting tiny faces
of size as low as 8 pixels.

We fix the aspect ratio of every anchor box to the mean aspect-
ratio for face (0.8). We compute this value from the WIDER
Face [22] training dataset. For a given anchor size a, the anchor
box m X n is calculated as:

\/%, n=ax V0.8, (1)

where m is the width and n is the height of the anchor box.
Detection scores and bounding box offsets are provided at each
location of the feature map for a given anchor box. Feature maps
with larger spatial resolution result in more detection boxes. The
number of detection boxes generated by every anchor layer for an
image of size 512 x 512, is also provided in table@ The conv3_3
layer outputs the largest number of boxes since it has a spatial
resolution of 128 x 128. All of these generated boxes are passed

m =

through the classifier at the time of training.

Contextual Features from upsampling layers: It has been
established that contextual information is useful for detecting tiny
faces [|36]. Although features from the conv3_3 layer have appro-
priate spatial resolution for tiny face detection, they are neither
semantically strong nor they contain contextual information. In
order to provide contextual information, we add a stack of bilinear
upsampling and convolution layer at the end of the SSD [6]
network. The 6 chosen layers (Table [3) are then added element-
wise to these upsampled layers (see Fig. B). Thus, the features
become rich in both semantics and localization. The final detection
boxes are generated from these upsampled layers using the anchor
box matching technique.

Every output level generates two sets of detections, one for
each anchor box corresponding to the given layer. A classifier
network (see Fig. 3] right) is attached to all the 6 output feature
maps, that provides the classification probabilities and bounding
box offsets corresponding to each of the 12 anchor boxes. The
classifier network is branched into two to handle each anchor box
separately. These branches are further subdivided into classifica-
tion and regression subnetworks.

3.1.1

We use the training set of WIDER Face [22] dataset to train our
face detector. The network is initialized with the SSD [6] model
for object detection. The new layers that are added are initialized
randomly. We use a batch size of 8. The initial learning rate is
set to 0.001 which is decreased by 0.5 after 30k, 50k and 60k
iterations. Training is carried out till 70k iterations. The matching
strategy is similar to SSD [|6]. A location in the predictor feature
map is labeled as positive class (y. = 1) if the anchor box for that
location has an Intersection-over-Union (IoU) overlap of 0.5 or
more with any ground truth face. All the other locations are labeled
as negative class (y. = 0). For all the positive classes, we also
perform bounding box regression. We use the binary cross-entropy

Training
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loss for face classification and smooth-L1 loss for bounding box
regression. The overall loss (L) is a weighted sum of classification
loss (L) and regression loss (Lj,.) as shown in , and (@)
We use Caffe library to train our network.

Lcls = Y- lOg(pc) - (]- - yc) . IOg(]- - pc)a (@)

Lloc = Z smoothLl (ti — ’Ui), (3)
ie{z,y,w,h}
L= Lcls + A Ye * LloCa (4)

where y. is the class label, p. is the softmax probability
obtained from the network, v = {vg, vy, vy, v} denote the
ground-truth normalized bounding box regression targets while
t = {tz,ty, tw, tn} are the bounding box offsets predicted by the
network. The value of )\ is chosen to be 1. The smoothy, loss is
defined in (3).

0.522
|x| — 0.5

if || <1
otherwise

smoothy(z) = { 35)

The total number of detection boxes generated from an image
is 43,680. Out of these, only a few boxes (around 10-50)
correspond to the positive class while others form the negative
class. To avoid this large class imbalance we select only a few
negative boxes such that the ratio of positive to negative class
is 1 : 3. We use hard negative mining to select these negative
boxes as proposed in [6]. We use the data augmentation technique
proposed in [6] to make the detector more robust to various face
sizes.

3.1.2 Testing

At test time, the input image is resized such that the minimum
side has the dimension of 512 pixels. The aspect ratio of the
image is not changed. The image is then passed through the trained
DPSSD face detector to get the detection scores and bounding box
co-ordinates for different locations in the image. Non-maximum
suppression (NMS) with threshold of 0.6 is used to filter out the
redundant boxes. Since the outputs are generated in a single pass
of the network, the total processing time is very low (100ms). To
further improve the detection performance, we construct the image
pyramid as discussed in HR face detector. A sample face
detection output using the proposed DPSSD is shown in Fig. ]
Performance evaluations of different face detection datasets are
discuss in Section ]

For the proposed face recognition pipeline, we use the results
of both DPSSD and SSD for faces, as our detectors to capture
faces across as many scales as possible.

3.2 Face Alignment using All-In-One Face

The proposed system for face identification and verification uses
the All-in-One Face framework [[§] for keypoint localization.
The All-In-One Face [8]] is a recent method that simultaneously
performs the tasks of face detection, landmarks localization, head-
pose estimations, smile and gender classification, age estimation
and face recognition and verification. The model is trained jointly
for all these tasks in a MTL framework, which builds up a synergy
that helps in improving the performance of the individual tasks.

Fig. 4. A sample output for our proposed DPSSD.
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Fig. 5. The All-In-One Face network architecture.

Due to the lack of a single dataset which contains annotations
for each task, various sub-networks were trained with different
datasets. These sub-networks share parameters among them. This
ensures that the shared parameters adapt to all the tasks instead
of being task-specific. These sub-networks are fused into a single
All-in-One Face CNN at test time. Table [ gives some details of
the datasets used for training All-in-One Face CNN. The complete
network is trained end-to-end using task-specific loss functions.
Figure shows some representative outputs of the All-in-One Face
CNN.

The All-In-One network architecture uses the pre-trained face
identification network from Sankaranarayanan et al. [25]], which
contains seven convolutional layers followed by three fully con-
nected layers. This network is used as a backbone to train the face
identification task. The parameters from the first six convolutional
layers of this network are shared among the other face-related
tasks as shown in figure El A CNN pre-trained on face identifica-
tion task provides better initialization for a generic face analysis
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[ Dataset [ Facial Analysis Task [ # training samples |
CASIA [14] Identification, Gender 490,356
MORPH [87] Age, Gender 55,608
IMDB+WIKI [88] Age, Gender 224,840
Adience [89] Age 19,370
CelebA [72] Smile, Gender 182,637
AFLW [90] Detection, Pose, Fiducials 20,342
Total 993,153

TABLE 4
Datasets used for training All-In-One Face.

(b)

Fig. 6. Sample outputs from the All-In-One Face [8] CNN for IJB-A [66].

task, since the filters retain discriminative face information.

The face-related tasks used for training are divided into
two categories: 1) subject-independent tasks of face detection,
landmarks localization, pose estimation, and smile prediction; 2)
subject-dependent tasks of gender classification, age estimation
and face recognition. The subject-dependent tasks require fine-
grained features for classification, and hence need semantically
stronger features present in the deeper layers of the network.
On the other hand, subject-independent tasks are more localiza-
tion oriented which need the features from shallower layers of
the network. Keeping these requirements in mind, the subject-
independent features are pooled from the first, third and fifth
convolutional layers, while subject-dependent features are pooled
from deeper layers (see Fig. [5).

Although All-In-One Face [8] provides outputs for seven
different face-related tasks, we use only the facial keypoints
generated by this network in our face recognition pipeline. Once
we obtain the keypoints for every face in an image or a video
frame, we align the faces to normalized the canonical coordinates
to mitigate the effects of in-plane rotation and scaling. These
aligned faces are then passed to the face recognition module for
further processing.

3.3 Face Identification and Verification

In this subsection, we discuss our approach for face identification
and verification. We use Crystal Loss [24] to train deep networks
for the task of face classification. Identity features are then
extracted for a face image from the penultimate layer of the
trained networks. These features undergo triplet embedding [25]]
and fusion to generate a template representation for an identity.

3.3.1

Until recently, almost all face identification/verification networks
were trained in the classification setting using a softmax loss func-
tion. However, softmax loss is not ideal for training networks for
face representation. Softmax loss does not optimize the features to
be similar for faces of the same person and dissimilar for faces of
different people. This leads to reduced performance. To alleviate

Crystal Loss for Training CNNs
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these issues Ranjan et al. introduced the crystal loss function [24]]
for training networks used for unconstrained face verification and
identification. The main idea behind this is to constrain the features
to lie on a hypersphere of a fixed radius. This ensures that the
features learnt are well-separated for different identities but close
for same identities. Scaling the features means that every image
has a feature with the same scale. Contrast this with the softmax
loss where high quality images usually give a feature with higher
norm. This causes softmax loss to give more attention to good
quality images. This issue is also alleviated by the crystal loss
which gives equal importance to high and low quality images.

The objective function for a network trained with crystal loss
can be written as:

1 M eW;; J(Xi)+by,
C . L 1
minimize i ; og 2511 eWJ.Tf(xi)+bj (6)

subjectto  ||f (X2 =, Vi=1,2,... M,

where X; is the input image with label y;, M is the batch size,
f(X;) is the feature representation from the network, C' is the
number of classes, W and b are the weights of the classification
layer of the network, and « is the scale of the feature representa-
tion.

This objective can be easily integrated into the network by
simply normalizing the feature and scaling it by « and applying
softmax loss over this scaled representation. This module is fully
differentiable and can be inserted into any network trained using
softmax loss.

3.3.2 Training Datasets

We use the Universe face dataset from [|13]] for training our face
representation networks. This is a combination of UMDFaces
images [16], UMDFaces video frames [15], and curated MS-
Celeb-1M [91]]. The Universe dataset contains about 5.6 million
images of about 58,000 identities. This includes about 3.5 million
images from MS-Celeb-1M, 1.8 million video frames from UMD-
Faces videos, and 300,000 images from UMDFaces. This dataset
has the advantage of being a combination of different datasets
which makes networks trained using this dataset generalize better.
Another advantage is that it contains both still images and video
frames. This makes the networks more robust for test datasets
which contain both.

3.3.3 Face Representation

We use two networks for feature representation. We do a score-
level fusion of the scores obtained from these networks. Using an
ensemble of networks leads to more robust representations and
better performance. We next describe the two networks along with
their respective training details. These two networks are based on
a ResNet-101 [3]], and Inception ResNet-v2 [92].

For pre-processing the detected faces, we crop and resize
the aligned faces to each network’s input dimensions. For data
augmentation, we apply random horizontal flips to the input
images.

ResNet-101 (RG1)

We train a ResNet-101 deep convolutional neural network with
PReLU activations after every convolution layer. Since we use the
Universe dataset for training the network, we use a 58, 000-way
classification layer with crystal loss. For this network, we set the
« parameter to 50 and the batch size was 128. The learning rate
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started at 0.1 and was reduced by a factor of 0.2 after every 50k
iterations. The network was trained for a total of 250k iterations.
We use a 512-D layer as the feature layer and use TPE [_25] to
find a 128-D embedding with was trained with the UMDFaces
dataset.

Inception ResNet-v2 (A)

The Inception ResNet-v2 network was also trained with the
Universe dataset. This network has 244 convolution layers. We
add a 512-D feature layer after these and then a final classification
layer. We again use crystal loss with o = 40. The initial learning
rate was 0.1 and reduced by a factor of 0.2 after every 50k
iterations. We trained the network for 120k iterations with a
batch-size of 120 on 8 NVIDIA Quadro P6000 GPUs. We resize
the inputs to 299 x 299. Similar to the ResNet, we use UMDFaces
to train a final 128-D embedding with TPE.

3.3.4 Feature Fusion

Template Feature

For both face verification and identification, we need to compare
template features. To obtain feature vectors for a template, we first
average all the features for a media in the template. We further
average these media-averaged features to get the final template
feature.

Score-level Fusion
To get the similarity between two templates, we average the
similarities obtained by our two networks.

4 EXPERIMENTAL RESULTS

In this section, we first report face detection results for the
proposed detector on four datasets. We also report experimental
results for face identification and verification on four challenging
evaluation datasets, viz., IJB-A [66], IJB-B [73], IIB-C [74],
and the TARPA Janus Challenge Set 5 (CS5). We show that
the proposed system achieves state-of-the-art or near results on
most of the protocols. In the following sections we describe the
evaluation datasets and protocols. We also describe the changes to
the system we made if there are any.

4.1 Face Detection

We evaluated the proposed DPSSD face detector on four chal-
lenging face detection datasets: WIDER Face [22], Unconstrained
Face Detection Dataset (UFDD) [93], Face Detection Dataset
and Benchmark (FDDB) [94] and Pascal Faces [95]]. We achieve
state-of-the-art performance on Pascal Faces [95] dataset, and
competing results on WIDER [22], UFDD [93|] and FDDB [94]]
datasets.

4.1.1 WIDER Face Dataset Results

The dataset contains 32,203 images with 393,703 face anno-
tations, out of which 40% images are used for training, 10%
for validation, and remaining 50% for test. It contains rich an-
notations, including occlusions, poses, event categories, and face
bounding boxes. The faces posses large variations in scale, pose
and occlusion. The dataset is extremely challenging for the task of
tiny face detection, since the face width can be as low as 4 pixels.
We use the training set to train the face detector and evaluate its
performance on the validation set. Fig. [7] provides the comparison
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of recently published face detection algorithms with the proposed
DPSSD.

We compare the performance of DPSSD with S>FD [33],
SSH [7], HR [36], CMS-RCNN [96], ScaleFace [32], Multi-
task Cascade [82], LDCF+ [97], Faceness [98]], Multiscale Cas-
cade [22f, Two-stage CNN [22], and ACF [99]. We observe
that DPSSD achieves competing performance with state-of-the-
art methods (S3FD [I33], SSH [7], and HR [36]). It achieves a
mean average precision (mAP) of 0.925 and 0.908 on easy and
medium difficulty set, respectively. On the hard set, it performs
very close to the best performing method (S3FD [33])) with the
mAP of 0.857.

We also compare our method with the baseline face detector
trained by fine-tuning SSD [100]. We outperform SSD [100] on
easy, medium as well as hard set. Particularly on the hard set,
DPSSD improves the mAP by a factor of 44% over the SDD [100)].
It shows that redesigning anchor pyramid with fixed aspect ratio,
and adding the upsampling layers helps tremendously in boosting
the performance of face detection.

4.1.2 UFDD Dataset Results

UFDD is a recent face detection dataset that captures several
realistic issues not present in any existing dataset. It contains face
images with weather-based degradations (rain, snow and haze),
motion blur, focus blur, etc. Additionally, it contains distractor
images that either contain non-human faces such as animal faces
or no faces at all, which makes this dataset extremely challenging.
It contains a total of 6,425 images with 10, 897 face annotations.
We compare our proposed method with S3FD [33], SSH [7],
HR [J36]], and Faster-RCNN [27]] (see Fig. [8). Similar to WIDER
Face [22] dataset, we achieve competing results with mAP of
0.706. Note that our algorithm is not fine-tuned on the UFDD
dataset.

4.1.3 FDDB Dataset Results

The FDDB dataset [94] is a benchmark for unconstrained face
detection. It consists of 2, 845 images containing a total of 5,171
faces collected from news articles on the Yahoo website. The
images were manually localized for generating the ground truth.
The dataset has two evaluation protocols - discrete and continuous
which essentially correspond to coarse match and precise match
between the detection and the ground truth, respectively. We
evaluate the performance of our method on the discrete protocol
using the Receiver Operating Characteristic (ROC) curves, as
shown in Fig. [9]

We compare the performance of different face detectors such
as S3FD [33], HR [36], Faster-RCNN [27]], All-In-One Face [8],
LDCF+ [97], DP2MFD [9], Faceness [98], HyperFace [10]], Head-
hunter [101]], DPM [[101]], and Joint Cascade [[79]]. As can be seen
from the figure, our method exhibits competing performance with
state-of-the-art methods (S3FD [33] and HR [36])) and achieves a
mAP of 0.969. It should be noted that our method does not use
any fine-tuning or bounding box regression specific to the FDDB
dataset.

4.1.4 PASCAL Faces Dataset Results

The PASCAL faces [95]] dataset was collected from the test
set of the person layout dataset which is a subset of PASCAL
VOC [[102]]. The dataset contains 1,335 faces from 851 images
with large variations in appearance and pose. Fig. [I0] compares
the performance of different face detectors on this dataset. From
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the figure, we observe that our proposed DPSSD face detector
achieves the best mAP of 96.11% on this dataset.

Table [3] lists the locations of the results for different datasets
and verification and identification evaluation tasks.

In the following sections, ROC curves are used to measure
the performance of verification (1:1 matching) methods and CMC
scores are used for evaluating identification (1:N search). The 1JB-
A, IJB-B, IJB-C, and CS5 datasets contain a gallery and a probe
which leads to evaluation using all positive and negative pairs.
This is different from LFW and YTF where only a
few negative pairs are used to evaluate verification performance.

™\
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Fig. 10. Performance evaluation on the Pascal Faces dataset. The
numbers in the legend represent the mAP for the corresponding method.

Task 1JB-A 1JB-B 1JB-C CSs
1:1 Verification Table |7 Table |9 Table|12| | Table|16
1:N Search Table|8| | Table|[10| | Table|13|| Table|17
Wild Probe Search - - Table|14| | Table|(18
TABLE 5

Locations of all results for face verification and identification.

Another difference between LFW/YTF and the evaluation datasets
here is the inclusion of templates instead of only single images. A
template is a collection of images and video frames of a subject.
These datasets are much more challenging than older datasets due
to extreme variations in pose, illumination, and expression.

4.2 |JB-A

The IJB-A dataset contains 500 subjects with 5,397 images and
2,042 videos split into 20,412 frames. This dataset is a very
difficult dataset owing to the presence of extreme pose, viewpoint,
resolution, and illumination variations. Additionally, mixing still
images and video frames causes difficulties for models trained
with only one of these modalities due to domain shift. An identity
in this dataset is represented as a template. A template is a set
of face images instead of just a single image. This set can contain
still images and video frames. Also note that each subject can have
multiple templates in the dataset. The evaluation for this dataset
contains for 1:1 verification and 1:N mixed search protocols. Table
|§| gives brief descriptions of the two tasks. The dataset is divided
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into 10 splits, each with 333 randomly selected subjects for
training and 167 subjects for testing. To represent each template,
we generate a common representation by fusing features of all the
faces in the template. We compute the similarity scores using all
the networks and then do a score-level fusion as described in[3.3.4]
Table [/] gives the results from our system for the verification task
for IJB-A and table [§] gives the results for 1:N mixed search. We
achieve state-of-the-art results for every setting.

4.3 IJB-B

The 1JB-B dataset [73], which extends IJB-A, contains about
22,000 still images and 55, 000 video frames spread over 1, 845
subjects. Evaluation is done for the same tasks as IJB-A, viz.,
1:1 verification, and 1:N identification (table @ The 1JB-B verifi-
cation protocol consists of 8,010,270 pairs between templates
in the galleries (Gl and G2) and the probe templates. Out of
these 8 million are impostor pairs and the rest 10, 270 are genuine
comparisons. Table[J] gives verifications results and table [I0] gives
identification results.

4.4 1JB-C

The 1JB-C evaluation dataset [74] further extends IJB-B. It con-
tains 31,334 still images and 117,542 video frames of 3,531
subjects. In addition to the evaluations from IJB-B, this dataset
evaluates end-to-end recognition. Table |11] gives the descriptions
of the evaluated tasks for IJB-C. There are about 20,000 gen-
uine comparisons, and about 15.6 million impostor pairs in the
verification protocol. For the 1:N mixed search protocol, there are
about 20, 000 probe templates. In table[I2] we list the results of our
system for 1:1 verification. Similarly, in table [I3] we give results
for 1:N mixed search. We also report the 1:N wild probe search
results in table [14]

45 CS5

We evaluated on the (as-yet-unreleased to public) JANUS Chal-
lenge Set 5 dataset also. We give the task descriptions for this
dataset in table This dataset consists of 2,875,950 still
images. This dataset also provides a training set consisting of
235,616 identity clusters and 981,753 images. Note that we
did not use this training set for training our networks. The
still image verification protocol contains 547,131 templates with
332,574 genuine matches, and 822, 354, 805 imposter matches.
For the 1:N identification task, there are 332,574 probe tem-
plates. Gallery, G1 has 1,106, 778 identity clusters and G2 has
1,107, 779 identity clusters. Tables [L6] [[7} and [T8] give results for
1:1 verification, 1:N identification, and 1:N end-to-end identifica-
tion respectively.

Note that we are unable to compare the performance of the
proposed approach against other methods for IJB-C and CS5 due
to restrictions on publishing competitor’s results.

5 CONCLUSIONS

In this paper, we presented an overview of modern face recog-
nition systems based on deep CNNs. We discussed all parts of
a face recognition pipeline and the state-of-the-art in those. We
also presented details of our face recognition system which uses
an ensemble of two networks for feature representation. Face
detection and keypoint localization for in our pipeline is done
using the All-in-One CNN. We discussed training and datasets
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details for our system and how it connects to existing work on
face recognition. We presented results of our system for four
challenging datasets, viz., IIB-A, IJB-B, IJB-C, and IARPA Janus
Challenge Set 5 (CS5). We show that our ensemble based system
achieves near state-of-the-art results.

However, several issues remain unresolved even now. There
is a need to develop theoretical understanding of face recognition
systems based on DCNNs. Given the multitude of loss functions
used to train these networks, we need to develop a unified
framework which can put all of them in context to each other.
Domain adaptation and dataset bias is also an issue for current
face recognition systems. These systems are usually trained on
a dataset and work well for similar test sets. However, networks
trained on one domain don’t perform well for others. We trained
our system on a combination of different datasets. This made
the trained models more robust. Training CNNs currently takes
several hours to days. There is a need to develop more efficient
architectures and implementations of CNNs which can be trained
faster.
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IJB-B Verification. A, RG1, and Fusion are our Inception ResNet-v2, ResNet-101, and Fused features respectively.

TPIR (%) @ FPIR Retrieval Rate (%)
Method 0.01 0.1 Rank=1 | Rank=5 | Rank=10

Casia [[104] 38.3 61.3 82.0 92.9 -
Pose [61]] 52.0 75.0 84.6 92.7 94.7

BL [107] - - 89.5 96.3 -
NAN [67] 81.7 91.7 95.8 98 98.6
3d [105] - - 90.6 96.2 97.7
DCNNyusion [12] | 654 83.6 94.2 98.0 98.8
DCNN¢pe [25] 75.3 83.6 93.2 - 97.7
DCNN;; (8] 70.4 83.6 94.1 - 98.8
ALL + TPE [8]] 79.2 88.7 94.7 - 98.8
TP [106] 774 88.2 92.8 - 98.6
RX10112+tp;[65] 91.5 95.6 97.3 - 98.8
Ours 4 91.4 96.1 97.3 98.2 98.5
Oursra1 91.6 96.0 97.4 98.5 98.9
Fusion (Ours) 92.0 96.2 97.5 98.6 98.9

TABLE 8

IJB-A 1:N Mixed Search. A is our Inception ResNet-v2 model and RG1 is our ResNet-101 model.

True Accept Rate (%) @ False Accept Rate
Method 10°7]10%]10°]107F]10°%[] 107210 ¢
GOTS [73] - - - 16.0 33.0 60.0 -
VGGFaces [63] - - - 55.0 72.0 86.0 -
FPN [108] - - - 83.2 91.6 96.5 -
Light CNN-29 [109] - - - 87.7 92.0 95.3 -
VGGFace2 [21] - - 70.5 83.1 90.8 95.6 -
Center Loss Features [63]] 8.8 31.0 63.6 80.7 90.0 95.1 98.4
Ours 4 2.9 27.7 61.6 89.1 94.3 97.0 98.7
Ourspg1 6.2 48.4 80.4 89.8 94.4 97.2 98.9
Fusion (Ours) 4.4 45.6 77.8 90.3 94.6 97.3 98.9

TABLE 9

TPIR (%) @ FPIR (For G1, G2) Retrieval Rate (%) (For G1, G2)
Method 0.01 0.1 Rank=1 Rank=5 Rank=10
GOTS (73] - - 42.0 - 62.0
VGGFace [63] - - 78.0 - 89.0
FPN [108] - - 91.1 - 96.5
Light CNN-29 [109] - - 91.9 94.8 -
VGGFace?2 [21] 74.3 86.3 90.2 94.6 95.9
Center Loss Features [63] | 75.5, 67.7 87.5, 82.8 92.2,86.0 | 954,925 | 96.2,94.4
Ours 4 83.1,75.5 93.6, 89.3 95.5,90.8 | 97.5,94.2 | 98.0,95.8
Oursrag1 86.9, 78.6 94.0, 89.1 95.6,91.5 | 97.7,954 | 98.0, 96.5
Fusion (Ours) 88.2, 79.4 94.3, 89.7 95.8,91.8 | 97.7,95.2 | 98.1,96.4
TABLE 10

13

IJB-B 1:N Mixed Search. A and RG1 are our Inception ResNet-v2 and ResNet-101 models respectively. Note that the retrieval rates for some past
methods are average over G1 and G2.

Task

Desciption

1:1 Verification

Verify if the given pair of templates belong to the same subject. Templates are comprised of mixed media (frames and stills)

1:N Mixed Search

Open set identification protocol using mixed media (frames and stills) as probe and two galleries G1, and G2.

Wild Probe Search

Identify subjects of interest from a collection of still images and frames. This task also uses the two galleries G1, and G2.

IJB-C Verification. A is our Inception ResNet-v2 model and RG1 is our ResNet-101 model. Fusion is the fusion of the two features.

TABLE 11

IJB-C task descriptions

True Accept Rate (%) @ False Accept Rate

Method 1081071010510 ]103[102] 101

Center Loss Features [63] 36.0 37.6 66.1 78.1 85.3 91.2 95.3 98.2

Ours 4 16.5 195 | 436 | 776 | 919 | 956 | 97.8 | 99.0

Oursgcai 60.6 | 674 | 764 | 862 | 919 | 957 | 979 | 992

Fusion (Ours) 54.1 559 | 695 | 869 | 925 | 959 | 979 | 99.2
TABLE 12
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TPIR (%) @ FPIR (For G1, G2) Retrieval Rate (%) (For G1, G2)
Method 0.01 0.1 Rank=1 Rank=5 Rank=10
Center Loss Features [63] | 79.1, 75.3 86.4,84.2 91.7,89.8 | 94.6,93.6 | 95.6,94.9
Ours 4 87.7,82.4 93.5,91.0 95.7,92.8 | 974,954 | 97.9,96.4
Oursrai 88.0, 84.2 93.2, 90.6 95.9,93.2 | 97.6,96.1 | 98.1, 97.0
Fusion (Ours) 89.6, 85.0 93.8, 91.3 96.2,93.6 | 97.7,96.2 | 98.2,96.9
TABLE 13

IJB-C 1:N Mixed Search. A and RG1 are our models described in section[3.3.3]

Retrieval Rate (%) (For G1, G2)
Method Rank=1 Rank=2 Rank=5 Rank=10 Rank=20 Rank=50
Ours 4 91.1,86.9 | 93.0,89.0 | 94.8,91.1 | 95.8,92.5 | 96.5,93.8 | 97.4,95.3
Oursra1 90.8,86.3 | 93.0,88.8 | 95.0,91.1 | 96.0,92.6 | 96.7,93.9 | 97.5,95.5
Fusion (Ours) | 91.8,87.5 | 93.6,89.7 | 95.3,91.6 | 96.3,93.0 | 97.0,94.4 | 97.7,95.8
TABLE 14

IJB-C Wild Probe Search. Our models and fusion method are described in sections [3.3.3|and[3.3.41

Task

Desciption

1:1 Still Image Verification

Templates are comprised of only still images.

1:N Still Image Identification

Open set identification protocol using still images as probe and two galleries G1, and G2 augmented with 1M distractors.

1:N end-to-end Still Image

Identify identity clusters of interest from a collection of still images. This task also uses the two galleries G1, and G2.

TABLE 15
IARPA Janus Challenge Set 5 (CS5) task descriptions

True Accept Rate (%) @ False Accept Rate

Method 108J107[10%J10°]10-"]103[]10°2 10"

Ours 4 5244 | 7899 | 94.88 | 97.34 | 98.18 | 98.74 | 99.28 | 99.75

Oursrai 71.52 | 89.68 | 9520 | 97.28 | 98.19 | 98.79 | 99.36 | 99.78

Fusion (Ours) | 70.72 | 90.74 | 95.80 | 97.49 | 98.25 | 98.80 | 99.35 | 99.78

TABLE 16
CS5 1:1 Verification. A and RG1 are our Inception ResNet-v2 and ResNet-101 models respectively. Both of these models are trained with Crystal
Loss.
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