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Abstract—Modern face recognition systems extract face rep-
resentations using deep neural networks (DNNs) and give ex-
cellent identification and verification results, when tested on
high resolution (HR) images. However, the performance of such
an algorithm degrades significantly for low resolution (LR)
images. A straight forward solution could be to train a DNN,
using simultaneously, high and low resolution face images. This
approach yields a definite improvement at lower resolutions but
suffers a performance degradation for high resolution images.
To overcome this shortcoming, we propose to train a network
using both HR and LR images under the guidance of a fixed
network, pretrained on HR face images. The guidance is provided
by minimising the KL-divergence between the output Softmax
probabilities of the pretrained (i.e., Teacher) and trainable (i.e.,
Student) network as well as by sharing the Softmax weights
between the two networks. The resulting solution is tested on
down-sampled images from FaceScrub and MegaFace datasets
and shows a consistent performance improvement across various
resolutions. We also tested our proposed solution on standard
LR benchmarks such as TinyFace and SCFace. Our algorithm
consistently outperforms the state-of-the-art methods on these
datasets, confirming the effectiveness and merits of the proposed
method.

Index Terms—Face Recognition, Resolution Invariance, Low
Resolution, Convolutional Neural Networks, Distillation.

I. INTRODUCTION

Face recognition (FR) involves identification/verification of
the subject’s identity given his/her query face image. It is a
task that is routinely applied in real-world applications such as
surveillance, passport control, forensic investigations, access
control, time-and-attendance systems and many others. Owing
to its significance, FR has always been an active topic for
research in computer vision [1]–[5]. Recent developments in
deep neural networks (DNN) have profoundly increased the
accuracy of FR tasks, and the enriched face representation
obtained using DNN embeddings1 has become the primary
method for state-of-the-art (SOTA) FR algorithms [6]–[13].
Currently, even for a large scale dataset such as Megaface [14]
(with more than 1 million images), the SOTA FR methods
give near perfect accuracy [8], [10]. Thus DNN based FR
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1A DNN embedding or a feature vector refers to the n-dimensional vector
in a deep neural network available just before the loss layer.

techniques are expected to be fairly accurate even for in-the-
wild challenging scenarios with large variations in illumina-
tion, pose, background etc. However, these techniques work
reliably only if the available face images are of a sufficiently
high resolution (HR). For low resolution (LR) images, the
accuracy of SOTA FR techniques has been found to degrade
significantly [15]–[17].

Since the face images available from standard CCTV
cameras are usually LR and we can encounter images of
various resolutions in many other FR applications as well,
it is important to investigate and develop FR methods that
are robust to resolution changes. It is worth noting that in
a generic FR scenario, we compare a query image of an
arbitrary resolution, against a gallery of images with varying
resolutions. Hence the resolution of the true match in the
gallery would be generally unknown. This makes a resolution-
invariant (RI) FR algorithm a more suitable option as opposed
to using two separate solutions, i.e., one for LR-FR and one
for HR-FR. Despite the significance of LR/RI FR, it is an
under studied topic as compared to the standard HR-FR. A
few works in the literature that deal with this challenging task
can be divided into two main approaches

1) Algorithms that employ super-resolution techniques to
transform LR faces into HR domain. The recognition is
then performed in the HR domain [17]–[19].

2) Algorithms that try to minimise the difference between
the extracted features of LR and HR face images in
some lower dimensional feature space, thus making the
solution, to some degree, resolution-invariant [15], [20],
[21].

Both these approaches have shown some promising results;
however, the latter is more straight-forward and easier to work
with. Furthermore, we note from the literature that the former
approach does not show any noticeable performance improve-
ment over the latter approach [17], [21], [22]. Therefore, in
this paper, we focus on the second approach.

One simple method to minimise the difference between LR
and HR facial features in a DNN embedding space is to train
a network simultaneously on HR, and corresponding down-
sampled LR images [15]. This approach works well for LR-
FR, but at the expense of accuracy for HR-FR. Essentially, in
order to bring the HR and LR features close to each other,
the network learns to discard some information from the HR
images. To alleviate this shortcoming, we propose to use a
Teacher-Student distillation network [23] when training with
HR and LR faces simultaneously. The teacher network is fixed



2

and pretrained on HR images only. A student network is
trained on combined HR and down-sampled LR face images.
During training, HR images are fed to the fixed teacher
network and its output Softmax probabilities are used as soft-
targets for training the student network.

Distillation is traditionally used to distil information from a
complex model into a simpler one; however, our approach is
different and employs distillation to guide the student network
towards a better optimum. We utilise the same network for
both student and teacher streams and hence both streams
have the same complexity. Furthermore, we reinforce the
guidance provided by the teacher network by sharing its
Softmax weights with the student network. Consequently,
both networks have the same loss-landscape and the DNN
embeddings are forced to be close to each other. We test
the results of our proposed scheme on two publicly available
LR benchmark datasets, i.e., TinyFace [16] and SCFace [24].
While our proposed scheme outperforms state-of-the-art on
both these datasets, we realised that these benchmarks contain
relatively small number of faces with limited variations. Hence
the results on these datasets would not be a true representative
of performance in uncontrolled settings. Therefore, we develop
two novel LR-FR protocols by artificially down-sampling the
publicly available Megaface and Facescrub datasets [14], [25].
While the down-sampled images in the resulting protocols do
not contain the blurriness and lack of illumination usually
found in native-LR images, still, owing to the large variations
in pose and illumination, the proposed protocols are more
challenging than the publicly available native-LR datasets.
Figure 1, shows some example images from the synthetically
down-sampled data as well as some images from the native
LR datasets. Our contributions are summarised as follows:

1) We propose a novel mechanism of training a network
for LR-FR using combined HR and LR data. We utilise
a pretrained network as a teacher/guide and train another
student network. The guidance from the teacher network
is provided by sharing Softmax weights between the
two networks as well as minimising the KL-divergence
between the Softmax probabilities of the teacher and the
student network.

2) We develop two LR-FR protocols using the publicly
available Facescrub and Megaface datasets. The pro-
tocols emulate two real-world scenarios of FR under
surveillance settings. Our protocols are more challenging
than the available benchmarks and are used to show the
efficacy as well as limitations of our proposed scheme.

3) We evaluate our proposed scheme on two benchmark
datasets, i.e., TinyFace and SCFace. Our proposed
scheme is shown to outperform state-of-the-art for both
these datasets.

The rest of the paper is organised as follows: in Section II,
we give a review of the SOTA and also describe benchmark
datasets for LR-FR tasks, including the novel protocols that
we have developed. In Section III, we first overview a few
baseline methods and then describe the proposed algorithm in
detail. In Section IV, we present the experimental results and
conclusions are drawn in Section V.

A Note on Abbreviations: We extensively employ the
following abbreviations throughout this paper:

HR/LR: High resolution/ Low resolution
FR: Face Recognition
RI: Resolution Invariant
SR: Super Resolution
SOTA: state-of-the-art
DNN: Deep Neural Network
CNN: Convolutional Neural Network

II. RELATED WORK AND DATASETS

A. Face recognition

High Resolution Face Recognition (HR-FR) has seen a
tremendous improvement in accuracy in the past few years ow-
ing to the advances in DNN architectures and the availability
of large scale datasets for training. Modern FR algorithms train
a DNN on massive datasets such as CasiaWeb [26] (around
0.5 million images) or MS-Celeb [27] (more than 5.8 million
images) using either classification losses (such as Softmax)
or metric/contrastive losses (such as triplet loss). Currently,
variants of the Normalised Softmax loss such as SphereFace
[28], CosFace [7] and ArcFace [8] are providing SOTA results
on benchmarks such as LFW [29] and MegaFace [14]. For
instance, ArcFace has shown a rank-1 accuracy of 91.75%
and 98.35% on MegaFace when trained on CasiaWeb and MS-
Celeb, respectively. However, a recent work [17] reported only
40% rank-1 accuracy for ArcFace, when tested on SCFace
LR-HR protocol; notwithstanding, that SCFace is far less chal-
lenging in terms of variations as compared to MegaFace. This
shows that SOTA FR methods are non-robust to resolution
changes and perform poorly when tested on LR-FR tasks.

Low Resolution Face Recognition (LR-FR) is an under-
studied topic as compared to its HR counterpart. Since there
are no large scale datasets available for training, most works
rely on down-sampled versions of HR face images2. As dis-
cussed earlier, the approaches to tackle LR-FR can be broadly
divided into two categories, i.e., Super-Resolution (SR) based
methods and Resolution-Invariant (RI) methods. Some earlier
works in SR include [18], [31]; whereas, some early works
using the RI approach are [20], [32]. More recently, DNN
based methods in both SR [16], [17], [19] and in RI [15],
[21] have outperformed these earlier works by a margin and
replaced them as a baseline.

SR methods: Super-resolution techniques focus on creating
visually appealing outputs, and in the process, these algorithms
can loose identity related information. Accordingly, joining a
contemporary SR algorithm with a face recognition system
does not yield any significant performance improvement for
LR-FR tasks. To overcome this deficiency, [19] utilises an SR-
identity loss to measure and minimise the identity difference in
the super-resolved HR face images. In [16], the construction
of a native LR dataset, i.e., TinyFace is discussed; also an
approach based on joint end-to-end training of an SR sub-
network followed by a face recognition network is proposed.

2Recently, two native-LR datasets, i.e., TinyFace [16] and SurvFace [30]
have been made available publicly, yet the training data in these datasets is
still small as compared to CasiaWeb or MS-Celeb.
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The authors dub their approach as complement-super resolu-
tion and Identity (CSRI) method and report improved accuracy
on TinyFace. A recent report [17] discusses a face normal-
isation technique which is closely related to the super res-
olution techniques and achieves state-of-the-art performance
on SCFace. While SR methods appear to be an intuitive
solution for the LR-FR problem, designing an SR method that
retains identity-related information is a challenging as well
as computationally demanding task. Despite the increase in
complexity, SR methods do not appear to have any significant
superiority over the RI methods that are discussed below.

RI methods: In [15], a DNN based RI technique was
discussed that trained a network on simultaneous HR and LR
images and attained much better performance as compared
to the classical RI methods. It was further improved in [21]
in which additional losses were incorporated, i.e., centre loss
and euclidean loss, to boost the performance. These DNN
based RI methods gave SOTA performance on SCFace until
recently, having been outperformed by the SR method in
[17]. However, our proposed method outperforms [17] and
sets a new SOTA result for SCFace. A shortcoming of the
RI methods, that has been largely ignored in the literature,
is a decrease in performance at higher resolutions and more
crucially at cross resolutions. A recent unpublished work [33]
has also highlighted this issue and is also relevant to our
proposed scheme since [33] also proposes to use distillation to
develop resolution-invariant DNN based FR; however, the way
we employ distillation is significantly different than the one
discussed in [33]. Essentially, [33] utilises a scaled euclidean
distance for distillation, similar to [34]; whereas, we propose
to use KL-divergence coupled with weight-sharing of the
Softmax layer. It is worth noting, that out proposed method
outperforms [33] on TinyFace.

Comparison of SR and RI methods: The SR methods
are intuitively appealing and a number of SR techniques,
exhibiting a decent performance, are available in the literature
[18], [19], [35], [36]. Since the SR techniques are primarily
focused on creating visually appealing images, they are well
suited for human-assisted face recognition tasks. However,
these techniques cannot be applied directly to automated face
recognition and require additional mechanisms to preserve the
identity related information in the super-resolved image [16],
[17], [19]. The primary advantage of RI techniques is their lack
of complexity as compared to the SR methods. Despite this
reduced complexity, RI techniques offer similar, if not better,
face identification performance, when compared to the SR
methods. However, since the RI methods work in the feature
domain, they do not offer any advantage in human-assisted
face recognition applications.

B. Datasets

1) TinyFace: It is a native LR dataset created by extract-
ing LR faces from the publicly available PIPA [37] and
MegaFace [14] datasets. It has 15,975 labelled LR faces
corresponding to 5,139 identities. Furthermore, it has 153,428
unlabelled LR faces. The face image height ranges from 6
to 32 pixels with a mean height of 20 pixels. The labelled

identities are split into 2,570 IDs for training and 2,569 IDs
for testing. The unlabelled faces are used as distractors for
the testing protocol. The images for the IDs in the test-set are
further split into probe and gallery images. A probe image is
compared against all the images in the gallery and also against
all the distractors to find the best match. The performance ma-
trices are the Cumulative Characteristic Curve (CMC) and the
mean Average Precision (mAP). TinyFace has the advantage of
containing native LR images, as opposed to the synthetically
down-sampled LR images. However, it is a small dataset with
limited variations in pose and illumination. It contains only
around 7-8K images for training and most of the images in
the test-set are unlabelled distractors. Consequently, we do not
use TinyFace for training and only use it to compare our pro-
posed scheme against the state-of-the-art. Another drawback of
TinyFace is that all images are unaligned and tightly cropped.
The standard face alignment methods require loosely cropped
images for proper alignment. To overcome this issue, when
evaluating algorithms on TinyFace, we augment our training
data with tightly cropped images to make our network robust
to distortions that result from aligning tightly cropped faces.
Despite its shortcomings, TinyFace is a welcome addition to
the scant benchmarks available for LR-FR tasks.

2) SCFace: It is a dataset of face images captured using
five video surveillance cameras that were placed at varying
distances. Consequently, the dataset contains facial images
of varying resolutions and is suitable for testing resolution
invariant FR algorithms. There are 130 identities in total
with 15 probe images corresponding to each identity at three
different distances (i.e., 1.0m, 2.6m and 4.2m) each. For each
identity, there is an HR mugshot image available as well. The
standard protocol [17], [21] is to use mugshot HR images as
gallery and the surveillance camera images as probes. Rank-
1 accuracy results are evaluated for each distance separately.
SCFace has the advantage of containing images of various
qualities and resolutions; however, there is little variation in
pose. Also, all images appear to be taken at the same day with
the same hairstyles and clothes. Moreover, it is a small-scale
dataset and the performance evaluations on SCFace would not
correspond to the in-the-wild scenarios. Despite its limited
variations, the SOTA HR-FR algorithms such as ArcFace [8]
give barely 48% rank-1 accuracy for images taken from 1.0m
distance [17]. The algorithms trained for LR-FR perform much
better with a state-of-the-art accuracy of around 77% [17].

3) MegaFace/FaceScrub: MegaFace is a large scale dataset
that uses 1 million unlabelled face images as distractors in FR
evaluation protocols. The distractors have large variations in
pose, illumination and resolution. These distractors are used in
combination with the FaceScrub [25] dataset in the MegaFace
challenge [14], where the FaceScrub dataset is used as labelled
probe set. FaceScrub contains 100k images of 530 identities
with large variations across face images of the same identity;
however, the MegaFace challenge usually takes a small subset
of the FaceScrub dataset containing 80 identities. In [8], it was
identified that some images are common in both the distractor
and the probe set; some mislabelled images in the probe set
were also found. Accordingly, a list of noisy images in the
MegaFace/FaceScrub is provided by [38] which we use to
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clean the MegaFace/FaceScrub dataset.

Fig. 1. Example images from various datasets with each row corresponding
to a single identity. The top row contains synthetically downsampled images
from FaceScrub. The middle row contains images from TinyFace and bottom
row is from SCFace. Note the lack of variations in TinyFace and SCFace as
opposed to FaceScrub; however, the synthetic LR does not contain the natural
blur and lack of illumination present in native LR.

The MegaFace challenge is essentially an HR-FR bench-
mark and is not suitable for LR-FR evaluations. However,
as we noted earlier, the available benchmarks for LR-FR
tasks are of small-scale, with limited variations. Therefore, we
decided to implement our own protocols by down-sampling
the MegaFace and FaceScrub datasets. We implemented two
scenarios that represent two important real-world applications:

1) P1:LR-LR: In this setting, we down-sampled both the
gallery images as well as the probe images to some lower
resolution using bi-cubic interpolation of the OpenCV
library [39]. We report the results for varying resolutions
that correspond to images with face widths ranging from
20 pixels to 112 pixels. This scenario represents the
situation when the face of a person-of-interest (POI) is
extracted from a surveillance camera footage and it is
required to search for that person in some other available
footage.

2) P2:LR-HR: In this setting, we only down-sample the
probe images and the gallery is left untouched. It is
a cross-resolution FR task that represents the situation
where a list of POIs and their corresponding HR faces
are available in a gallery and we need to search for these
persons in some surveillance camera footage.

Apart from down-sampling the images, we use the same
protocols for identification and verification as has been used
in the MegaFace challenge. For the identification scenario, one
image of a particular identity from the FaceScrub dataset is
added to the list of distractors to make a gallery. All the
remaining images of that particular identity are compared
against the gallery images to find the best match. This process
is repeated for each image of each identity in the probe set.
The average rank-1 accuracy across all identities is used as a
performance metric. For verification, we create pairs of images
as inputs and the algorithms are required to decide whether
a given pair belongs to the same identity or not. The true
positive rate, the false positive rate and the corresponding
Receiver Operating Characteristic (ROC) curve are used as
performance metrics. To evaluate the performance, we create

all pairs of all the probe images as well as pairs of probe and
distractor images. The actual MegaFace challenge employed
1 million distractors; however, since we are working with a
large number of different resolutions, it was computationally
too demanding for us to use the complete list of distractors.
Therefore, we use a subset of 10K distractors in our proposed
evaluation protocols, which were selected at random.

III. PROPOSED APPROACH

We first discuss some baseline approaches that would mo-
tivate the development of our proposed network and then
explain in detail the proposed solution.

A. Baseline Approaches

We work with a standard 34 layer ResNet [40] architecture
with slight modifications; the details of our network are
depicted in Figure 2. Working with a 34 layer network serves
two important purposes: firstly, it allows us to have a fair
comparison with the works on LR-FR that use a shallow
network, i.e., [16], [21]. Secondly, it becomes computationally
feasible to perform a range of experiments with various
hyper-parameters and input resolutions. We intend to study
the effects of employing deeper and more powerful CNNs
combined with more training data in a follow-up study.

3× 3 conv
stride: 1 or 2

BN + R
3× 3 conv
stride: 1

BN

Identity
or

1× 1 conv (stride: 2)

a: Basic Block

+

Basic block
stride (s): 1 or 2

Basic block
stride (s): 1
Repeated m-times

b: Basic Layer (L)

3× 3

s: 1

BN
+
R

L1
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m: 3

L2
s: 2
m: 4

L3
s: 2
m: 6

L4
s: 2
m: 3

BN
+
D

FC BN
x z

c: ResNet34 architecture

Fig. 2. (a) The basic building block of the ResNet34 architecture used in our
work. The residual connection is an identity connection if the first convolution
layer in the basic block has stride equal to 1; otherwise, a 1× 1 convolution
with stride 2 is used to match the dimensions of the residual connection with
the output. (b) A basic layer that consists of a first basic block with stride equal
to either 1 or 2 and then an m-times repetition of the basic block with stride
1. (c) The overall architecture of the ResNet34 architecture. BN represents
batch-norm, R is relu, D is dropout and FC is the fully connected layer. Input
x is a 112× 112 image and output z is a 512-dim feature vector.

For the network in Figure 2, the input x is a 112 × 112
image and the output z is a 512-dimensional output feature
vector. Let xi be the ith image of a batch of N training
images fed to the network, let yi ∈ {1, , 2, · · · , K} be
the true class label of xi, and zi be the output feature
vector of the network in Figure 2. The feature vector is
passed through a Softmax layer to get the output probabilities
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p
(i)
k = exp(wT

k zi)/
∑K

j=1 exp(w
T
j zi), where wk is the weight

of the Softmax layer corresponding to the kth class. The loss
is computed by evaluating cross-entropy between p(i)k and the
true class labels qk, i.e., li = −

∑K
k=1 qk log(p

(i)
k ), where

qk = 1 for k = yi and zero otherwise. The overall loss for a
single batch can be written as

L =
1

N

N∑
i=1

li =
1

N

N∑
i=1

log
exp(wT

yi
xi)∑K

j=1 exp(w
T
j xi)

(1)

The network is trained by minimizing the loss through
stochastic gradient descent. We consider the following baseline
networks:

1) A network trained on HR images only from the Casi-
aWeb dataset. Lets call it HR-only network.

2) A network trained on down-sampled images from Casi-
aWeb with two different resolutions corresponding to
images with face widths equal to 20 pixels and 16 pixels,
respectively. Note that the images are resized using bi-
cubic interpolation to the required size of 112 × 112
pixels before being fed to the network. We call this
network LR-only.

3) A network trained on combined HR and down-sampled
LR images. The down-sampling is done to get two
different resolutions corresponding to face widths of 20
pixels and 16 pixels. This baseline is similar to the
approach discussed in [15]. Lets call it HR+LR network.

It is obvious that the HR-only network would perform well
for high resolution images and the LR-only network for
low resolution facial images. We would expect the HR+LR
network to perform well for both resolutions. However, as
shown in detail in the Experiment section (i.e., Section IV-A),
the HR+LR network outperforms the LR-only network for
low resolution images, but its performance for high resolution
images is much lower than the HR-only network. We explain
this behaviour as follows: Let xi,hr and xi,lr be a set of HR
and corresponding LR training examples of a particular iden-
tity yi. Let zi,hr, zi,lr, p(i)k,hr and p

(i)
k,lr be the corresponding

DNN embeddings and Softmax probabilities, respectively. For
these inputs, the cross entropy loss will be minimised if both
p
(i)
k,hr → 1 and p

(i)
k,lr → 1 for k = yi. Consequently, from

(1), wT
yi
zi,hr >> wT

k 6=yi
zi,hr and wT

yi
zi,lr >> wT

k 6=yi
zi,lr.

Hence, the loss is minimised only when the angle between
zi,hr/lr and wyi

is minimised. Since both zi,hr and zi,lr
approach the same weight vector wyi

, they are forced to
be close to each other. Essentially, when the same network
is trained on both HR and LR images, the Softmax layer
would bring the DNN embeddings of a single identity close
to each other, for both the LR and HR images. Now as the
LR embeddings get close to HR, it results in a performance
improvement at LR; however, the network also forces the
HR embeddings to be close to LR, thus resulting in a loss
of performance at HR. In other words, the network would
ignore some information in the HR images so that the HR
and LR features can get close to each other. This scenario is
graphically represented in Figure 3(a).

Fig. 3. A graphical representation of the effect of Softmax weight sharing.
(wL, zL) depict the weights (Softmax) and features of a network trained
on LR images, (wH , zH) represent the output of a network trained on HR
images, and (wH+L, zH+L) depict the output of a network trained on
combined LR and HR images. (a) In the absence of weight sharing, the LR
weights and features move toward HR, thus increasing the performance at
LR; however, the HR weights and features also move towards LR, resulting
in a performance loss at HR. (b) Using Softmax weight sharing, we can force
the (wH+L, zH+L) to be close to (wH , zH) thus resulting in an increase
in performance at LR while maintaining the performance at HR better.

B. Proposed Solution

In an ideal solution for cross-resolution face recognition, we
would like the HR features to remain similar to those of the
HR-only network; whereas, we would like the LR features to
get as close as possible, to the HR features. To achieve this
end, we propose a strategy depicted in Figure 4.

We take a pretrained network that has been trained on HR
images as a teacher network with fixed weights. The teacher
network is fed HR images only. A trainable student network is
simultaneously fed the same HR images with the correspond-
ing down-sampled LR images, in the same batch. We train the
student network by minimising the KL-divergence between the
output Softmax probabilities of the teacher network and those
of the student network. The resulting loss function for a single
input x can be written as

l = −
K∑

k=1

qprek log
pk
qprek

= −
K∑

k=1

qprek log(pk)︸ ︷︷ ︸
Cross Entropy

+

K∑
k=1

qprek log(qprek )︸ ︷︷ ︸
Entropy

,
(2)

where K is the total number of classes, pk ∝ exp(wT
k zt)

is the output of trainable Softmax, qprek ∝ exp(wT
pre,kzpre)

is the output of the pretrained Softmax and wk,wpre and
zt, zpre are the corresponding trainable and pretrained weights
and features, respectively. Note that the second term in the
loss function, i.e., the entropy of pretrained probabilities is
independent of the trainable student network and hence does
not play any part in training. So the KL loss function is
essentially a cross entropy loss where the true target labels
qk have been replaced with the pretrained probabilities of the
teacher network qprek . Minimising the KL loss is equivalent to
minimising the difference between the pretrained and trainable
logits, i.e., wT

pre,kzpre and wT
k zt [23]. However, minimising

the difference between the logits does not necessarily make
the pretrained and trainable features to be close to each other.
Since in FR we are primarily concerned with the feature
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vectors, we would expect a performance improvement in the
trainable system if both zpre and zt are forced to be close to
each other. To achieve this end, we share the trainable Softmax
layer between the student and the teacher network, as shown
in Figure 4. Now for each input image x, we have an HR
image fed to the teacher network and an HR/LR image fed to
the student network. Hence for each x, the loss will consist
of two cross entropy terms, i.e.,

l = −
K∑

k=1

qprek log(ptk)−
K∑

k=1

qprek log(pprek ) + C, (3)

where ptk ∝ exp (wT
k zt), p

pre
k ∝ exp (wT

k zpre) and C
represents the entropy terms that are independent of trainable
weights. Now let γtk = wT

k zt and γprek = wT
k zpre be the logits

corresponding to ptk and pprek , then we can write

∂l

∂γtk
= (ptk − q

pre
k ),

∂l

∂γprek

= (pprek − qprek ). (4)

Hence the loss will be minimised when both ptk and pprek

approach the same value, i.e., qprek . Since wk is common in
ptk and pprek , minimising the loss will necessarily make zt
and zpre similar to each other. Note that since zpre is fixed,
during training, zt will approach zpre and wk will approach
wpre,k.This mechanism is graphically depicted in Figure 3(b).
Also, note that sharing the Softmax layer achieves the desired
effect of bringing the pretrained and trainable features close
to each other without requiring any changes in the nature of
the loss function. To summarise, we achieve distillation of
information from the Teacher network to the Student network
using two simultaneous mechanisms, i.e., a KL-loss between
the output Softmax probabilities of the Teacher and Student
network and a shared Softmax layer between the two networks.
The significance of these mechanisms is described below:

1) As the inputs and weights of the Teacher and the Student
networks are different, the pretrained features zpre and
trainable features zt should lie in entirely different sub-
spaces. However, by sharing the weights of the Softmax
layer, we make the outputs of the two networks to share
the same subspace and force zpre and zt of the same
identity to be close to each other. Note that in the
previous works [21], [33], it has been suggested to use a
pair-wise metric loss to minimise the distance between
the HR and LR features corresponding to the same
image. However, a shared Softmax layer will not only
minimise the distance between the HR and LR features
of the same image, but it will also minimise the distance
between all the HR and LR features belonging to the
same identity. Hence, it is a more efficient mechanism
for achieving cross-resolution face recognition than the
SOTA solutions [21], [33]

2) The KL-loss minimises the difference between the Soft-
max probabilities of the Teacher and the Student net-
work. In the absence of this loss, the networks would be
trained using hard-target probabilities (i.e., true class la-
bels). However, there is valuable information in the soft-
targets, i.e., in the similarity structure of the Softmax
probabilities, available from the Teacher network. By

minimizing the KL-loss, we expect the student network
to have similar generalisation performance as that of the
Teacher network.

Pretrained and Fixed
Teacher Network

Fixed
Softmax

Trainable
Softmax

Trainable
Softmax

shared weights

Trainable
Student Network

KL Loss

KL Loss

HR only

{HR, LR}

zpre

zt

qpre

L

ppre

pt

+

qpre

Fig. 4. Block diagram of the training strategy utilised in the proposed
approach. The shaded blocks denote fixed weights that have been pretrained
on HR-only images.

A note on Face alignment: For training as well as for testing,
it is a standard practice in DNN based FR systems to perform
a geometric face alignment before passing the image through
the network. This alignment is carried out by first extracting
facial landmarks and then performing an affine transformation
based on the coordinates of five facial landmarks, i.e., eye
centres, nose tip and mouth corners. There are many existing
facial landmark detection algorithms, such as cascaded shape
regression [41], [42] and CNN based methods [43]–[46].
However, standard facial landmark detection approaches such
as MTCNN [43] do not work well for LR images, i.e., they
fail to detect a large number of LR faces during training as
well as testing. One possible solution is first to align the
images in the HR domain and then down-sample to create the
synthetic LR images. However, this approach would lead to
optimistic results on synthetic LR [47] and it cannot be applied
to native LR anyhow. Consequently, for low resolution facial
landmark detection we train a CNN using Wing loss [48] on
the WiderFace [49] dataset. To be more specific, we used a
simple CNN-6 model described in [48] which performed well
for LR face images.

IV. EXPERIMENTS

We compare the proposed scheme against the baseline
methods discussed in Section III-A as well against a number of
state-of-the-art techniques. To give a fair comparison with the
state-of-the-art, we use CasiaWeb dataset (i.e., small protocol
with < 0.5 million images) to train our network. All networks
are trained using PyTorch [50] with a batch size of 64. The
learning rate is set to 0.1 and is divided by 10 after 30 epochs
and then again after 45 epochs. The training is finished after
65 epochs. The momentum is set to 0.9 and weight decay is
set to 1e−4. Once the training is complete, the Softmax layer
is discarded and for each test image, a 512-dimensional feature
vector is obtained by passing the image through the network.
Recognition is performed by evaluating cosine similarities
between the feature vectors for the various test images.
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A. Experiments on MegaFace/FaceSrcub

We compare the performance of our proposed scheme
against the baseline approaches on protocols P1:LR-LR and
P2:LR-HR described in Section II-B3; the results are depicted
in Figure 5 and Figure 6, respectively. We note from Figure 5
that the network trained on only HR images gives an accuracy
of around 90% for images with corresponding face width of
100 pixels, the accuracy remains almost unchanged as face
width decreases to 60 pixels; however, the accuracy starts to
decrease rapidly for lower resolutions and drops to 25% for
face widths equal to 20 pixels. On the other hand, the network
trained on only LR images performs much better at lower
resolutions with an accuracy of around 46% for face width
equal to 20 pixels. However, it gives poor performance for
higher resolutions, with only 68% rank-1 accuracy for HR
images. The network trained on combined HR and LR images
has an accuracy of around 78% for HR images, which is much
better than the LR-only network; however, it is much lower
than the network trained on HR-only images. Interestingly,
the HR+LR network outperforms the LR-only network on
both low and high resolutions. The proposed scheme gives
a rank-1 accuracy of around 51% for face width equal to
20 pixels, which is better than all the baseline approaches.
At high resolution, for face width equal to 100 pixels, the
accuracy of the proposed scheme is around 83% which is
greater than the baseline HR+LR approach. Note that the
proposed scheme gives a performance improvement over the
baseline HR+LR approach for all resolutions. However, at
high resolution, the accuracy is still lower than the HR-
only approach. Hence by distilling the information from a
pretrained network, we have been able to achieve performance
improvement over the baseline HR+LR approach; however, we
still have compromised some of our HR performance to gain
improvements at other resolutions. Similar results are depicted
in Figure 6, with the difference that for face width equal to
20 pixel, the rank-1 accuracy of the proposed scheme for
P2:LR-HR is 64%, which is greater than the corresponding
accuracy for P1:LR-LR scenario. Here, we would like to
emphasise, that in most practical settings, the face images
captured by surveillance cameras would almost always be of
varying resolutions and hence FR in surveillance scenarios
is a cross-resolution problem. Accordingly, the performance
improvements shown by the proposed scheme for the cross-
resolution protocol P2:LR-HR are of practical importance. We
show the results of the verification experiments in Figure 7
and 8 for P1:LR-LR and P2:LR-HR, respectively. The results
have been evaluated for downsampled images corresponding
to a face width of 25 pixels. Note that the proposed scheme
outperforms the baseline approaches in both scenarios. For the
LR-LR scenario, the proposed scheme has a true positive rate
(TPR) of 50% at a false positive rate (FPR) of 10-4; whereas,
both the HR+LR and the LR-only baselines have a TPR of
around 45%. The HR-only network gives a very low accuracy
of around 30%. For the LR-HR scenario, the proposed scheme
has a TPR of 60% at an FPR of 10-4. While the corresponding
results for the HR+LR, LR-only and HR-only networks are
54%, 48% and 52%, respectively. These results confirm the

superior performance of the proposed method against similar
baseline methods, for both face identification and verification.
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Fig. 5. Comparison of Rank-1 accuracy of the proposed approach against the
baseline approaches on protocol P1:LR-LR.
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Fig. 6. Comparison of Rank-1 accuracy of the proposed approach against the
baseline approaches on protocol P2:LR-HR.
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Fig. 7. Verification performance of the proposed approach against the baseline
approaches on protocol P1:LR-LR for face width equal to 25 pixels.

Ablation study: As described earlier, our proposed scheme
relies on two mechanisms acting simultaneously, i.e., KL-
loss and shared Softmax. To evaluate the contribution of each
mechanism separately, we do an ablation study in which we
compare the performance of the following networks

1) A Student network trained with KL-loss only and no
shared Softmax.
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Fig. 8. Verification performance of the proposed approach against the baseline
approaches on protocol P2:LR-HR for query face width equal to 25 pixels.

2) A Student network trained with shared Softmax only and
no KL-loss, i.e., the loss function is cross-entropy with
true target labels.

3) A Student network with both KL-loss and shared Soft-
max, i.e., the proposed scheme.

We evaluate the performance of these networks on P1:LR-
LR and P2:LR-HR and the results are plotted in Figure 9
and Figure 10, respectively. For comparison, we also plot the
results of the baseline HR+LR approach. We note from Figures
9 and 10 that both KL-loss and shared Softmax give incre-
mental performance improvement over the baseline HR+LR
approach. The proposed scheme, which combines both shared
Softmax and KL-loss gives a better performance improvement
as opposed to the individual improvements offered by these
mechanism acting separately. For instance, for P1:LR-LR, at
LR with face width equal to 20 pixels, the baseline HR+LR
has a rank-1 accuracy of 48.40%. The distillation approach
based on KL-loss-only improves the performance to 49.24%;
whereas, distillation using shared- Softmax-only gives an
accuracy of 49.22%. The proposed scheme on the other hand
has an accuracy of 50.65%. Hence, the combined effect of
shared Softmax and KL-loss offers a better distillation of
information from the pretrained network. Similarly, for HR
images with face width equal to 100 pixels, the accuracy of
baseline is 77.64%, that of KL-loss-only is 79.38%, shared
Softmax gives 80.62% and the proposed scheme has 82.80%
rank-1 accuracy. Note that in the proposed scheme, we are
using “soft-targets” from the pretrained network; whereas, in
the shared-Softmax-only network, we use “hard-target”, i.e.,
true target labels. Since the proposed scheme is outperforming
the shared-Softmax-only network, it reinforces the hypothesis
suggested in [23], that there is valuable information in the
similarity structure of the probabilities of the Teacher network.

B. Experiments on TinyFace and SCFace

In the previous section, we evaluated the performance of
the proposed scheme on synthetically down-sampled images
from FaceScrub and MegaFace. Now we focus on two native
LR datasets, i.e., TinyFace and SCFace. The details of these
datasets have already been described in Section II-B. TinyFace
has LR images in both gallery and query and hence is an

20 30 40 60 100

Face Width (Pixels)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
a
n
k
-1

 A
c
c
u
ra

c
y

Baseline (HR+LR)

KL-loss only

Shared Softmax Only

Proposed

Fig. 9. Ablation study of the effect of KL-loss and shared Softmax in the
proposed scheme for P1:LR-LR.
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Fig. 10. Ablation study of the effect of KL-loss and shared Softmax in the
proposed scheme for P2:HR-LR.

LR-LR benchmark. In contrast, SCFace has query images of
varying resolutions and an HR gallery, making it an LR-HR
benchmark. Note that TinyFace has been published relatively
recently and only a few works have reported results for
TinyFace. On the other hand, SCFace is a more established
benchmark and many of recent works on LR-FR use SCFace
to evaluate their algorithms.

The results of the proposed scheme as well as SOTA
algorithms on TinyFace are tabulated in Table I. Until re-
cently, the best accuracy on TinyFace was reported by [16]
using the super-resolution based CSRI approach. Recently,
the unpublished work in [33] has reported SOTA results on
TinyFace with a rank-1 accuracy of 58.6%. Note that the
accuracy of our proposed scheme on TinyFace is 70.4% which
is significantly better than the SOTA results. The proposed
scheme has an mAP score of 63.2 which is approximately
10 points better than the previous state-of-the-art. Hence our
proposed establishes a new SOTA accuracy on TinyFace. This
also shows that the proposed scheme, despite being trained on
synthetically down-sampled LR images only, works effectively
for native LR images. Note that the performance on TinyFace
is better than the performance /evaluated for the P1:LR-
LR protocol (cf. Figure 5), notwithstanding, that P1:LR-LR
uses synthetically down-sampled images and does not contain
the usual blur and lack of illumination found in native LR
datasets. This is attributed to the fact that TinyFace has a
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limited variation in pose and illumination, as compared to
the Facescrub and MegaFace datasets. Hence, despite being
a native LR dataset, it is not as challenging as a large
scale LR dataset created out of down-sampled images from
FaceScrub/MegaFace.

TABLE I
COMPARISON OF THE PROPOSED SCHEME WITH STATE-OF-THE-ART

ALGORITHMS ON TINYFACE.

Method Rank-1 Rank-20 Rank-50 mAP

RPCN 18.6 25.3 27.4 12.9
VGGFace 30.4 40.4 42.7 23.1
CentreFace 32.1 44.5 48.4 24.6
CSRI [16] 44.8 60.4 65.1 36.2
C-T [33] 58.6 73.0 76.3 52.7
Proposed 70.4 82.2 85.4 63.2

The performance of the proposed scheme on SCFace and
its comparison with various SOTA algorithms is tabulated in
Table II. Note that the proposed scheme outperforms both the
SR based FAN [17] and RI based DCR [21] for all distances,
i.e., d1, d2 and d3 that correspond to different resolutions.
Specifically, the difference in performance is significant for
distance d1 that corresponds to LR images. Hence, not only
the proposed scheme is working better than the SOTA methods
for LR images, it is also exhibiting better resolution invariance
than any of the other techniques. This also shows that the
proposed scheme would work well for images obtained from
surveillance cameras in an uncontrolled scenario. Again, we
note that the performance of the proposed scheme for SCFace
is much better as compared to TinyFace (refer to Table I)
and the P1:LR-LR and P2:LR-HR protocols (cf. Figure 5 and
6). This is owing to the fact that SCFace is a small scale
dataset with limited variations. Specifically, SCFace contains
only frontal images and does not account for performance loss
owing to pose variations that play a vital role in limiting the
performance of an FR algorithm.

TABLE II
COMPARISON OF THE PROPOSED SCHEME WITH STATE-OF-THE-ART

ALGORITHMS ON SCFACE.

Distance d1 d2 d3 avg.

RICNN [15] 23.0 66.0 74.0 54.3
LDMDS [22] 62.7 70.7 65.5 65.5
LightCNN-FT [21] 49.0 83.8 93.5 75.4
ArcFace (Resnet50) [8], [17] 48.0 92.0 99.3 79.8
ArcFace-FT (Resnet50) [17] 67.3 93.5 98.0 86.3
DCR-FT [21] 73.3 93.5 98.0 88.3
FAN-FT [17] 77.5 95.0 98.3 90.3
Proposed 88.3 98.3 98.6 95.0

V. CONCLUSION

In this work, we addressed the problem of resolution
invariant face recognition, specifically focusing on low res-
olution face identification. We proposed a novel strategy that
employs a fixed Teacher network, which is pretrained on high
resolution images and a trainable Student network, which is

trained simultaneously on high and low resolution images.
Information in the Teacher network is distilled into the Student
network by minimising the KL-divergence between the output
Softmax probabilities of the two networks as well as by
sharing their Softmax weights. The resulting solution was
tested against a number of baseline methods on synthetic
LR images from FaceScrub/MegaFace and showed consistent
performance improvements. The proposed scheme was also
tested on native LR benchmarks, i.e., TinyFace and SCFace
and showed considerable performance improvements over the
state-of-the-art.

REFERENCES

[1] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local
binary patterns: Application to face recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 28, no. 12, pp. 2037–
2041, 2006.

[2] J. Lu, V. E. Liong, X. Zhou, and J. Zhou, “Learning compact binary face
descriptor for face recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 37, no. 10, pp. 2041–2056, 2015.

[3] X. Song, Z.-H. Feng, G. Hu, and X.-J. Wu, “Half-face dictionary
integration for representation-based classification,” IEEE Transactions
on Cybernetics, vol. 47, no. 1, pp. 142–152, 2017.

[4] P. Koppen, Z.-H. Feng, J. Kittler, M. Awais, W. Christmas, X.-J. Wu,
and H.-F. Yin, “Gaussian mixture 3d morphable face model,” Pattern
Recognition, vol. 74, pp. 617–628, 2018.

[5] X. Song, Z.-H. Feng, G. Hu, J. Kittler, and X.-J. Wu, “Dictionary inte-
gration using 3d morphable face models for pose-invariant collaborative-
representation-based classification,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 11, pp. 2734–2745, 2018.

[6] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2014,
pp. 1701–1708.

[7] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, “Cosface: Large margin cosine loss for deep face recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 5265–5274.

[8] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4690–4699.

[9] R. Ranjan, A. Bansal, J. Zheng, H. Xu, J. Gleason, B. Lu, A. Nanduri, J.-
C. Chen, C. D. Castillo, and R. Chellappa, “A fast and accurate system
for face detection, identification, and verification,” IEEE Transactions
on Biometrics, Behavior, and Identity Science, vol. 1, no. 2, pp. 82–96,
2019.

[10] X. Cheng, J. Lu, B. Yuan, and J. Zhou, “Face segmentor-enhanced deep
feature learning for face recognition,” IEEE Transactions on Biometrics,
Behavior, and Identity Science, vol. 1, no. 4, pp. 223–237, 2019.

[11] Y. Duan, J. Lu, J. Feng, and J. Zhou, “Context-aware local binary feature
learning for face recognition,” IEEE transactions on pattern analysis and
machine intelligence, vol. 40, no. 5, pp. 1139–1153, 2018.

[12] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 815–
823.

[13] J. Lu, J. Hu, and Y.-P. Tan, “Discriminative deep metric learning for
face and kinship verification,” IEEE Transactions on Image Processing,
vol. 26, no. 9, pp. 4269–4282, 2017.

[14] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard,
“The megaface benchmark: 1 million faces for recognition at scale,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4873–4882.

[15] D. Zeng, H. Chen, and Q. Zhao, “Towards resolution invariant face
recognition in uncontrolled scenarios,” in 2016 International Conference
on Biometrics (ICB). IEEE, 2016, pp. 1–8.

[16] Z. Cheng, X. Zhu, and S. Gong, “Low-resolution face recognition,” in
Asian Conference on Computer Vision. Springer, 2018, pp. 605–621.

[17] X. Yin, Y. Tai, Y. Huang, and X. Liu, “Fan: Feature adaptation network
for surveillance face recognition and normalization,” arXiv preprint
arXiv:1911.11680, 2019.



10

[18] P. H. Hennings-Yeomans, S. Baker, and B. V. Kumar, “Simultaneous
super-resolution and feature extraction for recognition of low-resolution
faces,” in 2008 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2008, pp. 1–8.

[19] K. Zhang, Z. Zhang, C.-W. Cheng, W. H. Hsu, Y. Qiao, W. Liu,
and T. Zhang, “Super-identity convolutional neural network for face
hallucination,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 183–198.

[20] B. Li, H. Chang, S. Shan, and X. Chen, “Low-resolution face recognition
via coupled locality preserving mappings,” IEEE Signal processing
letters, vol. 17, no. 1, pp. 20–23, 2009.

[21] Z. Lu, X. Jiang, and A. Kot, “Deep coupled resnet for low-resolution
face recognition,” IEEE Signal Processing Letters, vol. 25, no. 4, pp.
526–530, 2018.

[22] F. Yang, W. Yang, R. Gao, and Q. Liao, “Discriminative multidi-
mensional scaling for low-resolution face recognition,” IEEE Signal
Processing Letters, vol. 25, no. 3, pp. 388–392, 2017.

[23] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[24] M. Grgic, K. Delac, and S. Grgic, “Scface–surveillance cameras face
database,” Multimedia tools and applications, vol. 51, no. 3, pp. 863–
879, 2011.

[25] H.-W. Ng and S. Winkler, “A data-driven approach to cleaning large face
datasets,” in 2014 IEEE International Conference on Image Processing
(ICIP). IEEE, 2014, pp. 343–347.

[26] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from
scratch,” arXiv preprint arXiv:1411.7923, 2014.

[27] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: Challenge
of recognizing one million celebrities in the real world,” Electronic
imaging, vol. 2016, no. 11, pp. 1–6, 2016.

[28] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep
hypersphere embedding for face recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
212–220.

[29] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database forstudying face recognition in unconstrained
environments,” 2008.

[30] Z. Cheng, X. Zhu, and S. Gong, “Surveillance face recognition chal-
lenge,” arXiv preprint arXiv:1804.09691, 2018.

[31] B. K. Gunturk, A. U. Batur, Y. Altunbasak, M. H. Hayes, and R. M.
Mersereau, “Eigenface-domain super-resolution for face recognition,”
IEEE transactions on image processing, vol. 12, no. 5, pp. 597–606,
2003.

[32] C.-X. Ren, D.-Q. Dai, and H. Yan, “Coupled kernel embedding for
low-resolution face image recognition,” IEEE Transactions on Image
Processing, vol. 21, no. 8, pp. 3770–3783, 2012.

[33] F. V. Massoli, G. Amato, and F. Falchi, “Cross-resolution learning for
face recognition,” arXiv preprint arXiv:1912.02851, 2019.

[34] M. Zhu, K. Han, C. Zhang, J. Lin, and Y. Wang, “Low-resolution visual
recognition via deep feature distillation,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 3762–3766.

[35] J. Cai, H. Han, S. Shan, and X. Chen, “Fcsr-gan: Joint face completion
and super-resolution via multi-task learning,” IEEE Transactions on
Biometrics, Behavior, and Identity Science, 2019.

[36] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive
residual network,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 3147–3155.

[37] N. Zhang, M. Paluri, Y. Taigman, R. Fergus, and L. Bourdev, “Beyond
frontal faces: Improving person recognition using multiple cues,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 4804–4813.

[38] “Insightface,” https://github.com/deepinsight/insightface/tree/master
/src/megaface, 2018.

[39] Itseez, “Open source computer vision library,”
https://github.com/itseez/opencv, 2015.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[41] X. Xiong and F. De la Torre, “Supervised descent method and its
applications to face alignment,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2013, pp. 532–539.

[42] Z.-H. Feng, J. Kittler, W. Christmas, P. Huber, and X.-J. Wu, “Dynamic
Attention-Controlled Cascaded Shape Regression Exploiting Training
Data Augmentation and Fuzzy-Set Sample Weighting,” in IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
2481–2490.

[43] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multitask cascaded convolutional networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.

[44] W. Wu, C. Qian, S. Yang, Q. Wang, Y. Cai, and Q. Zhou, “Look at
boundary: A boundary-aware face alignment algorithm,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 2129–2138.

[45] Z.-H. Feng, J. Kittler, and X.-J. Wu, “Mining Hard Augmented Samples
for Robust Facial Landmark Localisation with CNNs,” IEEE Signal
Processing Letters, vol. 26, no. 3, pp. 450–454, 2019.

[46] Z.-H. Feng, J. Kittler, M. Awais, and X.-J. Wu, “Rectified wing loss
for efficient and robust facial landmark localisation with convolutional
neural networks,” International Journal of Computer Vision, 2019.

[47] Y. Peng, L. J. Spreeuwers, and R. N. Veldhuis, “Low-resolution face
recognition and the importance of proper alignment,” IET biometrics,
vol. 8, no. 4, pp. 267–276, 2019.

[48] Z.-H. Feng, J. Kittler, M. Awais, P. Huber, and X.-J. Wu, “Wing loss for
robust facial landmark localisation with convolutional neural networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2235–2245.

[49] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “Wider face: A face detection
benchmark,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 5525–5533.

[50] A. e. Paszke, “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

Syed Safwan Khalid received the B.Sc. degree in
Electrical Engineering from National University of
Sciences and Technology, Pakistan in 2006, M.Sc.
degree from University of Surrey, UK in 2009 and
Ph.D. degree from COMSATS University Islamabad,
Pakistan in 2018. He is currently a Research Fellow
at the Centre for Vision, Speech and Signal Process-
ing (CVSSP) at the University of Surrey, U.K. His
research interests include Deep Learning, Machine
Learning and Bayesian Signal Processing.

Muhammad Awais received the B.Sc. degree in
mathematics and physics from the AJK University
in 2001, B.Sc. degree in computer engineering from
UET Taxila in 2005, M.Sc in signal processing and
machine intelligence and PhD in machine learning
from the University of Surrey in 2008 and 2011. He
is currently a senior research fellow at the Centre
for Vision, Speech and Signal Processing (CVSSP)
at the University of Surrey. His research interests
include image processing, computer vision, pattern
recognition, machine learning and deep learning.

Zhen-Hua Feng (S’13-M’16) received the Ph.D.
degree from the Centre for Vision, Speech and
Signal Processing (CVSSP), University of Surrey,
U.K. in 2016. He is currently a Senior Research
Fellow at CVSSP, the University of Surrey. His
research interests include computer vision, machine
learning and pattern recognition.

He has published more than 40 scientific papers
in top-ranking conferences and journals, including
IJCV, CVPR, ICCV, IEEE TIP, IEEE TIFS, IEEE
TCSVT, IEEE TCYB, ACM TOMM, Pattern Recog-

nition, Information Sciences, etc. He has received the 2017 European Biomet-
rics Industry Award from the European Association for Biometrics (EAB) and
the 2018 AMDO Best Paper Award for Commercial Application.



11

Chi-Ho Chan received his Ph.D. degree from the
University of Surrey, U.K. in 2008. He is currently
a research fellow at the Centre for Vision, Speech
and Signal Processing, University of Surrey. From
2002 to 2004, he served as a researcher at ATR
International (Japan). His research interests include
Image Processing, Pattern Recognition, Biometrics,
and Vision-Based Human-Computer Inter- action.

Ammarah Farooq is currently pursuing her doctoral
studies at the Centre for Vision, Speech and Signal
Processing (CVSSP), University of Surrey, U.K. She
is working on deep learning for Biometrics appli-
cations, specifically focusing on learning embed-
dings from multi-modal data. Her research interests
include deep learning, pattern recognition, natural
language processing and artificial intelligence.

Ali Akbari received the PhD degree in Telecom-
munications from the Sorbonne University, Paris,
France in March 2018. Since July 2018, he joined
the Centre for Vision, Speech and Signal Processing
(CVSSP), University of Surrey, UK as a research
fellow to enrich his experiences in the field of face
recognition. He has published two book chapters
and several papers in peer-reviewed journals and
conference proceedings. He has served as an Asso-
ciate Editor for the IEEE Open Journal of Circuits
and Systems. His research interests include computer

vision, deep learning, dictionary learning and image and video coding.

Josef Kittler (M’74-LM’12) received the B.A.,
Ph.D., and D.Sc. degrees from the University of
Cambridge, in 1971, 1974, and 1991, respectively.
He is a distinguished Professor of Machine Intelli-
gence at the Centre for Vision, Speech and Signal
Processing, University of Surrey, Guildford, U.K.
He published the textbook Pattern Recognition: A
Statistical Approach and over 700 scientific papers.
His publications have been cited more than 66,000
times (Google Scholar).

He is series editor of Springer Lecture Notes on
Computer Science. He currently serves on the Editorial Boards of Pattern
Recognition Letters, Pattern Recognition and Artificial Intelligence, Pattern
Analysis and Applications. He also served as a member of the Editorial Board
of IEEE Transactions on Pattern Analysis and Machine Intelligence during
1982-1985. He served on the Governing Board of the International Association
for Pattern Recognition (IAPR) as one of the two British representatives during
the period 1982-2005, President of the IAPR during 1994-1996.


