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Abstract—In recent years, the popularity of fingerprint-
based biometric authentication systems significantly increased.
However, together with many advantages, biometric systems
are still vulnerable to presentation attacks (PAs). In partic-
ular, this applies for unsupervised applications, where new
attacks unknown to the system operator may occur. Therefore,
presentation attack detection (PAD) methods are used to deter-
mine whether samples stem from a bona fide subject or from a
presentation attack instrument (PAI). In this context, most works
are dedicated to solve PAD as a two-class classification problem,
which includes training a model on both bona fide and PA sam-
ples. In spite of the good detection rates reported, these methods
still face difficulties detecting PAIs from unknown materials. To
address this issue, we propose a new PAD technique based on
autoencoders (AEs) trained only on bona fide samples (i.e., one-
class), which are captured in the short wave infrared domain.
On the experimental evaluation over a database of 19,711 bona
fide and 4,339 PA images including 45 different PAI species,
a detection equal error rate (D-EER) of 2.00% was achieved.
Additionally, our best performing AE model is compared to
further one-class classifiers (support vector machine, Gaussian
mixture model). The results show the effectiveness of the AE
model as it significantly outperforms the previously proposed
methods.

Index Terms—Fingerprint recognition, presentation attack
detection, one-class classifier, autoencoder, anomaly detection.
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I. INTRODUCTION

NOWADAYS, we encounter biometric recognition systems
in many places of our daily life. Applications range from

high security border control to user convenient smartphone
unlocking. Especially fingerprint recognition systems are long
established and widely used [1].

However, biometric systems can be affected by exter-
nal attacks as the capture device is exposed to the public.
Those presentation attacks (PAs) are defined within ISO/IEC
30107-1 [2] as a “presentation to the biometric data capture
subsystem with the goal of interfering with the operation of
the biometric system”. During execution, a presentation attack
instrument (PAI), e.g., a fingerprint overlay, can be used to
either impersonate someone else (i.e., impostor) or to avoid
being recognised (i.e., identity concealer). Summarising, the
artefact that is used for a presentation attack is called PAI
while different material combinations or recipies result in
different PAI species. As a consequence, biometric systems
require automated presentation attack detection (PAD) mod-
ules in order to distinguish bona fide presentations from attack
presentations [3].

Since the periodic LivDet competitions started in 2009 for
fingerprint [4] and in 2013 for iris [5], PAD in general has
attracted a lot of research. In parallel to those research efforts,
more and more different materials are found or combined to
create new species [6]. On the one hand, older PAD meth-
ods might not detect new PAI species. On the other hand, it
becomes much more challenging to collect diverse datasets in
order to develop and evaluate (new) PAD approaches. Being
a binary classification problem (bona fide vs. PA), common
PAD approaches are trained on both classes and hence per-
form only as good as the chosen training set. In this scenario,
unknown attacks [7] present only in the test set can signifi-
cantly trouble the classifier, as it requires good generalisation
properties that are hard to achieve. In order to avoid re-training
the classifier each time a new PAI species is created, one-class
classifiers can be used [8]. These models are solely trained on
bona fide samples to detect anomalies in unseen data. They are
especially designed to generalise much better than multi-class
classifiers since all PAs are unknown to them.

In this context, we propose to involve convolutional autoen-
coders for unknown fingerprint PAD. We test different
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architecture designs and show how the negative effect of out-
liers in the training set can be reduced in comparison to
two-class classifiers. Finally, we benchmark the autoencoder
against additional one-class classifiers to prove the soundness
of our approach. The evaluation is carried out on data captured
in the short wave infrared domain with over 24,000 samples,
including 45 different PAI species. It should be noted, that the
discussed design decisions should be generally applicable for
other input data as well.

The remaining article is structured as follows: Section II
summarises related work on fingerprint and one-class PAD.
Our capture device is described in Section III and Section IV
contains the autoencoder design and our proposed PAD
method. In Section V we evaluate the experiments before
Section VI concludes our findings.

II. RELATED WORK

This section reviews state-of-the-art approaches related to
the contribution of this work. In the context of PAD, two
different solutions exists: i) software-based, where a deeper
analysis of the existing data for authentication is carried out,
and ii) hardware-based, where new sensors are developed to
capture additional data for PAD. Due to the high number of
publications for fingerprint PAD within the last decade, we
focus on hardware-based approaches in the first subsection
and refer the reader to [9], [10] for comprehensive surveys.
On the other hand, most classifiers are trained on both classes,
hence in the second subsection we present an overview of one-
class PAD for other modalities as well. In order to evaluate
the vulnerabilities of biometric systems to PAs, the following
metrics are defined within the ISO/IEC 30107-3 standard on
biometric presentation attack detection - part 3: testing and
reporting [11]:

Attack Presentation Classification Error Rate (APCER):
“proportion of attack presentations using the same PAI species
incorrectly classified as bona fide presentations”.

Bona Fide Presentation Classification Error Rate (BPCER):
“proportion of bona fide presentations incorrectly classified as
attack presentations”.

A. Hardware-Based Fingerprint PAD

Similar to other pattern recognition tasks, PAD benefits from
information captured by additional sensors. This information
is then analysed with dedicated software. To that end, an
overview of hardware-based state-of-the-art fingerprint PAD
methods is presented in Table I.

One of the most reliable methods for fingerprint PAD is
based on optical coherence tomography (OCT) [30] sensors,
which capture a 3D model of the fingertip up to two mil-
limeter underneath the skin. In addition to PAD, this scan
can be used to recover worn-out fingerprints, since it includes
the inner fingerprint as well. Hence, it also reveals overlay-
ing PAIs as well as full fake fingers. Using OCT scanners,
Darlow et al. [15] detected double bright peaks in gelatin over-
lays and analysed the autocorrelation for gelatin full fingers.
Their setup achieves a 100% detection accuracy on a database
with 568 samples. Also Liu et al. [21] analyse the peaks of

OCT scans. They discover that 1D depth scans of bona fide
samples contain exactly two peaks while one appears prior the
maximum peak. Thus, they apply a threshold to successfully
distinguish between bona fides and PAs. Training a convo-
lutional neural network (CNN) on overlapping patches of a
depth B-scan, Chugh and Jain [23] report a detection accu-
racy close to 100%. However, the utilised capture device does
not acquire the fingerprint for biometric recognition purpose.
An extensive review on OCT for fingerprint PAD is published
by Moolla et al. [31]. It should be noted that the high costs
of OCT scanners are an explicit disadvantage in contrast to
other methods.

Another approach utilises different illumination sources to
collect additional PAD data. Rowe et al. [12] developed the
first multi-spectral fingerprint capture device in 2008. Their
sensor captures the fingerprint in white, blue, green, and red
illumination with a twofold goal: i) improving the recogni-
tion process, and ii) detection of PAIs. The authors prove
the suitability of their design on a massive dataset of nearly
45,000 samples comprising 60% PAs. In a similar approach,
Hengfoss et al. [13] analysed the reflections for all wave-
lengths between 400 nm and 1650 nm on the blanching effect
(i.e., the finger is pressed against a surface such that the blood
is squeezed out). They observe that these dynamic effects only
occur for bona fide presentations and neither for PAIs nor
for cadaver fingers. Additionally, they measured the pulse of
the finger but conclude that it takes much longer and is less
suited for PAD. Further optical methods for pulse, pressure,
and skin reflections are presented by Drahansky et al. [14].
Their experiments show that skin reflections in the evaluated
wavelengths of 470 nm, 550 nm, and 700 nm outperform the
other two methods. In another approach, Kolberg et al. [26]
visualise vein patterns by placing 940 nm LEDs above the
finger. Using Gaussian pyramids, they are able to detect fin-
geprint PAIs since they usually do not include a vein pattern.
However, for thin and transparent overlay attacks the bona fide
veins still remain visible, which limits detection capabilites for
overlay PAIs.

More recent publications focus on the short wave infrared
(SWIR) spectrum between 900 nm and 1700 nm, which is
not visible for the human eye but can be captured by ade-
quate cameras. Gomez-Barrero et al. [16] utilise the spectral
signature between different wavelengths for fingerprint PAD.
Working with a rather small database, they show that most
materials reflect the illumination in a different way than
human skin. A subsequent study [17] further improves PAD
performance on those 60 samples with the use of a CNN.
Moreover, by fine-tuning two pre-trained CNNs and training
a small residual network from scratch, Tolosana et al. [27]
showed that deep learning approaches perform much better
than spectral signatures for bigger datasets. Additionally, the
results reveal that the small residual network trained from
scratch outperforms the fine-tuned VGG19 and MobileNet
CNNs, for user-convenient scenarios requiring a low BPCER.
Another extensive benchmark [28] tests two additional CNNs
and adds an advanced pre-processing layer to them. This
layer is trained on the given dataset to pre-process a 4-
channel SWIR image for usage in 3-channel CNNs, which
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TABLE I
HARDWARE-BASED FINGERPRINT PAD METHODS WITH THEIR MOST RELEVANT METHODOLOGIES AS PERFORMANCE AND THE NUMBER OF PAI

SPECIES, PA SAMPLES, AND BONA FIDE SAMPLES

significantly improves PAD performance in contrast to the
manual pre-processing used in [27].

On the other hand, the technique of laser speckle contrast
imaging (LSCI) [32] is able to visualise blood movement
underneath the skin. For this purpose, a laser illuminates the
desired area and a sequence (i.e., 1 second) of images is
captured. Since this laser slightly penetrates the skin, subtle
movements within blood tissues change the reflected speckle
pattern over time [33]. Utilising this principle for fingerprint
PAD, Keilbach et al. [18] compute the temporal contrast in
order to obtain a single LSCI image for feature extraction.
Those handcrafted features (e.g., LBP, BSIF) are then classi-
fied by support vector machines (SVMs). This approach was

later benchmarked in [24] with eight additional classifiers on
a larger dataset in order to evaluate the best PAD performance
by fusing different schemes. However, similar to the work on
vein patterns, thin and transparent overlays are often wrongly
classified as bona fide. In the case that the material of the
PAI is thin enough for the laser to still penetrate into the
skin below, bona fide properties are captured and thus the PAI
is not detected. Finally, Mirzaalian et al. [22] applied deep
learning methods on these laser sequences. Next to more tradi-
tional CNNs, the authors propose the usage of long short-term
memory (LSTM) networks, which are able to remember a tem-
poral state and can directly process the temporal information
within sequences. The results show a slight advantage of the
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TABLE II
ONE-CLASS PAD METHODS ACROSS DIFFERENT MODALITIES

LSTM towards the four CNNs tested. A more extensive bench-
mark on LSTMs and CNNs in [29] comes to the conclusion
that both temporal analysis of the LSTMs and spatial analysis
of some CNNs are partly complementary and detect different
PA samples.

Given the promising concepts of SWIR and LSCI data for
fingerprint PAD, fusions of both approaches have been pub-
lished in [19], [20], [25]. These multimodal approaches prove
that PAD benefits from additional sensors. The weaknesses of
one technology can be covered by another and the combination
of different methods significantly improves the overall detec-
tion accuracy. Additionally, fused systems are more robust
against unseen PAI species in the test set.

B. One-Class Presentation Attack Detection

Unlike traditional classification problems, the motivation
behind one-class classifiers is learning the structure of data
samples belonging to a single class. Therefore, in case of PAD,
one-class classifiers are trained only on bona fide samples.
New and unseen samples are classified as PAs if their struc-
ture differs from those bona fide samples used in the training
phase. In this context, the main challenge is to find an optimal
threshold to ensure that sophisticated PAs can still be distin-
guished from those bona fides that deviate from normality.
Due to the environmental conditions and interaction factors
(data subject with respect to the capture device) a significant
intra-class variation for the bona fide class must be expected.
Since the majority of published PAD approaches are based on
two-class classification, this section reviews one-class publi-
cations across modalities as summarised in Table II. Due to
the different modalities and datasets used, a comparison of
performance metrics is not included.

Generally, one-class classifiers can be split into generative
and non-generative approaches [35]. Generative methods aim
to approximate the distribution function of the bona fides (e.g.,
a Gaussian model). Non-generative approaches focus on learn-
ing an optimal hypersphere that defines a decision boundary
to separate bona fides from PAs.

One non-generative fingerprint PAD approach has been
presented by Ding and Ross [34], who introduced an ensem-
ble of multiple one-class support vector machine (OC-SVM)
classifiers, each of which is trained on different feature sets.

The main goal of all OC-SVMs is to find the smallest possi-
ble hypersphere around the majority of training samples. Once
the boundaries of the hyperspheres are found, they are refined
using a small number of PA samples. Finally, in order to obtain
a single prediction, the scores of all OC-SVMs are fused by
majority voting. With regard to unknown attacks not seen in
the training phase, the authors reported an averaged APCER
of 15.3% vs. an averaged BPCER of 10.8% on the LivDet
2011 database [39].

Another non-generative approach for face PAD has been
proposed by Nikisins et al. [36], who use a combination of
pre-trained autoencoders (AEs) and a simple multi-layer per-
ceptron (MLP) for the final classification. The AEs are used to
extract features from multi-channel input data, which in this
case is a stack of greyscale, near-infrared, and depth facial
images (BW-NIR-D). Each of the AEs are only trained on
bona fide samples, thereby learning the appearance of real
faces. Instead of collecting a lot of training data, Nikisins
et al.use transfer learning techniques to transmit the knowledge
of facial images from the RGB to the BW-NIR-D domain. The
CNN model was pretrained on the CelebA [40] database con-
taining RGB facial images, which they fine-tuned on the Wide
Multi-Channel Presentation Attack database (WMCA) [41].
Only the subsequent MLP is trained on both bona fide and
PA samples for the final classification of the face images. The
authors report a BPCER of 7.3% vs. an APCER of 1%.

In another work on face PAD, Nikisins et al. [35] imple-
mented and tested both one-class Gaussian mixture mod-
els (OC-GMM) (generative) and OC-SVMs (non-generative),
benchmarking their results, with two-class approaches as
well. For their experiments, the authors employed an aggre-
gated database as a composition of three publicly available
databases: Replay-Attack [42], Replay-Mobile [43], and MSU
MFSD [44]. Their results show a significant better detection
performance for the OC-GMM approach compared to the OC-
SVM. Particularly, they emphasise the ability of the OC-GMM
to have better generalisation properties to unknown attack
types as compared to the two-class classifiers and the OC-
SVMs. Both models were trained on the image quality metric
features introduced in [44] and [45].

Lastly, Engelsma and Jain [37] present another one-class
approach using generative adversarial networks (GANs) for
fingerprint PAD. Specifically, they trained three different
GAN models using the DCGAN architecture proposed by
Radford et al. [38]. As part of their work, they collected a
dataset comprising 12 different PAIs and 11,800 bona fide
samples. The experimental evaluation reports an APCER of
15.6% for a BPCER of 0.2%.

III. CAPTURE DEVICE

The camera-based fingerprint capture device [46] that was
used for data collection is depicted in Fig. 1. One camera
(Basler acA1300-60gm) takes finger photos in the visible spec-
trum to extract the fingerprint for legacy compatibility. This
camera is also able to capture finger vein images, when only
the near-infrared (NIR) LEDs above the finger are switched
on. A second camera (100 fps Xenics Bobcat 320) captures
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Fig. 1. The capture device is a closed box with only one free slot for
the finger. Two cameras and multiple illuminations are able to capture the
fingerprint and additional PAD data.

Fig. 2. Bona fide samples acquired at five different wavelengths.

PAD data in wavelengths between 900 nm and 1700 nm. Both
cameras are placed in a closed box next to multiple illumi-
nation sources with only one finger slot at the top. Once a
finger is placed on this slot, all ambient light is blocked and
only the desired wavelengths illuminate the finger. The invis-
ible SWIR wavelengths of 1200 nm, 1300 nm, 1450 nm, and
1550 nm are especially suited for PAD because all skin types
in the Fritzpatrick scale [47] reflect in the same way as shown
by Steiner et al. [48] for face PAD. Hence, SWIR images
are captured in each of these wavelengths. Additionally, a
1310 nm laser diode illuminates the finger area and a sequence
of 100 frames is collected within one second. Stemming from
biomedical applications, this laser sequence is used to image
and monitor microvascular blood flow [32]. Since the laser
scatters differently when penetrating human skin in contrast
to artificial PAIs, this technique qualifies for PAD as well.

Example frames of a bona fide presentation acquired at
the aforementioned wavelengths are shown in Fig. 2. For the
laser sequence data, only one frame is depicted since the

subtle temporal changes are not visible in steady pictures.
Nevertheless, we can recognise a circle where the laser focuses
the finger. On the other hand, the LEDs achieve a much more
consistent illumination for the SWIR images, where the skin
reflections get darker for increasing wavelengths. The region
of interest for all samples comprises 100 × 300 pixels due to
the fixed size of the finger slot.

IV. PROPOSED PAD METHOD

This section introduces our one-class fingerprint PAD
scheme based on a convolutional autoencoder, which is
described in Section IV-A. Since AEs measure the reconstruc-
tion error, this concept is subsequently discussed in detail in
Section IV-B. Finally, this scheme is combined with fingerprint
PAD in Section IV-C.

A. Convolutional Autoencoder

A convolutional autoencoder is a neural network optimised
to copy its input data. The model consists of two compo-
nents: the encoder function h = f (x) and the decoder function
x′ = g(h), both of which are implemented as a multi-layer
CNN. This means that the AE maps an input image x to an
output image x′. The output h of the encoder function f is a
lower dimensional latent representation of the original image
x. Out of this latent variable, the decoder function g tries to
reconstruct the original image x. In order to force the model to
learn correct parameters for decoding the latent representation,
a loss function needs to be minimised:

L(x, g(f (x))) (1)

This loss function penalises g(f (x)) if it is dissimilar to x.
The choice of the loss function thus plays a decisive role
in the performance of convolutional AEs. In order to increase
the efficiency of the learning process, the loss value can be cal-
culated on a randomly selected subset called Batch. However,
one important requirement is to design the architecture of an
AE in an undercomplete way. In other words, the dimension
of h needs to be smaller than the original dimension of input
x. This forces the AE to only extract the most relevant features
from the training data. Furthermore, it prevents the model to
be in danger of learning the identity function id(x) = x [49].
Once the model is trained, it is able to encode and reconstruct
images x′, which resemble the training data. In case of an
input image that is dissimilar to the ones involved in train-
ing, the reconstruction fails and leads to a high reconstruction
error (see Eq. (1)). The high input sensitivity of an AE can be
exploited to detect images that differ from the ones being used
during training. For this reason, AEs became very popular in
the field of anomaly detection (e.g., [36], [50]). Transferred to
the domain of fingerprint PAD, the AE is only trained on bona
fide samples. Later, the model can be used to detect unknown
PAs by comparing the reconstruction error against a threshold.

B. Reconstruction Error (RE)

A common approach to compute the reconstruction error is
to use the mean squared error (MSE) [51] as loss function,
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which is defined as
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where B, W, H and I denote the number of data samples
involved in one batch iteration, the image width, height and
the number of input channels of an input image x. The usage
of MSE is convenient since it is easy understandable and often
pre-implemented. However, there is also a major drawback in
case of random noise occurring in the data. Since the calcu-
lation of the MSE involves squaring the difference between
every pixel of the input image, single outliers have a huge
impact on the reconstruction error. This inevitably leads to an
increased rate of bona fide samples erroneously classified as
PAs. This lack of robustness against outliers is a well known
challenge in the deep learning domain and is referred to as
robust estimation [52]. The idea of increasing the robustness
of an AE model for anomaly detection was studied by Ishii
and Takanashi [50], who introduced a weighted version of the
MSE (wMSE):
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Here, C refers to the α-th quantile of mse = [mse1, . . . , mseB].
The approach of Ishii and Takanashi ignores training sam-
ples during the optimisation process as soon as their mea-
sured MSE exceeds a defined threshold C. Translated to the
problem of fingerprint PAD, that means that a certain per-
centage of bona fides is ignored during the training phase.
The authors state that their proposed loss function is use-
ful to cope with unknown outliers within the training set,
since they will not distort the resulting model. Unknown
outliers can occur, for example, if the data is not labelled.
Therefore, it is difficult to differentiate them from normal
data samples. However, in our case the training data con-
tains no PAs. That means that excluding bona fide samples
from the training process could potentially lead to a loss of
information.

For that reason, the proposed loss function of Ishii and
Takanashi is adjusted within this work. The main idea is to
integrate the weight factor such that it excludes pixel values
that the AE is systematically not able to reconstruct. In other
words, this means that the AE is optimised to reconstruct the
most meaningful areas of the images while ignoring random

noise. The adjusted loss function is defined as follows:

LProp
(
x, x′) = 1

B
·

B∑

j=1

1

WHI

W∑

w=1

H∑

h=1

I∑

i=1

wj
whie

j
whi

(
x, x′) (6)

with

wj
whi =

{
1, ej

whi

(
x, x′) ≤ msej

(
x, x′) + C · stdj

0, ej
whi

(
x, x′) > msej

(
x, x′) + C · stdj (7)

and

stdj =
√√√√ 1

WHI
·

W∑

w=1

H∑

h=1

I∑

i=1

(
ej

whi(x, x′) − msej(x, x′)
)2

(8)

Generally speaking, every pixel value is compared to a
threshold that is a linear combination of both mean and
standard deviation of the squared error. Thus, exceeding pix-
els are ignored and contrary to the MSE, it is assumed
that this approach prevents random noise from increas-
ing the overall reconstruction error of the bona fide sam-
ples. The remaining challenge however consists in finding
the optimal constant value of C. By choosing a too low
threshold, the model might tend to over-generalise such
that decisive patterns that are important for distinguishing
between bona fides and PAs are not extracted anymore.
On the other hand, if C is too high, noisy data might be
involved in both training and testing, which leads to a less
robust model and consequently increases error rates. This
problem is related to the typical trade-off between bias and
variance.

C. PAD Scheme

We study three different architectures of an AE, as illus-
trated in Fig. 3, in order to find the best suited approach
for fingerprint PAD. The four SWIR images are concatenated
to a single 4-channel image such that one AE can work on
all information simultaneously. Taking the first, middle, and
last frame of the laser sequence, a second AE is trained
on a 3-channel input image. In contrast to a LSTM [53],
the AE is not designed to learn temporal correlation, and
since the changes within this sequence are subtle, we decided
to take into account only the three furthermost frames in
a similar way as the SWIR images are used. Due to the
hardware changes of the capture device, computing the con-
trast of the laser sequence data does not work anymore as
opposed to previous work [18], [24]. Hence, we discard
the term LSCI and refer to laser sequences (or laser) in
this work.

We denote the three architecture types as Conv-AE,
Pooling-AE, and Dense-AE (top to bottom in Fig. 3). The
names refer to the type of layers which were successively
added to the architecture. The Conv-AE is composed of con-
volutional layers with a stride value of two in order to reduce
the dimension during the encoding phase. In the Pooling-AE,
the stride value of the convolutional operations was changed
to one, followed by a max pooling operation to reduce the
dimension. The last modification Dense-AE added a Fully
Connected Neural Network (Fully-Connected NN) between
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Fig. 3. The baseline architectures are defined as Conv-AE, Pooling-AE, and Dense-AE. The following operations are involved: C = Convolution,
US = Upsampling, MP = Max Pooling, F = Flatten, R = Reshape. d is the image dimension: d = 4 for SWIR and d = 3 for laser samples.

the encoding and decoding phase to reduce the dimension of
the original image down to a 64-dimensional vector. All base-
line architectures include a single convolutional / max pooling
layer in the encoding phase.

The distinction between the Conv- and Pooling AE is
grounded on the findings of Springenberg et al. [54],
who claim that the max pooling operation can simply be
replaced by a convolutional layer with an increased stride
without significant loss in accuracy. On the other hand,
Goodfellow et al. [55] state that the max pooling opera-
tion leads to an invariance of translations in smaller regions.
Finally, the Dense-AE is inspired by Ke et al. [56], who
emphasise the ability of the Fully-Connected NN to com-
bine local features and to find interdependent patterns within
the feature maps. Across all architectures the relu activation
function is used in all layers except for the very last con-
volutional layer, where the sigmoid function proved to be
the better choice. The convolutional layer includes twelve fil-
ters and MSE (Eq. (2)) is used to measure the reconstruction
error.

In a second step, we evaluate the influence of the recon-
struction error. In particular, we take the best-performing
architecture and compare the MSE approach to the wMSE
approach by analysing different constant values C for the
threshold computation. Hence, for each adaptation a new
model is trained, since the loss function changes the learned
weights during training.

Finally, we are interested in the best fusion of both
AE types, based on SWIR and laser data, since previous
approaches [19], [20], [25] show a significant improvement
in PAD performance. For this reason, we compute different
weighted fusions and compare the results in order to find the
one best suited for our fingerprint PAD approach.

V. EXPERIMENTAL EVALUATION

Starting with a description of the utilised dataset and pro-
tocol, this section provides the details of the experimental
evaluation. Subsequently, the results of our PAD method are
presented and finally benchmarked with additional classifiers.

A. Database and Experimental Protocol

The data was collected in four acquisition sessions in two
distinct locations within a timeframe of nine months. Subjects
could participate multiple times and presented six to eight
fingers per capture round including thumb, index, middle,
and ring fingers. Fingers were presented as they were, which
resulted in samples with different levels of moisture, dirt, or
ink. Further details about the capture process are given in [46].
The combined database contains a total of 24,050 samples
comprising 19,711 bona fides and additional 4,339 PAs stem-
ming from 45 different PAI species. These PAI species include
full fake fingers and more challenging overlays as summarised
in Table III. The printouts were also worn as overlays and con-
ductive paint was applied to some PAIs. Note that the project
sponsor indicated to make the complete dataset available in
the near future for reproducibility and comparison.1

The combined database is split into non-overlapping train-
ing, validation, and test sets, where subjects who participated
multiple times are included in only one of the sets. This
ensures a fair evaluation on unseen samples at the test stage.
Randomly assigning 30% of the subjects to the training and
additional 20% to the validation set results in the partitioning
shown in Table IV.

Our implementation is done with Keras [57], which is
a python based deep learning library that facilitates the

1https://www.isi.edu/projects/batl/data
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TABLE III
SUMMARY OF PAIS IN THE DATABASE WITH THEIR CORRESPONDING

GROUP. THE NUMBER OF TOTAL SAMPLES AND THE NUMBER OF

VARIATIONS IS GIVEN. VARIATIONS INCLUDE, E.G., DIFFERENT

COLOURS AND CONDUCTIVE AUGMENTATIONS

TABLE IV
PARTITION OF TRAINING, VALIDATION, AND TEST DATASETS

definition, training and evaluation of various deep learn-
ing model types. For training the parameters, we used the
pre-implemented RMSprop [58] as an adaptive optimiser.

The PAD performance is shown in detection error trade-
off (DET) curves between the BPCER and the APCER. For
further comparison the partial area under curve (pAUC) of
up to 20% error rate is computed for each curve. It should
be noted that the PAD threshold can be adjusted depending
on the use case: A low BPCER represents a very convenient
system, while a low APCER is more important for high secu-
rity applications. Furthermore, the detection equal error rate
(D-EER) is the point where APCER = BPCER.

B. PAD Method Evaluation

The first part of our experiments compares the three base-
line architectures: Conv-AE, Pooling-AE, and Dense-AE. The

Fig. 4. DET curves for the three evaluated AE architectures on laser (top)
and SWIR (bottom) data.

corresponding DET curves for both laser (top) and SWIR
(bottom) input data are shown in Fig. 4. In both cases, the
Dense-AE (red) achieves the best performance at all thresh-
olds. Therefore, it can be concluded that the Dense-AE is
better capable of extracting relevant latent features of the given
input data, that can be reconstructed to the original image.

In the next step, the MSE (Eq. (2)) has been replaced by our
proposed wMSE (Eq. (6)). Since the wMSE involves another
hyperparameter C, Fig. 5 depict the DET curves for different
parameter choices for laser and SWIR data, respectively. Also,
the best performing baseline model has been added (Dense-
AE with MSE) in order to directly compare it with the new
settings. Looking at the graphs and the pAUC values, the
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Fig. 5. DET curves and pAUC (%) of the Dense-AE comparing the MSE
approach to the wMSE optimisation on laser (top) SWIR (bottom) data.

performance increases for growing values of C. This indicates
that by choosing C too low, the excluded image areas are
too large, which in turn leads to a loss of information. This

Fig. 6. DET curves and pAUC (%) from different weighted score-level
fusions of the best-performing wMSE Dense-AEs.

phenomenon can be observed up to values of C = 2.2 (laser)
and C = 2.0 (SWIR), where the performance decreases again.
Choosing C values that are too high leads to thresholds, that
non of the pixel-wise REs exceed. Therefore, too few areas
are excluded from the training process. Hence, in our experi-
ments, values of C = 2.0 (laser) and C = 1.8 (SWIR) proved
to be good choices.

To evaluate whether the laser and SWIR AE models com-
plement each other, we applied a weighted score fusion and the
resulting DETs are depicted in Fig. 6. The given pAUCs show
that the performance constantly decreases for higher weights
on the laser scores. Thus, the optimal setting is to only use the
SWIR scores as any inclusion of the laser scores has a nega-
tive effect on the classification results. On the other hand, for
a possible high security application (e.g., APCER = 0.1%)
the fusion benefits from the laser-based PAD. However, the
BPCER values are above our 20% pAUC mark and thus not
considered in computing the pAUC.

When analysing the occurring APCEs for a convenient
BPCER = 0.2%, we found that all falsely classified PA sam-
ples of the SWIR AE are also misclassified by the laser AE.
This includes mostly transparent overlays of clear dragon skin
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Fig. 7. Overview of the additionally benchmarked one-class classifiers and
their corresponding input features.

Fig. 8. DET curves and pAUC (%) from the benchmark of SWIR wMSE
Dense-AE to other classifiers trained on latent AE representations.

and two part silicone or full finger PAIs in yellow and orange
playdoh. Also previous works [16], [28] on SWIR PAD had
troubles with orange playdoh since its reflections are nearly
identical to skin within the SWIR spectrum. The other APCEs
are still close enough to bona fide representations that the
reconstruction errors could not be distinguished. In addition

Fig. 9. DET curves and pAUC (%) from the benchmark of SWIR wMSE
Dense-AE to other classifiers trained on features extracted by VGG19.

to the already mentioned APCEs, the laser AE further fails to
detect full finger PAIs of dragon skin, ecoflex, and monster
latex as well as overlays out of gelatin, school glue, ecoflex,
gelatin, and monster latex. Since the laser samples are all cap-
tured in the same wavelength, PAIs are more likely to resemble
bona fide samples.

C. Benchmark With Other One-Class Classifiers

Summarising the results so far, the best performance could
be obtained with the Dense-AE trained on the SWIR dataset
using the proposed wMSE. To put these numbers into context,
we benchmark our proposed AE with further one-class classi-
fiers. In this context, we train and test an OC-SVM [59] and
an OC-GMM [60] on two different feature representations of
the input images. One is the latent feature representation as a
result of the encoding phase from our Dense-AE and the other
method utilises the VGG19 [61] CNN pre-trained on [29] to
only extract features from the given input. This results in a
total of four combinations of classifiers and features for each
SWIR and laser data as depicted in Fig. 7. Finally, the laser
and SWIR approaches are also fused to enhance their detection
accuracy. Fig. 8 and Fig. 9 visualise how the AE benchmarks
against other one-class classifiers. The first graph contains
the performance of OC-SVMs and OC-GMMs trained on the
latent representations of the AE. The second graph shows the
DET curves of both classifiers trained on features extracted
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TABLE V
OVERVIEW OF APCERS FOR A FIXED BPCER OF 0.2% AND D-EERS

with a pre-trained CNN (see Section IV). The AE performs
significantly better than both other approaches since its curves
are well below the other methods. Interestingly, the fused OC-
GMM performs second-best with a pAUC of 37.57% (latent)
and 24.91% (VGG19). Contrary to the AE, the performances
of the OC-SVMs and OC-GMMs can be improved by fusing
the laser and SWIR scores. Thus, in contrast to the AE, there
is a complementary effect measurable.

In order to connect our results with the state-of-the-art,
Table V shows the APCER values of this final benchmark for
a very convenient BPCER of 0.2%. Furthermore, the D-EER is
depicted as the point where APCER = BPCER. While above
pAUC evaluated the general performance, those two opera-
tion points (APCER at BPCER=0.2%, D-EER) suit better to
report specific results. The values show that both Dense-AEs
outperform the other classifiers and prove the superiority of
our SWIR Dense-AE. While our method achieves an APCER
of 6.59% at a BPCER of 0.2% and a D-EER of 2.00%, the best
performance of all other classifiers is an APCER of 34.17%
at a BPCER of 0.2% for the SWIR OC-GMM based on the
latent representation, and a D-EER of 5.16% for the fused
OC-GMM based on the VGG19 representation.

VI. CONCLUSION

In this article, we have proposed a one-class PAD method
based on convolutional autoencoders. Specifically, we com-
pared three different AE architectures (Conv-AE, Pooling-AE,
and Dense-AE). Based on our experiments, we can conclude
that the Dense-AE performs significantly better than the other
model architectures on both laser and SWIR input images.

Additionally, we proposed the wMSE as an extension of
the MSE with the idea of ignoring disturbing image areas
(e.g., illumination interference) during both training and test-
ing. With the MSE replaced by the wMSE, the pAUC values
could further be improved from 29.01% to 22.45% (laser) and
from 10.22% to 7.30% (SWIR). The weighted fusion of the
laser and SWIR scores did not improve the results. Therefore,

in contrast to related work applying two-class approaches, the
two AEs do not complement each other.

Finally, two additional well-established one-class classifiers
(OC-SVMs and OC-GMMs) have been trained on two differ-
ent feature inputs. The first set of OC-SVMs and OC-GMMs
were trained on the latent representations of the best per-
forming AE. The second features have been extracted with
a VGG19 [61] CNN pre-trained on [29]. None of the alterna-
tive one-class classifiers achieved a comparable performance
to our proposed Dense-AE, which proves the soundness of the
approach. Nevertheless, both alternative methods benefit from
information fusion of laser and SWIR data.

Future work will focus on further optimising the wMSE. In
our work, every pixel-wise RE gets an individual weight (zero
or one) depending on whether it exceeds the chosen threshold
C or not. This binary criterion could be loosened to allow the
weights to have values between zero and one. Additionally,
the concept of the Dense-AE can be applied to further PAD
tasks as face and iris PAD, or software-based fingerprint PAD
on the LivDet datasets.
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